MCA Driver Programming
Interface

Alan Cox

alan@redhat.com

David Weinehall

Chris Beauregard

MCA Driver Programming Interface
by Alan Cox, David Weinehall, and Chris Beauregard

Copyright © 2000 by Alan CoxDavid WeinehallChris Beauregard

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

I 10T [UTox 1 To] o EP OSSPSR 1
2. KNown Bugs ANd ASSUMPLIONS.......cciiieereeieseeeesieeeesesee e seesseeeessessesseesssseenes 1
3. Public FUNCLIONS ProVIded.........cccviieiiiieseceesieeee e 2
[gTo= T i1 0o =T F=T | (=Y SO SPR 2
mca_find_unused_adapler..........cov e 3
g Tor= R L= Vo JES] (] = To [oo L= 4
g Tor= R C=F= Vo [o RS 5
[pTor= BT 1 (= o1 1 TSRS 6
MCaA_Set_adapler NAIMIE.........coceiireresere e enas 7
mca_set_adapter _ProCif.........ceieieiese s 8
MCA_IS_AdAPIETN _USEd......cciieeieeeesie et 10
MCA_MAIK _AS USEU......ccieiieiie ettt 11
MCa_MArK_AS UNUSEd........coiueiiiiiieiie ettt s nne e 12
MCa_get_ adapler NAME........ccocveeeieeeseee e e e e sreeneas 13
g Tor= R 1= (o F= T (=] SO O U PR URTRURURURORUN 13
(g pTor= R EST=T =1] L= o OSSPSR 14
4. DMA FUNCLIONS PrOVIAEM........eoiiiieiiiieieeee et 16
(g gTor= R =T 0= Lo L= o o = SRS 16
MCA_AISADIE _AMAL.....cciiiiieee e e 16
Mca_Set_dmMa_addr.........ccccueiiiiieece e s 17
MCa_get dmMa_addr..........cccooeeiiieeseee e 18
MCA_SEet_AMA_COUNL........coieieeeiese e eneas 19
MCA_get_ AMA_TESIAUE.......i et 20
(g pTor= ST Ao 0 = U T SRS 21
MCA_SEt_AMA._MOE........coiiiiii e 22

Chapter 1. Introduction

The MCA bus functions provide a generalised interface to find MCA bus cards, to
claim them for a driver, and to read and manipulate POS registers without being aware
of the motherboard internals or certain deep magic specific to onboard devices.

The basic interface to the MCA bus devices is the slot. Each slot is numbered and
virtual slot numbers are assigned to the internal devices. Using a pci_dev as other
busses do does not really make sense in the MCA context as the MCA bus resources
require card specific interpretation.

Finally the MCA bus functions provide a parallel set of DMA functions mimicing the
ISA bus DMA functions as closely as possible, although also supporting the additional
DMA functionality on the MCA bus controllers.

Chapter 2. Known Bugs And
Assumptions

None.

Chapter 3. Public Functions Provided

mca_find_adapter

Name

mca_find_adapter =~ — scan for adapters

Synopsis

int mca_find_adapter (int id, int start);

Arguments
id
MCA identification to search for

start

starting slot

Chapter 3. Public Functions Provided

Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return
value of the previous call untMCA_NOTFOUNBreturned.

Disabled adapters are not reported.

mca_find_unused_adapter

Name

mca_find_unused_adapter — scan for unused adapters
Synopsis

int mca_find_unused_adapter (int id, int start);

Arguments

id

MCA identification to search for

Chapter 3. Public Functions Provided

start

starting slot

Description

Search the MCA configuration for adapters matching the 16bit ID given. The first time
it should be called with start as zero and then further calls made passing the return
value of the previous call untMCA_NOTFOUNBreturned.

Adapters that have been claimed by drivers and those that are disabled are not reported.
This function thus allows a driver to scan for further cards when some may already be
driven.

mca_read_stored pos

Name

mca_read_stored_pos — read POS register from boot data

Synopsis

unsigned char mca_read_stored_pos (int slot , int reg);

Chapter 3. Public Functions Provided

Arguments

slot

slot number to read from

reg

register to read from

Description

Fetch a POS value that was stored at boot time by the kernel when it scanned the MCA
space. The register value is returned. Missing or invalid registers report O.

mca_read_pos

Name

mca_read_pos — read POS register from card
Synopsis

unsigned char mca_read_pos (int slot , int reg);

Chapter 3. Public Functions Provided

Arguments

slot

slot number to read from

reg

register to read from

Description

Fetch a POS value directly from the hardware to obtain the current value. This is much
slower than mca_read_stored_pos and may not be invoked from interrupt context. It
handles the deep magic required for onboard devices transparently.

mca_write_pos

Name

mca_write_pos — read POS register from card
Synopsis

void mca_write_pos (int slot , int reg, unsigned char byte);

Chapter 3. Public Functions Provided

Arguments

slot

slot number to read from

reg

register to read from

byte
byte to write to the POS registers

Description

Store a POS value directly from the hardware. You should not normally need to use this
function and should have a very good knowledge of MCA bus before you do so. Doing
this wrongly can damage the hardware.

This function may not be used from interrupt context.

Note that this a technically a Bad Thing, as IBM tech stuff says you should only set
POS values through their utilities. However, some devices such as the 3¢523
recommend that you write back some data to make sure the configuration is consistent.
I'd say that IBM is right, but I like my drivers to work.

This function can’t do checks to see if multiple devices end up with the same resources,
S0 you might see magic smoke if someone screws up.

Chapter 3. Public Functions Provided

mca_set_adapter_name

Name

mca_set_adapter_name — Set the description of the card

Synopsis

void mca_set _adapter_name (int slot , char* name);

Arguments

slot

slot to name

name

text string for the namen

Description

This function sets the name reported via /proc for this adapter slot. This is for user
information only. Setting a name deletes any previous name.

Chapter 3. Public Functions Provided

mca_set_adapter_procfn

Name

mca_set_adapter_procfn — Set the /proc callback

Synopsis

void mca_set adapter_procfn (int slot , MCA ProcFn procfn , void*
dev);

Arguments

slot

slot to configure

procfn

callback function to call for /proc

dev

device information passed to the callback

Description

This sets up an information callback for /proc/mca/slot?. The function is called with the
buffer, slot, and device pointer (or some equally informative context information, or

Chapter 3. Public Functions Provided

nothing, if you prefer), and is expected to put useful information into the buffer. The
adapter name, ID, and POS registers get printed before this is called though, so don’t
do it again.

This should be called with sULL procfn when a module unregisters, thus
preventing kernel crashes and other such nastiness.

mca_is_adapter_used

Name

mca_is_adapter_used — check if claimed by driver

Synopsis

int mca_is_adapter_used (int slot);

Arguments

slot

slot to check

10

Chapter 3. Public Functions Provided

Description

Returns 1 if the slot has been claimed by a driver

mca_mark_as_used

Name

mca_mark_as_used — claim an MCA device

Synopsis

int mca _mark_as used (int slot);

Arguments

slot

slot to claim

FIXME

should we make this threadsafe

11

Chapter 3. Public Functions Provided

Claim an MCA slot for a device driver. If the slot is already taken the function returns
1, if it is not taken it is claimed and O is returned.

mca_mark _as_unused

Name

mca_mark _as_unused — release an MCA device
Synopsis

void mca_mark_as_unused (int slot);

Arguments

slot

slot to claim

Description

Release the slot for other drives to use.

12

Chapter 3. Public Functions Provided

mca_get_adapter_name

Name

mca_get_adapter_name — get the adapter description
Synopsis

char * mca_get_adapter name (int slot);

Arguments

slot

slot to query

Description

Return the adapter description if set. If it has not been set or the slot is out range then
return NULL.

13

Chapter 3. Public Functions Provided

mca_isadapter

Name

mca_isadapter — check if the slot holds an adapter

Synopsis

int mca_isadapter (int slot);

Arguments

slot

slot to query

Description

Returns zero if the slot does not hold an adapter, non zero if it does.

14

Chapter 3. Public Functions Provided

mca_isenabled

Name

mca_isenabled — check if the slot holds an adapter
Synopsis

int mca_isenabled (int slot);

Arguments

slot

slot to query

Description

Returns a non zero value if the slot holds an enabled adapter and zero for any other
case.

15

Chapter 4. DMA Functions Provided

mca_enable_dma

Name

mca_enable_dma — channel to enable DMA on

Synopsis

void mca_enable_dma (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

Enable the MCA bus DMA on a channel. This can be called from IRQ context.

16

Chapter 4. DMA Functions Provided

mca_disable _dma

Name

mca_disable_dma — channel to disable DMA on

Synopsis

void mca_disable_ dma (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

Enable the MCA bus DMA on a channel. This can be called from IRQ context.

17

Chapter 4. DMA Functions Provided

mca_set_dma_addr

Name

mca_set_dma_addr — load a 24bit DMA address

Synopsis

void mca_set dma_addr (unsigned int dmanr, unsigned int a);

Arguments

dmanr
DMA channel

24bit bus address

Description
Load the address register in the DMA controller. This has a 24bit limitation (16Mb).

18

Chapter 4. DMA Functions Provided

mca_get_dma_addr

Name
mca_get dma_addr — load a 24bit DMA address

Synopsis

unsigned int mca_get _dma_addr (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

Read the address register in the DMA controller. This has a 24bit limitation (16Mb).
The return is a bus address.

19

Chapter 4. DMA Functions Provided

mca_set_dma_count

Name

mca_set_dma_count — load a 16bit transfer count

Synopsis

void mca_set dma count (unsigned int dmanr, unsigned int count);

Arguments
dmanr
DMA channel

count

count

Description

Set the DMA count for this channel. This can be up to 64Kbytes. Setting a count of
zero will not do what you expect.

20

Chapter 4. DMA Functions Provided

mca_get_dma_residue

Name

mca_get_dma_residue — get the remaining bytes to transfer

Synopsis

unsigned int mca_get_dma_residue (unsigned int dmanr);

Arguments

dmanr
DMA channel

Description

This function returns the number of bytes left to transfer on this DMA channel.

21

Chapter 4. DMA Functions Provided

mca_set_dma_io

Name

mca_set_dma_io — set the port for an 1/O transfer

Synopsis

void mca_set dma_io (unsigned int dmanr, unsigned int io_addr);

Arguments
dmanr
DMA channel

io_addr

an 1/0 port number

Description

Unlike the ISA bus DMA controllers the DMA on MCA bus can transfer with an I/O
port target.

22

Chapter 4. DMA Functions Provided

mca_set_dma_mode

Name

mca_set_dma_mode — setthe DMA mode

Synopsis

void mca_set_dma_mode (unsigned int dmanr, unsigned int mode);

Arguments

dmanr
DMA channel

mode

mode to set

Description

The DMA controller supports several modes. The mode values you can

set are

23

Chapter 4. DMA Functions Provided

MCA_DMA_MODE_REwbhen reading from the DMA device.
MCA_DMA_MODE_WRItEwWriting to the DMA device.
MCA_DMA_MODE_I® do DMA to or from an 1/O port.

MCA DMA MODE_16 do 16bit transfers.

24

