The Linux Kernel API

The Linux Kernel API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. DIIVEE BASICS ... tiiuieitieieiieeie sttt sttt bt sttt sb et b e e b e e nneeneas 1
1.1. Driver Entry and EXIit POINES........cooiiiiirenine e 1
Lo L8 1= 1o RSN 1

g pToTe (U] Lo = () SRRSO 2

1.2. Atomic and pointer manipulation...........c.cceeceeieeieeiie s 3
F=1 (0] 0 41T =T= T IR PSSR 3
=00 0] O =) PO 4

=10 41T > T o SR 5
=0 0 01 TR U | o PSR 6
atomiC_SUD_ ANd _tESL......ceicceeceece e e 7

=1 (0] 0 01 (o3 | oSSR 8

=1 (0] 0 01 (o3 o L= oSSR 9
atomic_deC_and _teSt........cccceveiiece s 10

r=1 (0] 01 To T Tolr=T g [0 [(ST SRS 11
atoMIC_add_NEQALIVE.......cceeeeeee et 12

(o LU F=1 1 To | =T o OSSP 13
PUL_UNAHGNEM.... ...t sneas 14

1.3. Delaying, scheduling, and timer routings...........ccccveveverieesesieeseeseseenns 15
SChedUIE_tIMEOUL.......ooe et 15

=] 0Tz Ug=T 0 LA (o T | ST 16

P B L L= Nl Y/ 013 SRR 1
P20 I B T 10 o] Y2 T =0 1 £ PSR 1
S = o o SRS 1

St Add_tAIl.....coeeeeieeeee e 2
HST @l 3

1S Ao (=Y L L SRRSO 4

IS =T 0] 0 PRSPPI 4

ST] o] o =SSN 5

LS =T RSSO 6

1Sy A (o] Y= 1] o F OSSR URRUSTRPRROR 7
liSt_fOr_€ach_Saff.......ccoeeeeeeeeee e 8

ISy O (o] g == Vo] T o (= 2RSSR 9

3. Basic C Library FUNCHONScccoiieeeeeseee et 11
3.1, SHNG CONVEISIONS.....cciiicie ettt ettt e e ste e e ere e e s seesneens 11
SIMPIE_SHION....ceeeeceeeeee e 11
SIMPIE_STTOUL.....oueieeeee e 12
SIMPIE_STITOL ... 13
SIMPIE_SITOUIL....ceeieiecee e 14
(V2] 0] 0111 USSR 15
K] 1] 0] 11 11 PO USRI 16
(V25T o] 110 £ TP PR PR 17
5] 0111 USSP 18
VSSCANE ...ttt st b et b e e nr e e nae e 19
SSCANY ...ttt bbbt b e b nre s 20
3.2. StriNg ManipUIALION.........cuiiieeeeee s 21
] (6] 0)OSR RPN 21
] L 103 0V SRR SR 22
] (07> PRSP URR ORI 23
] 1 L0 | SO PR 24
] (0] 1 01 o TP PP UP PP 25
5] £ 103 01 o TSP 26
1 (0] | SRR 27
5] 1 (0] 1 | O RR 28
5] ([T o SRR 28
S 1] [T o PSPPSR 29
5] 110] SRS 30
] 110)RR 31
MEIMISEL. ..ttt s e e e ae e e sb e e e s sn e e sne e e snneesanes 32
o700] o)/ TSR 33
(0 T=T 0 gT0] o)V Z SRR 34
MEIMIMOVE.eeietieeteeesiteeerteeesreeesteeesee e e sseeesbeeessseesabeeeaseeesnbeeessneesneeennresnnnes 35
(0 0T=T 0 aTe] 01 o PSPPSR 37
0170 01 To1= o OO UR RPN 37
] £ L TSP PRURPORRTIN 39

(00110 0 1e] o1 COT R UURRUPRRT 39

3.3, Bit OPEIAtiONS.....coueiieiieieieieee e 41
K11 S o] L TSP RRTPRURRRN 41

L SBE DL ——————— 42

(o3 1= Y= T | OSSR UP USRI 43

B 2= o = | P 44
ChANGE_DIL....ceeeeee e 45
test_and_Set Dil.......cooiii e —————— 46
_test_and_Set Dit......ccooieiiicec 47
test_and_clear _Bit.........coooo e 48
__test_and_clear_Dit......cooi s 49
test_and_change Dit..........ccoceoieiiie e 50
LES1SY A o1 SRS URR USSR 51
fINA_firSt_Zero_Dil.......ccceoieee e 51
fINA_NEXE_ZEr0_DiL......ooeeeeee e 52

1 72U P PRRPTPRTPRRN 53

LLE TP 54
AWEIGNTB2......cee e 55

4. Memory Management iN LINUX........ooeoeieneeeneee e 57
4.1. The SIab CaChe.......ccoiei e 57
KMEM _CACNE _CrEALE........ccve ettt e 57
kmem_cache _Shrink..........ccco oo 59
KmMem_Cache _deStrQY.......cooiiieiieerie et 59
Kmem_cache_allOC.........cooveiie i 61
KIMAITOC..... bbb 62
KMEM_CaCNE _frE@. ..o 63

QT (== RS TRS 64

5. The ProC fil@SYSIEML.......cocie e 66
5.1, SYSCH INtEITACE.......eee e e 66
register_SYSCHL_table.........coeee e 66
unregister_SYSCHl_talle.........cooooiiiii 68

(o] (o Yoo (01511] oo TS 69

oY o Tog o (0]] 410V o S 70

o] oo o (o] 01V /=Tol 1 411 o1 1 4T I O 72

o] oo e (o101 o] g e \VZoToR o 411 o] g T U 73
proc_doulongvec_ms_jiffleS_minMmaX.........cccccervererinnenienenieneeeseenn 75
ProC_doiNtVEC JIffI@S.....ccuiiieiiieieee s 76
6. THE LINUX VIS ...ttt bbb 79
6.1. The DIirectory CaChe..........oou s 79
A INVAIAALE.....c..ei e 79
(o I {1 o TE= 11 T= TSP SRR 80
PrUNE_ACACKNE. 81
Shrink_dCache _Sh........cooeiiie e 82
have _SUDMOUNLS........ccccoiiie e e 83
Shrink_dcache_Parenl..........cccoeiiiiieiin e 84
(o 1= 11T TSROSO 84
O INSTANTIALE......eceeececeecece e et enae e 86
(o[- 11 (o o o To | S TSP 87
(o 1 (oT0] (U o TR RRTRTI 87
(o [V7= 1o £ (=SOSR 89
o 0 1= 1= (PSS 89
A FENASKL. ... e 90
(o 1 11016 1Y RS 91
N o N - 1 P 92
ESTISU oo [94
fiNd_INOdEe_NUMDEL.........oiiei e 95
(o [o | (o] RS 96
A0, e 97
(0 [0 [TSRS 98
A_UNNASNEA........oo e 99
6.2. IN0de HaNAIiNG........ooieeie et 100
B 01 1 G T (o o [T |1 Y S 100
V(g To T L= o T 101
ClEAr_INOTE..... .ot e ee s 102
INValidate _INOUES.......ccuviiiiie e g 103
(o L= =10 0] 0102 e o = SRS 104

10T [1SS 105

INSert_iN0de_Nashi..........cooeiiiiiicee e 106
remove_inode_hash......... e 107

11 | SRR 108

0] 0T o SRS 109
UPAAEE_ALIME......eiiieeeeeeee bbb 110
Make_bad _INOAE ..o 111

IS_ DA _INOUE....c.eieee e 112

6.3. Registration and SUPErbIOCKS........c.ccceeivieeiiciese e 113
regiSter_fileSYSIEM. ... 113
uNregister_fileSYSeML.. ..o 114
(0] S U = USRS 115

6.4, FIlE LOCKS....ccuiiiieiieiieiee ettt bbb 116
POSIX_10CK i@, 116

B 1= S (== L = SRR 118
[@aSE gl MUME......ciiiiiicee e ere e 118
POSIX_DIOCK _1OCK.....c..iieieieciesecese e 119
POSIX_UNDIOCK _[OCK......ccuiieieiieiesieee s 120

[oTod S 1 0 F= NV (== Lo SRR 121
[OCK _MAY _WIIE... ..ot re e 123
fCNL_QELIEASE.......eeceeeeee e 124
FCNUL_SEHEASE.....c.ee e 125
SYS_ TIOCK ...t s 126

gL IOCKS _SEALUSeeeiiieciiecie e re e 128

7. LINUX NEIWOTKING ..eveieeeciece ettt ettt re e nne e 130
7.1. Socket Buffer FUNCLONS.........ccccuiieireese et 130
SKD_QUEUE _EMPLY . s 130

SKD QBT 131
KIFEE _SKD... .o 131
SKD_ClONE.......ooeeeeeeee e s 132

SKD _Shar@..... .o s 133
SKb_share ChecCK........c i 134

SKD _UNSNALE.....c e s 136

SKID PEEK. ..t e 137

SKD_PEEK_T@l...cveeeeeeecee s 138
SKD _QUEUE _1BN....c.ee s 139
__Skb_queue_head........cccocoiiiiiii 140
SKb_queue _head.........ooiceeee s 141
_ SKD_QUEUE_TalL.....ceeeeeeeeee e e 142
SKD_quEUE _tall....cceoeeeee s 143
__ SKD _dEQUEUE.......coceee e 144
SKD _dEQUEUE. ...t 145
5] 1 1ST=] o PO 146
SKD_APPENG... e e 147
SKD_UNINK ..o s 148

Skb_dequeue_tail........ccoveeeiiiieeece e 149
SKD_dequeUe _tall........ccooeeieeeeeec s 150
SKID PUL. e s 151
SKD PUSKL .. s 152
SKID_ PUIL.c.e e e 153
5] S O 1 1== o [0T} o 5SS 155
SKD_taIIrO0ML....coeeeeee s 155
SKD FTESEIVE ...ttt 156
£S] 4 11 S S 157
SKD_OrPRAN......c e 158
SKD_QUEUE _PUIGE.....eeeee e s 159
__SKD _qQUEUE _PUIGE.....ceeeeee et 160
_dev_alloC_SKRL.......ciiee e e 161
dEV_AllOC_SKD.....ooeiceeee e 163
SKID COWL.ee s 164
SKD_OVEI _PANIC......iiiiiiii ettt 165
SKD _UNAEr_PANIC.....cceeeecece e 166
= 1] (0 Yo o SRS 167
K@ _SKR...eeee e 168
SKD__CIONE.....ceeee s 169
S N0 T o0) SRR 170
PSKD COPY. i 171

PSKb_expand_head.........c.ccooveeii e 172

SKD_COPY_EXPand........ccoeiiiiiieeieeeee e 174
_ PSKD_ PUIL_taIL..ceieieceeeee e e 175
c SOCKEE eI ... 177
] S (0] T 1L (= oSSR US 177
] o 1 111 =] S 178
8. NetWOrK deVICE SUPPOIT......cceiieieierieeie sttt st sae e 180
8. 1. DIIVEI SUPPOLL.....cueieieesiie ettt see sttt e e et enneeseenneas 180
LA =] £ LT o [RS 180
=L (o ToR =11 4[] (0 1= PSS 181
L1 o [0 o 1= 2R 182
AIOC_FAAIV......ceee e 183
LA o1 o1 [/ USSR 184
AllOC_NIPPI_BV...eiiieieie s 185
LA (0 (=Y 2R ROSTRS 186
= 1| (oo ({0 [USSR 187
NI FCABV et re e 188
= 1] (o To o [V SR 190
deV_add_PACK.....cco e 191
dEV_IreMOVE _PACKcciiiii ittt re e 192
dev_get DY NAME.......ccoi e 193

(o LAV Ao 1=y A o) V2 = 0 1= S 194
(0 =3 o = ST PSS 195
_dev_get DY INAEX.....cccoiiiiieceeeece e 196
(o LoV Ao = A o)V o (= SRS 197
deV_aAllOC _NAME.....oceeeeceee e 198
(0 = =1 (o oSS 199
netdev_state _ChaNQe.........cco i 200
(0 L= [0 - To SRS 201
(0 [<Y o] 01T o USSP 202
(0 = o [0] = SRS 203
register_netdevice _NOfIEL.........ccecve e 204
unregister_netdevice NOLIfieL...........ccvevviieve i 205

(o Yo [1T TS {2 1 O 206

1]] OSSR 207
Net_Call_rX_AtOMIC........cooiiieiieeee e 208
regisSter _QifCONT... ... 209
NELAEY _SEL MASIEL.......coii et re s 210
JEV_SEt_PrOMISCUILY......eiverieiiierteriesie sttt 211
dev_set_allMUILL.........coooiee s 213

[0 =Y o Yo | RS 214

(o LY L=V [0T L= TR 215
netdev_fiNiSh_UNIEQISTE........cccviveeeeee e 216
UNFEQIStEr _NETHBVICE.eiieieeeeieiee ettt 217

8.2. 8390 Based Network Cards.........cccouueeereeneneeniesee e 218
L= 1o] 1= o TSRS 218

L= o 0 1S RS 219

L= I o 1] [T 11 | OSSN 220

LTI (=T 4 U] o) OSSR 220

21 T0 L= o S 222

N I3 11 0 T 223

8.3. SYNCNIONOUS PRR........ooieeeeeeese et 224
ST 0] o o L] U 1 SR 224

5] 0] o o T 1[0 1S = S 225

5] 0] 0] € J 07 01T o TR 226

S10] o] O I (=T0T 01T o TR 227
SPPP_ChANGE MIU.....ooiiiiie e e 228

£ 0] o] o T o (o TN (o o 1 S 229
SPPP_ALEACK ... 230
SPPP_AETACKH 231

& B o To [0 L= TU] o] oL g APPSR 233
LS 200 Y/ o To [U] [N o Y=o 1 Vo SRS SN 233
FEQUEST._ MOTUIE.......ee s 233
call_usermodehelper........ccoooiieieeeee e 234

9.2. Inter MOdUIE SUPPOLL.......ccee et 235
iINter_MOAUIE_TEQISTEL......cceeieeece e 235

10

iINter_MOodule_UNFEQISTEL........cccveiieeeceeeseete et 236

INtEr_MOAUIE_gEL.....eiiieeceeee e 237
Inter_mModule_get_reQUESL........coviiieeeeee e 238
INtEr_MOAUIE_PUL......oiiieiieeee e 239

10. Hardware INTEITACES........cceiiieieeie ettt nne s 241
10.2. Interrupt HANAINGcocoiiiiiiiceeee s 241
(o172 o] (= [(o [10153/ 1 o3PS 241
(017210 L= 1 (o 1SR 242
ENADIE MG 243
Probe _Irg_MASK.....ooiieee s 244
10.2. MTRR HaNAIiNG...cuooieecieeee sttt ene 245
0011 = T [0 SRS 245
T AELe et re s 247
10.3. PCI SUPPOIT LIDIALY....cciiiieiriiieieseseserees et 248
PCI_FINA_SIOL.......eieeeeee e 248
PCI_fINA_SUDSYS.....cviiiiece e 249

o Yot I {1 o e [= Y7 Tl = RS 251
PCI_INA_ClASS.....oiieieeieecesee e 252
PCI_fiNd_Capability.........cccoriiiireee e 253
PCI_fiINd_Parent_rESOUICE.......c.cccuiereeiie ettt 255
PCI_SEt POWET _SEALE.......c.eieeceeeieceece e 256
PCI_SAVE STALE......eeii et sre e e sne e 257
PCI_FESIONE _STALE......iiiieeeeieiee ettt 258
PCI_ENADIE _AEVICE.......ei i 259
PCI_dIiSADIE_AEVICE......cocieeeeeeeeee et 260
PCI_enable_WaKe..........cccooeieeee e 261
PCI_release _IEgIONS.....cceieereeiestee e stee ettt sseeeesae e 262
PCI_FEQUESTE_TEOIONS.....ccvieieeiiieiieesieesee e steesree e sreesreesaeesreesreessneereens 263
PCI_MALCN_AEVICE... .ottt s 264
PCI_TEQISTEI _ANVEL... . 265
PCI_UNFEQISTEr _ANVEL....c.eiiieieeeiesteeeestee e 266
pci_announce_deviCe t0 _drVELS........cccccveieeiieeciie e et see e 267

[T I FT=T Ao (= o] SRS 268

11

PCI_TEMOVE_dEVICE. ... eeiieieeeieieeeste et e et te e ste et sre e sseeeesneennens 269

o Yot [0 (=AY o [1= SR 270
PCI_SEE MASTEL......iiiiiiee et ee s 271
[T IS (0] oo [V o = TSRS 272
o Yot [o T Yo] I ox (== 1= S 273
PCI_POOI_AESIIOY. ...t 275
PCI_POO0L_AIIOC.....c..eiiiiieee e 275
[oTo I oo o I 1 (=T= TSRS 277
10.4. MCA AICNITECIUI.....oviiiiiieie e 278
10.4.1. MCA DeViCe FUNCLIONS.......c.cceeeereeeiesreerieseesie e seeeeesseeeesneeneens 278
MCA_fINA_AdAPLEL......cco e 278
mca_find_unused_adapter.........cccoveveeiieeiieieece e 279
MCa_read_StOred _POS.....ccccerieriiere e see e es 280

g gTor= U (== Vo [oo =SS 281

Loz Y (= [0 1 TSP 282
Mca_set_adapter _NAMIE........cccceveeiieeiee e 284
mca_set_adapter_proCfi........cccccevveveiiiie s, 285
MCa_IS_adapter_USEd........ccoerereereeeeseeee e eee e e ee e 286
MCA_MArk_as_USEd.......cccoovrierieierieeee e 287
Mca_Mark_as _UNUSEd..........cccceeieriiieeiee et see e esre s eneens 288
Mmca_get_adapter NAmME.........cccvvceeveeieereee e 289
MCA_ISAAAPTEL. ... ettt 290
MCA_ISENADIEM.cceeicieeee s 291
10.4.2. MCA BUS DMA ..ottt 292
MCca_enable _dmMa..........ccevviieiiee e 292
Mca_diSable_dMa.........cccevveeeiiceseee e s 293
MCa_Set_dMa_addr........ccooviieiieie s 294
mca_get_dma_addr..........ccveiieiii i 295
Mca_set_dmMa_COUNL........cccoceeiieeeee e 296
Mca_get_ dma_reSIdUE........coevveeereeee e 297
MCA_SEL_AMA 0. .icieiceee e 298
Mca_set_dma _ MOE..........cceeieeiie e 299

11. The DeVvice File SYSIEML......cco e 301

12

(0 =3 £ o | OSSR 301

EVIS TEQISTOL ...ttt b e bbb nne s 301
EVIS_UNIEQISTOL.....ciiiieieieeee ettt sb e esne e 303
devis_ MK _SYMIINKcui i 304
[0 L=V £ 0 0 o TSRS 305
devis_get NAaNAIE...........ooiiieieeee e 307
eVIS_get flagS....ceoereeiereee e 308
(o =3V ST o T A 0 0 =Y [0 L SRS 309
devfs_get_handle_from_INOde.........cccoeoeiieiiiicie e 311
devfs_generate_Path...........ccoiiii 311
(0 =AYy KT o <] 0] o TSRS 313
deVIS_Set fille SIZB.....ci e 314
EVIS_ gL INTQ.....i i 315
(0 L=y KT T=] A {0 OSSR 316
(oY Ko =] A o =T =] a | PSSR 317
devfs_get_first_Child..........ooiiiii i 317
devfs_get _Next SibIING.......ccoeiiiieeceee e 318
deViS_auUtO UNTEQISTEL......ccceeieeeereeee ettt esneeae e eneens 319
devis_get_UNregiSter_SIAVE..........ccoiieriiniee e 320
JEVIS_gEL NAIME.....cuiiie e e nnes 321
devis_register CRIBM........cooi et 322
devis_register DIKABV.........coov e 324
devis_UNregister _CRMEV.........coiiieiieeeeeee e 325
devfs_unregister _BIKAEV...........c.ccceeiiiiiiie e 326
12. POWETr MANAGEIMENT.....cciiiiiiiiiiiiie ettt st sbae s sbe e ssae e sneesnrneeens 328
[SL LT (=T8S (=] USSR RURURUR 328
(o] T UL (=T] (= O SR 329
PM_UNFEQIStEr _All.....cceeiieeeece e 330
o] T ST= 1 o 331
o] TEST= 1o 1K= 1| 332
0] 0 T 11 o U 334
13. BIOCK DEVICES......ceeeeitieee sttt sttt et 336
(o] Qe [=T= VoL o o [V L= U= 336

13

blk_queue _headactiVe...........ccccevveereee e 337

blk_queue_mMake reqUEST........cccveeieee et 338
BIK_INIE _QUEBUE......eeee e et 339
gENENC_MAKE FEQUESL.....cccie ettt 341
£S10 Lo 011 A o] TSRS 343
I AT o] T RSP 344
end_that reqUeST_fILSt.......coiiiiee e 345
14, MISCEIIANEOUS DEVICES......ccvveee ittt ettt e e eare e e s sraeee s 348
01RO (=TS (Y AR 348
MISC_AEIEGISTRL. ... ettt ene e 349
TRV o [<To T N U) 351
VIdEO_UNIegiSter _dEVICE.......cceeieeeeie ettt 351
16. SOUNA DEVICES.......eeeeieeeieieeeiieseesiesteestessee e sseessesaesseeseesseeseesseesesseesnsseessessennees 352
register_SoUNd_SPECIAL.......ccueeiieiiiiee e 352
regiSter _SOUNU _IMIXEI.....ciiiieiieiie ettt s eenaeere e 353
(=To 5y (=T ST o 10 [o [N 41 o [354
FEQISTEr _SOUNU_USP. . iiiiiieieite ettt 355
register_SOUNA_SYNEN......cciiecece et e 356
unregister_SOUNA_SPECIAL..........cveiieiie it ere e 357
O L=t oY (= Yo 10 o I 4] S 358
0 aTg=To 5 (=] oo 10 1 o [01T 359
UNFEQISTEr_SOUNT_ASP... ittt 360
unregister_SOUNA_SYNINL.......ccuiiiiiiicce e 361
17. USB DRVICES... .ottt sttt sttt bbbttt bbb b snenbenne s 363
USD _TEOISTOL ... 363
U] oIS Tor= T [0 [ol L S 364
U o T 0 (=T =T |13 = USRI 365
0] o T = 1o To o1 L= 365
0] o T =TT o U 366
O] oI =70 1S3 (=] g o 10 =R 367
USh_deregisSter DUS........coo e 368
01 o T .= Lo o o O 369

14

U] o T 1] (oo [o OSSOSO 372

USD T UMD . 373
U] o T oo] a1 (o] I 415 USSR 374
W] o T 01U 11 G 1 5o OSSP 376
18. 16X50 UART DIIVEL ...eceeecteectee ettt ettt ste et sae e satesre e steesaessnesnbeesbeesnneenreens 379
FEOISTEN _SEIIAL.....eiiieee e 379
UNFEQISTEI _SEIIAL......iiieieiiieiiece e et re e 380
19. Z85230 SUPPOIt LIDFAIY ..cveeeeeeeee et 382
y4 1530 {0 1 (=11 U] o OSSR 382
Z8530 _SYNC_OPBN. . ettt ettt ettt et be e se e e b e e be e ae e saneereenaeas 383
Z8530 _SYNC _ClOSE....ciiii e 384
y4s 151 | IS Y/ a oo [= W o] = 1SS 385
Z8530_SYNC_dMA_ClOSE.....coiieeeiieeseee sttt nee s 386
Z8530_SYNC_tXAMA_OPEML.....eeeeeieeeesieeie et e et e e sseeeesne e 387
Z8530_SYNC_tXAMA_CIOSE......ccuiiiieiiecee e 388
Z8530 _AESCIIDE... .o 389
y4 176 O I 12 11 OO ROSOUROSRRRPRRRRR 390
Z8530 SNULAOWN.......eiie et 392
Z8530_channel_load.........cccooooii i 393
P4 1o 31O I 10 1| o PR 394
Z8530 _UEUE _XIMIL....ccueeiieeeiesieeeesteeeesieesesseessesseestesseessesseesseeeessesssessnsssesseessnns 394
Z8530 _gEL SEALS....eiiiiiii et 396
20. Frame BUFfer LIDIary ...ttt 398
20.1. Frame BUffer MEMOKY........ccceiiiiiiiieeriie et 398
register_framebuUfer. 398
unregister_framebuffer..........c.o 399
20.2. Frame BUffer CONSOIE.......ccuui et 400
fhcon_redraw_Clear..........ccvoiiiii i e 400
fhcon_redraw_DMOVE.........ccooieiiieececee e 402
20.3. Frame Buffer ColormMap........ccocoererenenesesie s 403
fh_AlloC_CMaP.. oo e 404
fD_COPY _CMAP....ii i e 405

11 0T [S 1 -V o T 406

15

11 O JES 1= o) 1. = o TS 407

fh_default_Cmap......ccoeee e 409
fD_INVEIT_CMAPS. ..o e 410
20.4. Frame Buffer Generic FUNCLIQNS..........cccceiirieiinienene e 411
1100 =] 0 T [S 411
TDOEN_ GO VA i 412
fDOEN_SEL VL. et 413
fhgen_get Cmap......cooii e 414
0o =T g TST=1 S o3 4 F= T o T 416
fhgeN_Pan_diSPIAY.......coeieeeee e 417
fDgEN_dO_SEL Va....oiiiieee e e 418
fDGEN_SEL ISP ..ii i 419
fogen_install_Cmap.........ccoeviieeie e e 420
TDOEN_UPAALE_VAL........oiieiieeee e 421
TGN _SWILCH.....eeee e 423
fDGEN_DIANK. ... 423
20.5. Frame Buffer Video Mode Database...........cccocvivvenininincnincncnenns 424
fD_fINA_MOE.....c.eeceeeeeeee e e 425
D Y MOAE...eeee e 427
20.6. Frame Buffer Macintosh Video Mode Datahase............ccccoveeeieneennnne 428
(oo] g 1Yo (=R o =] 1 4o o ISR 428
(o0] g IST0 (SR ST=] (Lo Lo [= 429
(ol0] g E{0] (ST =] (o] 1 0 = o U SUURURURURUR 430
CONSOIE_POWEIMOAE........ei ettt sttt e e re e 431
MAC_VMOAE 10 VAL......cceeeeiiieiesiieiiesteee s erte e ste e ste e e sre e sreeaesneennens 432
MAC_Var_t0 VIMOUAE......ccceeeeiieeierieeieeseesiesee e sree e e ste e sseeeesseeeesneeneens 434
MAC_MAP_MONITOI _SENSE.....iiiiieieiesteeiestee e e see e steseeseeseesseseesseeeens 435
MAC_fINA_MOUE........ooieceee e 436
20.7. Frame BUffer FONTS........coooiiiieeeeeee e 437
110 oTo] o T 110 To 1N {0 o | PSS 438
focon_get_default_fOnL..........ccooireiereee e 438

16

Chapter 1. Driver Basics

1.1. Driver Entry and Exit points

module_init

Name

module_init — driver initialization entry point

Synopsis

module_init (x);

Arguments

X

function to be run at kernel boot time or module insertion

Chapter 1. Driver Basics

Description

module_init will add the driver initialization routine in the “__initcall.int” code
segment if the driver is checked as “y” or static, or else it will wrap the driver
initialization routine withinit_module which is used by insmod and modprobe when
the driver is used as a module.

module_exit

Name

module_exit — driver exit entry point
Synopsis

module_exit (x);

Arguments

function to be run when driver is removed

Chapter 1. Driver Basics

Description

module_exit ~ will wrap the driver clean-up code witkleanup_module when used
with rmmod when the driver is a module. If the driver is statically compiled into the
kernel,module_exit has no effect.

1.2. Atomic and pointer manipulation

atomic_read

Name

atomic_read — read atomic variable

Synopsis

atomic_read (Vv);

Arguments

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically reads the value of. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

atomic_set

Name

atomic_set — set atomic variable

Synopsis

atomic_set (v, i);

Arguments

pointer of type atomic_t

required value

Chapter 1. Driver Basics

Description

Atomically sets the value of toi . Note that the guaranteed useful range of an
atomic_tis only 24 bits.

atomic_add

Name

atomic_add — add integer to atomic variable

Synopsis

void atomic_add (int i, atomic_t * v);

Arguments

integer value to add

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically adds tov. Note that the guaranteed useful range of an atomic_tis only 24
bits.

atomic_sub

Name

atomic_sub — subtract the atomic variable
Synopsis

void atomic_sub (int i, atomic_t * v);

Arguments

integer value to subtract

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically subtracts fromv. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

atomic_sub_and_test

Name

atomic_sub_and_test — subtract value from variable and test result
Synopsis

int atomic_sub_and_test (int i, atomic_t * v);
Arguments

integer value to subtract

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically subtracts fromv and returns true if the result is zero, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

atomic_inc

Name

atomic_inc — increment atomic variable

Synopsis

void atomic_inc (atomic_t * V);

Arguments

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically incrementy by 1. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

atomic_dec

Name

atomic_dec — decrement atomic variable

Synopsis

void atomic_dec (atomic_t * V);

Arguments

pointer of type atomic_t

Chapter 1. Driver Basics

Description

Atomically decrements by 1. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

atomic_dec_and_test

Name

atomic_dec_and_test — decrement and test

Synopsis

int atomic_dec_and_test (atomic_t * V);

Arguments

pointer of type atomic_t

10

Chapter 1. Driver Basics

Description

Atomically decrements by 1 and returns true if the result is O, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

atomic_inc_and_test

Name

atomic_inc_and_test — increment and test

Synopsis

int atomic_inc_and_test (atomic_t * V);

Arguments

pointer of type atomic_t

11

Chapter 1. Driver Basics

Description

Atomically incrementy by 1 and returns true if the result is zero, or false for all other
cases. Note that the guaranteed useful range of an atomic_t is only 24 bits.

atomic_add_negative

Name

atomic_add_negative — add and test if negative
Synopsis

int atomic_add_negative (int i, atomic_t * v);
Arguments

integer value to add

pointer of type atomic_t

12

Chapter 1. Driver Basics

Description

Atomically adds tov and returns true if the result is negative, or false when result is
greater than or equal to zero. Note that the guaranteed useful range of an atomic_tis
only 24 bits.

get_unaligned

Name

get_unaligned — get value from possibly mis-aligned location

Synopsis

get_unaligned (ptr);

Arguments

ptr
pointer to value

13

Chapter 1. Driver Basics

Description

This macro should be used for accessing values larger in size than single bytes at
locations that are expected to be improperly aligned, e.g. retrieving a ul6 value from a
location not ul6-aligned.

Note that unaligned accesses can be very expensive on some architectures.

put_unaligned

Name

put_unaligned — put value to a possibly mis-aligned location
Synopsis

put_unaligned (val, optr)

Arguments

val

value to place

14

Chapter 1. Driver Basics

ptr
pointer to location

Description

This macro should be used for placing values larger in size than single bytes at
locations that are expected to be improperly aligned, e.g. writing a ul6 value to a
location not ul6-aligned.

Note that unaligned accesses can be very expensive on some architectures.

1.3. Delaying, scheduling, and timer routines

schedule_timeout

Name

schedule_timeout — sleep until timeout

Synopsis

signed long schedule_timeout (signed long timeout);

15

Chapter 1. Driver Basics

Arguments

timeout

timeout value in jiffies

Description

Make the current task sleep urtiineout jiffies have elapsed. The routine will return
immediately unless the current task state has been setdisearrent_state).

You can set the task state as follows -

TASK_UNINTERRUPTIBLE at leastimeout jiffies are guaranteed to pass before the
routine returns. The routine will return O

TASK_INTERRUPTIBLE- the routine may return early if a signal is delivered to the
current task. In this case the remaining time in jiffies will be returned, or 0O if the timer
expired in time

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Specifying aimeout value ofMAX_SCHEDULE_TIMEOWXill schedule the CPU
away without a bound on the timeout. In this case the return value will be
MAX_SCHEDULE_TIMEOUT

In all cases the return value is guaranteed to be non-negative.

16

Chapter 1. Driver Basics

reparent_to_init

Name

reparent_to_init — Reparent the calling kernel thread to the init task.

Synopsis

void reparent_to_init (void);

Arguments

void

no arguments

Description

If a kernel thread is launched as a result of a system call, or if it ever exits, it should
generally reparent itself to init so that it is correctly cleaned up on exit.

The various task state such as scheduling policy and priority may have been inherited
fro a user process, so we reset them to sane values here.

NOTE thatreparent_to_init gives the caller full capabilities.

17

Chapter 2. Data Types

2.1. Doubly Linked Lists

list_add

Name

list add — add anew entry
Synopsis

void list_add (struct list_head * new, struct list_ head * head);

Arguments

new

new entry to be added

head
list head to add it after

Chapter 2. Data Types

Description

Insert a new entry after the specified head. This is good for implementing stacks.

list_ add _tail

Name

list_add_tall — add a new entry
Synopsis

void list_add_tail (struct list_ head * new, struct list_head *
head);

Arguments

new

new entry to be added

head
list head to add it before

Chapter 2. Data Types

Description

Insert a new entry before the specified head. This is useful for implementing queues.

list_del

Name

list_del — deletes entry from list.

Synopsis

void list_del (struct list_head * entry);

Arguments

entry

the element to delete from the list.

Note

list_empty on entry does not return true after this, the entry is in an undefined state.

Chapter 2. Data Types

list_del init

Name

list_del_init — deletes entry from list and reinitialize it.

Synopsis

void list_del_init (struct list_ head * entry);

Arguments

entry

the element to delete from the list.

Chapter 2. Data Types

list_empty

Name

list empty — tests whether a listis empty
Synopsis

int list_empty (struct list_head * head);

Arguments

head

the list to test.

list_splice

Name

list_splice — join two lists

Chapter 2. Data Types

Synopsis

void list_splice (struct list_head * list , struct list_head *
head);

Arguments

list
the new list to add.

head
the place to add it in the first list.

list_entry
Name
list_entry — get the struct for this entry
Synopsis
list_entry (ptr , type, member);

Arguments

ptr
the &struct list_head pointer.

type
the type of the struct this is embedded in.

member

the name of the list_struct within the struct.

list_for _each
Name
list_ for_each — iterate over a list
Synopsis
list for_each (pos, head);

Chapter 2. Data Types

Chapter 2. Data Types

Arguments

pos

the &struct list_head to use as a loop counter.

head

the head for your list.

list_ for_each_safe

Name

list_ for_each_safe — iterate over a list safe against removal of list entry
Synopsis

list_for_each_safe (pos, n, head);

Arguments

pos

the &struct list_head to use as a loop counter.

Chapter 2. Data Types

another &struct list_head to use as temporary storage

head

the head for your list.

list_for_each prev

Name

list for_each_prev — iterate over a list in reverse order
Synopsis

list_for_each_prev (pos, head);

Arguments

pos

the &struct list_head to use as a loop counter.

head

the head for your list.

Chapter 2. Data Types

10

Chapter 3. Basic C Library Functions

When writing drivers, you cannot in general use routines which are from the C Library.
Some of the functions have been found generally useful and they are listed below. The
behaviour of these functions may vary slightly from those defined by ANSI, and these
deviations are noted in the text.

3.1. String Conversions

simple_strtoll
Name
simple_strtoll — convert a string to a signed long long
Synopsis
long long simple_strtoll (const char * cp, char * endp,

unsigned int base);

Arguments

cp
The start of the string

11

Chapter 3. Basic C Library Functions

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

simple_strtoul

Name

simple_strtoul — convert a string to an unsigned long

Synopsis

unsigned long simple_strtoul (const char * cp, char * endp,

unsigned int base);

Arguments

cp
The start of the string

12

Chapter 3. Basic C Library Functions

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

simple_strtol

Name

simple_strtol — convert a string to a signed long
Synopsis

long simple_strtol (const char * cp, char * endp, unsigned int
base);

Arguments

cp
The start of the string

13

Chapter 3. Basic C Library Functions

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

simple_strtoull

Name
simple_strtoull — convert a string to an unsigned long long
Synopsis
unsigned long long simple_strtoull (const char * cp, char **
endp, unsigned int base);
Arguments
cp
The start of the string

14

Chapter 3. Basic C Library Functions

endp

A pointer to the end of the parsed string will be placed here

base

The number base to use

vsnprintf
Name
vsnprintf — Format a string and place it in a buffer
Synopsis
int vsnprintf (char * buf , size t size , const char * fmt ,

va_list args);

Arguments

buf

The buffer to place the result into

15

Chapter 3. Basic C Library Functions

size

The size of the buffer, including the trailing null space

fmt

The format string to use

args

Arguments for the format string

Description

Call this function if you are already dealing with a va_list. You probably want snprintf
instead.

snprintf

Name

snprintf — Format a string and place it in a buffer
Synopsis

int snprintf (char * buf , size t size , const char * fmt ,

);

16

Chapter 3. Basic C Library Functions

Arguments

buf

The buffer to place the result into

size

The size of the buffer, including the trailing null space

fmt

The format string to use @...: Arguments for the format string

variable arguments

vsprintf
Name
vsprintf — Format a string and place it in a buffer
Synopsis
int vsprintf (char * buf , const char * fmt , va_list args);

17

Chapter 3. Basic C Library Functions

Arguments

buf

The buffer to place the result into

fmt
The format string to use
args

Arguments for the format string

Description
Call this function if you are already dealing with a va_list. You probably want sprintf
instead.
sprintf
Name
sprintf — Format a string and place it in a buffer
Synopsis
int sprintf (char * buf , const char * fmt, .. D &

18

Chapter 3. Basic C Library Functions

Arguments

buf

The buffer to place the result into

fmt

The format string to use @...: Arguments for the format string

variable arguments

vsscanf
Name
vsscanf — Unformat a buffer into a list of arguments
Synopsis
int vsscanf (const char * buf , const char * fmt , va_list args);

19

Chapter 3. Basic C Library Functions

Arguments

buf
input buffer

fmt

format of buffer

args

arguments

sscanf

Name

sscanf — Unformat a buffer into a list of arguments

Synopsis

int sscanf (const char * buf , const char * fmt, .. e)

20

Chapter 3. Basic C Library Functions

Arguments

buf
input buffer

fmt

formatting of buffer @...: resulting arguments

variable arguments

3.2. String Manipulation

strcpy

Name

strcpy — Copy aNULterminated string

Synopsis

char * strcpy (char * dest, const char * src);

21

Chapter 3. Basic C Library Functions

Arguments

dest

Where to copy the string to

Src

Where to copy the string from

strncpy

Name

strncpy — Copy a length-limitedNUL-terminated string

Synopsis

char * strncpy (char * dest , const char * src , size_t count);

Arguments

dest
Where to copy the string to

22

Chapter 3. Basic C Library Functions

Ssrc

Where to copy the string from

count

The maximum number of bytes to copy

Description

Note that unlike userspace strncpy, this doesNuit-pad the buffer. However, the
result is noiNUL-terminated if the source exceedount bytes.

strcat
Name
strcat — Append oneNUL-terminated string to another
Synopsis

char * strcat (char * dest, const char * src);

23

Chapter 3. Basic C Library Functions

Arguments

dest

The string to be appended to

Src

The string to append to it

strncat

Name

strncat — Append a length-limitedyUL-terminated string to another

Synopsis

char * strncat (char * dest , const char * src , size t count);

Arguments

dest
The string to be appended to

24

Chapter 3. Basic C Library Functions

Ssrc

The string to append to it

count

The maximum numbers of bytes to copy

Description

Note that in contrast to strncpy, strncat ensures the result is terminated.

stremp

Name

strcmp — Compare two strings
Synopsis

int strcmp (const char * cs, const char * ct);

25

Chapter 3. Basic C Library Functions

Arguments
CS

One string
ct

Another string

strncmp

Name

strncmp — Compare two length-limited strings

Synopsis

int strncmp (const char * cs, const char * ct, size_t count);

Arguments

CS

One string

26

Chapter 3. Basic C Library Functions

ct

Another string

count

The maximum number of bytes to compare

strchr

Name

strchr — Find the first occurrence of a character in a string
Synopsis

char * strchr (const char * s, int c¢);

Arguments

The string to be searched

The character to search for

27

Chapter 3. Basic C Library Functions

strrchr
Name
strrchr — Find the last occurrence of a character in a string
Synopsis

char * strrchr (const char * s, int ¢);

Arguments

The string to be searched

The character to search for

28

Chapter 3. Basic C Library Functions

strlen
Name
strlen — Find the length of a string
Synopsis

size t strlen (const char * s);

Arguments

The string to be sized

strnlen

Name

strnlen — Find the length of a length-limited string

29

Chapter 3. Basic C Library Functions

Synopsis

size_t strnlen (const char * s, size t count);

Arguments

The string to be sized

count

The maximum number of bytes to search

strpbrk

Name

strpbrk — Find the first occurrence of a set of characters
Synopsis

char * strpbrk (const char * cs, const char * ct);

30

Chapter 3. Basic C Library Functions

Arguments

CS

The string to be searched

ct

The characters to search for

strtok

Name

strtok — Split a string into tokens

Synopsis

char * strtok (char * s, const char * ct);

Arguments

The string to be searched

31

Chapter 3. Basic C Library Functions

ct

The characters to search for

WARNING

strtok is deprecated, use strsep instead.

memset

Name

memset — Fill a region of memory with the given value
Synopsis

void * memset (void * s, int ¢, size_t count);

Arguments

Pointer to the start of the area.

32

Chapter 3. Basic C Library Functions

The byte to fill the area with

count

The size of the area.

Description

Do not usamemset to access 10 space, usemset_io instead.

bcopy

Name

bcopy — Copy one area of memory to another
Synopsis

char * bcopy (const char * src , char * dest, int count);

33

Chapter 3. Basic C Library Functions

Arguments

Src

Where to copy from

dest
Where to copy to

count

The size of the area.

Description

Note that this is the same agmcpy, with the arguments reversademcpyis the
standardbcopy is a legacy BSD function.

You should not use this function to access IO spacemesecpy_toio or
memcpy_fromio instead.

memcpy

Name

memcpy— Copy one area of memory to another

34

Chapter 3. Basic C Library Functions

Synopsis

void * memcpy (void * dest , const void * src , size t count);

Arguments

dest
Where to copy to

Src

Where to copy from

count

The size of the area.

Description

You should not use this function to access IO spacemasecpy_toio or
memcpy_fromio instead.

35

Chapter 3. Basic C Library Functions

memmove

Name

memmove— Copy one area of memory to another
Synopsis

void * memmove(void * dest , const void * src , size t count);

Arguments

dest
Where to copy to

Ssrc

Where to copy from

count

The size of the area.

Description

Unlike memcpy, memmovecopes with overlapping areas.

36

Chapter 3. Basic C Library Functions

memcmp

Name

memcmp— Compare two areas of memory
Synopsis

int memcmp(const void * cs, const void * ct, size_t count);

Arguments

CS

One area of memory

ct

Another area of memory

count

The size of the area.

37

Chapter 3. Basic C Library Functions

memscan

Name

memscan— Find a character in an area of memory.
Synopsis

void * memscan (void * addr, int c, size t size);

Arguments

addr

The memory area
The byte to search for

size

The size of the area.

Description

returns the address of the first occurrence abr 1 byte past the areadfis not found

38

Chapter 3. Basic C Library Functions

strstr
Name
strstr — Find the first substring in BULterminated string
Synopsis

char * strstr (const char * sl, const char * s2);

Arguments

sl

The string to be searched

s2

The string to search for

39

Chapter 3. Basic C Library Functions

memchr

Name

memchr — Find a character in an area of memory.
Synopsis

void * memchr (const void * s, int ¢, size_t n);

Arguments

The memory area

o

The byte to search for
n

The size of the area.
Description

returns the address of the first occurrence ofr NULLf ¢ is not found

40

Chapter 3. Basic C Library Functions

3.3. Bit Operations
set_Dit

Name

set_bit — Atomically set a bit in memory

Synopsis

void set_bit (int nr, volatile void * addr);

Arguments

nr

the bit to set

addr

the address to start counting from

41

Chapter 3. Basic C Library Functions

Description

This function is atomic and may not be reordered. Seset_bit if you do not
require the atomic guarantees. Note thiatmay be almost arbitrarily large; this
function is not restricted to acting on a single-word quantity.

__set_bit

Name

__set_bit — Seta bitin memory

Synopsis

void __set hit (int nr, volatile void * addr);

Arguments

nr

the bit to set

addr

the address to start counting from

42

Chapter 3. Basic C Library Functions

Description

Unlike set_bit , this function is non-atomic and may be reordered. If it’s called on the
same region of memory simultaneously, the effect may be that only one operation
succeeds.

clear_bit

Name

clear_bit — Clears a bit in memory

Synopsis

void clear_bit (int nr, volatile void * addr);

Arguments

nr

Bit to clear

addr

Address to start counting from

43

Chapter 3. Basic C Library Functions

Description

clear_bit is atomic and may not be reordered. However, it does not contain a
memory barrier, so if it is used for locking purposes, you should call
smp_mb__before_clear_bit and/orsmp_mb__after_clear_bit in order to
ensure changes are visible on other processors.

__change_bit

Name

__change_bit — Toggle a bit in memory

Synopsis

void __ change_bit (int nr, volatile void * addr);
Arguments

nr

the bit to set

addr

the address to start counting from

44

Chapter 3. Basic C Library Functions

Description

Unlike change_bit , this function is non-atomic and may be reordered. If it's called on
the same region of memory simultaneously, the effect may be that only one operation
succeeds.

change_bit

Name

change_bit — Toggle a bit in memory

Synopsis

void change_bit (int nr, volatile void * addr);

Arguments

nr

Bit to clear

addr

Address to start counting from

45

Chapter 3. Basic C Library Functions

Description

change_bit is atomic and may not be reordered. Note tlvatmay be almost
arbitrarily large; this function is not restricted to acting on a single-word quantity.

test_and_set bit

Name

test_and_set_bit — Set a bit and return its old value

Synopsis

int test_and_set bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

46

Chapter 3. Basic C Library Functions

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

__test_and_set_bit

Name

__test_and_set_bit — Set a bit and return its old value

Synopsis

int _ test and_set bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

a7

Chapter 3. Basic C Library Functions

Description

This operation is non-atomic and can be reordered. If two examples of this operation
race, one can appear to succeed but actually fail. You must protect multiple accesses

with a lock.

test_and_clear bit

Name

test_and_clear_bit — Clear a bit and return its old value

Synopsis

int test and_clear_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr
Address to count from

48

Chapter 3. Basic C Library Functions

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

__test_and _clear bit

Name

__test_and_clear_bit — Clear a bit and return its old value

Synopsis

int _ test and_clear_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr

Address to count from

49

Chapter 3. Basic C Library Functions

Description

This operation is non-atomic and can be reordered. If two examples of this operation
race, one can appear to succeed but actually fail. You must protect multiple accesses

with a lock.

test_and_change_ bit

Name

test_and_change_bit — Change a bit and return its new value

Synopsis

int test_and_change_bit (int nr, volatile void * addr);

Arguments

nr

Bit to set

addr
Address to count from

50

Chapter 3. Basic C Library Functions

Description

This operation is atomic and cannot be reordered. It also implies a memory barrier.

test_bit

Name

test bit — Determine whether a bit is set

Synopsis

int test bit (int nr, const volatile void * addr);

Arguments

nr

bit number to test

addr

Address to start counting from

51

Chapter 3. Basic C Library Functions

find_first_zero_bit

Name

find_first_zero_bit — find the first zero bit in a memory region
Synopsis

int find_first zero_bit (void * addr , unsigned size);

Arguments

addr

The address to start the search at

size

The maximum size to search

Description

Returns the bit-number of the first zero bit, not the number of the byte containing a bit.

52

Chapter 3. Basic C Library Functions

find_next_zero_bit

Name

find_next_zero_bit — find the first zero bit in a memory region

Synopsis

int find_next_zero_bit (void * addr, int size , int offset);

Arguments

addr

The address to base the search on

size

The maximum size to search

offset

The bitnumber to start searching at

53

Chapter 3. Basic C Library Functions

ffz

Name

ffz — find first zero in word.
Synopsis

unsigned long ffz (unsigned long word);

Arguments

word

The word to search

Description

Undefined if no zero exists, so code should check against ~OUL first.

o4

Chapter 3. Basic C Library Functions

ffs

Name

ffs — find first bit set
Synopsis

int ffs (int x);

Arguments

the word to search

Description

This is defined the same way as the libc and compiler builtin ffs routines, therefore
differs in spirit from the above ffz (man ffs).

95

Chapter 3. Basic C Library Functions

hweight32

Name

hweight32 — returns the hamming weight of a N-bit word

Synopsis
hweight32 (x);
Arguments

the word to weigh

Description

The Hamming Weight of a number is the total number of bits set in it.

56

Chapter 4. Memory Management in
Linux

4.1. The Slab Cache

kmem_cache_create

Name

kmem_cache_create — Create a cache.

Synopsis

kmem_cache t * kmem_cache_create (const char * name, size t
size , size t offset , unsigned long flags , void (* ctor) (void*,
kmem_cache_t *, unsigned long), void (* dtor) (void*,

kmem_cache_t *, unsigned long));

Arguments

name

A string which is used in /proc/slabinfo to identify this cache.

57

Chapter 4. Memory Management in Linux

size

The size of objects to be created in this cache.

offset

The offset to use within the page.

flags
SLAB flags

ctor

A constructor for the objects.

dtor

A destructor for the objects.

Description

Returns a ptr to the cache on success, NULL on failure. Cannot be called within a int,
but can be interrupted. Thetor is run when new pages are allocated by the cache and
thedtor is run before the pages are handed back. The flags are

SLAB_POISON- Poison the slab with a known test pattern (a5a5a5ab5) to catch
references to uninitialised memory.

SLAB_RED_ZONE Insert ‘Red’ zones around the allocated memory to check for buffer
overruns.

SLAB_NO_REAP Don't automatically reap this cache when we’re under memory
pressure.

SLAB_HWCACHE_ALIGNAlign the objects in this cache to a hardware cacheline. This
can be beneficial if you're counting cycles as closely as davem.

58

Chapter 4. Memory Management in Linux

kmem_cache_shrink

Name

kmem_cache_shrink — Shrink a cache.

Synopsis

int kmem_cache_shrink (kmem_cache t * cachep);

Arguments

cachep

The cache to shrink.

Description

Releases as many slabs as possible for a cache. To help debugging, a zero exit status
indicates all slabs were released.

59

Chapter 4. Memory Management in Linux

kmem_cache_destroy

Name

kmem_cache_destroy — delete a cache
Synopsis

int kmem_cache_destroy (kmem_cache t * cachep);

Arguments

cachep

the cache to destroy

Description

Remove a kmem_cache_t object from the slab cache. Returns 0 on success.

It is expected this function will be called by a module when it is unloaded. This will
remove the cache completely, and avoid a duplicate cache being allocated each time a
module is loaded and unloaded, if the module doesn’t have persistent in-kernel storage
across loads and unloads.

The caller must guarantee that noone will allocate memory from the cache during the
kmem_cache_destroy

60

Chapter 4. Memory Management in Linux

kmem_cache_alloc

Name

kmem_cache_alloc — Allocate an object

Synopsis

void * kmem_cache alloc (kmem_cache t * cachep, int flags);

Arguments

cachep

The cache to allocate from.

flags

Seekmalloc .

Description

Allocate an object from this cache. The flags are only relevant if the cache has no
available objects.

61

Chapter 4. Memory Management in Linux

kmalloc
Name
kmalloc — allocate memory
Synopsis

void * kmalloc (size_t size , int flags);

Arguments
size
how many bytes of memory are required.

flags

the type of memory to allocate.

Description

kmalloc is the normal method of allocating memory in the kernel.

Theflags argument may be one of:

62

Chapter 4. Memory Management in Linux

GFP_USER Allocate memory on behalf of user. May sleep.
GFP_KERNEL Allocate normal kernel ram. May sleep.
GFP_ATOMIG Allocation will not sleep. Use inside interrupt handlers.

Additionally, theGFP_DMAlag may be set to indicate the memory must be suitable for
DMA. This can mean different things on different platforms. For example, on i386, it
means that the memory must come from the first 16 MB.

kmem_cache free

Name

kmem_cache_free — Deallocate an object

Synopsis

void kmem_cache free (kmem_cache t * cachep, void * objp);

Arguments

cachep

The cache the allocation was from.

63

Chapter 4. Memory Management in Linux

objp
The previously allocated object.

Description

Free an object which was previously allocated from this cache.

kfree

Name

kfree — free previously allocated memory

Synopsis

void kfree (const void * objp);

Arguments

objp
pointer returned by kmalloc.

64

Chapter 4. Memory Management in Linux

Description

Don’t free memory not originally allocated tkynalloc or you will run into trouble.

65

Chapter 5. The proc filesystem

5.1. sysctl interface

register_sysctl table

Name

register_sysctl_table — register a sysctl heirarchy
Synopsis

struct ctl_table _header * register_sysctl_table (ctl_table *

table , int insert_at_head);

Arguments

table

the top-level table structure

insert_at_head

whether the entry should be inserted in front or at the end

66

Chapter 5. The proc filesystem

Description

Register a sysctl table heirarchigble should be a filled in ctl_table array. An entry
with a ctl_name of 0 terminates the table.

The members of the &ctl_table structure are used as follows:

ctl_name - This is the numeric sysctl value used by sysctl(2). The number must be
unique within that level of sysctl

procname - the name of the sysctl file under /proc/sys. Setta to not enter a sysctl
file

data - a pointer to data for use by proc_handler

maxlen - the maximum size in bytes of the data

mode - the file permissions for the /proc/sys file, and for sysctl(2)
child - a pointer to the child sysctl table if this entry is a directoryNoiLL
proc_handler - the text handler routine (described below)

strategy - the strategy routine (described below)

de - for internal use by the sysctl routines

extral, extra2 - extra pointers usable by the proc handler routines

Leaf nodes in the sysctl tree will be represented by a single file under /proc; non-leaf
nodes will be represented by directories.

sysctl(2) can automatically manage read and write requests through the sysctl table.
The data and maxlen fields of the ctl_table struct enable minimal validation of the
values being written to be performed, and the mode field allows minimal authentication.

More sophisticated management can be enabled by the provision of a strategy routine
with the table entry. This will be called before any automatic read or write of the data is
performed.

The strategy routine may return

< 0 - Error occurred (error is passed to user process)

67

Chapter 5. The proc filesystem

0 - OK - proceed with automatic read or write.
>0 - OK - read or write has been done by the strategy routine, so return immediately.

There must be a proc_handler routine for any terminal nodes mirrored under /proc/sys
(non-terminals are handled by a built-in directory handler). Several default handlers are
available to cover common cases -

proc_dostring , proc_dointvec , proc_dointvec_jiffies ,
proc_dointvec_minmax , proc_doulongvec_ms_jiffies_minmax ,
proc_doulongvec_minmax

It is the handler’s job to read the input buffer from user memory and process it. The
handler should return 0 on success.

This routine returnslULL on a failure to register, and a pointer to the table header on
success.

unregister_sysctl_table

Name

unregister_sysctl_table — unregister a sysctl table heirarchy
Synopsis

void unregister_sysctl_table (struct ctl_table_header * header);

68

Chapter 5. The proc filesystem

Arguments

header

the header returned from register_sysctl_table

Description

Unregisters the sysctl table and all children. proc entries may not actually be removed
until they are no longer used by anyone.

proc_dostring

Name

proc_dostring — read a string sysctl

Synopsis

int proc_dostring (ctl_table * table , int write , struct file *
filp , void * buffer , size_ t * lenp);

69

Chapter 5. The proc filesystem

Arguments

table
the sysctl table

write

TRUEIf this is a write to the sysctl file
filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

Description

Reads/writes a string from/to the user buffer. If the kernel buffer provided is not large
enough to hold the string, the string is truncated. The copied string is
NULL-terminated . If the string is being read by the user process, it is copied and a
newline '\n" is added. It is truncated if the buffer is not large enough.

Returns 0 on success.

70

Chapter 5. The proc filesystem

proc_dointvec

Name

proc_dointvec = — read a vector of integers

Synopsis

int proc_dointvec (ctl_table * table , int write , struct file *
filp , void * buffer , size_ t * lenp);

Arguments

table

the sysctl table

write

TRUEIf this is a write to the sysctl file

filp
the file structure

buffer

the user buffer

71

Chapter 5. The proc filesystem

lenp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string.

Returns 0 on success.

proc_dointvec_minmax

Name

proc_dointvec_minmax — read a vector of integers with min/max values
Synopsis

int proc_dointvec_minmax (ctl_table * table , int write , struct
file * filp , void * buffer , size t * lenp);

72

Chapter 5. The proc filesystem

Arguments

table
the sysctl table

write

TRUEIf this is a write to the sysctl file
filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

73

Chapter 5. The proc filesystem

proc_doulongvec_minmax

Name

proc_doulongvec_minmax — read a vector of long integers with min/max values

Synopsis

int proc_doulongvec_minmax (ctl_table * table , int write , struct
file * filp , void * buffer , size t * lenp);

Arguments

table

the sysctl table

write

TRUEIf this is a write to the sysctl file

filp
the file structure

buffer

the user buffer

74

Chapter 5. The proc filesystem

lenp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values from/to
the user buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

proc_doulongvec_ms_jiffies_minmax

Name

proc_doulongvec_ms_jiffies_minmax — read a vector of millisecond
values with min/max values

Synopsis
int proc_doulongvec_ms_jiffies_minmax (ctl_table * table , int
write , struct file * filp , void * buffer , size_ t * lenp);

75

Chapter 5. The proc filesystem

Arguments

table
the sysctl table

write

TRUEIf this is a write to the sysctl file
filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values from/to
the user buffer, treated as an ASCII string. The values are treated as milliseconds, and
converted to jiffies when they are stored.

This routine will ensure the values are within the range specified by table->extral (min)
and table->extra2 (max).

Returns 0 on success.

76

Chapter 5. The proc filesystem

proc_dointvec_jiffies

Name

proc_dointvec_jiffies — read a vector of integers as seconds

Synopsis

int proc_dointvec_jiffies (ctl_table * table , int write , struct
file * filp , void * buffer , size t * lenp);

Arguments

table

the sysctl table

write

TRUEIf this is a write to the sysctl file

filp
the file structure

buffer

the user buffer

1

Chapter 5. The proc filesystem

lenp

the size of the user buffer

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user
buffer, treated as an ASCII string. The values read are assumed to be in seconds, and
are converted into jiffies.

Returns 0 on success.

78

Chapter 6. The Linux VFS

6.1. The Directory Cache

d_invalidate

Name

d_invalidate — invalidate a dentry
Synopsis

int d_invalidate (struct dentry * dentry);

Arguments

dentry

dentry to invalidate

79

Chapter 6. The Linux VFS

Description

Try to invalidate the dentry if it turns out to be possible. If there are other dentries that
can be reached through this one we can'’t delete it and we return -EBUSY. On success

we return O.

no dcache lock.

d_find_alias

Name

d_find_alias — grab a hashed alias of inode

Synopsis

struct dentry * d_find_alias (struct inode * inode);

Arguments

inode

inode in question

80

Chapter 6. The Linux VFS

Description

If inode has a hashed alias - acquire the reference to alias and return it. Otherwise
return NULL. Notice that if inode is a directory there can be only one alias and it can
be unhashed only if it has no children.

prune_dcache

Name

prune_dcache — shrink the dcache
Synopsis

void prune_dcache (int count);

Arguments

count

number of entries to try and free

81

Chapter 6. The Linux VFS

Description

Shrink the dcache. This is done when we need more memory, or simply when we need
to unmount something (at which point we need to unuse all dentries).

This function may fail to free any resources if all the dentries are in use.

shrink_dcache sb

Name

shrink_dcache_sb — shrink dcache for a superblock

Synopsis

void shrink_dcache_sb (struct super_block * sb);

Arguments

sb

superblock

82

Chapter 6. The Linux VFS

Description

Shrink the dcache for the specified super block. This is used to free the dcache before
unmounting a file system

have submounts

Name

have_submounts — check for mounts over a dentry
Synopsis

int have_submounts (struct dentry * parent);

Arguments

parent

dentry to check.

Description

Return true if the parent or its subdirectories contain a mount point

83

Chapter 6. The Linux VFS

shrink_dcache_parent

Name

shrink_dcache_parent — prune dcache
Synopsis

void shrink_dcache_parent (struct dentry * parent);

Arguments

parent

parent of entries to prune

Description

Prune the dcache to remove unused children of the parent dentry.

84

Chapter 6. The Linux VFS

d_alloc
Name
d_alloc — allocate a dcache entry
Synopsis
struct dentry * d_alloc (struct dentry * parent , const struct

gstr * name);

Arguments

parent

parent of entry to allocate

name

gstr of the name

Description

Allocates a dentry. It returnsULL if there is insufficient memory available. On a
success the dentry is returned. The name passed in is copied and the copy passed in
may be reused after this call.

85

Chapter 6. The Linux VFS

d_instantiate

Name

d_instantiate — fill in inode information for a dentry
Synopsis

void d_instantiate (struct dentry * entry , struct inode *
inode);

Arguments

entry

dentry to complete

inode

inode to attach to this dentry

Description

Fill in inode information in the entry.
This turns negative dentries into productive full members of society.

NOTE! This assumes that the inode count has been incremented (or otherwise set) by
the caller to indicate that it is now in use by the dcache.

86

Chapter 6. The Linux VFS

d_alloc_root

Name

d_alloc_root — allocate root dentry
Synopsis

struct dentry * d_alloc_root (struct inode * root_inode);

Arguments

root_inode

inode to allocate the root for

Description

Allocate a root (“/”) dentry for the inode given. The inode is instantiated and returned.
NULL s returned if there is insufficient memory or the inode passéiid.

87

Chapter 6. The Linux VFS

d_lookup

Name

d_lookup — search for a dentry
Synopsis

struct dentry * d_lookup (struct dentry * parent , struct gstr *
name);

Arguments

parent

parent dentry

name

gstr of name we wish to find

Description

Searches the children of the parent dentry for the name in question. If the dentry is
found its reference count is incremented and the dentry is returned. The caller must use
d_put to free the entry when it has finished usingiiLL is returned on failure.

88

Chapter 6. The Linux VFS

d_validate

Name

d_validate = — verify dentry provided from insecure source
Synopsis

int d_validate (struct dentry * dentry , struct dentry *
dparent);

Arguments

dentry
The dentry alleged to be valid child dparent

dparent

The parent dentry (known to be valid)

Description

An insecure source has sent us a dentry, here we verify itigetd it. This is used by
ncpfs in its readdir implementation. Zero is returned in the dentry is invalid.

89

Chapter 6. The Linux VFS

d_delete

Name

d_delete — delete a dentry
Synopsis

void d_delete (struct dentry * dentry);

Arguments

dentry
The dentry to delete

Description

Turn the dentry into a negative dentry if possible, otherwise remove it from the hash
gueues so it can be deleted later

90

Chapter 6. The Linux VFS

d_rehash

Name
d_rehash — add an entry back to the hash

Synopsis

void d_rehash (struct dentry * entry);

Arguments

entry
dentry to add to the hash

Description

Adds a dentry to the hash according to its name.

91

Chapter 6. The Linux VFS

d_move

Name

d_move — move a dentry
Synopsis

void d_move (struct dentry * dentry , struct dentry * target);

Arguments

dentry

entry to move

target

new dentry

Description

Update the dcache to reflect the move of a file name. Negative dcache entries should
not be moved in this way.

92

Chapter 6. The Linux VFS

__d_path

Name

__d_path — return the path of a dentry

Synopsis
char * _ d path (struct dentry * dentry , struct vfsmount *
vfsmnt , struct dentry * root , struct vfsmount * rootmnt , char *

buffer , int buflen);

Arguments

dentry

dentry to report

vismnt

vfsmnt to which the dentry belongs

root

root dentry

rootmnt

vfsmnt to which the root dentry belongs

93

Chapter 6. The Linux VFS

buffer

buffer to return value in

buflen

buffer length

Description

{3

Convert a dentry into an ASCII path name. If the entry has been deleted the string
(deleted)” is appended. Note that this is ambiguous. Returns the buffer.

“buflen” should bePAGE_SIZE or more. Caller holds the dcache_lock.

IS_subdir
Name
is_subdir —is new dentry a subdirectory of old_dentry
Synopsis
int is_subdir (struct dentry * new_dentry , struct dentry *
old_dentry);

94

Chapter 6. The Linux VFS

Arguments

new_dentry

new dentry

old_dentry
old dentry

Description

Returns 1 if new_dentry is a subdirectory of the parent (at any depth). Returns O
otherwise.

find_inode_number

Name

find_inode_number — check for dentry with name

Synopsis

ino_t find_inode_number (struct dentry * dir , struct gstr *
name);

95

Chapter 6. The Linux VFS

Arguments

dir
directory to check

name

Name to find.

Description

Check whether a dentry already exists for the given name, and return the inode number
if it has an inode. Otherwise 0 is returned.

This routine is used to post-process directory listings for filesystems using synthetic
inode numbers, and is necessary to keetpwd working.

d_drop

Name
d_drop — drop adentry

Synopsis

void d_drop (struct dentry * dentry);

96

Chapter 6. The Linux VFS

Arguments

dentry
dentry to drop

Description

d_drop unhashes the entry from the parent dentry hashes, so that it won't be found
through a VFS lookup any more. Note that this is different from deleting the dentry -
d_delete will try to mark the dentry negative if possible, giving a successful _negative_
lookup, while d_drop will just make the cache lookup fail.

d_drop is used mainly for stuff that wants to invalidate a dentry for some reason (NFS
timeouts or autofs deletes).

d_add

Name

d_add — add dentry to hash queues

97

Chapter 6. The Linux VFS

Synopsis

void d_add (struct dentry * entry , struct inode * inode);

Arguments

entry

dentry to add

inode

The inode to attach to this dentry

Description

This adds the entry to the hash queues and initializede . The entry was actually
filled in earlier duringd_alloc

dget

Name

dget — get a reference to a dentry

98

Chapter 6. The Linux VFS

Synopsis

struct dentry * dget (struct dentry * dentry);

Arguments

dentry

dentry to get a reference to

Description

Given a dentry oNULL pointer increment the reference count if appropriate and return
the dentry. A dentry will not be destroyed when it has refereriggs. should never be
called for dentries with zero reference counter. For these cases (preferably none,
functions in dcache.c are sufficient for normal needs and they take necessary
precautions) you should hold dcache_lock andagdt_locked instead ofdget .

d_unhashed

Name
d_unhashed — is dentry hashed

99

Chapter 6. The Linux VFS

Synopsis

int d_unhashed (struct dentry * dentry);

Arguments

dentry

entry to check

Description

Returns true if the dentry passed is not currently hashed.

6.2. Inode Handling
__mark _inode_dirty

Name

__mark_inode_dirty — internal function

100

Chapter 6. The Linux VFS

Synopsis

void _ mark_inode_dirty (struct inode * inode , int flags);

Arguments

inode

inode to mark

flags

what kind of dirty (i.e. |_DIRTY_SYNC) Mark an inode as dirty. Callers should
use mark_inode_dirty or mark_inode_dirty _sync.

write_inode _now

Name

write_inode_now — write an inode to disk

Synopsis

void write_inode_now (struct inode * inode , int sync);

101

Chapter 6. The Linux VFS

Arguments

inode

inode to write to disk

sync

whether the write should be synchronous or not

Description

This function commits an inode to disk immediately if it is dirty. This is primarily
needed by knfsd.

clear_inode
Name
clear_inode —clear aninode
Synopsis
void clear_inode (struct inode * inode);

102

Chapter 6. The Linux VFS

Arguments
inode

inode to clear

Description

This is called by the filesystem to tell us that the inode is no longer useful. We just
terminate it with extreme prejudice.

Invalidate_inodes

Name

invalidate_inodes — discard the inodes on a device
Synopsis

int invalidate_inodes (struct super_block * sb);

103

Chapter 6. The Linux VFS

Arguments

sb

superblock

Description

Discard all of the inodes for a given superblock. If the discard fails because there are
busy inodes then a non zero value is returned. If the discard is successful all the inodes
have been discarded.

get_empty inode

Name

get_empty_inode — obtain an inode
Synopsis

struct inode * get_empty_inode (void);

104

Chapter 6. The Linux VFS

Arguments

void

no arguments

Description

This is called by things like the networking layer etc that want to get an inode without
any inode number, or filesystems that allocate new inodes with no pre-existing
information.

On a successful return the inode pointer is returned. On a failNté_a pointer is
returned. The returned inode is not on any superblock lists.

lunique
Name
iuniqgue — get a unique inode number
Synopsis
ino_t iunique (struct super_block * sb, ino.t max_ reserved);

105

Chapter 6. The Linux VFS

Arguments

sb

superblock

max_reserved

highest reserved inode number

Description

Obtain an inode number that is unique on the system for a given superblock. This is
used by file systems that have no natural permanent inode numbering system. An inode
number is returned that is higher than the reserved limit but unique.

BUGS

With a large number of inodes live on the file system this function currently becomes
quite slow.

Insert_inode _hash

Name

insert_inode_hash — hash an inode

106

Chapter 6. The Linux VFS

Synopsis

void insert_inode hash (struct inode * inode);

Arguments

inode

unhashed inode

Description

Add an inode to the inode hash for this superblock. If the inode has no superblock it is
added to a separate anonymous chain.

remove_inode_ hash

Name

remove_inode _hash — remove an inode from the hash

107

Chapter 6. The Linux VFS

Synopsis

void remove_inode_hash (struct inode * inode);

Arguments

inode

inode to unhash

Description

Remove an inode from the superblock or anonymous hash.

Iput

Name

iput — put an inode
Synopsis
void iput (struct inode * inode);

108

Chapter 6. The Linux VFS

Arguments

inode

inode to put

Description

Puts an inode, dropping its usage count. If the inode use count hits zero the inode is
also then freed and may be destroyed.

bmap

Name

bmap— find a block number in a file
Synopsis

int bmap (struct inode * inode , int block);

109

Chapter 6. The Linux VFS

Arguments

inode

inode of file

block
block to find

Description

Returns the block number on the device holding the inode that is the disk block number
for the block of the file requested. That is, asked for block 4 of inode 1 the function will
return the disk block relative to the disk start that holds that block of the file.

update_atime

Name

update_atime — update the access time
Synopsis

void update_atime (struct inode * inode);

110

Chapter 6. The Linux VFS

Arguments

inode

inode accessed

Description

Update the accessed time on an inode and mark it for writeback. This function
automatically handles read only file systems and media, as well as the “noatime” flag
and inode specific “noatime” markers.

make bad inode

Name

make_bad inode — mark an inode bad due to an I/O error
Synopsis

void make_bad_inode (struct inode * inode);

111

Chapter 6. The Linux VFS

Arguments

inode

Inode to mark bad

Description

When an inode cannot be read due to a media or remote network failure this function
makes the inode “bad” and causes I/O operations on it to fail from this point on.

IS_bad_inode
Name
is_bad_inode —is aninode errored
Synopsis
int is_bad_inode (struct inode * inode);

112

Chapter 6. The Linux VFS

Arguments

inode

inode to test

Description

Returns true if the inode in question has been marked as bad.

6.3. Registration and Superblocks

register_filesystem

Name

register_filesystem — register a new filesystem
Synopsis

int register_filesystem (struct file_system_type * fs);

113

Chapter 6. The Linux VFS

Arguments

fs

the file system structure

Description

Adds the file system passed to the list of file systems the kernel is aware of for mount
and other syscalls. Returns 0 on success, or a negative errno code on an error.

The &struct file_system_type that is passed is linked into the kernel structures and must
not be freed until the file system has been unregistered.

unregister_filesystem

Name

unregister_filesystem — unregister a file system
Synopsis

int unregister_filesystem (struct file_system_type * fs);

114

Chapter 6. The Linux VFS

Arguments

fs

filesystem to unregister

Description

Remove a file system that was previously successfully registered with the kernel. An
error is returned if the file system is not found. Zero is returned on a success.

Once this function has returned the &struct file_system_type structure may be freed or
reused.

get_super

Name

get_super — getthe superblock of a device
Synopsis

struct super_block * get_super (kdev_t dev);

115

Chapter 6. The Linux VFS

Arguments

dev

device to get the superblock for

Description

Scans the superblock list and finds the superblock of the file system mounted on the
device givenNULL s returned if no match is found.

6.4. File Locks
posix_lock file

Name

posix_lock_file —

Synopsis
int posix_lock_file (struct file * filp , struct file_lock *
caller , unsigned int wait);

116

Chapter 6. The Linux VFS

Arguments
filp
The file to apply the lock to

caller

The lock to be applied

wait

1 to retry automatically, O to return -EAGAIN

Description

Add a POSIX style lock to a file. We merge adjacent locks whenever possible. POSIX
locks are sorted by owner task, then by starting address

Kai Petzke writes

To make freeing a lock much faster, we keep a pointer to the lock before the actual one.
But the real gain of the new coding was, thatk_it andunlock_it became one
function.

To all purists

Yes, | use a few goto’s. Just pass on to the next function.

117

Chapter 6. The Linux VFS

__get_lease

Name

__get lease — revoke all outstanding leases on file

Synopsis

int __ get lease (struct inode * inode , unsigned int mode);

Arguments

inode

the inode of the file to return

mode

the open mode (read or write)

Description

get_lease (inlined for speed) has checked there already is a lease on this file. Leases are
broken on a call t@pen ortruncate . This function can sleep unless you specified
O_NONBLOCH0 youropen.

118

Chapter 6. The Linux VFS

lease _get _mtime

Name

lease_get mtime —
Synopsis

time_t lease _get mtime (struct inode * inode);

Arguments

inode

the inode

Description

This is to force NFS clients to flush their caches for files with exclusive leases. The
justification is that if someone has an exclusive lease, then they could be modifiying it.

119

Chapter 6. The Linux VFS

posix_block lock

Name

posix_block_lock — blocks waiting for a file lock

Synopsis

void posix_block lock (struct file_lock * blocker , struct
file_lock * waiter);

Arguments

blocker

the lock which is blocking

waiter

the lock which conflicts and has to wait

Description

lockd needs to block waiting for locks.

120

Chapter 6. The Linux VFS

posix_unblock lock

Name

posix_unblock_lock — stop waiting for a file lock

Synopsis

void posix_unblock lock (struct file_lock * waiter);

Arguments

waiter

the lock which was waiting

Description

lockd needs to block waiting for locks.

121

Chapter 6. The Linux VFS

lock_may_read

Name

lock_may read — checks that the region is free of locks

Synopsis

int lock_may read (struct inode * inode , loff_t start , unsigned
long len);

Arguments

inode

the inode that is being read

start

the first byte to read

len

the number of bytes to read

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share modes)
can prohibit a read and byte-range POSIX locks can prohibit a read if they overlap.

122

Chapter 6. The Linux VFS

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

lock_may_write

Name

lock_may write — checks that the region is free of locks
Synopsis

int lock_may_write (struct inode * inode , loff_t start , unsigned
long len);

Arguments

inode

the inode that is being written

start

the first byte to write

123

Chapter 6. The Linux VFS

len

the number of bytes to write

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share modes)
can prohibit a write and byte-range POSIX locks can prohibit a write if they overlap.

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

fcntl_getlease

Name

fcntl_getlease — Enquire what lease is currently active
Synopsis

int fcntl_getlease (struct file * filp);

124

Chapter 6. The Linux VFS

Arguments
filp

the file

Description

The value returned by this function will be one of
F_RDLCKto indicate a read-only (type Il) lease is held.

F_WRLCHKo indicate an exclusive lease is held.

XXX

sfr & i disagree over whether F_INPROGRESS should be returned to userspace.

fcntl_setlease

Name

fcntl_setlease — sets a lease on an open file

125

Chapter 6. The Linux VFS

Synopsis

int fcntl_setlease (unsigned int fd , struct file * filp , long
arg);

Arguments

fd

open file descriptor

filp
file pointer

arg

type of lease to obtain

Description

Call this fcntl to establish a lease on the file. Note that you also need tb GHTSIG
to receive a signal when the lease is broken.

126

Chapter 6. The Linux VFS

sys_flock

Name

sys_flock —flock system call.
Synopsis

asmlinkage long sys_flock (unsigned int fd , unsigned int cmd);

Arguments

fd

the file descriptor to lock.

cmd

the type of lock to apply.

Description

Apply aFL_FLOCKstyle lock to an open file descriptor. Thend can be one of
LOCK_SH- a shared lock.
LOCK_EX- an exclusive lock.

LOCK_UN- remove an existing lock.

127

Chapter 6. The Linux VFS

LOCK_MANB a ‘mandatory’ flock. This exists to emulate Windows Share Modes.

LOCK_MANBan be combined withOCK_READ®r LOCK_WRITHO allow other
processes read and write access respectively.

get_locks_status

Name

get_locks_status — reports lock usage in /proc/locks
Synopsis

int get _locks_status (char * buffer , char ** start , off t

offset , int length);

Arguments

buffer

address in userspace to write into

start
?

128

Chapter 6. The Linux VFS

offset

how far we are through the buffer

length

how much to read

129

Chapter 7. Linux Networking

7.1. Socket Buffer Functions

skb _queue empty

Name

skb_queue_empty — check if a queue is empty

Synopsis

int skb_queue_empty (struct sk_buff_head * list);

Arguments

list

queue head

Description

Returns true if the queue is empty, false otherwise.

130

Chapter 7. Linux Networking

skb_get

Name

skb_get — reference buffer

Synopsis

struct sk_buff * skb_get (struct sk _buff * skb);

Arguments

skb

buffer to reference

Description

Makes another reference to a socket buffer and returns a pointer to the buffer.

131

Chapter 7. Linux Networking

kfree skb

Name

kfree_skb — free an sk_buff

Synopsis

void kfree_skb (struct sk_buff * skb);

Arguments

skb

buffer to free

Description

Drop a reference to the buffer and free it if the usage count has hit zero.

132

Chapter 7. Linux Networking

skb_cloned

Name

skb_cloned —is the buffer a clone
Synopsis

int skb_cloned (struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Returns true if the buffer was generated wikib_clone and is one of multiple shared
copies of the buffer. Cloned buffers are shared data so must not be written to under
normal circumstances.

133

Chapter 7. Linux Networking

skb_shared

Name

skb_shared —is the buffer shared
Synopsis

int skb_shared (struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Returns true if more than one person has a reference to this buffer.

134

Chapter 7. Linux Networking

skb_share check

Name

skb_share _check — check if buffer is shared and if so clone it

Synopsis

struct sk_buff * skb_share_check (struct sk_buff * skb, int
pri);

Arguments

skb

buffer to check

pri
priority for memory allocation

Description

If the buffer is shared the buffer is cloned and the old copy drops a reference. A new
clone with a single reference is returned. If the buffer is not shared the original buffer is
returned. When being called from interrupt status or with spinlocks held pri must be
GFP_ATOMIC.

135

Chapter 7. Linux Networking

NULL is returned on a memory allocation failure.

skb _unshare

Name

skb_unshare — make a copy of a shared buffer
Synopsis

struct sk_buff * skb_unshare (struct sk_buff * skb, int pri);

Arguments

skb

buffer to check

pri
priority for memory allocation

136

Chapter 7. Linux Networking

Description

If the socket buffer is a clone then this function creates a new copy of the data, drops a
reference count on the old copy and returns the new copy with the reference count at 1.
If the buffer is not a clone the original buffer is returned. When called with a spinlock
held or from interrupt statpri must beGFP_ATOMIC

NULL is returned on a memory allocation failure.

skb_peek

Name
skb _peek —

Synopsis

struct sk_buff * skb_peek (struct sk buff head * list);

Arguments

list_

list to peek at

137

Chapter 7. Linux Networking

Description

Peek an &sk_buff. Unlike most other operations you _MUST _ be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

ReturnsNULL for an empty list or a pointer to the head element. The reference count is
not incremented and the reference is therefore volatile. Use with caution.

skb_peek tail

Name
skb_peek tail —

Synopsis

struct sk_buff * skb_peek tall (struct sk_buff head * list);

Arguments

list_

list to peek at

138

Chapter 7. Linux Networking

Description

Peek an &sk_buff. Unlike most other operations you _MUST _ be careful with this one.
A peek leaves the buffer on the list and someone else may run off with it. You must
hold the appropriate locks or have a private queue to do this.

ReturnsNULL for an empty list or a pointer to the tail element. The reference count is
not incremented and the reference is therefore volatile. Use with caution.

skb _gueue len

Name

skb_queue len — get queue length

Synopsis

_u32 skb_queue len (struct sk buff head * list);

Arguments

list_

list to measure

139

Chapter 7. Linux Networking

Description

Return the length of an &sk_buff queue.

__skb_queue_head

Name

__skb_queue_head — queue a buffer at the list head
Synopsis

void _ skb_queue head (struct sk_buff head * list , struct

sk_buff * newsk);

Arguments

list

list to use

newsk

buffer to queue

140

Chapter 7. Linux Networking

Description

Queue a buffer at the start of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

skb _queue head

Name

skb_queue head — queue a buffer at the list head

Synopsis

void skb_queue_head (struct sk _buff _head * list , struct sk_buff
* newsk);

Arguments

list

list to use

141

Chapter 7. Linux Networking

newsk

buffer to queue

Description

Queue a buffer at the start of the list. This function takes the list lock and can be used
safely with other locking &sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

__skb_queue _tall

Name

__skb_queue_talil — queue a buffer at the list tall

Synopsis

void _ skb_queue_tall (struct sk_buff_head * list , struct

sk_buff * newsk);

142

Chapter 7. Linux Networking

Arguments
list
list to use

newsk

buffer to queue

Description

Queue a buffer at the end of a list. This function takes no locks and you must therefore
hold required locks before calling it.

A buffer cannot be placed on two lists at the same time.

skb_queue _talil

Name

skb_queue _tall — gueue a buffer at the list tall

Synopsis

void skb_queue_tail (struct sk _buff head * list , struct sk_buff
* newsk);

143

Chapter 7. Linux Networking

Arguments
list
list to use

newsk

buffer to queue

Description

Queue a buffer at the tail of the list. This function takes the list lock and can be used
safely with other locking &sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

___Skb_dequeue

Name

__skb_dequeue — remove from the head of the queue

144

Chapter 7. Linux Networking

Synopsis

struct sk_buff * __skb_dequeue (struct sk _buff head * list);

Arguments

list

list to dequeue from

Description

Remove the head of the list. This function does not take any locks so must be used with
appropriate locks held only. The head item is returnedwicL if the list is empty.

skb_dequeue

Name

skb_dequeue — remove from the head of the queue

145

Chapter 7. Linux Networking

Synopsis

struct sk_buff * skb_dequeue (struct sk buff head * list);

Arguments

list

list to dequeue from

Description

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The head item is returnedNoiLL if the list is empty.

skb_insert

Name

skb_insert — insert a buffer

146

Chapter 7. Linux Networking

Synopsis

void skb_insert (struct sk_buff * old , struct sk buff * newsk);

Arguments

old

buffer to insert before

newsk

buffer to insert

Description

Place a packet before a given packet in a list. The list locks are taken and this function
is atomic with respect to other list locked calls A buffer cannot be placed on two lists at
the same time.

skb_append

Name
skb_append — append a buffer

147

Chapter 7. Linux Networking

Synopsis

void skb_append (struct sk _buff * old , struct sk buff * newsk);

Arguments

old

buffer to insert after

newsk

buffer to insert

Description

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls. A buffer cannot be placed on two lists at
the same time.

skb_unlink

Name

skb_unlink — remove a buffer from a list

148

Chapter 7. Linux Networking

Synopsis

void skb_unlink (struct sk_buff * skb);

Arguments

skb

buffer to remove

Description

Place a packet after a given packet in a list. The list locks are taken and this function is
atomic with respect to other list locked calls

Works even without knowing the list it is sitting on, which can be handy at times. It
also means that THE LIST MUST EXIST when you unlink. Thus a list must have its
contents unlinked before it is destroyed.

___skb_dequeue _tall

Name

__skb_dequeue _tall — remove from the tail of the queue

149

Chapter 7. Linux Networking

Synopsis
struct sk_buff * ___skb_dequeue _tall (struct sk _buff head *

list);

Arguments

list

list to dequeue from

Description

Remove the tail of the list. This function does not take any locks so must be used with
appropriate locks held only. The tail item is returnedN@ILL if the list is empty.

skb_dequeue _talil

Name

skb_dequeue _tall — remove from the head of the queue

150

Chapter 7. Linux Networking

Synopsis

struct sk_buff * skb_dequeue _tail (struct sk _buff head * list);

Arguments

list

list to dequeue from

Description

Remove the head of the list. The list lock is taken so the function may be used safely
with other locking list functions. The tail item is returnedMLL if the list is empty.

skb_put

Name

skb_put — add data to a buffer

151

Chapter 7. Linux Networking

Synopsis

unsigned char * skb_put (struct sk_buff * skb, unsigned int
len);

Arguments

skb

buffer to use

len

amount of data to add

Description

This function extends the used data area of the buffer. If this would exceed the total
buffer size the kernel will panic. A pointer to the first byte of the extra data is returned.

skb_push

Name

skb_push — add data to the start of a buffer

152

Chapter 7. Linux Networking

Synopsis

unsigned char * skb_push (struct sk _buff * skb, unsigned int
len);

Arguments

skb

buffer to use

len

amount of data to add

Description

This function extends the used data area of the buffer at the buffer start. If this would
exceed the total buffer headroom the kernel will panic. A pointer to the first byte of the
extra data is returned.

153

Chapter 7. Linux Networking

skb_pull

Name

skb_pull — remove data from the start of a buffer
Synopsis

unsigned char * skb_pull (struct sk_buff * skb, unsigned int
len);

Arguments

skb

buffer to use

len

amount of data to remove

Description

This function removes data from the start of a buffer, returning the memaory to the
headroom. A pointer to the next data in the buffer is returned. Once the data has been
pulled future pushes will overwrite the old data.

154

Chapter 7. Linux Networking

skb headroom

Name

skb_headroom — bytes at buffer head
Synopsis

int skb_headroom (const struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Return the number of bytes of free space at the head of an &sk_bulff.

155

Chapter 7. Linux Networking

skb_tailroom

Name

skb_tailroom — bytes at buffer end
Synopsis

int skb_tailroom (const struct sk_buff * skb);

Arguments

skb

buffer to check

Description

Return the number of bytes of free space at the tail of an sk_buff

156

Chapter 7. Linux Networking

skb_reserve

Name

skb_reserve — adjust headroom
Synopsis

void skb_reserve (struct sk_buff * skb, unsigned int len);

Arguments

skb

buffer to alter

len

bytes to move

Description

Increase the headroom of an empty &sk_buff by reducing the tail room. This is only
allowed for an empty buffer.

157

Chapter 7. Linux Networking

skb_trim

Name

skb_trim — remove end from a buffer
Synopsis

void skb_trim (struct sk_buff * skb, unsigned int len);

Arguments

skb

buffer to alter

len

new length

Description

Cut the length of a buffer down by removing data from the tail. If the buffer is already
under the length specified it is not modified.

158

Chapter 7. Linux Networking

skb_orphan

Name

skb_orphan — orphan a buffer
Synopsis

void skb_orphan (struct sk _buff * skb);

Arguments

skb

buffer to orphan

Description

If a buffer currently has an owner then we call the owner’s destructor function and
make theskb unowned. The buffer continues to exist but is no longer charged to its
former owner.

159

Chapter 7. Linux Networking

skb _queue_purge

Name

skb_queue purge — empty a list
Synopsis

void skb_queue purge (struct sk_buff head * list);

Arguments

list

list to empty

Description

Delete all buffers on an &sk_buff list. Each buffer is removed from the list and one
reference dropped. This function takes the list lock and is atomic with respect to other
list locking functions.

160

Chapter 7. Linux Networking

__skb _queue_purge

Name

__skb_queue_purge — empty a list
Synopsis

void _ skb _queue purge (struct sk_buff head * list);

Arguments

list

list to empty

Description

Delete all buffers on an &sk_buff list. Each buffer is removed from the list and one
reference dropped. This function does not take the list lock and the caller must hold the
relevant locks to use it.

161

Chapter 7. Linux Networking

__dev_alloc_skb

Name

__dev_alloc_skb — allocate an skbuff for sending
Synopsis

struct sk_buff * __dev_alloc_skb (unsigned int length , int
gfp_mask);

Arguments

length

length to allocate

gfp_mask

get_free_pages mask, passed to alloc_skb

Description

Allocate a new &sk_buff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULL s returned in there is no free memory.

162

Chapter 7. Linux Networking

dev_alloc_skb

Name

dev_alloc_skb — allocate an skbuff for sending

Synopsis

struct sk_buff * dev_alloc_skb (unsigned int length);

Arguments

length

length to allocate

Description

Allocate a new &sk_buff and assign it a usage count of one. The buffer has unspecified
headroom built in. Users should allocate the headroom they think they need without
accounting for the built in space. The built in space is used for optimisations.

NULLIs returned in there is no free memory. Although this function allocates memory it
can be called from an interrupt.

163

Chapter 7. Linux Networking

skb _cow

Name

skb_cow — copy header of skb when it is required
Synopsis

int skb_cow (struct sk buff * skb, unsigned int headroom);

Arguments

skb

buffer to cow

headroom

needed headroom

Description

If the skb passed lacks sufficient headroom or its data part is shared, data is reallocated.
If reallocation fails, an error is returned and original skb is not changed.

164

Chapter 7. Linux Networking

The result is skb with writable area skb->head...skb->tail and atheastroom of
space at head.

skb_over panic

Name

skb_over_panic — private function
Synopsis

void skb_over_panic (struct sk_buff * skb, int sz, void * here);

Arguments
skb
buffer

Sz

size

here

address

165

Chapter 7. Linux Networking

Description

Out of line support code faskb_put . Not user callable.

skb_under_panic

Name

skb_under_panic — private function

Synopsis

void skb_under_panic (struct sk_buff * skb, int sz, void *
here);

Arguments

skb
buffer

Sz

size

166

Chapter 7. Linux Networking

here

address

Description

Out of line support code faskb_push . Not user callable.

alloc_skb

Name

alloc_skb — allocate a network buffer

Synopsis

struct sk_buff * alloc_skb (unsigned int size , int gfp_mask);

Arguments

size

size to allocate

167

Chapter 7. Linux Networking

gfp_mask

allocation mask

Description

Allocate a new &sk_buff. The returned buffer has no headroom and a tail room of size
bytes. The object has a reference count of one. The return is the buffer. On a failure the
return iSNULL

Buffers may only be allocated from interrupts usingfp_mask of GFP_ATOMIC

__kfree_skb

Name

__kfree_skb — private function

Synopsis

void _ kfree_skb (struct sk_buff * skb);

168

Chapter 7. Linux Networking

Arguments

skb
buffer

Description

Free an sk_buff. Release anything attached to the buffer. Clean the state. This is an
internal helper function. Users should always call kfree_skb

skb clone
Name
skb_clone — duplicate an sk_buff
Synopsis
struct sk_buff * skb_clone (struct sk_buff * skb, int gfp_mask);

169

Chapter 7. Linux Networking

Arguments

skb

buffer to clone

gfp_mask

allocation priority

Description

Duplicate an &sk_buff. The new one is not owned by a socket. Both copies share the
same packet data but not structure. The new buffer has a reference count of 1. If the
allocation fails the function returnsULL otherwise the new buffer is returned.

If this function is called from an interrupfp_mask must beGFP_ATOMIC

skb_copy

Name

skb_copy — create private copy of an sk_buff

Synopsis

struct sk_buff * skb_copy (const struct sk_buff * skb, int
gfp_mask);

170

Chapter 7. Linux Networking

Arguments

skb
buffer to copy

gfp_mask

allocation priority

Description

Make a copy of both an &sk_buff and its data. This is used when the caller wishes to
modify the data and needs a private copy of the data to alter. Reunrison failure or
the pointer to the buffer on success. The returned buffer has a reference count of 1.

As by-product this function converts non-linear &sk_buff to linear one, so that
&sk_buff becomes completely private and caller is allowed to modify all the data of
returned buffer. This means that this function is not recommended for use in
circumstances when only header is going to be modified.pdige copy instead.

pskb_copy

Name

pskb_copy — create copy of an sk_buff with private head.

171

Chapter 7. Linux Networking

Synopsis

struct sk_buff * pskb_copy (struct sk_buff * skb, int gfp_mask);

Arguments

skb
buffer to copy

gfp_mask

allocation priority

Description

Make a copy of both an &sk_buff and part of its data, located in header. Fragmented
data remain shared. This is used when the caller wishes to modify only header of
&sk_buff and needs private copy of the header to alter. Retditris on failure or the
pointer to the buffer on success. The returned buffer has a reference count of 1.

172

Chapter 7. Linux Networking

pskb_expand_head

Name

pskb_expand _head — reallocate header of sk_buff
Synopsis

int pskb_expand _head (struct sk buff * skb, int nhead, int
ntail , int gfp_mask);

Arguments

skb

buffer to reallocate

nhead

room to add at head

ntail

room to add at tail

gfp_mask

allocation priority

173

Chapter 7. Linux Networking

Description

Expands (or creates identical copy, if &nhead and &ntail are zero) header of skb.
&sk_buff itself is not changed. &sk_buff MUST have reference count of 1. Returns
zero in the case of success or error, if expansion failed. In the last case, &sk_buff is not

changed.

All the pointers pointing into skb header may change and must be reloaded after call to
this function.

skb copy expand

Name
skb_copy_expand — copy and expand sk_buff

Synopsis
struct sk_buff * skb_copy_expand (const struct sk_buff * skb ,
int newheadroom, int newtailroom , int gfp_mask);

174

Chapter 7. Linux Networking

Arguments

skb
buffer to copy

newheadroom

new free bytes at head

newtailroom

new free bytes at tail

gfp_mask

allocation priority

Description

Make a copy of both an &sk_buff and its data and while doing so allocate additional
space.

This is used when the caller wishes to modify the data and needs a private copy of the
data to alter as well as more space for new fields. Retitis on failure or the pointer
to the buffer on success. The returned buffer has a reference count of 1.

You must pas§FP_ATOMIGas the allocation priority if this function is called from an
interrupt.

175

Chapter 7. Linux Networking

__pskb_pull_tail

Name

___pskb_pull_tail — advance tail of skb header

Synopsis

unsigned char * __pskb_pull_tail (struct sk_buff * skb, int
delta);

Arguments

skb

buffer to reallocate

delta

number of bytes to advance tail

Description

The function makes a sense only on a fragmented &sk_buff, it expands header moving
its tail forward and copying necessary data from fragmented part.

&sk_buff MUST have reference count of 1.

176

Chapter 7. Linux Networking

ReturnsNULL (and &sk_buff does not change) if pull failed or value of new tail of skb
in the case of success.

All the pointers pointing into skb header may change and must be reloaded after call to
this function.

7.2. Socket Filter

sk _run_filter

Name

sk_run_filter — run a filter on a socket

Synopsis

int sk _run_filter (struct sk_buff * skb, struct sock filter *
filter , int flen);

177

Chapter 7. Linux Networking

Arguments

skb

buffer to run the filter on

filter

filter to apply

flen

length of filter

Description

Decode and apply filter instructions to the skb->data. Return length to keep, 0 for none.
skb is the data we are filtering, filter is the array of filter instructions, and len is the
number of filter blocks in the array.

sk_chk_filter

Name

sk _chk filter — verify socket filter code

178

Chapter 7. Linux Networking

Synopsis

int sk_chk_filter (struct sock_filter * filter , int flen);

Arguments

filter

filter to verify

flen

length of filter

Description

Check the user’s filter code. If we let some ugly filter code slip through kaboom! The
filter must contain no references or jumps that are out of range, no illegal instructions
and no backward jumps. It must end with a RET instruction

Returns 0 if the rule set is legal or a negative errno code if not.

179

Chapter 8. Network device support

8.1. Driver Support

Init_etherdev

Name

init_etherdev — Register ethernet device

Synopsis

struct net_device * init_etherdev (struct net_device * dev, int

sizeof priv);

Arguments

dev

An ethernet device structure to be filled in,MULLif a new struct should be
allocated.

sizeof priv

Size of additional driver-private structure to be allocated for this ethernet device

Chapter 8. Network device support

Description

Fill in the fields of the device structure with ethernet-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesizeof_priv . A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_etherdev

Name

alloc_etherdev — Allocates and sets up an ethernet device

Synopsis

struct net_device * alloc_etherdev (int sizeof_priv);

Arguments

sizeof_priv
Size of additional driver-private structure to be allocated for this ethernet device

181

Chapter 8. Network device support

Description

Fill in the fields of the device structure with ethernet-generic values. Basically does
everything except registering the device.

Constructs a new net device, complete with a private data area cfized_priv
A 32-byte (not bit) alignment is enforced for this private data area.

init_fddidev

Name

init_fddidev — Register FDDI device

Synopsis

struct net_device * init_fddidev (struct net_device * dev, int

sizeof_priv.),

Arguments

dev

A FDDI device structure to be filled in, NULL if a new struct should be
allocated.

182

Chapter 8. Network device support

sizeof priv
Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with FDDI-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesizeof priv . A 32-byte (not bit) alignment is enforced for this private

data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_fddidev
Name
alloc_fddidev — Register FDDI device
Synopsis
struct net_device * alloc_fddidev (int sizeof_priv);

183

Chapter 8. Network device support

Arguments

sizeof_priv

Size of additional driver-private structure to be allocated for this FDDI device

Description

Fill in the fields of the device structure with FDDI-generic values.

Constructs a new net device, complete with a private data area cfizexd _priv
A 32-byte (not bit) alignment is enforced for this private data area.

Init_hippi_dev

Name

init_hippi_dev — Register HIPPI device

Synopsis

struct net_device * init_hippi_dev (struct net_device * dev, int

sizeof priv);

184

Chapter 8. Network device support

Arguments

dev

A HIPPI device structure to be filled in, 6lULL if a new struct should be
allocated.

sizeof_priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with HIPPI-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesizeof priv . A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_hippi_dev

Name

alloc_hippi_dev — Register HIPPI device

185

Chapter 8. Network device support

Synopsis

struct net_device * alloc_hippi_dev (int sizeof_priv);

Arguments

sizeof priv

Size of additional driver-private structure to be allocated for this HIPPI device

Description

Fill in the fields of the device structure with HIPPI-generic values.

Constructs a new net device, complete with a private data area cfizexd_priv
A 32-byte (not bit) alignment is enforced for this private data area.

Init_trdev

Name

init_trdev — Register token ring device

186

Chapter 8. Network device support

Synopsis

struct net_device * init_trdev (struct net_device * dev, int
sizeof_priv. =);

Arguments

dev
A token ring device structure to be filled in, NULLIf a new struct should be
allocated.

sizeof _priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with token ring-generic values.

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesizeof priv . A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

187

Chapter 8. Network device support

alloc_trdev

Name

alloc_trdev — Register token ring device
Synopsis

struct net_device * alloc_trdev (int sizeof _priv);

Arguments

sizeof priv

Size of additional driver-private structure to be allocated for this token ring device

Description

Fill in the fields of the device structure with token ring-generic values.

Constructs a new net device, complete with a private data area cfizsed_priv
A 32-byte (not bit) alignment is enforced for this private data area.

188

Chapter 8. Network device support

init_fcdev
Name
init_fcdev — Register fibre channel device
Synopsis
struct net_device * init_fcdev (struct net_device * dev, int

sizeof_priv);

Arguments

dev

A fibre channel device structure to be filled in,WLL if a new struct should be
allocated.

sizeof_priv

Size of additional driver-private structure to be allocated for this ethernet device

Description

Fill in the fields of the device structure with fibre channel-generic values.

189

Chapter 8. Network device support

If no device structure is passed, a new one is constructed, complete with a private data
area of sizesizeof_priv . A 32-byte (not bit) alignment is enforced for this private
data area.

If an empty string area is passed as dev->name, or a new structure is made, a new name
string is constructed.

alloc_fcdev

Name

alloc_fcdev — Register fibre channel device

Synopsis

struct net_device * alloc_fcdev (int sizeof_priv)i

Arguments
sizeof_priv

Size of additional driver-private structure to be allocated for this fibre channel
device

190

Chapter 8. Network device support

Description
Fill in the fields of the device structure with fibre channel-generic values.

Constructs a new net device, complete with a private data area cfizexd _priv
A 32-byte (not bit) alignment is enforced for this private data area.

dev_add_ pack

Name
dev_add _pack — add packet handler

Synopsis

void dev_add_pack (struct packet type * pt);

Arguments

pt
packet type declaration

191

Chapter 8. Network device support

Description

Add a protocol handler to the networking stack. The passed &packet_type is linked into
kernel lists and may not be freed until it has been removed from the kernel lists.

dev_remove_ pack

Name

dev_remove_pack — remove packet handler

Synopsis

void dev_remove_pack (struct packet type * pt);

Arguments

pt
packet type declaration

192

Chapter 8. Network device support

Description

Remove a protocol handler that was previously added to the kernel protocol handlers
by dev_add_pack . The passed &packet_type is removed from the kernel lists and can
be freed or reused once this function returns.

__dev_get by name

Name

__dev_get by name —find a device by its name

Synopsis

struct net_device * __dev_get by name (const char * name);

Arguments

name

name to find

193

Chapter 8. Network device support

Description

Find an interface by name. Must be called under RTNL semaphore or

dev_base lock . Ifthe name is found a pointer to the device is returned. If the name
is not found themNULL is returned. The reference counters are not incremented so the
caller must be careful with locks.

dev_get by name

Name

dev_get by name — find a device by its name

Synopsis

struct net_device * dev_get by name (const char * name);

Arguments

name

name to find

194

Chapter 8. Network device support

Description

Find an interface by name. This can be called from any context and does its own
locking. The returned handle has the usage count incremented and the caller must use
dev_put to release it when it is no longer needadILL is returned if no matching

device is found.

dev_get

Name

dev_get —testif a device exists

Synopsis

int dev_get (const char * name);

Arguments

name

name to test for

195

Chapter 8. Network device support

Description

Test if a name exists. Returns true if the name is found. In order to be sure the name is
not allocated or removed during the test the caller must hold the rtnl semaphore.

This function primarily exists for back compatibility with older drivers.

__dev_get by index

Name

__dev_get by index —find a device by its ifindex

Synopsis

struct net_device * __dev_get by index (int ifindex),

Arguments

ifindex

index of device

196

Chapter 8. Network device support

Description

Search for an interface by index. RetunigLL if the device is not found or a pointer to
the device. The device has not had its reference counter increased so the caller must be
careful about locking. The caller must hold either the RTNL semaphore or

dev_base lock

dev_get by index

Name

dev_get by index —find a device by its ifindex

Synopsis

struct net_device * dev_get by index (int ifindex);

Arguments

ifindex

index of device

197

Chapter 8. Network device support

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer
to the device. The device returned has had a reference added and the pointer is safe
until the user calls dev_put to indicate they have finished with it.

dev_alloc_name

Name

dev_alloc_name — allocate a name for a device

Synopsis

int dev_alloc_name (struct net_device * dev, const char * name);

Arguments

dev

device

name

name format string

198

Chapter 8. Network device support

Description

Passed a format string - egd'tit will try and find a suitable id. Not efficient for many
devices, not called a lot. The caller must hold the dev_base or rtnl lock while allocating
the name and adding the device in order to avoid duplicates. Returns the number of the

unit assigned or a negative errno code.

dev_alloc

Name

dev_alloc — allocate a network device and name

Synopsis

struct net_device * dev_alloc (const char * name, int * err);

Arguments

name

name format string

err

error return pointer

199

Chapter 8. Network device support

Description

Passed a format string, eg.d’lf it will allocate a network device and space for the
nameNULLIs returned if no memory is available. If the allocation succeeds then the
name is assigned and the device pointer returNedL is returned if the name
allocation failed. The cause of an error is returned as a negative errno code in the

variableerr points to.

The caller must hold thdev_base or RTNL locks when doing this in order to avoid
duplicate name allocations.

netdev_state change

Name

netdev_state change — device changes state
Synopsis

void netdev_state_change (struct net_device * dev);

200

Chapter 8. Network device support

Arguments

dev

device to cause notification

Description

Called to indicate a device has changed state. This function calls the notifier chains for
netdev_chain and sends a NEWLINK message to the routing socket.

dev_load

Name

dev_load — load a network module
Synopsis

void dev load (const char * name);

201

Chapter 8. Network device support

Arguments

name

name of interface

Description

If a network interface is not present and the process has suitable privileges this function
loads the module. If module loading is not available in this kernel then it becomes a
nop.

dev_open

Name

dev_open — prepare an interface for use.
Synopsis

int dev_open (struct net _device * dev);

202

Chapter 8. Network device support

Arguments

dev

device to open

Description

Takes a device from down to up state. The device’s private open function is invoked and
then the multicast lists are loaded. Finally the device is moved into the up state and a
NETDEV_UHRNnessage is sent to the netdev notifier chain.

Calling this function on an active interface is a nop. On a failure a negative errno code
is returned.

dev_close

Name

dev_close — shutdown an interface.
Synopsis

int dev_close (struct net device * dev);

203

Chapter 8. Network device support

Arguments

dev

device to shutdown

Description

This function moves an active device into down stat&lEYDEV_GOING_DOVisNsent
to the netdev notifier chain. The device is then deactivated and finalisT®EV_DOWN
is sent to the notifier chain.

register netdevice notifier

Name

register_netdevice_notifier — register a network notifier block
Synopsis

int register_netdevice_notifier (struct notifier_block * nb);

204

Chapter 8. Network device support

Arguments

nb

notifier

Description

Register a notifier to be called when network device events occur. The notifier passed is
linked into the kernel structures and must not be reused until it has been unregistered. A
negative errno code is returned on a failure.

unregister _netdevice notifier

Name

unregister_netdevice_notifier — unregister a network notifier block
Synopsis

int unregister_netdevice_notifier (struct notifier_block * nb);

205

Chapter 8. Network device support

Arguments

nb

notifier

Description

Unregister a notifier previously registered fegister_netdevice_notifier . The
notifier is unlinked into the kernel structures and may then be reused. A negative errno
code is returned on a failure.

dev_queue_xmit

Name

dev_queue_xmit — transmit a buffer
Synopsis

int dev_queue_xmit (struct sk_buff * skb);

206

Chapter 8. Network device support

Arguments

skb

buffer to transmit

Description

Queue a buffer for transmission to a network device. The caller must have set the
device and priority and built the buffer before calling this function. The function can be
called from an interrupt.

A negative errno code is returned on a failure. A success does not guarantee the frame
will be transmitted as it may be dropped due to congestion or traffic shaping.

netif_rx
Name
netif rx — post buffer to the network code
Synopsis
int netif_rx (struct sk_buff * skb);

207

Chapter 8. Network device support

Arguments

skb
buffer to post

Description

This function receives a packet from a device driver and queues it for the upper
(protocol) levels to process. It always succeeds. The buffer may be dropped during
processing for congestion control or by the protocol layers.

return values

NET_RX_SUCCESS (no congestion) NET_RX_CN_LOW (low congestion)
NET_RX_ CN_MOD (moderate congestion) NET_RX_CN_HIGH (high congestion)
NET_RX_DROP (packet was dropped)

net_call _rx_atomic

Name

net_call_rx_atomic —

208

Chapter 8. Network device support

Synopsis

void net_call_rx_atomic (void (* fn) (void));

Arguments

fn

function to call

Description

Make a function call that is atomic with respect to the protocol layers.

reqgister_gifconf

Name
register_gifconf — register a SIOCGIF handler

209

Chapter 8. Network device support

Synopsis

int register_gifconf (unsigned int family , gifconf_func_t *
gifconf);

Arguments

family

Address family

gifconf

Function handler

Description

Register protocol dependent address dumping routines. The handler that is passed must
not be freed or reused until it has been replaced by another handler.

netdev_set master

Name

netdev_set_master — set up master/slave pair

210

Chapter 8. Network device support

Synopsis

int netdev_set_master (struct net_device * slave , struct
net_device * master);

Arguments

slave

slave device

master

new master device

Description

Changes the master device of the slave. Rags to break the bonding. The caller
must hold the RTNL semaphore. On a failure a negative errno code is returned. On
success the reference counts are adjustesl, NEWLINKS sent to the routing socket
and the function returns zero.

211

Chapter 8. Network device support

dev_set promiscuity

Name

dev_set_promiscuity — update promiscuity count on a device
Synopsis

void dev_set promiscuity (struct net_device * dev, int inc);

Arguments

dev

device
inc

modifier

Description

Add or remove promsicuity from a device. While the count in the device remains above
zero the interface remains promiscuous. Once it hits zero the device reverts back to
normal filtering operation. A negative inc value is used to drop promiscuity on the
device.

212

Chapter 8. Network device support

dev_set allmulti

Name

dev_set_allmulti — update allmulti count on a device

Synopsis

void dev_set allmulti (struct net_device * dev, int inc);

Arguments

dev

device

inc

modifier

Description

Add or remove reception of all multicast frames to a device. While the count in the
device remains above zero the interface remains listening to all interfaces. Once it hits

213

Chapter 8. Network device support

zero the device reverts back to normal filtering operation. A negateo/evalue is used
to drop the counter when releasing a resource needing all multicasts.

dev_ioctl

Name

dev _ioctl — network device ioctl

Synopsis

int dev_ioctl (unsigned int cmd, void * arg);

Arguments

cmd

command to issue

arg

pointer to a struct ifreq in user space

214

Chapter 8. Network device support

Description

Issue ioctl functions to devices. This is normally called by the user space syscall
interfaces but can sometimes be useful for other purposes. The return value is the return
from the syscall if positive or a negative errno code on error.

dev_new_index

Name
dev_new_index — allocate an ifindex
Synopsis

int dev_new_index (void);

Arguments

void

no arguments

Description

215

Chapter 8. Network device support

Returns a suitable unique value for a new device interface number. The caller must hold
the rtnl semaphore or the dev_base_lock to be sure it remains unique.

netdev_finish_unregister

Name

netdev_finish_unregister — complete unregistration
Synopsis

int netdev_finish_unregister (struct net_device * dev);

Arguments

dev

device

Description

Destroy and free a dead device. A value of zero is returned on success.

216

Chapter 8. Network device support

unregister_netdevice

Name

unregister_netdevice — remove device from the kernel

Synopsis

int unregister_netdevice (struct net_device * dev);

Arguments

dev

device

Description

This function shuts down a device interface and removes it from the kernel tables. On
success 0 is returned, on a failure a negative errno code is returned.

Callers must hold the rtnl semaphore. See the comment at the end of Space.c for details
about the locking. You may wantregister_netdev instead of this.

217

Chapter 8. Network device support

8.2. 8390 Based Network Cards
el_open

Name

ei_open — Openl/initialize the board.
Synopsis

int ei_open (struct net_device * dev);

Arguments

dev

network device to initialize

218

Chapter 8. Network device support

Description

This routine goes all-out, setting everything up anew at each open, even though many
of these registers should only need to be set once at boot.

el_close

Name

ei_close — shut down network device

Synopsis

int ei_close (struct net_device * dev);

Arguments

dev

network device to close

Description

Opposite okei_open . Only used when “ifconfig <devname> down” is done.

219

Chapter 8. Network device support

ei_tx_timeout

Name

ei_tx_timeout — handle transmit time out condition

Synopsis

void ei_tx_timeout (struct net_device * dev);

Arguments
dev

network device which has apparently fallen asleep

Description

Called by kernel when device never acknowledges a transmit has completed (or failed)
- i.e. never posted a Tx related interrupt.

220

Chapter 8. Network device support

el_interrupt

Name

ei_interrupt — handle the interrupts from an 8390
Synopsis

void ei_interrupt (int irg , void * dev_id , struct pt regs *
regs);

Arguments
irq
interrupt number

dev _id

a pointer to the net_device

regs

unused

Description

Handle the ether interface interrupts. We pull packets from the 8390 via the card
specific functions and fire them at the networking stack. We also handle transmit

221

Chapter 8. Network device support

completions and wake the transmit path if neccessary. We also update the counters and
do other housekeeping as needed.

ethdev_init

Name

ethdev_init — init rest of 8390 device struct
Synopsis

int ethdev_init (struct net_device * dev);

Arguments

dev

network device structure to init

Description

Initialize the rest of the 8390 device structure. Do NOT __init this, as it is used by 8390
based modular drivers too.

222

Chapter 8. Network device support

NS8390 _init

Name
NS8390 init —initialize 8390 hardware

Synopsis

void NS8390 init (struct net device * dev, int startp);

Arguments

dev

network device to initialize

startp

boolean. non-zero value to initiate chip processing

Description

Must be called with lock held.

223

Chapter 8. Network device support

8.3. Synchronous PPP
Sppp_input

Name

sppp_input — receive and process a WAN PPP frame

Synopsis

void sppp_input (struct net_device * dev, struct sk_buff * skb);

Arguments

dev

The device it arrived on

skb

The buffer to process

224

Chapter 8. Network device support

Description

This can be called directly by cards that do not have timing constraints but is normally
called from the network layer after interrupt servicing to process frames queued via
netif_rx

We process the options in the card. If the frame is destined for the protocol stacks then
it requeues the frame for the upper level protocol. If it is a control from it is processed
and discarded here.

sppp_close

Name

sppp_close — close down a synchronous PPP or Cisco HDLC link

Synopsis

int sppp_close (struct net_device * dev);

Arguments

dev

The network device to drop the link of

225

Chapter 8. Network device support

Description

This drops the logical interface to the channel. It is not done politely as we assume we
will also be dropping DTR. Any timeouts are killed.

SPpPpP_open

Name
sppp_open — open a synchronous PPP or Cisco HDLC link

Synopsis

int sppp_open (struct net_device * dev);

Arguments

dev

Network device to activate

226

Chapter 8. Network device support

Description

Close down any existing synchronous session and commence from scratch. In the PPP
case this means negotiating LCP/IPCP and friends, while for Cisco HDLC we simply
need to start sending keepalives

Sppp_reopen

Name

sppp_reopen — notify of physical link loss

Synopsis

int sppp_reopen (struct net_device * dev);

Arguments

dev

Device that lost the link

227

Chapter 8. Network device support

Description

This function informs the synchronous protocol code that the underlying link died (for
example a carrier drop on X.21)

We increment the magic numbers to ensure that if the other end failed to notice we will
correctly start a new session. It happens do to the nature of telco circuits is that you can
lose carrier on one endonly.

Having done this we go back to negotiating. This function may be called from an
interrupt context.

sppp_change mtu

Name
sppp_change_mtu — Change the link MTU

Synopsis

int sppp_change_mtu (struct net_device * dev, int new_mtu);

228

Chapter 8. Network device support

Arguments

dev

Device to change MTU on

new_mtu

New MTU

Description

Change the MTU on the link. This can only be called with the link down. It returns an
error if the link is up or the mtu is out of range.

sppp_do_ioctl

Name

sppp_do_ioctl — loctl handler for ppp/hdic

Synopsis

int sppp_do_ioctl (struct net_device * dev, struct ifreq * ifr
int cmd);

229

Chapter 8. Network device support

Arguments

dev

Device subject to ioctl
ifr
Interface request block from the user

cmd

Command that is being issued

Description

This function handles the ioctls that may be issued by the user to control the settings of
a PPP/HDLC link. It does both busy and security checks. This function is intended to
be wrapped by callers who wish to add additional ioctl calls of their own.

Sppp_attach

Name

sppp_attach — attach synchronous PPP/HDLC to a device

230

Chapter 8. Network device support

Synopsis

void sppp_attach (struct ppp_device * pd);

Arguments

pd
PPP device to initialise

Description

This initialises the PPP/HDLC support on an interface. At the time of calling the dev
element must point to the network device that this interface is attached to. The interface
should not yet be registered.

Sppp_detach

Name

sppp_detach — release PPP resources from a device

231

Chapter 8. Network device support

Synopsis

void sppp_detach (struct net_device * dev);

Arguments

dev

Network device to release

Description

Stop and free up any PPP/HDLC resources used by this interface. This must be called
before the device is freed.

232

Chapter 9. Module Support

9.1. Module Loading

request_module

Name

request_module —try to load a kernel module

Synopsis

int request_module (const char * module_name);

Arguments

module _name

Name of module

233

Chapter 9. Module Support

Description

Load a module using the user mode module loader. The function returns zero on
success or a negative errno code on failure. Note that a successful module load does not
mean the module did not then unload and exit on an error of its own. Callers must

check that the service they requested is now available not blindly invoke it.

If module auto-loading support is disabled then this function becomes a no-operation.

call_usermodehelper

Name

call_usermodehelper — start a usermode application

Synopsis
int call_usermodehelper (char * path, char * argv , char **

envp);

Arguments

path

pathname for the application

234

Chapter 9. Module Support

argv

null-terminated argument list

envp

null-terminated environment list

Description

Runs a user-space application. The application is started asynchronously. It runs as a
child of keventd. It runs with full root capabilities. keventd silently reaps the child
when it exits.

Must be called from process context. Returns zero on success, else a negative error
code.

9.2. Inter Module support

iInter_module_register

Name

inter_module_register — register a new set of inter module data.

235

Chapter 9. Module Support

Synopsis

void inter_module_register (const char * im_name, struct module
* owner, const void * userdata);

Arguments

im_name

an arbitrary string to identify the data, must be unique

owner

module that is registering the data, always use THIS_MODULE

userdata

pointer to arbitrary userdata to be registered

Description

Check that the im_name has not already been registered, complain if it has. For new
data, add it to the inter_module_entry list.

236

Chapter 9. Module Support

iInter_module_unregister

Name

inter_module_unregister — unregister a set of inter module data.
Synopsis

void inter_module_unregister (const char * im_name);

Arguments
im_name

an arbitrary string to identify the data, must be unique

Description

Check that the im_name has been registered, complain if it has not. For existing data,
remove it from the inter_module_entry list.

237

Chapter 9. Module Support

iInter_module_get

Name

inter_module_get — return arbitrary userdata from another module.
Synopsis

const void * inter_module_get (const char * im_name);

Arguments

im_name

an arbitrary string to identify the data, must be unique

Description

If the im_name has not been registered, return NULL. Try to increment the use count
on the owning module, if that fails then return NULL. Otherwise return the userdata.

238

Chapter 9. Module Support

iInter_module_get_request

Name

inter_module_get_request — im get with automatic request_module.
Synopsis

const void * inter_module_get request (const char * im_name,

const char * modname);

Arguments

im_name

an arbitrary string to identify the data, must be unique

modname

module that is expected to register im_name

Description

If inter_module_get fails, do request_module then retry.

239

Chapter 9. Module Support

iInter_module_put

Name

inter_module_put — release use of data from another module.
Synopsis

void inter_module_put (const char * im_name);

Arguments

im_name

an arbitrary string to identify the data, must be unique

Description

If the im_name has not been registered, complain, otherwise decrement the use count
on the owning module.

240

Chapter 10. Hardware Interfaces

10.1. Interrupt Handling
disable_irg_nosync

Name

disable_irq_nosync — disable an irq without waiting

Synopsis

void disable_irg_nosync (unsigned int irqg);

Arguments

irq
Interrupt to disable

241

Chapter 10. Hardware Interfaces

Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike
disable_irqg , this function does not ensure existing instances of the IRQ handler
have completed before returning.

This function may be called from IRQ context.

disable irq

Name

disable_irq — disable an irg and wait for completion

Synopsis

void disable_irq (unsigned int irq);

Arguments

irq
Interrupt to disable

242

Chapter 10. Hardware Interfaces

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits
for any pending IRQ handlers for this interrupt to complete before returning. If you use
this function while holding a resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

enable irq

Name

enable_irg — enable handling of an irq

Synopsis

void enable_irq (unsigned int irq);

Arguments

irq
Interrupt to enable

243

Chapter 10. Hardware Interfaces

Description

Undoes the effect of one call tiisable_irg . If this matches the last disable,
processing of interrupts on this IRQ line is re-enabled.

This function may be called from IRQ context.

probe _irq_mask

Name

probe_irg_mask — scan a bitmap of interrupt lines

Synopsis

unsigned int probe_irq_mask (unsigned long val);

Arguments

val

mask of interrupts to consider

244

Chapter 10. Hardware Interfaces

Description

Scan the ISA bus interrupt lines and return a bitmap of active interrupts. The interrupt
probe logic state is then returned to its previous value.

Note

we need to scan all the irg’s even though we will only return ISA irg numbers - just so
that we reset them all to a known state.

10.2. MTRR Handling

mtrr_add

Name

mtrr_add — Add a memory type region

Synopsis

int mtrr_add (unsigned long base, unsigned long size , unsigned
int type , char increment);

245

Chapter 10. Hardware Interfaces

Arguments

base

Physical base address of region

size

Physical size of region

type
Type of MTRR desired

increment

If this is true do usage counting on the region

Description

Memory type region registers control the caching on newer Intel and non Intel
processors. This function allows drivers to request an MTRR is added. The details and
hardware specifics of each processor’s implementation are hidden from the caller, but
nevertheless the caller should expect to need to provide a power of two size on an
equivalent power of two boundary.

If the region cannot be added either because all regions are in use or the CPU cannot
support it a negative value is returned. On success the register number for this entry is
returned, but should be treated as a cookie only.

On a multiprocessor machine the changes are made to all processors. This is required
on x86 by the Intel processors.

The available types are
MTRR_TYPE_UNCACHABLEO caching
MTRR_TYPE_WRBAGHKVrite data back in bursts whenever

246

Chapter 10. Hardware Interfaces

MTRR_TYPE_WRCOM®/rite data back soon but allow bursts
MTRR_TYPE_WRTHROUQGE&RChe reads but not writes

BUGS

Needs a quiet flag for the cases where drivers do not mind failures and do not wish
system log messages to be sent.

mtrr_del

Name

mtrr_del — delete a memory type region

Synopsis

int mtrr_del (int reg, unsigned long base, unsigned long size);

Arguments

reg

Register returned by mtrr_add

247

Chapter 10. Hardware Interfaces

base

Physical base address

size

Size of region

Description

If register is supplied then base and size are ignored. This is how drivers should call it.

Releases an MTRR region. If the usage count drops to zero the register is freed and the
region returns to default state. On success the register is returned, on failure a negative
error code.

10.3. PCI Support Library
pci_find_slot

Name

pci_find_slot — locate PCI device from a given PCI slot

248

Chapter 10. Hardware Interfaces

Synopsis

struct pci_dev * pci_find_slot (unsigned int bus, unsigned int
devfn);

Arguments

bus

number of PCI bus on which desired PCI device resides

devfn

encodes number of PCI slot in which the desired PCI device resides and the
logical device number within that slot in case of multi-function devices.

Description

Given a PCI bus and slot/function number, the desired PCI device is located in system
global list of PCI devices. If the device is found, a pointer to its data structure is
returned. If no device is fountjULL s returned.

249

Chapter 10. Hardware Interfaces

pci_find_subsys

Name

pci_find_subsys — begin or continue searching for a PCI device by
vendor/subvendor/device/subdevice id

Synopsis

struct pci_dev * pci_find_subsys (unsigned int vendor , unsigned
int device , unsigned int ss_vendor , unsigned int ss_device
const struct pci_dev * from);

Arguments

vendor

PCI vendor id to match, d?CI_ANY_ID to match all vendor ids

device

PCI device id to match, d?Cl_ANY_ID to match all device ids

ss_vendor

PCI subsystem vendor id to match,RCI_ANY_ID to match all vendor ids

ss_device

PCI subsystem device id to match,REI_ANY_ID to match all device ids

250

Chapter 10. Hardware Interfaces

from

Previous PCI device found in search,NuwLL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
vendor , device ,ss_vendor andss_device , a pointer to its device structure is
returned. OtherwiseyULL s returned. A new search is initiated by passig_Lto the

from argument. Otherwise ffom is notNULL, searches continue from next device

on the global list.

pci_find_device

Name

pci_find_device — begin or continue searching for a PCI device by
vendor/device id

Synopsis
struct pci_dev * pci_find_device (unsigned int vendor , unsigned
int device , const struct pci_dev * from);

251

Chapter 10. Hardware Interfaces

Arguments

vendor

PCI vendor id to match, dPCI_ANY_ID to match all vendor ids

device

PCI device id to match, dPCI_ANY_ID to match all device ids

from

Previous PCI device found in search,NuwLL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
vendor anddevice , a pointer to its device structure is returned. OthernhN8é, L is
returned. A new search is initiated by passiigiL to thefrom argument. Otherwise

if from is notNULL, searches continue from next device on the global list.

pci_find_class

Name

pci_find_class — begin or continue searching for a PCI device by class

252

Chapter 10. Hardware Interfaces

Synopsis

struct pci_dev * pci_find_class (unsigned int class , const
struct pci_dev * from);

Arguments

class

search for a PCI device with this class designation

from

Previous PCI device found in search,NuwLL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching
class , a pointer to its device structure is returned. Otherwigd, L is returned. A

new search is initiated by passiNng/LL to thefrom argument. Otherwise ffom is
notNULL, searches continue from next device on the global list.

253

Chapter 10. Hardware Interfaces

pci_find_capability

Name

pci_find_capability — query for devices’ capabilities
Synopsis

int pci_find_capability (struct pci_dev * dev, int cap);

Arguments

dev

PCI device to query

cap

capability code

Description

Tell if a device supports a given PCI capability. Returns the address of the requested
capability structure within the device’s PCI configuration space or 0 in case the device
does not support it. Possible values ¢ap :

PCI_CAP_ID_PM Power Management
PCI_CAP_ID_AGP Accelerated Graphics Port

254

Chapter 10. Hardware Interfaces

PCI_CAP_ID_VPD Vital Product Data
PCI_CAP_ID_SLOTID Slot Identification
PCI_CAP_ID_MSI Message Signalled Interrupts
PCI_CAP_ID_CHSWPRCompactPCIl HotSwap

pci_find_parent_resource

Name

pci_find_parent_resource — return resource region of parent bus of given
region

Synopsis

struct resource * pci_find_parent_resource (const struct pci_dev
* dev, struct resource * res);

Arguments

dev

PCI device structure contains resources to be searched

255

Chapter 10. Hardware Interfaces

res

child resource record for which parent is sought

Description

For given resource region of given device, return the resource region of parent bus the
given region is contained in or where it should be allocated from.

pci_set_power_state

Name

pci_set power_state — Set the power state of a PCI device
Synopsis

int pci_set_power_state (struct pci_dev * dev, int state);

Arguments

dev

PCI device to be suspended

256

Chapter 10. Hardware Interfaces

State

Power state we're entering

Description

Transition a device to a new power state, using the Power Management Capabilities in
the device’s config space.

RETURN VALUE

-EINVAL if trying to enter a lower state than we're already in. O if we’re already in the
requested state. -EIO if device does not support PCI PM. 0 if we can successfully
change the power state.

pci_save_state

Name

pci_save_state — save the PCI configuration space of a device before suspending
Synopsis

int pci_save_state (struct pci_dev * dev, u32 * buffer);

257

Chapter 10. Hardware Interfaces

Arguments

dev

- PCI device that we're dealing with

buffer

- buffer to hold config space context

Description

buffer must be large enough to hold the entire PCI 2.2 config space (>= 64 bytes).

pci_restore_state

Name

pci_restore_state — Restore the saved state of a PCI device
Synopsis

int pci_restore_state (struct pci_dev * dev, u32 * Dbuffer);

258

Chapter 10. Hardware Interfaces

Arguments

dev

- PCI device that we're dealing with

buffer

- saved PCI config space

pci_enable_device

Name

pci_enable_device — Initialize device before it's used by a driver.

Synopsis

int pci_enable_device (struct pci_dev * dev);

Arguments

dev

PCI device to be initialized

259

Chapter 10. Hardware Interfaces

Description

Initialize device before it's used by a driver. Ask low-level code to enable I/O and
memory. Wake up the device if it was suspended. Beware, this function can fail.

pci_disable device

Name

pci_disable device — Disable PCI device after use

Synopsis

void pci_disable_device (struct pci_dev * dev);

Arguments

dev
PCI device to be disabled

260

Chapter 10. Hardware Interfaces

Description

Signal to the system that the PCI device is not in use by the system anymore. This only
involves disabling PCI bus-mastering, if active.

pci_enable wake

Name

pci_enable_wake — enable device to generate PME# when suspended

Synopsis

int pci_enable_wake (struct pci_dev * dev, u32 state , int
enable);

Arguments

dev

- PCI device to operate on

State

- Current state of device.

261

Chapter 10. Hardware Interfaces

enable

- Flag to enable or disable generation

Description

Set the bits in the device’s PM Capabilities to generate PME# when the system is
suspended.

-ElO is returned if device doesn’t have PM Capabilities. -EINVAL is returned if device
supports it, but can’t generate wake events. 0O if operation is successful.

pci_release regions

Name

pci_release_regions — Release reserved PCI I/O and memory resources
Synopsis

void pci_release_regions (struct pci_dev * pdev);

262

Chapter 10. Hardware Interfaces

Arguments
pdev

PCI device whose resources were previously reserved by pci_request_regions

Description

Releases all PCI I1/0O and memory resources previously reserved by a successful call to
pci_request_regions. Call this function only after all use of the PCI regions has ceased.

pci_request_regions

Name

pci_request_regions — Reserved PCI I/O and memory resources
Synopsis

int pci_request_regions (struct pci_dev * pdev, char *
res_name);

263

Chapter 10. Hardware Interfaces

Arguments

pdev

PCI device whose resources are to be reserved

res_name

Name to be associated with resource.

Description

Mark all PCI regions associated with PCI devjdev as being reserved by owner
res_name . Do not access any address inside the PCI regions unless this call returns
successfully.

Returns 0 on success, BBUSYon error. A warning message is also printed on failure.

pci_match_device

Name

pci_match_device — Tell if a PCI device structure has a matching PCI device id
structure

Synopsis

const struct pci_device_id * pci_match_device (const struct

264

Chapter 10. Hardware Interfaces

pci_device_id * ids , const struct pci_dev * dev);

Arguments
ids
array of PCI device id structures to search in

dev

the PCI device structure to match against

Description

Used by a driver to check whether a PCI device present in the system is in its list of
supported devices.Returns the matching pci_device_id structiveLarif there is no
match.

pci_register_driver

Name

pci_register_driver — register a new pci driver

265

Chapter 10. Hardware Interfaces

Synopsis

int pci_register_driver (struct pci_driver * drv);

Arguments

drv

the driver structure to register

Description

Adds the driver structure to the list of registered drivers Returns the number of pci
devices which were claimed by the driver during registration. The driver remains
registered even if the return value is zero.

pci_unregister_driver

Name

pci_unregister_driver — unregister a pci driver

266

Chapter 10. Hardware Interfaces

Synopsis

void pci_unregister_driver (struct pci_driver * drv);

Arguments

drv

the driver structure to unregister

Description

Deletes the driver structure from the list of registered PCI drivers, gives it a chance to
clean up by calling itsemove function for each device it was responsible for, and
marks those devices as driverless.

pci_announce_device to_drivers

Name

pci_announce_device_to_drivers — tell the drivers a new device has
appeared

267

Chapter 10. Hardware Interfaces

Synopsis

void pci_announce_device_to_drivers (struct pci_dev * dev);

Arguments

dev

the device that has shown up

Description

Notifys the drivers that a new device has appeared, and also notifys userspace through
/sbin/hotplug.

pci_insert_device

Name

pci_insert_device — insert a hotplug device

268

Chapter 10. Hardware Interfaces

Synopsis

void pci_insert_device (struct pci_dev * dev, struct pci_bus *
bus);

Arguments

dev

the device to insert

bus

where to insert it

Description

Add a new device to the device lists and notify userspace (/sbin/hotplug).

pci_remove_device

Name

pci_remove_device — remove a hotplug device

269

Chapter 10. Hardware Interfaces

Synopsis

void pci_remove_device (struct pci_dev * dev);

Arguments

dev

the device to remove

Description

Delete the device structure from the device lists and notify userspace (/shin/hotplug).

pci_dev_driver

Name

pci_dev_driver — get the pci_driver of a device

Synopsis

struct pci_driver * pci_dev_driver (const struct pci_dev * dev);

270

Chapter 10. Hardware Interfaces

Arguments

dev

the device to query

Description

Returns the appropriate pci_driver structuréNoi_L if there is no registered driver for
the device.

pci_set_master

Name

pci_set _master — enables bus-mastering for device dev
Synopsis

void pci_set _master (struct pci_dev * dev);

271

Chapter 10. Hardware Interfaces

Arguments

dev

the PCI device to enable

Description

Enables bus-mastering on the device and ¢ailsios_set_master to do the
needed arch specific settings.

pci_setup_device

Name

pci_setup_device — fill in class and map information of a device
Synopsis

int pci_setup_device (struct pci_dev * dev);

272

Chapter 10. Hardware Interfaces

Arguments

dev

the device structure to fill

Description

Initialize the device structure with information about the device’s vendor,class,memory
and |O-space addresses,IRQ lines etc. Called at initialisation of the PCI subsystem and
by CardBus services. Returns 0 on success and -1 if unknown type of device (not
normal, bridge or CardBus).

pci_pool_create

Name

pci_pool_create — Creates a pool of pci consistent memory blocks, for dma.
Synopsis

struct pci_pool * pci_pool_create (const char * name, struct

pci_dev * pdev, size_t size , size t align , size t allocation ,

int flags);

273

Chapter 10. Hardware Interfaces

Arguments

name

name of pool, for diagnostics

pdev
pci device that will be doing the DMA

size

size of the blocks in this pool.

align

alignment requirement for blocks; must be a power of two

allocation

returned blocks won'’t cross this boundary (or zero)

flags
SLAB_*flags (not all are supported).

Description

Returns a pci allocation pool with the requested characteristics, or null if one can't be
created. Given one of these pogisi_pool_alloc may be used to allocate memory.
Such memory will all have “consistent” DMA mappings, accessible by the device and
its driver without using cache flushing primitives. The actual size of blocks allocated
may be larger than requested because of alignment.

If allocation is nonzero, objects returned frquai_pool_alloc won't cross that size
boundary. This is useful for devices which have addressing restrictions on individual
DMA transfers, such as not crossing boundaries of 4KBytes.

274

Chapter 10. Hardware Interfaces

pci_pool_destroy

Name

pci_pool_destroy — destroys a pool of pci memory blocks.

Synopsis

void pci_pool_destroy (struct pci_pool * pool);

Arguments

pool

pci pool that will be destroyed

Description

Caller guarantees that no more memory from the pool is in use, and that nothing will
try to use the pool after this call.

275

Chapter 10. Hardware Interfaces

pci_pool_alloc

Name

pci_pool_alloc — get a block of consistent memory

Synopsis

void * pci_pool_alloc (struct pci_pool * pool , int mem_flags ,

dma_addr_t * handle);

Arguments

pool

pci pool that will produce the block

mem_flags
SLAB_KERNEL or SLAB_ATOMIC

handle

pointer to dma address of block

Description

This returns the kernel virtual address of a currently unused block, and reports its dma
address through the handle. If such a memory block can’t be allocated, null is returned.

276

Chapter 10. Hardware Interfaces

pci_pool_free

Name

pci_pool_free — put block back into pci pool

Synopsis

void pci_pool_free (struct pci_pool * pool , void * vaddr ,

dma_addr_t dma);

Arguments

pool

the pci pool holding the block

vaddr

virtual address of block

dma

dma address of block

277

Chapter 10. Hardware Interfaces

Description

Caller promises neither device nor driver will again touch this block unless it is first
re-allocated.

10.4. MCA Architecture

10.4.1. MCA Device Functions

mca_find_adapter

Name

mca_find_adapter — scan for adapters

Synopsis

int mca_find_adapter (int id, int start);

278

Chapter 10. Hardware Interfaces

Arguments

id
MCA identification to search for

start

starting slot

Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return
value of the previous call untMCA_NOTFOUNBreturned.

Disabled adapters are not reported.

mca_find_unused_adapter

Name

mca_find_unused_adapter — scan for unused adapters
Synopsis

int mca_find_unused_adapter (int id, int start);

279

Chapter 10. Hardware Interfaces

Arguments

id
MCA identification to search for

start

starting slot

Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return
value of the previous call untMCA_NOTFOUNBreturned.

Adapters that have been claimed by drivers and those that are disabled are not reported.
This function thus allows a driver to scan for further cards when some may already be
driven.

mca_read_stored pos

Name

mca_read_stored_pos — read POS register from boot data

280

Chapter 10. Hardware Interfaces

Synopsis

unsigned char mca_read_stored_pos (int slot , int reg);

Arguments

slot

slot number to read from

reg

register to read from

Description

Fetch a POS value that was stored at boot time by the kernel when it scanned the MCA
space. The register value is returned. Missing or invalid registers report O.

mca_read_pos

Name

mca_read_pos — read POS register from card

281

Chapter 10. Hardware Interfaces

Synopsis

unsigned char mca_read pos (int slot , int reg);

Arguments

slot

slot number to read from

reg

register to read from

Description

Fetch a POS value directly from the hardware to obtain the current value. This is much
slower than mca_read_stored_pos and may not be invoked from interrupt context. It
handles the deep magic required for onboard devices transparently.

mca_write_pos

Name

mca_write_pos — read POS register from card

282

Chapter 10. Hardware Interfaces

Synopsis

void mca write_ pos (int slot , int reg, unsigned char byte);

Arguments

slot

slot number to read from

reg

register to read from

byte
byte to write to the POS registers

Description

Store a POS value directly from the hardware. You should not normally need to use this
function and should have a very good knowledge of MCA bus before you do so. Doing
this wrongly can damage the hardware.

This function may not be used from interrupt context.

Note that this a technically a Bad Thing, as IBM tech stuff says you should only set
POS values through their utilities. However, some devices such as the 3c523
recommend that you write back some data to make sure the configuration is consistent.
I'd say that IBM is right, but I like my drivers to work.

This function can’t do checks to see if multiple devices end up with the same resources,
S0 you might see magic smoke if someone screws up.

283

Chapter 10. Hardware Interfaces

mca_set_adapter_name

Name

mca_set_adapter_name — Set the description of the card

Synopsis

void mca_set adapter_name (int slot , char* name);

Arguments

slot

slot to name

name

text string for the namen

Description

This function sets the name reported via /proc for this adapter slot. This is for user
information only. Setting a name deletes any previous name.

284

Chapter 10. Hardware Interfaces

mca_set_adapter_procfn

Name

mca_set_adapter_procfn — Set the /proc callback

Synopsis

void mca_set adapter_procfn (int slot , MCA ProcFn procfn , void*
dev);

Arguments

slot

slot to configure

procfn

callback function to call for /proc

dev

device information passed to the callback

285

Chapter 10. Hardware Interfaces

Description

This sets up an information callback for /proc/mca/slot?. The function is called with the
buffer, slot, and device pointer (or some equally informative context information, or
nothing, if you prefer), and is expected to put useful information into the buffer. The
adapter name, ID, and POS registers get printed before this is called though, so don’t

do it again.
This should be called with dULL procfn when a module unregisters, thus
preventing kernel crashes and other such nastiness.

mca_is_adapter_used

Name

mca_is_adapter_used — check if claimed by driver

Synopsis

int mca_is_adapter_used (int slot);

286

Chapter 10. Hardware Interfaces

Arguments

slot

slot to check

Description

Returns 1 if the slot has been claimed by a driver

mca_mark_as _used

Name

mca_mark_as _used — claim an MCA device
Synopsis

int mca_mark_as_used (int slot);

287

Chapter 10. Hardware Interfaces

Arguments

slot

slot to claim

FIXME

should we make this threadsafe

Claim an MCA slot for a device driver. If the slot is already taken the function returns
1, if it is not taken it is claimed and O is returned.

mca_mark_as_unused

Name

mca_mark_as_unused — release an MCA device

Synopsis

void mca_mark _as unused (int slot);

288

Chapter 10. Hardware Interfaces

Arguments

slot

slot to claim

Description

Release the slot for other drives to use.

mca_get_adapter _name

Name

mca_get_adapter_ name — get the adapter description

Synopsis

char * mca_get_adapter_name (int slot);

289

Chapter 10. Hardware Interfaces

Arguments

slot

slot to query

Description

Return the adapter description if set. If it has not been set or the slot is out range then
return NULL.

mca_isadapter

Name

mca_isadapter — check if the slot holds an adapter
Synopsis

int mca_isadapter (int slot);

290

Chapter 10. Hardware Interfaces

Arguments

slot

slot to query

Description

Returns zero if the slot does not hold an adapter, non zero if it does.

mca_isenabled

Name

mca_isenabled — check if the slot holds an adapter
Synopsis

int mca_isenabled (int slot);

291

Chapter 10. Hardware Interfaces

Arguments

slot

slot to query

Description

Returns a non zero value if the slot holds an enabled adapter and zero for any other
case.

10.4.2. MCA Bus DMA

mca_enable _dma

Name

mca_enable_dma — channel to enable DMA on

Synopsis

void mca_enable_dma (unsigned int dmanr);

292

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

Description

Enable the MCA bus DMA on a channel. This can be called from IRQ context.

mca_disable _dma

Name

mca_disable_dma — channel to disable DMA on
Synopsis

void mca_disable_dma (unsigned int dmanr);

293

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

Description
Enable the MCA bus DMA on a channel. This can be called from IRQ context.

mca_set_dma_addr

Name
mca_set_dma_addr — load a 24bit DMA address

Synopsis

void mca_set dma_addr (unsigned int dmanr, unsigned int a);

294

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

24bit bus address

Description
Load the address register in the DMA controller. This has a 24bit limitation (16Mb).

mca_get _dma_addr

Name
mca_get dma_addr — load a 24bit DMA address

Synopsis

unsigned int mca_get_dma_addr (unsigned int dmanr);

295

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

Description

Read the address register in the DMA controller. This has a 24bit limitation (16Mb).
The return is a bus address.

mca_set_dma_count

Name

mca_set_dma_count — load a 16bit transfer count

Synopsis

void mca_set dma _count (unsigned int dmanr, unsigned int count);

296

Chapter 10. Hardware Interfaces

Arguments
dmanr
DMA channel

count

count

Description

Set the DMA count for this channel. This can be up to 64Kbytes. Setting a count of
zero will not do what you expect.

mca_get _dma_residue

Name

mca_get_dma_residue — get the remaining bytes to transfer
Synopsis

unsigned int mca_get_dma_residue (unsigned int dmanr);

297

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

Description

This function returns the number of bytes left to transfer on this DMA channel.

mca_set dma_io

Name

mca_set_dma_io — setthe port for an 1/O transfer

Synopsis

void mca_set _ dma_io (unsigned int dmanr, unsigned int io_addr);

298

Chapter 10. Hardware Interfaces

Arguments

dmanr
DMA channel

io_addr

an 1/0 port number

Description

Unlike the ISA bus DMA controllers the DMA on MCA bus can transfer with an I/O
port target.

mca_set dma_mode

Name

mca_set_dma_mode — setthe DMA mode

Synopsis

void mca_set_dma_mode (unsigned int dmanr, unsigned int mode);

299

Chapter 10. Hardware Interfaces

Arguments
dmanr

DMA channel

mode

mode to set

Description

The DMA controller supports several modes. The mode values you can

set are

MCA_DMA_MODE_REwDen reading from the DMA device.
MCA_DMA_MODE_WRItEwriting to the DMA device.
MCA_DMA_MODE_I® do DMA to or from an 1/O port.

MCA DMA MODE_16 do 16bit transfers.

300

Chapter 11. The Device File System

devfs put

Name

devfs_put — Put (release) a reference to a devfs entry.
Synopsis

void devfs put (devfs_handle_t de);

Arguments

de
The handle to the devfs entry.

301

Chapter 11. The Device File System

devfs_regqister

Name

devfs_register — Register a device entry.

Synopsis

devfs_handle t devfs_register (devfs_handle _t dir , const char *
name, unsigned int flags , unsigned int major , unsigned int

minor , umode_t mode, void * ops, void * info);

Arguments

dir
The handle to the parent devfs directory entry. If thislif L the new name is
relative to the root of the devfs.

name

The name of the entry.

flags
A set of bitwise-ORed flags (DEVFS_FL_*).

major

The major number. Not needed for regular files.

302

Chapter 11. The Device File System

minor

The minor number. Not needed for regular files.

mode

The default file mode.

ops
The &file_operations or &block _device_operations structure. This must not be
externally deallocated.

info

An arbitrary pointer which will be written to therivate data field of the
&file structure passed to the device driver. You can set this to whatever you like,
and change it once the file is opened (the next file opened will not see this change).

Description

Returns a handle which may later be used in a calktds_unregister . On failure
NULL s returned.

devfs_unregister

Name

devfs_unregister — Unregister a device entry.

303

Chapter 11. The Device File System

Synopsis

void devfs_unregister (devfs_handle_t de);

Arguments
de

A handle previously created lgvfs_register or returned from
devfs_get handle . If this is NULLthe routine does nothing.

devfs_mk_symlink

Name

devfs_mk_symlink —

Synopsis
int devfs_mk_symlink (devfs_handle_t dir , const char * name,
unsigned int flags , const char * link , devfs_handle_t * handle ,

void * info);

304

Chapter 11. The Device File System

Arguments

dir
The handle to the parent devfs directory entry. If thiSii_L the new name is
relative to the root of the devfs.

name

The name of the entry.

flags
A set of bitwise-ORed flags (DEVFS_FL_*).

link

The destination name.

handle

The handle to the symlink entry is written here. This mayheL

info

An arbitrary pointer which will be associated with the entry.

Description

Returns 0 on success, else a negative error code is returned.

305

Chapter 11. The Device File System

devfs _mk_dir

Name

devfs_mk_dir — Create a directory in the devfs namespace.
Synopsis

devfs_handle t devfs_mk_dir (devfs_handle_t dir , const char *

name, void * info);

Arguments

dir
The handle to the parent devfs directory entry. If thiSIii_L the new name is
relative to the root of the devfs.

name

The name of the entry.

info

An arbitrary pointer which will be associated with the entry.

306

Chapter 11. The Device File System

Description

Use of this function is optional. Theevfs_register function will automatically

create intermediate directories as needed. This function is provided for efficiency
reasons, as it provides a handle to a directory. Returns a handle which may later be used
in a call todevfs_unregister . On failureNULL s returned.

devfs _get handle

Name

devfs_get _handle — Find the handle of a devfs entry.

Synopsis

devfs_handle_t devfs_get _handle (devfs_handle_t dir , const char
* name, unsigned int major , unsigned int minor , char type , int
traverse_symlinks);

Arguments
dir

The handle to the parent devfs directory entry. If thislif_ L the name is relative
to the root of the devfs.

307

Chapter 11. The Device File System

name

The name of the entry.

major

The major number. This is usedriime is NULL

minor

The minor number. This is usednfime is NULL

type
The type of special file to search for. This may be eitbE¥FS_SPECIAL_CHPor
DEVFS_SPECIAL_BLK

traverse_symlinks

If TRUEthen symlink entries in the devfs namespace are traversed. Symlinks
pointing out of the devfs namespace will cause a failure. Symlink traversal
consumes stack space.

Description

Returns a handle which may later be used in a calktds_unregister ,
devfs_get_flags , ordevfs_set_flags . A subsequendevfs_put is required to
decrement the refcount. On failukgJLL is returned.

308

Chapter 11. The Device File System

devfs get flags

Name

devfs_get flags — Get the flags for a devfs entry.
Synopsis

int devfs_get flags (devfs_handle_t de, unsigned int * flags);

Arguments

de

The handle to the device entry.

flags

The flags are written here.

Description

Returns 0 on success, else a negative error code.

309

Chapter 11. The Device File System

devfs _get _maj_min

Name

devfs_get maj_min — Get the major and minor numbers for a devfs entry.
Synopsis

int devfs_get maj_min (devfs_handle_t de, unsigned int * major ,
unsigned int * minor);

Arguments

de

The handle to the device entry.

major

The major number is written here. This mayNeLL

minor

The minor number is written here. This maykeLL

Description

Returns 0 on success, else a negative error code.

310

Chapter 11. The Device File System

devfs _get handle from_inode

Name

devfs_get _handle_from_inode — Get the devfs handle for a VFS inode.
Synopsis

devfs_handle t devfs_get_handle_from_inode (struct inode *
inode);

Arguments

inode
The VES inode.

Description

Returns the devfs handle on success, RIsEL

311

Chapter 11. The Device File System

devfs_generate_path

Name

devfs_generate_path — Generate a pathname for an entry, relative to the devfs
root.

Synopsis

int devfs_generate_path (devfs_handle_t de, char * path , int

buflen);

Arguments

de

The devfs entry.

path

The buffer to write the pathname to. The pathname and '\O’ terminator will be
written at the end of the buffer.

buflen
The length of the buffer.

312

Chapter 11. The Device File System

Description

Returns the offset in the buffer where the pathname starts on success, else a negative
error code.

devfs_get _ops

Name

devfs _get ops — Get the device operations for a devfs entry.
Synopsis

void * devfs_get ops (devfs_handle_t de);

Arguments

de

The handle to the device entry.

313

Chapter 11. The Device File System

Description

Returns a pointer to the device operations on success, else NULL. The use count for the
module owning the operations will be incremented.

devfs_set file size

Name

devfs_set file_size — Set the file size for a devfs regular file.
Synopsis

int devfs_set file_size (devfs_handle_t de, unsigned long size);

Arguments

de

The handle to the device entry.

size

The new file size.

314

Chapter 11. The Device File System

Description

Returns 0 on success, else a negative error code.

devfs_get info

Name

devfs_get_info — Get the info pointer written to private_datadd upon open.
Synopsis

void * devfs_get info (devfs_handle_t de);

Arguments

de

The handle to the device entry.

Description

Returns the info pointer.

315

Chapter 11. The Device File System

devfs_set info

Name

devfs_set_info — Set the info pointer written to private_data upon open.
Synopsis

int devfs_set_info (devfs_handle_t de, void * info);

Arguments

de

The handle to the device entry.

info

pointer to the data

Description

Returns 0 on success, else a negative error code.

316

Chapter 11. The Device File System

devfs get parent

Name

devfs_get_parent — Get the parent device entry.
Synopsis

devfs_handle t devfs_get parent (devfs_handle _t de);

Arguments

de

The handle to the device entry.

Description

Returns the parent device entry if it exists, eN&é L.

317

Chapter 11. The Device File System

devfs_get first_child

Name

devfs_get first_child — Get the first leaf node in a directory.
Synopsis

devfs_handle t devfs_get first_child (devfs_handle_t de);

Arguments

de

The handle to the device entry.

Description

Returns the leaf node device entry if it exists, eN&# L.

318

Chapter 11. The Device File System

devfs _get next sibling

Name

devfs_get_next_sibling — Get the next sibling leaf node. for a device entry.
Synopsis

devfs_handle t devfs_get next_sibling (devfs_handle _t de);

Arguments

de

The handle to the device entry.

Description

Returns the leaf node device entry if it exists, eN&# L.

319

Chapter 11. The Device File System

devfs_auto_unregister

Name

devfs_auto_unregister — Configure a devfs entry to be automatically
unregistered.

Synopsis

void devfs_auto_unregister (devfs_handle_t master ,
devfs_handle t slave);

Arguments

master

The master devfs entry. Only one slave may be registered.

slave

The devfs entry which will be automatically unregistered when the master entry is
unregistered. It is illegal to catlevfs_unregister on this entry.

320

Chapter 11. The Device File System

devfs _get _unregister_slave

Name

devfs_get_unregister_slave — Get the slave entry which will be
automatically unregistered.

Synopsis

devfs_handle_t devfs_get_unregister_slave (devfs_handle_t
master);

Arguments

master

The master devfs entry.

Description

Returns the slave which will be unregistered winesister is unregistered.

321

Chapter 11. The Device File System

devfs _get name

Name

devfs_get name — Getthe name for a device entry in its parent directory.
Synopsis

const char * devfs_get name (devfs_handle t de, unsigned int *
namelen);

Arguments

de

The handle to the device entry.

namelen

The length of the name is written here. This mayNoé L

Description

Returns the name on success, &gk L

322

Chapter 11. The Device File System

devfs_register_chrdev

Name

devfs_register_chrdev — Optionally register a conventional character driver.
Synopsis

int devfs_register_chrdev (unsigned int major , const char *
name, struct file_operations * fops);

Arguments

major

The major number for the driver.

name

The name of the driver (as seen in /proc/devices).

fops

The &file_operations structure pointer.

Description

This function will register a character driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

323

Chapter 11. The Device File System

devfs_register blkdev

Name

devfs_register_blkdev — Optionally register a conventional block driver.
Synopsis

int devfs_register_blkdev (unsigned int major , const char *
name, struct block_device_operations * bdops);

Arguments

major

The major number for the driver.

name

The name of the driver (as seen in /proc/devices).

bdops

The &block_device_operations structure pointer.

324

Chapter 11. The Device File System

Description

This function will register a block driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

devfs_unregister chrdev

Name

devfs_unregister_chrdev — Optionally unregister a conventional character
driver.

Synopsis

int devfs_unregister_chrdev (unsigned int major , const char *

name);

Arguments

major

The major number for the driver.

name

The name of the driver (as seen in /proc/devices).

325

Chapter 11. The Device File System

Description

This function will unregister a character driver provided the “devfs=only” option was
not provided at boot time. Returns 0 on success, else a negative error code on failure.

devfs_unregister blkdev

Name

devfs_unregister_blkdev — Optionally unregister a conventional block driver.
Synopsis

int devfs_unregister_blkdev (unsigned int major , const char *

name);

Arguments

major

The major number for the driver.

name

The name of the driver (as seen in /proc/devices).

326

Chapter 11. The Device File System

Description

This function will unregister a block driver provided the “devfs=only” option was not
provided at boot time. Returns 0 on success, else a negative error code on failure.

327

Chapter 12. Power Management

pm_register
Name
pm_register — register a device with power management
Synopsis
struct pm_dev * pm_register (pm_dev_t type , unsigned long id ,

pm_callback callback);

Arguments

type
device type

device ID

callback

callback function

328

Chapter 12. Power Management

Description

Add a device to the list of devices that wish to be notified about power management
events. A &pm_dev structure is returned on success, on failure the retutiLis

The callback function will be called in process context and it may sleep.

pm_unregister

Name

pm_unregister — unregister a device with power management

Synopsis

void pm_unregister (struct pm_dev * dev);

Arguments

dev

device to unregister

329

Chapter 12. Power Management

Description

Remove a device from the power management notification lists. The dev passed must
be a handle previously returned by pm_register.

pm_unregister_all

Name

pm_unregister_all — unregister all devices with matching callback

Synopsis

void pm_unregister_all (pm_callback callback);

Arguments

callback

callback function pointer

330

Chapter 12. Power Management

Description

Unregister every device that would call the callback passed. This is primarily meant as
a helper function for loadable modules. It enables a module to give up all its managed
devices without keeping its own private list.

pm_send

Name

pm_send — send request to a single device

Synopsis

int pm_send (struct pm_dev * dev, pm_request_t rqst , void *
data);

Arguments

dev

device to send to

rgst

power management request

331

Chapter 12. Power Management

data

data for the callback

Description

Issue a power management request to a given devicePMhsUSPEN&and
PM_RESUMEvents are handled specially. The data field must hold the intended next
state. No call is made if the state matches.

BUGS

what stops two power management requests occuring in parallel and conflicting.

WARNING

Calling pm_send directly is not generally recommended, in paticular there is no
locking against the pm_dev going away. The caller must maintain all needed locking or
have 'inside knowledge’ on the safety. Also remember that this function is not locked
against pm_unregister. This means that you must handle SMP races on callback
execution and unload yourself.

332

Chapter 12. Power Management

pm_send_all

Name

pm_send_all — send request to all managed devices

Synopsis

int pm_send_all (pm_request_t rqst , void * data);

Arguments

rgst

power management request

data

data for the callback

Description

Issue a power management request to a all devicesPWh8USPENBvents are

handled specially. Any device is permitted to fail a suspend by returning a non zero
(error) value from its callback function. If any device vetoes a suspend request then all
other devices that have suspended during the processing of this request are restored to
their previous state.

333

Chapter 12. Power Management

WARNING

This function takes the pm_devs_lock. The lock is not dropped until the callbacks have
completed. This prevents races against pm locking functions, races against module
unload pm_unregister code. It does mean however that you must not issue pm_
functions within the callback or you will deadlock and users will hate you.

Zero is returned on success. If a suspend fails then the status from the device that
vetoes the suspend is returned.

BUGS

what stops two power management requests occuring in parallel and conflicting.

pm_find

Name

pm_find —find a device

Synopsis

struct pm_dev * pm_find (pm_dev_t type , struct pm_dev * from);

334

Chapter 12. Power Management

Arguments

type
type of device

from

where to start looking

Description

Scan the power management list for devices of a specific type. The return value for a
matching device may be passed to further calls to this function to find further matches.
A NULL indicates the end of the list.

To search from the beginning passLL as thefrom value.

The caller MUST hold the pm_devs_lock lock when calling this function. The instant
that the lock is dropped all pointers returned may become invalid.

335

Chapter 13. Block Devices

blk_cleanup_queue

Name

blk_cleanup_queue —release arequest_queue_t when it is no longer needed
Synopsis

void blk cleanup_queue (request_queue t * q);

Arguments

the request queue to be released

Description

blk_cleanup_queue is the pairltitk_init_queue . It should be called when a request
gueue is being released; typically when a block device is being de-registered. Currently,
its primary task it to free all the &struct request structures that were allocated to the
queue.

336

Chapter 13. Block Devices

Caveat

Hopefully the low level driver will have finished any outstanding requests first...

blk _queue headactive

Name

blk_queue_headactive — indicate whether head of request queue may be active

Synopsis
void blk_queue_headactive (request_queue_t * g, int active);
Arguments

The queue which this applies to.

active

A flag indication where the head of the queue is active.

337

Chapter 13. Block Devices

Description

The driver for a block device may choose to leave the currently active request on the
request queue, removing it only when it has completed. The queue handling routines
assume this by default for safety reasons and will not involve the head of the request
gueue in any merging or reordering of requests when the queue is unplugged (and thus
may be working on this particular request).

If a driver removes requests from the queue before processing them, then it may
indicate that it does so, there by allowing the head of the queue to be involved in
merging and reordering. This is done be callirig queue_headactive with an
active flag of0.

If a driver processes several requests at once, it must remove them (or at least all but
one of them) from the request queue.

When a queue is plugged the head will be assumed to be inactive.

blk_queue_make_request

Name

blk_queue_make_request — define an alternate make_request function for a
device

Synopsis

void blk_queue_make_request (request_queue_t * g,

make_request_fn * mfn);

338

Chapter 13. Block Devices

Arguments

the request queue for the device to be affected

mfn

the alternate make_request function

Description

The normal way for &struct buffer_heads to be passed to a device driver is for them to
be collected into requests on a request queue, and then to allow the device driver to
select requests off that queue when it is ready. This works well for many block devices.
However some block devices (typically virtual devices such as md or lvm) do not
benefit from the processing on the request queue, and are served best by having the
requests passed directly to them. This can be achieved by providing a function to
blk_queue_make_request

Caveat

The driver that does this *must* be able to deal appropriately with buffers in
“highmemory”, either by callingph_kmap to get a kernel mapping, to by calling
create_bounce to create a buffer in normal memory.

339

Chapter 13. Block Devices

blk_init_queue

Name

blk_init_queue — prepare a request queue for use with a block device

Synopsis

void blk_init_queue (request_queue_t * g, request_fn_proc *
rfn);

Arguments

The &request_queue_t to be initialised

rfn

The function to be called to process requests that have been placed on the queue.

Description

If a block device wishes to use the standard request handling procedures, which sorts
requests and coalesces adjacent requests, then it muskcaik_queue . The

functionrfn will be called when there are requests on the queue that need to be
processed. If the device supports plugging, tffan may not be called immediately

when requests are available on the queue, but may be called at some time later instead.

340

Chapter 13. Block Devices

Plugged queues are generally unplugged when a buffer belonging to one of the requests
on the queue is needed, or due to memory pressure.

rfn is not required, or even expected, to remove all requests off the queue, but only as
many as it can handle at a time. If it does leave requests on the queue, it is responsible
for arranging that the requests get dealt with eventually.

A global spin lock $io_request_lock must be held while manipulating the requests on
the request queue.

The request on the head of the queue is by default assumed to be potentially active, and
it is not considered for re-ordering or merging whenever the given queue is unplugged.
This behaviour can be changed witlk_queue_headactive

Note

blk_init_queue must be paired with Blk_cleanup_queue call when the block
device is deactivated (such as at module unload).

generic_make_request

Name

generic_make_request —
Synopsis

void generic_make_request (int rw, struct buffer_head * bh);

341

Chapter 13. Block Devices

Arguments

rw
READ, WRITE, or READA - what sort of I/O is desired.

bh

The buffer head describing the location in memory and on the device.

Description

generic_make_request is used to make 1/O requests of block devices. It is passed a
&struct buffer_head and a &rw value. TREADandWRITEoptions are (hopefully)
obvious in meaning. ThREADAvalue means that a read is required, but that the driver
is free to fail the request if, for example, it cannot get needed resources immediately.

generic_make_request does not return any status. The success/failure status of the
request, along with notification of completion, is delivered asynchronously through the
bh->b_end_io function described (one day) else where.

The caller of generic_make_request must make sure that b_page, b_addr, b_size are set
to describe the memory buffer, that b_rdev and b_rsector are set to describe the device
address, and the b_end_io and optionally b_private are set to describe how completion
notification should be signaled. BH_Mapped should also be set (to confirm that b_dev
and b_blocknr are valid).

generic_make_request and the drivers it calls may use b_regnext, and may change
b_rdev and b_rsector. So the values of these fields should NOT be depended on after
the call to generic_make_request. Because of this, the caller should record the device
address information in b_dev and b_blocknr.

342

Chapter 13. Block Devices

Apart from those fields mentioned above, no other fields, and in particular, no other
flags, are changed by generic_make_request or any lower level drivers.

submit_bh

Name

submit_bh —
Synopsis

void submit_bh (int rw, struct buffer_head * bh);

Arguments

rw

whether toREADor WRITE, or maybe t(READA(read ahead)

bh
The &struct buffer_head which describes the 1/0

343

Chapter 13. Block Devices

Description

submit_bh is very similar in purpose tgeneric_make_request , and uses that
function to do most of the work.

The extra functionality provided by submit_bh is to determine b_rsector from

b_blocknr and b_size, and to set b_rdev from b_dev. This is is appropriate for 1O
requests that come from the buffer cache and page cache which (currently) always use
aligned blocks.

Il_rw_block

Name

Il_rw_block — level access to block devices

Synopsis

void I_rw_block (int rw, int nr, struct buffer_head * * bhs);

Arguments

r'w

whether toREADor WRITEor maybeREADA(readahead)

344

Chapter 13. Block Devices

nr
number of &struct buffer_heads in the array
bhs
array of pointers to &struct buffer_head
Description

Il_rw_block takes an array of pointers to &struct buffer_heads, and requests an I/O
operation on them, eitherREADor aWRITE The thirdREADAoption is described in
the documentation fageneric_make_request whichll_rw_block calls.

This function provides extra functionality that is notganeric_make_request that

is relevant to buffers in the buffer cache or page cache. In particular it drops any buffer
that it cannot get a lock on (with the BH_Lock state bit), any buffer that appears to be
clean when doing a write request, and any buffer that appears to be up-to-date when
doing read request. Further it marks as clean buffers that are processed for writing (the
buffer cache wont assume that they are actually clean until the buffer gets unlocked).

Il_rw_block sets b_end_io to simple completion handler that marks the buffer
up-to-date (if approriate), unlocks the buffer and wakes any waiters. As client that
needs a more interesting completion routine shouldscélhit_bh (or
generic_make_request) directly.

Caveat

All of the buffers must be for the same device, and must also be

345

Chapter 13. Block Devices

end_that_request_first

Name

end_that_request_first — end I/O on one buffer.

Synopsis

int end_that request_first (struct request * req , int uptodate

char * name);

Arguments

req

the request being processed

uptodate

0 for I/O error

name

the name printed for an 1/O error

Description

Ends 1/O on the first buffer attachedreq , and sets it up for the next buffer_head (if
any) in the cluster.

346

Chapter 13. Block Devices

Return

0 - we are done with this request, catid_that_request_last 1 - still buffers
pending for this request

Caveat

Drivers implementing their own end_request handling mustadialfinished_io
appropriately.

347

Chapter 14. Miscellaneous Devices

misc_reqister

Name

misc_register — register a miscellaneous device

Synopsis

int misc_register (struct miscdevice * misc);

Arguments

misc

device structure

Description

Register a miscellaneous device with the kernel. If the minor number is set to
MISC_DYNAMIC_MINOR minor number is assigned and placed in the minor field of
the structure. For other cases the minor number requested is used.

348

Chapter 14. Miscellaneous Devices

The structure passed is linked into the kernel and may not be destroyed until it has been
unregistered.

A zero is returned on success and a negative errno code for failure.

misc_deregister

Name

misc_deregister — unregister a miscellaneous device

Synopsis

int misc_deregister (struct miscdevice * misc);

Arguments

misc

device to unregister

349

Chapter 14. Miscellaneous Devices

Description

Unregister a miscellaneous device that was previously successfully registered with
misc_register . Success is indicated by a zero return, a negative errno code indicates

an error.

350

Chapter 15. Video4Linux

video_unregister_device

Name

video_unregister_device — unregister a video4linux device
Synopsis

void video_unregister_device (struct video_device * vid);

Arguments

vfd

the device to unregister

Description

This unregisters the passed device and deassigns the minor number. Future open calls
will be met with errors.

351

Chapter 16. Sound Devices

register_sound_special

Name

register_sound_special — register a special sound node

Synopsis

int register_sound_special (struct file_operations * fops , int
unit);

Arguments

fops

File operations for the driver

unit

Unit number to allocate

352

Chapter 16. Sound Devices

Description

Allocate a special sound device by minor number from the sound subsystem. The
allocated number is returned on succes. On failure a negative error code is returned.

register _sound_mixer

Name

register_sound_mixer — register a mixer device

Synopsis

int register_sound_mixer (struct file_operations * fops , int
dev);

Arguments

fops

File operations for the driver

dev

Unit number to allocate

353

Chapter 16. Sound Devices

Description

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request
the next free mixer unit. On success the allocated number is returned, on failure a
negative error code is returned.

register_sound_midi

Name

register_sound_midi — register a midi device

Synopsis

int register_sound_midi (struct file_operations * fops , int
dev);

Arguments

fops

File operations for the driver

dev

Unit number to allocate

354

Chapter 16. Sound Devices

Description

Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to
request the next free midi unit. On success the allocated number is returned, on failure
a negative error code is returned.

register_sound_dsp

Name

register_sound_dsp — register a DSP device

Synopsis

int register_sound_dsp (struct file_operations * fops , int dev);

Arguments

fops

File operations for the driver

dev

Unit number to allocate

355

Chapter 16. Sound Devices

Description

Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to request the
next free DSP unit. On success the allocated number is returned, on failure a negative
error code is returned.

This function allocates both the audio and dsp device entries together and will always
allocate them as a matching pair - eg dsp3/audio3

register _sound_synth

Name

register_sound_synth — register a synth device

Synopsis
int register_sound_synth (struct file_operations * fops , int

dev);

Arguments

fops

File operations for the driver

356

Chapter 16. Sound Devices

dev

Unit number to allocate

Description

Allocate a synth device. Unit is the number of the synth device requested. Pass -1 to
request the next free synth unit. On success the allocated number is returned, on failure
a negative error code is returned.

unregister_sound_special

Name

unregister_sound_special — unregister a special sound device
Synopsis

void unregister_sound_special (int unit);

357

Chapter 16. Sound Devices

Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated wilster_sound_special . The unit
passed is the return value from the register function.

unregister_sound_mixer

Name

unregister_sound_mixer — unregister a mixer
Synopsis

void unregister_sound_mixer (int unit);

358

Chapter 16. Sound Devices

Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated wijlster_sound_mixer . The unit
passed is the return value from the register function.

unregister_sound_midi

Name

unregister_sound_midi — unregister a midi device
Synopsis

void unregister_sound_midi (int unit);

359

Chapter 16. Sound Devices

Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated wilster_sound_midi . The unit
passed is the return value from the register function.

unregister_sound_dsp

Name

unregister_sound_dsp — unregister a DSP device
Synopsis

void unregister_sound_dsp (int unit);

360

Chapter 16. Sound Devices

Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated wilster_sound_dsp . The unit
passed is the return value from the register function.

Both of the allocated units are released together automatically.

unregister_sound_synth

Name

unregister_sound_synth — unregister a synth device
Synopsis

void unregister_sound_synth (int unit);

361

Chapter 16. Sound Devices

Arguments

unit

unit number to allocate

Description

Release a sound device that was allocated wilster_sound_synth . The unit
passed is the return value from the register function.

362

Chapter 17. USB Devices

usb_regqister

Name

usb_register — register a USB driver

Synopsis

int usb_register (struct usb_driver * new_driver);

Arguments

new_driver

USB operations for the driver

Description

Registers a USB driver with the USB core. The list of unattached interfaces will be
rescanned whenever a new driver is added, allowing the new driver to attach to any
recognized devices. Returns a negative error code on failure and 0 on success.

363

Chapter 17. USB Devices

usb scan_devices

Name

usb_scan_devices = — scans all unclaimed USB interfaces

Synopsis

void usb_scan_devices (void);

Arguments

void

no arguments

Description

Goes through all unclaimed USB interfaces, and offers them to all registered USB
drivers through the 'probe’ function. This will automatically be called after
usb_register is called. It is called by some of the USB subsystems after one of their
subdrivers are registered.

364

Chapter 17. USB Devices

usb_deregister

Name

usb_deregister — unregister a USB driver

Synopsis

void usb_deregister (struct usb_driver * driver);

Arguments

driver

USB operations of the driver to unregister

Description

Unlinks the specified driver from the internal USB driver list.

365

Chapter 17. USB Devices

usb alloc_bus

Name

usb_alloc_bus — creates a new USB host controller structure

Synopsis

struct usb_bus * usb_alloc_bus (struct usb_operations * op);

Arguments

op
pointer to a struct usb_operations that this bus structure should use

Description

Creates a USB host controller bus structure with the specified usb_operations and
initializes all the necessary internal objects. (For use only by USB Host Controller
Drivers.)

If no memory is available, NULL is returned.

The caller should calisb_free_bus when it is finished with the structure.

366

Chapter 17. USB Devices

usb_free bus

Name

usb_free_bus — frees the memory used by a bus structure

Synopsis

void usb _free bus (struct usb_bus * bus);

Arguments

bus

pointer to the bus to free

Description

(For use only by USB Host Controller Drivers.)

367

Chapter 17. USB Devices

usb_register bus

Name

usb_register_bus — registers the USB host controller with the usb core

Synopsis

void usb_register_bus (struct usb_bus * bus);

Arguments

bus

pointer to the bus to register

Description

(For use only by USB Host Controller Drivers.)

368

Chapter 17. USB Devices

usb_deregister bus

Name

usb_deregister_bus — deregisters the USB host controller

Synopsis

void usb_deregister_bus (struct usb_bus * bus);

Arguments

bus

pointer to the bus to deregister

Description

(For use only by USB Host Controller Drivers.)

369

Chapter 17. USB Devices

usb_match _id

Name

usb_match_id —find first usb_device_id matching device or interface
Synopsis

const struct usb_device id * usb_match id (struct usb_device *
dev, struct usb_interface * interface , const struct
usb_device id * id);

Arguments

dev

the device whose descriptors are considered when matching
interface

the interface of interest

array of usb_device_id structures, terminated by zero entry

370

Chapter 17. USB Devices

Description

usb_match_id searches an array of usb_device _id’s and returns the first one matching
the device or interface, or null. This is used when binding (or rebinding) a driver to an
interface. Most USB device drivers will use this indirectly, through the usb core, but
some layered driver frameworks use it directly. These device tables are exported with
MODULE_DEVICE_TABLE, through modutils and “modules.usbmap”, to support the
driver loading functionality of USB hotplugging.

What Matches

The “match_flags” element in a usb_device_id controls which members are used. If the
corresponding bit is set, the value in the device_id must match its corresponding
member in the device or interface descriptor, or else the device_id does not match.

“driver_info” is normally used only by device drivers, but you can create a wildcard
“matches anything” usb_device_id as a driver’s “modules.usbmap” entry if you provide
an id with only a nonzero “driver_info” field. If you do this, the USB device driver’s
probe routine should use additional intelligence to decide whether to bind to the
specified interface.

What Makes Good usb_device id Tables

The match algorithm is very simple, so that intelligence in driver selection must come
from smart driver id records. Unless you have good reasons to use another selection
policy, provide match elements only in related groups, and order match specifiers from
specific to general. Use the macros provided for that purpose if you can.

The most specific match specifiers use device descriptor data. These are commonly
used with product-specific matches; the USB_DEVICE macro lets you provide vendor
and product IDs, and you can also match against ranges of product revisions. These are
widely used for devices with application or vendor specific bDeviceClass values.

371

Chapter 17. USB Devices

Matches based on device class/subclass/protocol specifications are slightly more
general; use the USB_DEVICE_INFO macro, or its siblings. These are used with
single-function devices where bDeviceClass doesn’t specify that each interface has its
own class.

Matches based on interface class/subclass/protocol are the most general; they let
drivers bind to any interface on a multiple-function device. Use the
USB_INTERFACE_INFO macro, or its siblings, to match class-per-interface style
devices (as recorded in bDeviceClass).

Within those groups, remember that not all combinations are meaningful. For example,
don't give a product version range without vendor and product IDs; or specify a
protocol without its associated class and subclass.

usb_alloc_urb

Name

usb_alloc_urb — creates a new urb for a USB driver to use
Synopsis

urb t * usb_alloc_urb (int iso_packets);

372

Chapter 17. USB Devices

Arguments

iSo_packets

number of iso packets for this urb

Description

Creates an urb for the USB driver to use and returns a pointer to it. If no memory is
available, NULL is returned.

If the driver want to use this urb for interrupt, control, or bulk endpoints, pass '0’ as the
number of iso packets.

The driver should callisb_free urb when it is finished with the urb.

usb free urb

Name

usb_free_urb — frees the memory used by a urb

Synopsis

void usb_free_urb (urb_t* urb);

373

Chapter 17. USB Devices

Arguments

urb

pointer to the urb to free

Description

If an urb is created with a call tasb_create_urb it should be cleaned up with a call
tousb_free_urb when the driver is finished with it.

usb_control_msg

Name

usb_control_msg — Builds a control urb, sends it off and waits for completion
Synopsis

int usb_control_msg (struct usb_device * dev, unsigned int pipe ,
__u8 request , _ u8 requesttype , _ul6é value , _ul6é index , void *
data, _ ul6 size , int timeout);

374

Arguments

dev

pointer to the usb device to send the message to
pipe
endpoint “pipe” to send the message to

request

USB message request value

requesttype

USB message request type value

value

USB message value

index

USB message index value

data

pointer to the data to send

size

length in bytes of the data to send

timeout

Chapter 17. USB Devices

time to wait for the message to complete before timing out (if O the wait is

forever)

375

Chapter 17. USB Devices

Description

This function sends a simple control message to a specified endpoint and waits for the
message to complete, or timeout.

If successful, it returns 0, othwise a negative error number.

Don't use this function from within an interrupt context, like a bottom half handler. If
you need a asyncronous message, or need to send a message from within interrupt
context, usaisb_submit_urb

usb bulk _msg

Name

usb_bulk_msg — Builds a bulk urb, sends it off and waits for completion
Synopsis

int usb_bulk_msg (struct usb_device * usb_dev , unsigned int

pipe , void * data , int len, int * actual_length , int timeout);

376

Chapter 17. USB Devices

Arguments

usb_dev

pointer to the usb device to send the message to
pipe

endpoint “pipe” to send the message to

data

pointer to the data to send

len

length in bytes of the data to send

actual_length

pointer to a location to put the actual length transferred in bytes

timeout

time to wait for the message to complete before timing out (if O the wait is
forever)

Description

This function sends a simple bulk message to a specified endpoint and waits for the
message to complete, or timeout.

If successful, it returns 0, othwise a negative error number. The number of actual bytes
transferred will be plaed in the actual_timeout paramater.

Don't use this function from within an interrupt context, like a bottom half handler. If
you need a asyncronous message, or need to send a message from within interrupt
context, usaisb_submit_urb

377

Chapter 17. USB Devices

378

Chapter 18. 16x50 UART Driver

register_serial

Name

register_serial — configure a 16x50 serial port at runtime

Synopsis

int register_serial (struct serial_struct * req);

Arguments

req

request structure

Description

Configure the serial port specified by the request. If the port exists and is in use an error
is returned. If the port is not currently in the table it is added.

The port is then probed and if neccessary the IRQ is autodetected If this fails an error is
returned.

379

Chapter 18. 16x50 UART Driver

On success the port is ready to use and the line number is returned.

unregister_serial

Name

unregister_serial — deconfigure a 16x50 serial port
Synopsis

void unregister_serial (int line);

Arguments

line

line to deconfigure

Description

The port specified is deconfigured and its resources are freed. Any user of the port is
disconnected as if carrier was dropped. Line is the port number returned by
register_serial

380

Chapter 18. 16x50 UART Driver

381

Chapter 19. Z85230 Support Library

z8530 _interrupt

Name

z8530_interrupt — Handle an interrupt from a Z8530
Synopsis

void z8530 interrupt (int irg , void * dev_id , struct pt regs *
regs);

Arguments
irg
Interrupt number

dev id
The Z8530 device that is interrupting.

regs

unused

382

Chapter 19. 285230 Support Library

Description

A Z85[2]30 device has stuck its hand in the air for attention. We scan both the channels
on the chip for events and then call the channel specific call backs for each channel that
has events. We have to use callback functions because the two channels can be in
different modes.

Locking is done for the handlers. Note that locking is done at the chip level (the 5uS
delay issue is per chip not per channel). c->lock for both channels points to dev->lock

z8530_sync_open

Name
z8530_sync_open — Open a Z8530 channel for PIO

Synopsis

int z8530_sync_open (struct net_device * dev, struct
z8530 _channel * c¢);

383

Chapter 19. 285230 Support Library

Arguments

dev

The network interface we are using

The Z8530 channel to open in synchronous PIO mode

Description

Switch a 28530 into synchronous mode without DMA assist. We raise the RTS/DTR
and commence network operation.

z8530_sync_close

Name

z8530_sync_close — Close a PIO 28530 channel
Synopsis

int z8530_sync_close (struct net_device * dev, struct

z8530_channel * c¢);

384

Chapter 19. 285230 Support Library

Arguments

dev

Network device to close

Z8530 channel to disassociate and move to idle

Description

Close down a Z8530 interface and switch its interrupt handlers to discard future events.

z8530_sync_dma_open

Name
z8530_sync_dma_open — Open a Z8530 for DMA I/O

Synopsis

int z8530_sync_dma_open (struct net_device * dev, struct
z8530_channel * c¢);

385

Chapter 19. 285230 Support Library

Arguments

dev

The network device to attach

The 28530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA in both directions. Two ISA DMA
channels must be available for this to work. We assume ISA DMA driven 1/O and PC
limits on access.

z8530_sync_dma_close

Name

z8530_sync_dma_close = — Close down DMA I/O

Synopsis

int z8530_sync_dma_close (struct net_device * dev, struct

z8530_channel * c¢);

386

Chapter 19. 285230 Support Library

Arguments

dev

Network device to detach

Z8530 channel to move into discard mode

Description

Shut down a DMA mode synchronous interface. Halt the DMA, and free the buffers.

z8530_sync_txdma_open

Name
z8530_sync_txdma_open — Open a Z8530 for TX driven DMA

Synopsis

int z8530_sync_txdma_open (struct net_device * dev, struct
z8530_channel * c¢);

387

Chapter 19. 285230 Support Library

Arguments

dev

The network device to attach

The 28530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA tranmission. One ISA DMA channel
must be available for this to work. The receive side is run in PIO mode, but then it has
the bigger FIFO.

z8530_sync_txdma_ close

Name

z8530_sync_txdma_close — Close down a TX driven DMA channel

388

Chapter 19. 285230 Support Library

Synopsis

int z8530_sync_txdma_close (struct net_device * dev, struct
z8530_channel * c¢);

Arguments

dev

Network device to detach

Z8530 channel to move into discard mode

Description

Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, and free the
buffers.

z8530 describe

Name
z8530_describe — Uniformly describe a Z8530 port

389

Chapter 19. 285230 Support Library

Synopsis

void z8530_describe (struct z8530_dev * dev, char * mapping ,
unsigned long io);

Arguments

dev
Z8530 device to describe

mapping
string holding mapping type (eg “I/O” or “Mem”)

the port value in question

Description

Describe a 28530 in a standard format. We must pass the 1/O as the port offset isnt
predictable. The main reason for this function is to try and get a common format of
report.

390

Chapter 19. 285230 Support Library

z8530 init

Name
z8530_init — Initialise a Z8530 device

Synopsis

int z8530 _init (struct z8530_dev * dev);

Arguments

dev

Z8530 device to initialise.

Description

Configure up a Z8530/Z85C30 or Z85230 chip. We check the device is present,

identify the type and then program it to hopefully keep quite and behave. This matters a
lot, a Z8530 in the wrong state will sometimes get into stupid modes generating 10Khz
interrupt streams and the like.

We set the interrupt handler up to discard any events, in case we get them during reset
or setp.

Return O for success, or a negative value indicating the problem in errno form.

391

Chapter 19. 285230 Support Library

z8530_shutdown

Name
z8530_shutdown — Shutdown a Z8530 device

Synopsis

int z8530_shutdown (struct z8530 dev * dev);

Arguments

dev
The Z8530 chip to shutdown

Description

We set the interrupt handlers to silence any interrupts. We then reset the chip and wait
100usS to be sure the reset completed. Just in case the caller then tries to do stuff.

This is called without the lock held

392

Chapter 19. 285230 Support Library

z8530_channel_load

Name

z8530_channel_load = — Load channel data
Synopsis

int z8530_channel_load (struct z8530 channel * c, u8 * rtable);

Arguments

Z8530 channel to configure

rtable

table of register, value pairs

FIXME

ioctl to allow user uploaded tables

Load a Z8530 channel up from the system data. We use +16 to indicate the “prime”
registers. The value 255 terminates the table.

393

Chapter 19. 285230 Support Library

z8530_null_rx

Name

z8530_null_rx — Discard a packet

Synopsis
void z8530_null_rx (struct z8530 channel * c, struct sk _buff *

skb);

Arguments

The channel the packet arrived on

skb
The buffer

Description

We point the receive handler at this function when idle. Instead of syncppp processing
the frames we get to throw them away.

394

Chapter 19. 285230 Support Library

z8530_gueue_xmit

Name

z8530_queue_xmit — Queue a packet
Synopsis

int z8530_queue_xmit (struct z8530_channel * c, struct sk_buff *
skb);

Arguments

The channel to use

skb

The packet to kick down the channel

Description

Queue a packet for transmission. Because we have rather hard to hit interrupt latencies
for the 285230 per packet even in DMA mode we do the flip to DMA buffer if needed
here not in the IRQ.

Called from the network code. The lock is not held at this point.

395

Chapter 19. 285230 Support Library

z8530 _get_stats

Name

z8530_get_stats — Get network statistics
Synopsis

struct net_device stats * z8530 get_stats (struct z8530_channel
* C);

Arguments

The channel to use

Description

Get the statistics block. We keep the statistics in software as the chip doesn't do it for
us.

Locking is ignored here - we could lock for a copy but its not likely to be that big an
issue

396

Chapter 19. 285230 Support Library

397

Chapter 20. Frame Buffer Library

The frame buffer drivers depend heavily on four data structures. These structures are
declared in include/linux/fb.h. They are fb_info, fb_var_screeninfo, fb_fix_screeninfo
and fb_monospecs. The last three can be made available to and from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there exists a
fb_ops structure which is a collection of needed functions to make fbdev and fbcon
work. fb_info is only visible to the kernel.

fb_var_screeninfo is used to describe the features of a video card that are user defined.
With fb_var_screeninfo, things such as depth and the resolution may be defined.

The next structure is fb_fix_screeninfo. This defines the properties of a card that are
created when a mode is set and can’t be changed otherwise. A good example of this is
the start of the frame buffer memory. This "locks" the address of the frame buffer
memory, so that it cannot be changed or moved.

The last structure is fo_monospecs. In the old API, there was little importance for
fb_monospecs. This allowed for forbidden things such as setting a mode of 800x600 on
a fix frequency monitor. With the new API, fb_monospecs prevents such things, and if
used correctly, can prevent a monitor from being cooked. fb_monospecs will not be
useful until kernels 2.5.x.

20.1. Frame Buffer Memory

register_framebuffer

Name

register_framebuffer — registers a frame buffer device

398

Chapter 20. Frame Buffer Library

Synopsis

int register_framebuffer (struct fb_info * fb_info);

Arguments

fb_info

frame buffer info structure

Description

Registers a frame buffer devifle_info

Returns negative errno on error, or zero for success.

unregister_framebuffer

Name

unregister_framebuffer — releases a frame buffer device

399

Chapter 20. Frame Buffer Library

Synopsis

int unregister_framebuffer (struct fb_info * fb_info);

Arguments

fb_info

frame buffer info structure

Description

Unregisters a frame buffer devifle_info

Returns negative errno on error, or zero for success.

20.2. Frame Buffer Console

focon_redraw_clear

Name

focon_redraw_clear — clear area of the screen

400

Chapter 20. Frame Buffer Library

Synopsis

void fbcon_redraw_clear (struct vc_data * conp, struct display *
p, int sy, int sx, int height , int width);

Arguments

conp

stucture pointing to current active virtual console

p

display structure
Sy

starting Y coordinate
SX

starting X coordinate
height

height of area to clear
width

width of area to clear
Description

Clears a specified area of the screen. All dimensions are in pixels.

401

Chapter 20. Frame Buffer Library

focon_redraw_bmove

Name

focon_redraw_bmove — copy area of screen to another area
Synopsis

void fbcon_redraw_bmove (struct display * p, int sy, int sx, int

dy, int dx, int h, int w)

Arguments

display structure

Sy
origin Y coordinate

SX

origin X coordinate

402

Chapter 20. Frame Buffer Library

dy
destination Y coordinate

dx

destination X coordinate

h

height of area to copy
w

width of area to copy
Description

Copies an area of the screen to another area of the same screen. All dimensions are in
pixels.

Note that this function cannot be used together with ypan or ywrap.

403

Chapter 20. Frame Buffer Library

20.3. Frame Buffer Colormap

fo_alloc_cmap

Name

fo_alloc_ cmap — allocate a colormap
Synopsis

int fb_alloc_cmap (struct fb_cmap * cmap, int len, int transp);

Arguments

cmap

frame buffer colormap structure

len

length ofcmap

transp

boolean, 1 if there is transparency, 0 otherwise

404

Chapter 20. Frame Buffer Library

Description

Allocates memory for a colormagmap. len is the number of entries in the palette.

Returns -1 errno on error, or zero on success.

fo_copy cmap

Name

fo_copy _cmap — copy a colormap

Synopsis

void fb_copy cmap (struct fb_cmap * from , struct fb_cmap * to,

int fsfromto);

Arguments

from

frame buffer colormap structure

to

frame buffer colormap structure

405

Chapter 20. Frame Buffer Library

fsfromto

determine copy method

Description

Copy contents of colormap frofrom toto .

0

memcpy function

1

copy_from_user function to copy from userspace

2

copy_to_user function to copy to userspace

fo_get_cmap

Name

fo_get cmap — geta colormap

406

Chapter 20. Frame Buffer Library

Synopsis

int fb_get_cmap (struct fb_cmap * cmap, int kspc, int
(* getcolreg) (u_int, u_int *, u_int *, u_int * u_int * struct
fo_info *), struct fb_info * info);

Arguments

cmap

frame buffer colormap

kspc

boolean, 0 copy local, fut_user function

getcolreg

pointer to a function to get a color register

info

frame buffer info structure

Description

Get a colormagmap for a screen of devicefo

Returns negative errno on error, or Zzero on success.

407

Chapter 20. Frame Buffer Library

fo_set_cmap

Name

fo_set cmap — setthe colormap
Synopsis

int fb_set cmap (struct fb_cmap * cmap, int kspc, int
(* setcolreg) (u_int, u_int, u_int, u_int, u_int, struct fb_info
*), struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

kspc

boolean, 0 copy local, det_user function

setcolreg

— undescribed —

info

frame buffer info structure

408

Chapter 20. Frame Buffer Library

Description

Sets the colormapmap for a screen of devicemfo .

Returns negative errno on error, or Zzero on success.

fo_default_ cmap

Name

fb_default_cmap — get default colormap

Synopsis

struct fb_cmap * fb_default_cmap (int len);

Arguments

len

size of palette for a depth

409

Chapter 20. Frame Buffer Library

Description

Gets the default colormap for a specific screen ddepth. is the size of the palette for a
particular screen depth.

Returns pointer to a frame buffer colormap structure.

fo_invert_cmaps

Name

fb_invert_cmaps — invert all defaults colormaps

Synopsis

void fb_invert_cmaps (void);

Arguments

void

no arguments

410

Chapter 20. Frame Buffer Library

Description

Invert all default colormaps.

20.4. Frame Buffer Generic Functions
fbgen_get fix

Name
fbgen_get_fix — get fixed part of display

Synopsis
int fbgen_get_fix (struct fb_fix_screeninfo * fix , int con,

struct fb_info * info);

Arguments

fix

fb_fix_screeninfo structure

411

Chapter 20. Frame Buffer Library

con
virtual console number
info

frame buffer info structure

Description

Get the fixed information part of the display and place it ifito for virtual console
con on devicenfo

Returns negative errno on error, or zero on success.

fbogen_get var

Name

fogen_get var — get user defined part of display

Synopsis

int fbgen_get_var (struct fb_var_screeninfo * var , int con,
struct fb_info * info);

412

Chapter 20. Frame Buffer Library

Arguments

var

fb_var_screeninfo structure

con

virtual console number

info

frame buffer info structure

Description

Get the user defined part of the display and place itwato for virtual consolecon on
deviceinfo .

Returns negative errno on error, or zero for success.

fogen_set var

Name

fogen_set var — set the user defined part of display

413

Chapter 20. Frame Buffer Library

Synopsis

int fbgen_set var (struct fb_var_screeninfo * var , int con,
struct fb_info * info);

Arguments

var

fb_var_screeninfo user defined part of the display

con

virtual console number

info

frame buffer info structure

Description

Set the user defined part of the display as dictateddoy for virtual consolecon on
deviceinfo

Returns negative errno on error, or zero for success.

414

Chapter 20. Frame Buffer Library

fogen_get_cmap

Name

fbogen_get cmap — getthe colormap
Synopsis

int fbgen _get cmap (struct fb_cmap * cmap, int kspc, int con,
struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

kspc

boolean, 0 copy local, fut_user function

con

virtual console number

info

frame buffer info structure

415

Chapter 20. Frame Buffer Library

Description

Gets the colormap for virtual consaten and places it int@map for deviceinfo

Returns negative errno on error, or zero for success.

fogen _set _cmap

Name

fogen_set cmap — setthe colormap
Synopsis

int fbgen_set cmap (struct fb_cmap * cmap, int kspc, int con,
struct fb_info * info);

Arguments

cmap

frame buffer colormap structure

kspc

boolean, 0 copy local, det_user function

416

Chapter 20. Frame Buffer Library

con

virtual console number
info

frame buffer info structure

Description

Sets the colormapmap for virtual consolecon on devicenfo

Returns negative errno on error, or zero for success.

fogen_pan_display

Name

fogen_pan_display — pan or wrap the display

Synopsis

int fbgen_pan_display (struct fb_var_screeninfo * var , int con,
struct fb_info * info);

417

Chapter 20. Frame Buffer Library

Arguments

var

frame buffer user defined part of display

con

virtual console number

info

frame buffer info structure

Description

Pan or wrap virtual consoleon for deviceinfo
This call looks only at xoffset, yoffset and the FB_VMODE_YWRAP flagyar .

Returns negative errno on error, or zero for success.

fogen_do_set var

Name

fogen_do_set var — change the video mode

418

Chapter 20. Frame Buffer Library

Synopsis

int fbgen_do_set_var (struct fb_var_screeninfo * var , int
isactive , struct fb_info_gen * info);

Arguments

var

frame buffer user defined part of display

isactive

boolean, O inactive, 1 active

info

generic frame buffer info structure

Description

Change the video mode settings for devide . If isactive is non-zero, the
changes will be activated immediately.

Return negative errno on error, or zero for success.

419

Chapter 20. Frame Buffer Library

fogen_set disp

Name

fbgen_set_disp — set generic display
Synopsis

void fbgen_set disp (int con, struct fb_info_gen * info);

Arguments

con

virtual console number

info

generic frame buffer info structure

Description

Sets a display on virtual consaten for deviceinfo .

420

Chapter 20. Frame Buffer Library

fogen_install_cmap

Name

fbgen_install_cmap — install the current colormap
Synopsis

void fbgen_install_cmap (int con, struct fb_info_gen * info);

Arguments

con

virtual console number

info

generic frame buffer info structure

Description

Installs the current colormap for virtual consalen on deviceinfo

421

Chapter 20. Frame Buffer Library

fogen_update var

Name

fogen_update_var — update user defined part of display
Synopsis

int fbgen_update_var (int con, struct fb_info * info);

Arguments

con

virtual console number

info

frame buffer info structure

Description

Updates the user defined part of the display ('var’ structure) on virtual consaoldor
deviceinfo . This function is called by fbcon.c.

Returns negative errno on error, or zero for success.

422

Chapter 20. Frame Buffer Library

fbgen_switch

Name

fbgen_switch — switch to a different virtual console.
Synopsis

int fbgen_switch (int con, struct fb_info * info);

Arguments

con

virtual console number

info

frame buffer info structure

Description

Switch to virtuall consoleon on deviceinfo

Returns zero.

423

Chapter 20. Frame Buffer Library

fogen_blank

Name

fogen_blank — blank the screen
Synopsis

void fbgen blank (int blank , struct fb_info * info);

Arguments

blank

boolean, 0 unblank, 1 blank

info

frame buffer info structure

Description

Blank the screen on devidefo .

424

Chapter 20. Frame Buffer Library

20.5. Frame Buffer Video Mode Database

fo_find_mode

Name

fo_find_mode —finds a valid video mode

Synopsis

int __init fo_find_mode (struct fb_var_screeninfo * var , struct
fb_info * info , const char * mode_option , const struct
fb_videomode * db, unsigned int dbsize , const struct

fo_videomode * default_mode , unsigned int default_bpp);
Arguments

var

frame buffer user defined part of display

info

frame buffer info structure

mode_option

string video mode to find

425

Chapter 20. Frame Buffer Library

db

video mode database

dbsize

size ofdb

default_mode

default video mode to fall back to

default_bpp

default color depth in bits per pixel

Description

Finds a suitable video mode, starting with the specified modeade option with
fallback todefault_mode . If default_ mode fails, all modes in the video mode
database will be tried.

Valid mode specifiers fomode_option
<xres>x<yres>[-<bpp>][@<refresh>] or <name>[-<bpp>][@<refresh>]

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

NOTE

The passed struetar is _not_ cleared! This allows you to supply values for e.g. the
grayscale and accel_flags fields.

Returns zero for failure, 1 if using specifietbde_option , 2 if using specified
mode_option with an ignored refresh rate, 3 if default mode is used, 4 if fall back to
any valid mode.

426

Chapter 20. Frame Buffer Library

__fb_try_mode

Name

__fb_try mode —testavideo mode

Synopsis

int _ fb try mode (struct fb_var_screeninfo * var , struct
fb_info * info , const struct fb_videomode * mode, unsigned int

bpp);

Arguments

var

frame buffer user defined part of display

info

frame buffer info structure

mode

frame buffer video mode structure

427

Chapter 20. Frame Buffer Library

bpp
color depth in bits per pixel

Description

Tries a video mode to test it’s validity for deviggo .

Returns 1 on success.

20.6. Frame Buffer Macintosh Video Mode
Database

console_getmode

Name

console_getmode — get current mode
Synopsis

int console_getmode (struct vc_mode * mode);

428

Chapter 20. Frame Buffer Library

Arguments

mode

virtual console mode structure

Description

Populatesnode with the current mode held in the global display_info structure.
Note, this function is only for XPMAC compatibility.

Returns zero.

console _setmode

Name

console_setmode — sets current console mode

Synopsis

int console_setmode (struct vc_mode * mode, int doit);

429

Chapter 20. Frame Buffer Library

Arguments

mode

virtual console mode structure

doit

boolean, O test mode, 1 test and activate mode

Description

Setsmode for all virtual consoles ifloit is non-zero, otherwise, test a mode for
validity.

Note, this function is only for XPMAC compatibility.

Returns negative errno on error, or zero for success.

console_setcmap

Name

console_setcmap — sets palette color map for console
Synopsis

int console_setcmap (int n_entries , unsigned char * red ,

430

Chapter 20. Frame Buffer Library

unsigned char * green , unsigned char * blue);

Arguments

n_entries

number of entries in the palette (max 16)

red

value for red component of palette

green

value for green component of palette

blue

value for blue component of palette

Description

Sets global palette_cmap structure and activates the palette on the current console.
Note, this function is only for XPMAC compatibility.

Returns negative errno on error, or zero for success.

431

Chapter 20. Frame Buffer Library

console_powermode

Name

console_powermode — sets monitor power mode
Synopsis

int console_powermode (int mode);

Arguments

mode

power state to set

Description

Sets power state as dictatedriopde.
Note that this function is only for XPMAC compatibility and doesn’t do much.

Returns 0 foVC_POWERMODE_INQUIR¥EINVAL for VESA power settings, or
-ENIXIO on failure.

432

Chapter 20. Frame Buffer Library

mac_vmode to var

Name

mac_vmode_to_var — converts vmode/cmode pair to var structure

Synopsis

int mac_vmode_to_var (int vmode, int cmode, struct
fb_var_screeninfo * var);

Arguments
vmode
MacOS video mode

cmode

MacOS color mode

var

frame buffer video mode structure

Description

Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.

433

Chapter 20. Frame Buffer Library

Returns negative errno on error, or zero for success.

mac_var_to _vmode

Name

mac_var_to_vmode — convert var structure to MacOS vmode/cmode pair
Synopsis

int mac_var_to_vmode (const struct fb_var_screeninfo * var , int

* vmode, int * cmode);

Arguments

var

frame buffer video mode structure

vmode

MacOS video mode

cmode

MacOS color mode

434

Chapter 20. Frame Buffer Library

Description

Converts a frame buffer video mode structure to a MacOS vmode/cmode pair.

Returns negative errno on error, or zero for success.

mac_map_monitor_sense

Name

mac_map_monitor_sense — Convert monitor sense to vmode

Synopsis

int mac_map_monitor_sense (int sense);

Arguments

sense

Macintosh monitor sense number

435

Chapter 20. Frame Buffer Library

Description
Converts a Macintosh monitor sense number to a MacOS vmode number.

Returns MacOS vmode video mode number.

mac_find_mode

Name

mac_find_mode — find a video mode

Synopsis
int __init mac_find_mode (struct fb_var_screeninfo * var , struct
fb_info * info , const char * mode_option , unsigned int

default bpp);

Arguments

var

frame buffer user defined part of display

436

Chapter 20. Frame Buffer Library

info
frame buffer info structure
mode_option

video mode name (see mac_modedb[])

default_bpp

default color depth in bits per pixel

Description

Finds a suitable video mode. Tries to set mode specifiaddxye option . If the
name of the wanted mode begins with 'mac’, the Mac video mode database will be
used, otherwise it will fall back to the standard video mode database.

Note

Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

437

Chapter 20. Frame Buffer Library

20.7. Frame Buffer Fonts

focon_find_font

Name

focon_find_font — find a font
Synopsis

struct fbcon_font_desc * fbcon_find_font (char * name);

Arguments
name

string name of a font

Description

Find a specified font with string nanmame.

ReturnsNULL if no font found, or a pointer to the specified font.

438

Chapter 20. Frame Buffer Library

focon_get default font

Name

focon_get_default_font — get default font
Synopsis

struct fbcon_font desc * fbcon_get_default_font (int xres , int
yres);

Arguments

Xres

screen size of X

yres

screen size of Y

Description

Get the default font for a specified screen size. Dimensions are in pixels.

ReturnsNULL if no font is found, or a pointer to the chosen font.

439

