
MailCorral Documentation
Eric Wilde

Copyright (c) 2002, 2003 Eric Wilde

Table of Contents
 0. Preface...1

 0.1 Copyright..1
 0.2 Distribution...1
 0.3 Contributions..1
 0.4 Change Log...1

 1. Installation..7
 1.1 Requirements..7
 1.2 Rebuild Sendmail..7
 1.3 Compile the Filter...8
 1.4 Configure Sendmail..14
 1.5 Hack the Startup Script...15
 1.6 Install the Message Remailer..16
 1.7 Install the Optional Spam Notifier..21
 1.8 Set up Periodic Cleanup Jobs..23
 1.9 Configuring Local Options...24
 1.10 Installing the RPM on RedHat Linux...24

 2. Sendmail Filter...27
 2.1 Description..27
 2.2 Features...27
 2.3 How it Works..28
 2.4 Filtered Items..29
 2.5 Message Remailing...31
 2.6 Spam Handling...32
 2.7 Command Line Parameters...34
 2.8 Performance Expectations..43

 3. Configuration...45
 3.1 Global Configuration..45
 3.2 Local (User Specific) Configuration...45
 3.3 Filtering Options...46
 3.4 Spam Processing Options...55
 3.5 Message Formatting Options..61
 3.6 Sample Configuration File..66

 4. User Support...69
 4.1 Configuration Methods...69
 4.2 Configuration Editor...70
 4.3 Web Page Template..73

 5. Interoperability ..75
 5.1 Test Suite..75
 5.2 Working With SpamCorral...75
 5.3 Creating Your Own Spam Handler...76

MailCorral Documentation

i

Table of Contents
GNU Free Documentation License..77

MailCorral Documentation

ii

0. Preface
Eric Wilde, ewilde@bsmdevelopment.com

V1.1.3, 2003 May 1

This document shows how to install the sendmail filter, MailCorral, into sendmail as a milter. It describes
how to configure sendmail, compile the filter and set it up to run attended. Information about the operation of
the filter is also provided.

0.1 Copyright

Copyright (c) 2002, 2003 Eric Wilde

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front−Cover Texts, and with no Back−Cover Texts. A copy of the license is
included in Appendix A, entitled "GNU Free Documentation License".

0.2 Distribution

This document is also available in HTML format at:

MailCorral Documentation•

0.3 Contributions

BSM Development is a small company of struggling software developers (perhaps, like yourself) and we
would appreciate, if you so choose, a small contribution to pay for this software. We hope you perceive it to
be of value and find it useful to you. As a suggestion, we would like to think that it is worth at least US
$25.00. However, you may send whatever amount that you feel this product is worth. If you'd like to make a
contribution, you can do so directly via the contributions page of the BSM Development site
(www.bsmdevelopment.com/Products/Contribute.html).

Alternately, you can send a check via snail mail to:

BSM Development
44 Whitewood Circle
Norwood, MA 02062

Please make your check payable to "BSM Development", thanks.

0.4 Change Log

Here are the version numbers, dates and a brief description of each program change, in reverse chronological
order:

1.1.3

 0. Preface 1

http://www.bsmdevelopment.com/Reference/GNUFDL.html
http://www.bsmdevelopment.com/Reference/DocIdx_MailCorral.html

2003 May 1 − Conditionally load Zlib and DB_File for real, this time.•

1.1.2

2003 Apr 24 − Add an option to keep all messages in the corral, regardless of whether they were
altered or not. Add the ability to zip older corralled messages, if desired.

•

2003 Apr 17 − Include the latest SpamNotify in the distro.•
2003 Apr 14 − Add global ignore options.•
2003 Apr 13 − Allow source RPM to build on any i386 version of RedHat. Template redhat.mc is
missing on RH 8.x. The RPM now picks something else.

•

2003 Apr 11 − Update filterclean to get rid of empty partition directories.•
2003 Apr 10 − Fix compiler windge about ctime pointer.•

1.1.1

2003 Apr 8 − Don't reencode second HTML entity if not changed. Allow buffer space for badly
formatted Quoted−printable entities.

•

2003 Apr 3 − Use tag delimiters to end mismatched quotes.•
2003 Apr 2 − Handle mangling of short MIME types properly. Ignore "Content−type: text" in
headers.

•

2003 Mar 31 − Fix problem with addresses containing domain names before the '@'.•
2003 Mar 27 − Check messages from everybody, if paranoid.•

1.1.0

2003 Mar 22 − Fixed a problem in HTML tag scanning when unmatched quotes are encountered.•
2003 Mar 19 − Rebuild messages with attachments only to allow virus and spam warning text to be
inserted, permit deletion of the attachment, etc.

•

2003 Mar 17 − Handle Apple resource forks better.•
2003 Mar 16 − Allow attachments containing viruses to be deleted.•
2003 Mar 12 − Partition spam as well.•
2003 Mar 11 − Properly handle MIME type messages that have empty bodies.•
2003 Mar 10 − Fix improper use of HAVE_DBM ifdef.•

1.0.18

2003 Mar 9 − Implement ommitted cases in non−delivery test. Test for Base64 encoded text/HTML
MIME entities in internal, statistical arbitron. Add text/plain and text/html as special cases for
"UnknownDisposition MIME". Remove junk after plussed user names.

•

2003 Mar 8 − Allow user to specify timeout for arbitron connection.•
2003 Mar 7 − Use VerifyUser instead of getpwnam to look up home directories, thereby avoiding a
crash due to a threads bug.

•

1.0.17

2003 Mar 4 − Lowercase external addresses used to create corral files.•
2003 Mar 3 − Fix up the "mailto" link in the remail message so that it is really a link that works.•
2003 Mar 1 − Allow IP addresses to be supplied in the local domain list. Accept full reports from
SpamAssassin versions greater than or equal to 2.50. Make user name check optional in MailRelease.
Allow MailRelease to release corralled mail without path and partition name.

•

MailCorral Documentation

2 0. Preface

2003 Feb 28 − Add options to include SMTP AUTH and other special classes of users in the local
domain (for purposes of internal −> internal/external determination). Remove the background
parameter from the HTML body tag.

•

2003 Feb 27 − Add options to filter mail transiting the system. Change the handling of unknown file
types so they are disposed of according to the user's preference.

•

2003 Feb 26 − Allow statistical filter to be tuned through config file options.•

1.0.16

2003 Feb 19 − Remove certain HTML escape sequences.•
2003 Feb 17 − Fix base 64 re−encoding problem for templates with no line feeds (was causing
occasional crash on badly−formed encoded messages). Fix problem with HTML tag quoting
algorithm.

•

2003 Feb 16 − Allow enough buffer space for badly formatted Base 64 encoded messages to be
modified.

•

2003 Feb 13 − Create a man page for sendmailfilter.•
2003 Feb 12 − Split message and deliver altered/unaltered copies to those who request virus filtering
and those who don't.

•

2003 Feb 9 − Allow filtered viruses to be partitioned in the corral. Delete recipients from the
envelope, if they request non−delivery of spam.

•

2003 Feb 7 − Cache /etc/passwd entries to avoid crash due to threads bug.•
2003 Feb 6 − Add statistical spam fast path checks.•
2003 Feb 4 − Remove HTML comments embedded in the middle of words.•
2003 Jan 30 − Use proxy userid for DBM lookup if no options found under regular lookup.•
2003 Jan 20 − Include sample sendmail.cf file in distro.•
2003 Jan 19 − Check for extra options on command line. Make spam arbitron error reportage more
comprehensive.

•

2003 Jan 16 − Save PID and initial command string in PID file at startup.•

1.0.15

2003 Jan 12 − Allow virus/spam tags to be defined in smfopts.h. Add options for ignoring spam
and/or virus filtering.

•

2003 Jan 11 − Don't corral spam for nonexistant users.•
2003 Jan 10 − Use the virtual user table to determine local users. Only process spam if the virtual
users are local users.

•

2003 Jan 7 − Convert the spam arbitron IP address ahead of time to avoid a crash in gethostbyname
on BSD.

•

2002 Dec 24 − Bail out if invalid options are detected on the command line or in the global config
file.

•

1.0.14

2002 Dec 15 − Fix crash introduced by language support. Fixed loop caused by messages with bogus
initial MIME separators.

•

2002 Dec 13 − Disable possible exploit through the "name" parameter of the "Content−Type" header.
Fixed bug that caused a memory overrun when mangling certain file names.

•

1.0.13

2002 Dec 7 − Use flock simulator on systems with no flock.•

MailCorral Documentation

 0. Preface 3

2002 Dec 6 − Fixed problem with overly−greedy regular expression not updating repeating fields
greater than nine in ConfigEdit.cgi.

•

2002 Nov 26 − Sum user options if requested to do so.•
2002 Nov 24 − Accept the ".csv" attachment type.•
2002 Nov 23 − Use the "X−Accept−Language" tag to set the language used for message inserts.•
2002 Nov 22 − Handle blanks, etc. in to/from names.•
2002 Nov 18 − Find attachments in malformed MIME entities.•
2002 Nov 14 − Improved message insertion for encoded mail.•
2002 Nov 13 − Added support for HTML tag filtering by parameter. Allow innocuous parameters for
the <body> and <meta> tags.

•

2002 Nov 12 − Changes to support Solaris properly during configuration. Fixed problem with percent
signs in addresses causing syslog to crash the filter.

•

2002 Nov 8 − Fixed possible exploit through attachments defined directly in message headers.•
2002 Nov 6 − Allow the <html> tag to have parameters (for Outlook's sake).•
2002 Nov 5 − Strip pesky <Ctrl−M> from user names in MailRelease. Handle long file names
wrapped by mail readers. Clear BASH_ENV in case running suidperl.

•

2002 Oct 21 − Fixed problem with comments being replaced in poorly formed messages.•

1.0.12

2002 Oct 18 − Fix local AutoRemail option having no effect.•
2002 Oct 18 − Include all SpamAssassin response headers in reports, not just X−Spam−Status and
X−Spam−Checker−Version.

•

2002 Oct 16 − Add missing move of X−Tag options to local.•
2002 Oct 13 − Use fully qualified names for config database lookup if "−q" or "QualifyNames" is
used. Add the Language, LanguageDirectory and "−L" options.

•

1.0.11

2002 Oct 9 − Accept ISO encodings in MIME file name parameters.•
2002 Oct 7 − Added generic config file editor, supporting flat files and DBM files for storing user
parameters.

•

2002 Oct 5 − Allow config lookup via DBM database.•

1.0.10

2002 Sep 27 − Remove leading space from domain names, since people appear not to be able to read
the documentation. Fix problem with fputs returning different return code under BSD. Updated list of
HTML tags to allow most innocuous ones. Download is now available in RPM form for RedHat
Linux.

•

2002 Sep 26 − Fix errno being reported incorrectly as zero.•
2002 Sep 24 − Change the corral to /var/spool/MailCorral. Create the corral directory if it doesn't
exist.

•

2002 Sep 23 − Use the first local recipient for local options processing.•

1.0.9

2002 Sep 21 − Force add of "localhost" to domain list, if not already present.•
2002 Sep 18 − Fix problem with "−r" and "−rm" introduced by the adding of options as keywords.•
2002 Sep 17 − Removed a possible exploit that relies on HTML tags being split across two pieces of
an attachment.

•

MailCorral Documentation

4 0. Preface

2002 Sep 14 − Switch to wholly percentage based spam determination because Spam Assassin returns
the wrong flag value when SQL preferences are used.

•

1.0.8

2002 Sep 10 − Added option to turn off spam fast path. Fixed problem with HTML reports, sent to
postmaster, not having MIME headers. Fix handling of headers in responses from spamd 1.3 and up.

•

2002 Sep 9 − Allow all local options to be supplied on a per−user basis from a local config file. Allow
local options to turn off global options. Add a protocol type for the internal fast path spam arbitron.

•

2002 Sep 8 − Add message options to allow tailoring of text inserted into filtered mail. Allow options
to be continued on multiple lines.

•

2002 Sep 7 − Allow all command line options to be specified as keywords in config files. Allow all
options to be supplied in a global config file.

•

2002 Sep 6 − Add flockfile/funlockfile around writes to debug file to reduce overhead caused by
locking in low−level I/O routines. Fix random crashes when writing to logfile under heavy threading.

•

2002 Sep 4 − Add queue ID to log entries to assist in debugging when multi−tasking.•

1.0.7

2002 Sep 2 − Added MailRelease to allow filtered messages to be remailed.•
2002 Sep 1 − Fix crash when processing straight message/rfc822 types (i.e. not MIME). Allow
filtered messages to be automatically remailed.

•

1.0.6

2002 Aug 27 − Added the domain names option and domain names file support.•
2002 Aug 26 − Add support for spamd 1.3 and the INFO command.•

1.0.5

2002 Aug 22 − Update list of filtered file extensions. Add flag for checking external deliveries too.
Add flag for spam reporting always. Add flags for envelope and version info in the headers.

•

2002 Aug 21 − Remove parameters from <body> tag when laundering HTML. All good/bad HTML
tags are now configurable. Allow more innocuous HTML tags to pass through unscathed. Only open
save and work files if really necessary to process message, instead of on spec.

•

2002 Aug 19 − Added bad file type ".mhtml". Added good file types ".p7c", ".p7m" and ".p7s".
Added good MIME types "application/pkcs7−mime" and "application/pkcs7−signature". Fixed
problem with named text being marked as an attachment when certain mail readers treat it as part of
the message. Fixed a problem with cleanup during abort, crashing if no recipient seen.

•

2002 Aug 17 − Use received header date for spam tag instead of date header (which can be omitted).
Format sendmail socket address for debugging.

•

2002 Aug 15 − Fixed problem with unterminated HTML tags not being laundered properly.•

1.0.4

2002 Aug 14 − Eliminated erroneous spam check when plain old mail messages are remailed. Added
fast path spam lookup for white and black lists.

•

2002 Aug 12 − Fix missing "[SPAM]" tag, if message delivery is bypassed for reasons other than
spam. Fix problems with malformed MIME entities that have no trailing separator.

•

2002 Aug 10 − Added support for Spam Assassin option files.•
2002 Aug 9 − Added debug levels.•

MailCorral Documentation

 0. Preface 5

1.0.3

2002 Aug 6 − Added options for spam delivery modes ("−sc", "−sd", "−st") and reporting types
("−s1", "−s2", "−s3"). Added support for spam reporting levels two and three for Spam Assassin.
Fixed problem with inserted text when all text/plain and text/html components of a message are
encoded base64.

•

2002 Aug 5 − Added <iframe> (the favorite tag of virus professionals everywhere) to the list of
HTML tags that are always removed, regardless of the "−h" flag setting. Remove <cr><lf>s from
message subjects, per bug in Outlook that allows virus launcers in subjects.

•

2002 Aug 4 − Move spam processing to spamfilter.c. Fixed memory leak when spam checking plain
old mail messages. Improved spam checking performance for multipart MIME types.

•

1.0.2

2002 Aug 3 − Fix problem with corralled spam only being held for the last recipient in a list of
recipients, when multiple recipients passed to SMTP for a single messge. Problem occurred when
envelope was addressed to more than one user. Spam would be detected, processed and corralled but
only one notification was sent to a single recipient (last one on the envelope), not all of the recipients.

•

2002 Aug 2 − Allow multiple domains in local domain list for "−i" option, etc.•
2002 Aug 1 − Add "−d" (debugging option) for dynamic debugging.•

1.0.1

2002 Jul 29 − Add the "−q" (qualify recipient names in the spam corral) and "−u" (supply a proxy
userid for filter criteria lookup) options.

•

1.0

2002 Jul 12 − Add spam filtering.•
2002 Jun 20 − Add decode of MIME components for HTML check.•
2002 Feb 25 − Initial coding.•

MailCorral Documentation

6 0. Preface

1. Installation
The steps to installing the MailCorral filter on a Linux or Unix system, running sendmail, are:

Check that your system meets the requirements.1.
Rebuild sendmail to use milter, if you haven't already done so.2.
Compile and install the sendmail filter program.3.
Configure sendmail to invoke milter.4.
Hack the sendmail startup script to start the filter.5.
Install the optional message remailer, if you wish to use it (you will need to create a message handler
robot and configure sendmail to allow forwarding to work).

6.

Install the optional spam notifier, if you wish to use it.7.
Set up a cron job to periodically clean up the filter files, etc.8.
Configure any local options in the system and/or user configuration files.9.
If you are installing the RPM for your system, you can skip most of these steps and go straight to the
RPM install.

10.

1.1 Requirements

Before beginning with the installation of MailCorral, you might want to check that your system meets the
requirements listed below:

Requires, at a minimum, sendmail 8.12.•
Runs under the sendmail milter interface, which must be installed and enabled.•
Unless you are installing one of the RPMs, you must be able to compile the source (needs a C
compiler such as GCC).

•

Spam detection works in conjunction with the popular spam recognition packages (e.g.
SpamAssassin), which must be pre−installed.

•

In addition, MailCorral was developed on a Linux system. If your system is something other than Linux or
Unix, you might want to investigate whether the sendmail/milter configuration is similar and whether standard
Unix−type software will run on your machine. The sendmail filter does nothing special but you never know.

1.2 Rebuild Sendmail

Before you can proceed with filtering mail messages, you need a version of sendmail that supports milter
(version 8.12.0 and above). You can get sendmail from www.sendmail.org.

If you haven't already done so, compile sendmail with the flag "−DMILTER" set. If it was already compiled
without it, add the following line to ./sendmail/devtools/Site/site.config.m4:

APPENDDEF(`conf_sendmail_ENVDEF', `−DMILTER')dnl

If you are starting from scratch, make sure that this line appears in that file before you start.

If necessary, delete the entire sendmail object directory named for your operating system (e.g.
./sendmail/obj.Linux.2.2.16−22.i586/sendmail) and rebuild using "sh Build". Don't forget to install the new
sendmail into your system by issuing a "sh Build install" from the top sendmail directory.

 1. Installation 7

http://spamassassin.org
http://www.sendmail.org

Switch to the libmilter directory and build "libmilter.a". This is required before the sendmail filter can be
built. "sh Build" from that directory should do the trick.

1.3 Compile the Filter

1.3.1 Untar the Distribution

You should untar the distribution files to a separate directory where the filter can be built on its own. By
default, the tar ball has all of the distribution files in a subdirectory called "MailCorral−x.x.x". We suggest
that you put the filter in a subdirectory off of the main sendmail directory. For example, if you have a main
sendmail directory that looks something like this:

 SendMail
 −rw−r−−r−− 1 421781 Apr 9 18:42 MailCorral−1.1.1.tar.gz
 −rwxr−−r−− 1 290418 Sep 19 2001 sendmail−8.11.6−1.7.1.i386.rpm
 drwxr−xr−x 22 4096 Sep 19 2001 sendmail−8.12.0
 −rwxr−−r−− 1 1783911 Sep 14 2001 sendmail.8.12.0.tar.gz

You could cd to this directory and unpack the tar ball with one of the following commands:

tar −xvzf MailCorral−1.1.1.tar.gz
gunzip −c MailCorral−1.1.1.tar.gz | tar −xv

If you do so, your directory structure will now look something like this:

 SendMail
 drwxrwxr−x 2 4096 Apr 19 17:49 MailCorral−1.1.1
 −rw−r−−r−− 1 421781 Apr 9 18:42 MailCorral−1.1.1.tar.gz
 −rwxr−−r−− 1 290418 Sep 19 2001 sendmail−8.11.6−1.7.1.i386.rpm
 drwxr−xr−x 22 4096 Sep 19 2001 sendmail−8.12.0
 −rwxr−−r−− 1 1783911 Sep 14 2001 sendmail.8.12.0.tar.gz

1.3.2 Run "configure"

The distribution is meant to configure itself using a shell script produced by the GNU autoconf program. To
configure the makefile which will build the filter, switch to the installed directory and type "./configure". If
you're using "csh" on an old version of System V, you might need to type "sh ./configure" instead to prevent
"csh" from trying to execute "configure" itself.

The "configure" shell script attempts to guess correct values for various system−dependent variables used
during compilation. If you followed the notes above about where to install the filter, running "configure" is all
you need do. If you have more than one version of sendmail or you put the filter in a directory not in the
sendmail tree, you'll need to supply the name of the sendmail source directory. To do this, type:

./configure −−with−sendmail=/home/joeblow/sendmail/sendmail−8.12.3

and replace the sample path name with the actual pathname for the sendmail source tree.

MailCorral Documentation

8 1.3 Compile the Filter

Running "configure" takes awhile. While running, it prints some messages telling which features it is
checking for.

The "configure" shell script creates a shell script "config.status" that you can run in the future to recreate the
current configuration, and a file "config.log" containing compiler output (useful mainly for debugging
"configure"). It can also use an optional file (typically called "config.cache" and enabled with
"−−cache−file=config.cache" or simply "−C") that saves the results of its tests to speed up reconfiguring.

1.3.3 Specifying the System Type

There may be some features "configure" cannot figure out automatically but needs to determine for the type of
machine the sendmail filter will run on. Usually, assuming the filter is being built to run on the same
architecture as the build is done on, "configure" can figure that out but if it prints a message saying it cannot
guess the machine type, give it the "−−build=type" option. type can either be a short name for the system type,
such as "sun4", or a canonical name which has the form:

cpu−company−system

where system can have one of these forms:

os or kernel−os

See the file "config.sub" for the possible values of each field.

If you want to use a cross compiler, that generates code for a platform different from the build platform, you
should specify the "host" platform (i.e. the platform on which the generated programs will eventually be run)
with "−−host=type".

1.3.4 Sharing Defaults

If you want to set default values for "configure" scripts to share, you can create a site shell script called
"config.site" that gives default values for variables like "CC", "cache_file", and "prefix". "configure" looks for
"PREFIX/share/config.site" if it exists, then "PREFIX/etc/config.site" if it exists. Or, you can set the
"CONFIG_SITE" environment variable to the location of the site script. A warning: although this "configure"
script does so, not all "configure" scripts look for a site script.

1.3.5 Defining Variables

Variables not defined in a site shell script can be set in the environment passed to "configure". However, some
packages may run "configure" again during the build, and the customized values of these variables may be
lost. In order to avoid this problem, you should set them in the "configure" command line, using
"VAR=value". For example:

./configure CC=/usr/local2/bin/gcc

will cause the specified gcc to be used as the C compiler (unless it is overridden in the site shell script).

To find out what options "configure" recognizes and how to control it, type "./configure −−help" for more
details.

MailCorral Documentation

1.3 Compile the Filter 9

1.3.6 Altering the Makefile

If you need to hack the Makefile that is generated by "configure", here is a description of its variables:

SRCDIR The source directory containing the sendmail filter source and
all of its related files. The filter will be built in this directory.

SENDMAILDIR The directory where the source for the version of sendmail that
is being used is found. Usually, this is relative to the current
directory (above it), but an absolute path may also be given.

OS The name of the directory, off of the sendmail directory,
where the OS−specific version of sendmail is built (look
around, you'll find it). It is this directory that you delete when
you need to rebuild sendmail, by the way.

If you are cross−compiling the filter, there may be more than
one directory for the different operating systems and hardware
platforms that are targeted. Configuration attempts to pick the
right one, based on the target.

BINDIR The binary directory where sendmail and the filter are
installed into the system.

SMINIT The sendmail initialization script that is used to stop and start
sendmail.

CONFIGDIR The directory where the sendmail configuration files are found
(e.g. /etc/mail).

MANDIR The directory where the man pages are to be installed (e.g.
/usr/share/man).

1.3.7 Altering Fixed Constants and Variables

The sendmail filter uses a number of more or less fixed constants that are set in a header file that is included in
the filter modules when they are compiled. All of these constants will probably only need to be changed once,
if at all, to reflect your installation preferences. The header file is called "smfopts.h". It contains system
specific information, the texts of all error messages generated, lists of all MIME types and attachments
filtered, etc.

The first time you run configure to install the sendmail filter, "smfopts.h" is created in your source directory.
You are free to hack it to your heart's content. When you install subsequent releases of the sendmail filter into
the same source directory, "smfopts.h" will not be overwritten. Rather, a separate file will be created called
"smfopts.h.new" that will contain the new header file. If any changes have been made to the header file, you
will be issued a warning at compile time and instructed to compare the two files. This can be done with diff,
for example:

diff smfopts.h.new smfopts.h

Diff will show you what changes you need to make to the your "smfopts.h" to bring it up to date with the
latest version. Be advised, however, that you need not update "smfopts.h" to the latest version. You can safely
ignore the warning message, since "smfopts.h" has a default file ("smfopts_def.h") which contains all of the
latest constants, etc. Anything missing from "smfopts.h" will be supplied by "smfopts_def.h" so that the

MailCorral Documentation

10 1.3 Compile the Filter

compile will still proceed. However, you will probably want to keep you copy of "smfopts.h" up to date to
prevent the chance that the mail filter's behavior will not be quite up to snuff.

When you are hacking "smfopts.h", note that we use a setting of five for tabs so the source will look weird
unless you set your tabs to five also). Here is a list of the constants and variables that you might want to
change:

TECHSUPPORT The name of the person whom users should contact if they
need assistance with filtered messages.

REMAILROBOT The username of the message remailer robot. This name will
be used in the instructions to recipients of modified messages,
telling them how to get the unmodified message mailed to
them. Essentially, they send a message to the username given
here.

POSTMASTER The name of the person to whom warning messages should be
emailed if any viruses or unknown filter types are found. Don't
define this, if you don't want these messages.

DOMAIN The name or names of the local domain. Used for detecting
whether a message is being mailed locally so that virus
filtering may be bypassed or not (see the "−e" and "−i"
options). May be a single domain name or a list of domain
names, separated by commas. It may also include file names.
Any name that begins with a '/', '~' or '.' is assumed to be a file
name.

If a file name is given, the file should contain a list of local
domain names, one per line. Blank lines and comments
beginning with '#' are ignored. Typically, this feature would be
used to point to the file "/etc/mail/local−host−names" or the
same place where sendmail gets local domain name
information from.

The domain name "localhost" is forced into the list at the end,
if it isn't specified. This name is always assumed to be a local
domain name by sendmail.

The "−D" command line option or the "DomainList" config
file parameter may also be used to specify domain
information. If either is used, it overrides the value compiled
in by this variable.

SUBJTAGVIRUS A tag string that will be added to the front of the subject for
any messages that might possibly contain a virus. Used to
identify that message for special processing by any mailer
receiving it. The default is "[VIRUS] ".

SUBJTAGSPAM A tag string that will be added to the front of the subject for
any messages that contain spam. Used to identify that message
for special processing by any mailer receiving it. The default
is "[SPAM] ".

MailCorral Documentation

1.3 Compile the Filter 11

SPAMKEY A key string used to generate spam bypass tags. Pick a string
(up to eight characters). Whoever has this key string may be
able to pass spam through your system without checks so don't
let it be known what it is.

SPAMHDRBYPASS A mail header used to pass spam bypass tags. You can change
this name to make it harder for a spammer, should they crack
your key string (above), to pass spam. This header is
temporarily added to messages sidelined because of spam, to
allow them to be remailed without filtering at a later date.

REMAILHDRBYPASS A mail header used to pass remail bypass tags. You can
change this name to make it harder for an outside user, should
they crack your key string (above), to bypass message
filtering. This header is temporarily added to filtered
messages, stored in the corral because they were altered to
remove a virus. It allows them to be remailed without filtering
at a later date.

SPAMHDRSTATS A mail header used to hold spam statistics for those messages
that contain spam. All remailed spam will have this header,
which gives the sendmail filter's reasons for tagging the
message as spam. The use of other spam arbitration packages
may cause other headers to be added.

SPAMSTATSTPL A template that defines how the spam statistics, in the spam
statistics header, are formatted for display.

XENVFROMHDR A mail header that is added by the "−Xenv" option to give the
name of the sender, as passed to sendmail on the envelope.

XENVTOHDR A mail header that is added by the "−Xenv" option to give the
names of all of the recipients, as passed to sendmail on the
envelope.

XVERSIONHDR A mail header that is added by the "−Xver" option to show the
name of the sendmail filter and its version number.

MAXADDRESSLENGTH The maximum length of a mail address that will be handled by
the filter. The current value of 255 should be sufficient.

MAXSUBJECTLENGTH The maximum length of a message subject that will be
handled by the filter. The current value of 255 should be
sufficient.

MAXDATELENGTH The maximum length of message date stamps that will be
handled by the filter. The current value of 32 should be
sufficient.

CORRAL_DIR The directory where all of the corralled messages and spam
will be placed (per the templates below). You can change the
path name but be careful that the path name and substituted
text in the templates does not come to more than 255 bytes.

RECV_NAME_TEMPLATE The template used to determine where a saved copy of the
actual message received, for any filtered messages, should be

MailCorral Documentation

12 1.3 Compile the Filter

placed and how it should be named. You can change the
template but be careful that the path name for the corral
directory (above) and substituted text in the sprintf part does
not come to more than 255 bytes. Also, be certain to allow for
three components to be substituted into the name (i.e. leave the
"%s" and "%X" components there in some form).

SPAM_NAME_TEMPLATE The template used to determine where saved copies of any
spam messages received should be kept and how they are
named. Same rules as for RECV_NAME_TEMPLATE.

REPL_NAME_TEMPLATE A template used to make up lock file names for replies to
spammers. Same rules as for RECV_NAME_TEMPLATE.

DEBUG_FILE_NAME The name of the file where debugging information is written.
Defining this name causes debugging information to always be
written to this file. For transient debugging, the "−d"
command line option or the "DebugFile" config file parameter
is available.

DEBUG_SENDMAIL A flag that can be defined to debug sendmail itself, as well as
the filter.

PROGNAME The name of the sendmail filter, used for error reporting.

GLOBALOPTIONS The name or names of the global sendmail filter configuration
file. The names are searched in descending order and the
search stops at the first one that is found.

LOCALOPTIONS The name or names of the local sendmail filter configuration
file. The names are searched in descending order and the
search stops at the first one that is found. The character '~'
signifies the home directory of the recipient of the message.

chMsgxxx All of the variables that begin "chMsg" contain the text of the
various messages that the filter inserts into filtered mail
messages. You can change these messages to read however
you'd like but please be aware of any substitutions into them
and retain the same number of substitutions in your
replacement message text.

AcceptableTypes This variable defines the table of acceptable MIME types that
can appear inline in a message. All others are considered
unacceptable (by virtue of the fact that they might conceivably
contain a virus).

FilteredFiles This variable defines the table of file extensions which are
examined for viruses and the actions to be taken if they are
found in a message.

RejectedHTMLs This variable defines the table of dangerous HTML tags that
will always be laundered out of a message, regardless of
where they are found. Note that many mail readers will
interpret these tags, despite their being found in non−HTML
messages, hence the reason for their removal.

MailCorral Documentation

1.3 Compile the Filter 13

AcceptableHTMLs This variable defines the table of harmless and therefore
acceptable HTML tags that will never be laundered out of a
message. The implication here is that, if a tag isn't found on
this list, it will be laundered out. This list only applies inside
<html> and </html> tag pairs.

1.3.8 Compiling and Installing

After making any changes to the makefile and "smfopts.h", run make to compile the filter. You can do this as
"JoeUser" because there is nothing special taking place at this step. Simply type "make" in the install
directory.

Note that the "configure" script attempts to determine which make command will be used to process the
makefile, since there are some variations in make. Normally, the command chosen is "make". However, in
some circumstances, when "make" is not available, another command may be chosen. Since the makefile is
tailored to this command, you can experience several kinds of build errors, including failure to compile and
link, if the wrong make is used. The last message from "configure" indicates which make command must be
used to do the build.

To install the filter, become super−duper user and type "make install". This will also restart sendmail which
will have no effect until you hack its startup script (in Section 1.5). However, if you make future changes to
the filter, "make install" will install it and restart it.

Once you have installed the filter, you can remove the program binaries and object files from the source code
directory, if you wish, by typing "make clean".

1.4 Configure Sendmail

Hack the mc file for "sendmail.cf" (this is way better than hacking "sendmail.cf" directly, which is definitely
not for the faint of heart). Start by copying the canned configuration supplied with the OS, if you haven't
already done so. For example:

cp /usr/lib/sendmail−cf/cf/redhat.mc /usr/lib/sendmail−cf/cf/mysys.mc

Hack /usr/lib/sendmail−cf/cf/mysys.mc, and make sure the following lines are present or are added before the
"MAILER" definitions:

define(`_FFR_MILTER', `1')dnl
INPUT_MAIL_FILTER(`filter1',`S=inet:2526@localhost, F=R')dnl
define(`confINPUT_MAIL_FILTERS',`filter1')dnl

The port number (2526) is the port that sendmail will use to talk to the filter on. You can change it to
whatever you like, so long as you also change the port number used to start the filter (see Section 1.5).

Build a new "sendmail.cf" by running the M4 macro processor over the ".mc" file. You can use the following
commands.

m4 mysys.mc >mysys.cf
cp mysys.cf /etc/sendmail.cf

MailCorral Documentation

14 1.3 Compile the Filter

Note that the default values for timeouts between sendmail and the filter are sometimes too small (i.e. 10
seconds). If you experience problems with timeouts (usually when the spam arbitron takes too long to identify
a message), you may want to use:

INPUT_MAIL_FILTER(`filter1',`S=inet:2526@localhost, F=R, T=S:10s;R:60s;E:5m')dnl

A full description of the sendmail parameters that apply to the filter can be found at
www.sendmail.org/~gshapiro/8.10.Training/milterconfig.html.

1.5 Hack the Startup Script

Hack the sendmail startup script (e.g. for Linux, "/etc/rc.d/init.d/sendmail") and add something to this effect:

 # Start the mail filter
 echo −n $"Starting sendmailfilter: "
 /usr/sbin/sendmailfilter −h −i −p inet:2526@localhost >/dev/nul 2>1
 FILTVAL=$?
 [$FILTVAL −eq 0] &success "sendmailfilter startup" \
 || failure "sendmailfilter startup"
 echo
 .
 .
 .
 echo −n $"Shutting down sendmailfilter: "
 killproc sendmailfilter
 echo

You want to start the filter after sendmail is started and stop it before sendmail is stopped. The port number
(2526) is the same one that was defined in the sendmail configuration file (Section 1.4, above). A sample
startup file for Linux is supplied in "sendmail.cf", included with this package. A sample startup script for BSD
is supplied in "rc.sendmail", also included with this package.

You may want to set the optional flag "−D" on the startup line for the sendmail filter. I run with '−D
"/etc/mail/local−host−names"' to set the list of local domain names. Also, if you're going to be using a spam
arbitron daemon (e.g. SpamAssassin), set the "−s" parameter (e.g. "−s spamd:2527@localhost").

If you are an ISP and you have mail users that don't really exist (i.e. have no home directory) or are delivering
mail to other machines, you might want to look at the "−u" and "−q" parameters respectively. Setting the "−u"
parameter is especially important if you have users with no home directories and you are going to be using
Spam Assassin to scan mail messages for spam.

Restart sendmail so that it reads the new config file and starts the filter. For example, on Linux:

/etc/rc.d/init.d/sendmail restart

Alternately, on Linux, you can copy the "sendmailfilter.cf" file to "/etc/rc.d/init.d/sendmailfilter" and run
"chkconfig −−add sendmailfilter". This will start/stop the filter separately from sendmail, hopefully in the
correct order.

MailCorral Documentation

 1.5 Hack the Startup Script 15

http://www.sendmail.org/~gshapiro/8.10.Training/milterconfig.html

1.6 Install the Message Remailer

MailCorral ships with exact copies of the essential spam notification and message handling programs of
SpamCorral, its sister spam handling product. SpamNotify is described in section 1.7 (below), while this
section describes MailRelease.

If you wish to allow the recipients of filtered messages to remail them unattended from the corral to
themselves, you will need to install MailRelease, the optional message remailer. You will also need to enable
this feature by including the "−rm" option on the filter command line or using "AutoRemail" in the config file.

To set up message remailing, you first need to create a message handler robot and configure sendmail to allow
forwarding to work, as well as configuring the message remailing utility to run the way you want.

1.6.1 Configure the Message Remailer

Hack the source file MailRelease.pl (note that I used a setting of five for the tabs here so the source will look
weird unless you also set your tabs to five) and change the appropriate variables therein (an easier way is
described in the SpamCorral documentation. which shows how to alter this file as well as set up foreign
language support). Be sure to make any changes to this file, before you run "make install" so that they will be
copied from the build directory to the appropriate install locations. Whichever method you use, you can
change these variables:

$CORRAL The path name of the directory where the original copies of
filtered messages are saved until they are released or deleted.
This should match the directory used in the CORRAL_DIR
manifest constant set in smfopts.h (see section 1.3.7).

$LOG_FILE The name of the log file where information about all messages
that are remailed, etc. is written. You will need to define this
variable to and set it to a valid file name to turn on logging
(which is off by default).

$REMAIL_HDR_BYPASS The remail header string that is used to indicate that a message
can be remailed. This string must match the tag placed in the
message by MailCorral (defined in smfopts.h).

$MAXHEADERLEN The maximum number of message header bytes to read while
looking for remail tags in compressed, corralled messages. If
the remail tag isn't found after reading this many bytes, the
message cannot be released for remailing. Note that this only
applies to compressed messages.

There is a tradeoff between the speed of releasing messages
and the number of bytes read while looking for the remail tag.
If the users are releasing large numbers of messages, you
might to reduce this variable from its default setting of 16384
to a smaller value. However, be advised that smaller values
(e.g. 4096) might cause some messages with long delivery
lists (common with some types of spam) to be unreleasable
when compressed.

$CHECK_USER_NAMES

MailCorral Documentation

16 1.6 Install the Message Remailer

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html
http://www.bsmdevelopment.com/Reference/DocIdx_SpamCorral.html

This variable should be defined to any value if you wish
MailRelease to check that a user's name matches the recipient
of the message before it can be remailed. This feature defaults
to off, since it proved to be more trouble than it was worth to
most users. However, it is a big security hole.

$DELETE_ON_RELEASE This variable should be defined to any value if you wish
MailRelease to delete messages from the corral, once they are
released for remailing. This keeps the corral cleaner but it can
cause problems if the message is not delivered for some
reason. Consequently, this feature defaults to off and released
messages are kept in the corral until the regularly scheduled
cleanup program finds and deletes them.

@LOCAL_DOMAINS The list of domain names that are considered local to this site.
Messages will only be remailed to users who send mail from
one of the approved domains. This prevents outside users from
remailing messages containing viruses, etc.

The list may also include file names, which can contain lists of
local domain names, one per line. Typically, this feature
would be used to point to the file
"/etc/mail/local−host−names" or the same place where
sendmail gets local domain name information from.

$ERRORXXXX A series of error messages that can be sent back to the user, if
release fails for some reason or another.

Test out any changes you make to this program by running it standalone. In production, it will be running
from a ".forward" file so it is likely to fail silently.

To test MailRelease.pl, make up a test email message in a file and pass it through the script. Your test email
message must include a from header and a line that matches a filtered message file in the mail corral (the
message must have been filtered with the "−rm" option turned on). For example:

From: joe@localhost

File: /var/spool/MailCorral/recv_from_mrvirus@virusesrus.com_3F9AE27C

If your test file was called "testrel", as root, try the following command:

./MailRelease.pl <testrel

Note that you should pick a filtered message that you don't really care about, for this test, since it will be
deleted once it is remailed. If all is working, "joe" should see the remailed message.

Warning: if the filtered message contains a virus, you should be extremely careful, since you will be remailing
the virus through the system without any filtering. It will arrive unscathed and fully functional in Joe's
mailbox.

MailCorral Documentation

 1.6 Install the Message Remailer 17

1.6.2 Create a Message Handler Robot

The message handler robot is actually a separate userid that is created for the sole purpose of releasing filtered
messages to the general public whenever users ask it to do so.

A copy of each filtered message is added, untouched, to the message corral by the sendmail filter when a
received message is altered to protect against viruses, etc. The altered message sent to the recipient indicates
how the user can have the unaltered copy of the message remailed to them by sending a message to a
particular user (the message handler robot).

The user sends a message to the userid that you create in this section. The userid has a .forward file which
directs all incoming mail to the message handler ("MailRelease.pl"). This script scans the mail that it receives
from the other users, and releases the appropriate unfiltered message to them for delivery.

First, you must set up a new userid with a name of your choice. If you altered the REMAILROBOT variable
in step 1.3.7, you should pick a userid that matches what you chose there. Otherwise, the default name is
"mailrobot". As an example, to set up a new userid under Linux:

useradd −c "Message handling robot" −m mailrobot

Note that it is very important that the userid which you create have a valid shell named in its /etc/passwd
entry. This shell need not be one that actually works (if you wish to keep people from logging in to the robot's
userid) but it must be one that is named in /etc/shells. The default shell, assigned by new user creation, should
work but be aware of this fact if you assign any specialty shells to this userid.

Next, you must copy "MailRelease.pl" to this user's home directory. Give it the right kind of permissions, etc.
to allow sendmail to execute it when it reads the ".forward" file. Generally, sendmail runs as the recipient of a
message so this script should have permissions that look like "−rwsrwxr−x" and it should have ownership of
root/mailrobot. Note that this program is running as setuid root to allow it to manipulate the files that it needs
to mess with. Be careful if you make any modifications to this program. Also, on SuSE there is a permission
system which will reset the setuid bit each time SuseConfig is run so you will have to change the permissions
in /etc/permissions.easy to 4775 for MailRelease as well, otherwise they will have to be reset manually each
time SuseConfig is run.

Pay particular attention to the operation of the setuid bit. Some operating systems (e.g. Linux) ignore the
setuid bit on shell scripts, for security reasons. If yours is one of these operating systems, Perl may attempt to
simulate the action of setuid. If it does, MailRelease.pl will run correctly when invoked under a non−root
userid. If Perl doesn't simulate setuid, you will need to run the setuid version of Perl. Normally, the
"configure" script determines this fact and makes the appropriate changes to MailRelease.pl. However, if it
doesn't you will have to hack the first line of MailRelease.pl and point it at "suidperl" (probably the same path
as is already there but with the name of "suidperl" instead [if you can't find suidperl, it may not be installed, in
which case you will need to get it and install it −− under RedHat Linux, suidperl comes as a separate RPM,
called perl−suidperl]). You should check that MailRelease.pl can release messages from the corral when run
from the userid mailrobot to make sure setuid is working (run the same test as above but do "su mailrobot"
first).

Set up a ".forward" file under this userid that reads:

"|MailRelease.pl"

MailCorral Documentation

18 1.6 Install the Message Remailer

Make sure that the permissions are "−rw−−−−−−−" and the owner/group is set to the userid (e.g. "mailrobot")
that you created above or forwarding won't work. Sendmail checks the ownership and permissions, for
security reasons, before it will do any forwarding.

1.6.3 Additional Sendmail Configuration

Sendmail now has additional security that prevents ".forward" files from executing programs. It uses a special
shell ("smrsh") that performs extra security checking before allowing a program to be run from a ".forward"
file. This shell is very restrictive, which results in a good many reasons to prevent MailRelease.pl from
working (many of which fail silently). You should first read "man smrsh" for more information and then
follow these instructions carefully to get it working.

When you built sendmail, smrsh should have been built along with it. If not, build it now. If the sendmail
install did not do so already, copy smrsh to a convenient location (e.g. "/usr/sbin/smrsh"), probably the same
directory as sendmail resides in. Apply execute permissions so that the world can execute smrsh, if they aren't
already there.

For forwarding of any kind to work, the shell chosen for the userid that is forwarding must be a "valid" shell.
This means that the shell named in the userid's entry in /etc/passwd must be listed in the file /etc/shells. Verify
this fact. The shell chosen need not be one that actually works (if you wish to keep people from logging in to
the robot's userid) but it must be one that is named in /etc/shells. The default shell, assigned by new user
creation, should work but be aware of this fact if you assign any specialty shells to this userid.

To get smrsh to execute programs, you need to create a directory named "/usr/adm/sm.bin". You must give it
ownership and permissions of root/root/755 and put into it soft links to any programs which will be executed
by a ".forward" file. Be very careful what programs you put in this directory because programs therein can be
executed by mail messages if a hapless user decides to add them to their ".forward" files.

In our case, we need to put in a soft link to the message handling robot. For example:

ln −s /home/mailrobot/MailRelease.pl /usr/adm/sm.bin/MailRelease.pl

Alternatively, some versions of sendmail use "/etc/smrsh" to implement this feature. You can look at the
source code for sendmail (specifically, see the code in smrsh.c) or try both of them until you get it to work.

The sendmail configuration file must be altered to enable message forwarding. This is done by adding the
following to the ".mc" file and running it through M4:

FEATURE(`smrsh', `/usr/sbin/smrsh')dnl

Note that, in the above line, you should change "/usr/sbin/smrsh" to point to wherever you actually installed
smrsh.

Also note that the default "cost" for mail passed to the local mailer that invokes smrsh is "expensive". This has
the unwanted effect of placing mail forwarded to programs into the mail queue where it can sit for hours
before being delivered. I cannot even speculate why this choice was made for the default but you may not
wish it to be so. If you would like your mailrobot to respond quickly to requests, you will need to change the
expense of the local mailer. To do this, add the following line to the ".mc" file:

define(`LOCAL_SHELL_FLAGS', `u9')dnl

MailCorral Documentation

1.6 Install the Message Remailer 19

Be sure that both of these lines occur before the line that says "MAILER(`local')", since that macro uses the
values set by them. If there is no definition for a local mailer, be sure to add it.

Compile the configuration and install it, per the directions in the "Configure Sendmail" section, above.

If you prefer to hack the "sendmail.cf" file directly, you should add something that looks like this to the end of
the file:

Mprog, P=/usr/sbin/smrsh, F=lsDFMoqu9,
 S=EnvFromL/HdrFromL, R=EnvToL/HdrToL, D=$z:/,
 T=X−Unix/X−Unix/X−Unix, A=smrsh −c $u

Its time to try smrsh to see if will run MailRelease.pl. To do this, logon as JoeUser (i.e. not root) and run
MailRelease through smrsh, using the following command (or whatever is appropriate for where you installed
smrsh):

/usr/sbin/smrsh −c MailRelease.pl

Due to the fact that smrsh looks up all of the programs it executes in /usr/adm/sm.bin, the actual path to
MailRelease.pl is unimportant. Only the program name matters, hence the reason for the path's being missing
in the above example.

If you can't get smrsh to execute MailRelease.pl, check all of the permissions, etc. and keep trying until it
works. If it does execute, type a couple of characters (it reads from stdin) and give it an eof. It should do
nothing but terminate. Or, if you like, you can feed it the test message you made up earlier and see if it really
works, although here we're basically just testing to see that smrsh will load the program.

For the next step, you'll probably want to turn on logging by aiming $LOG_FILE at a file (e.g.
"/var/log/mailrobot"). Once this is done, send a message to mailrobot that has the name of a corralled piece of
mail as its subject line. For example:

mail −s /var/spool/MailCorral/recv_from_ew@jg.sp_3E2278A4 mailrobot

You should see a log entry for the request and, if the message is a real one, it should get released. If no log
entry is created, you may need to run MailRelease with suidperl (see the "Create a Message Handler Robot"
section, above). You should also check to see that the message is not in the queue, waiting to be delivered (see
above for sendmail configuration changes needed to circumvent this), that the permissions on MailRelease are
"−rwsrwxr−x" and that it has ownership of root/mailrobot.

If MailRelease doesn't work, its usually not its fault. There are a lot of things that must be right before
sendmail will condescend to execute the program. Please check them all before blaming MailRelease.

1.6.4 Alternative to Message Handler Robot

Kai Schaetzl has suggested an alternative to setting up a separate userid for the message handler robot.
Although my personal preference is the separate userid approach, it is somewhat difficult to set up and get
working. Kai's alternative is easier and works fine on SuSE (we haven't tried it elsewhere). Basically, here's
what he had to do:

To the aliases file (/etc/aliases or /etc/mail/aliases), add this alias (or something like it):

MailCorral Documentation

20 1.6 Install the Message Remailer

mailrobot: |/usr/sbin/MailRelease.pl

Set the setuid bit for MailRelease. If you'd like to restrict access to this program, use the following
permissions:

 −rwsr−x−−− 1 root daemon 14831 Mar 11 18:08 MailRelease.pl

Make sure that /usr/sbin/suidperl has the setuid bit on, as well. With this arrangement, mail is piped through
MailRelease by sendmail as "daemon:daemon". That's the reason for setting MailRelease to group daemon. If
the permissions are not set correctly, you'll get an unknown sendmail error 162. Sendmail itself doesn't seem
to be running as "daemon:daemon", maybe as "mail:mail", so the shell for piping may be different from the
user sendmail runs as.

Note that the same warning about the SuSE permission system applies here. This system will reset the setuid
bit each time SuseConfig is run so you will have to change the permissions in /etc/permissions.easy to 4755
for MailRelease, otherwise they will have to be reset manually each time SuseConfig is run.

1.7 Install the Optional Spam Notifier

MailCorral ships with exact copies of the essential spam notification and message handling programs of
SpamCorral, its sister spam handling product. MailRelease is described in section 1.6 (above). This section
describes the optional spam notifier SpamNotify.

If you are corralling spam and you wish to receive regular notifications of the corralled spam, you should
install SpamNotify. If you don't corral spam or don't care about notifications, you can skip this section. For
more complete documentation on this program, see the SpamCorral documentation.

1.7.1 Configure the Spam Notifier

To configure the spam notifier, you can hack the source file SpamNotify.pl (note that I use a setting of five for
tabs so the source will look weird unless you set your tabs to five also) and change the appropriate variables
therein (an easier way is described in the SpamCorral documentation. which shows how to alter this file as
well as set up foreign language support). Be sure to make any changes to this file, before you run "make
install" so that they will be copied from the build directory to the appropriate install locations. Whichever
method you use, you can change these variables:

$CORRAL The path name of the directory where suspended spam is
saved until it is released or deleted. If you are using
MailCorral, this should match the directory used in the
SPAM_NAME_TEMPLATE manifest constant set in
smfopts.h.

$STAMPFILE The name of a file to use for holding the timestamp of the last
spam notification message. You may pick any name you like,
provided it doesn't collide with the names used by the mail
fitler (e.g. none of the names in the message file name
templates in MailCorral's smfopts.h).

$SPAMROBOT The userid of the spam handler robot (that will be created in

MailCorral Documentation

 1.7 Install the Optional Spam Notifier 21

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html
http://www.bsmdevelopment.com/Reference/DocIdx_SpamCorral.html
http://www.bsmdevelopment.com/Reference/DocIdx_SpamCorral.html

Section 1.6.2, above). However, you probably won't have to
change this variable if you are using a version of sendmail that
forwards mail to programs via smrsh. The reason is because
SpamNotify automatically detects which userid is being used
for the spam handling robot, at runtime. The value set by this
variable is only used as a fallback, default. Note that, if a value
is set in the config file, it is taken as the absolute name and the
results of automatic detection are ignored.

$MAXHEADERLEN The maximum number of message header bytes to be read
while processing messages for notification. If the end of the
headers isn't found after reading this many bytes, the message
is skipped and no notification is sent.

There is a tradeoff between the speed of processing messages
and the number of bytes read while looking for headers. If
there is a large amount of corralled spam, you might want to
reduce this variable from its default setting of 16384 to a
smaller value. However, be advised that smaller values (e.g.
4096) might cause some messages with long delivery lists
(common with some types of spam) to be skipped.

$DATEFMT The date/time format string that is to be passed to sprintf
whenever date stamps are formatted for display. This value
consists of the format pattern string, followed by the variables
to be substituted into it. Note that the double quotes around the
format string and the dollar signs in the variable names must
be escaped, since this value is evaluated multiple times. If you
don't escape these items, your date stamps will come out
broken or all zeros.

Within this parameter, you can use the variables: "$Year" (the
full, four−digit year number); "$Mon" (the two−digit month
number); "$MDay" (the two−digit day of the month); "$Hour"
(the twenty−four hour clock); "$Min" (the minutes in the
hour); "$Sec" (the seconds in the minute). The default value
is:

\"%04d−%02d−%02d %02d:%02d:%02d\", \$Year, \$Mon,
\$MDay, \$Hour, \$Min, \$Sec

which gives a date stamp that looks like "2003−04−18
03:27:05". If you live in Europe, you might want to try:

\"%02d.%02d.%04d %02d:%02d\", \$MDay, \$Mon, \$Year,
\$Hour, \$Min

which gives a date stamp that looks like "18.04.2003 03:27".

$NOTIFYSUBJ The subject line to be used on notification messages sent to the
users about spam held for them.

$NOTIFYMSG

MailCorral Documentation

22 1.7 Install the Optional Spam Notifier

The text of the message that is sent to the users, describing the
spam that is waiting for them and what to do about it. This is a
multi−line message that begins the body of the notification
message.

$XXXXTAG The various tags that are used in the body of the notification
message to identify the components of each piece of spam.
Things like the from, subject and date headers.

1.7.2 Set up Periodic Notifications

Spam that is corralled by the filter is placed in the corral, pending release for remailing by the recipient or,
ultimately, deletion by the cleanup prcoess (after a set period of time has elapsed). In order for the recipients
of the spam to know what they have been sent, so that they can decide whether they want it remailed to them
or not, the spam notifier should be run at regular intervals.

The spam notifier is run by an entry in your cron table, probably once or twice a day (depending on how often
your users want to see what spam they've received). I like to do these kinds of things at the end of the day,
when the load on my systems is low. Here's the crontab entry that I use:

Once a day at 01:00, notify the users of all of the spam received in
the last 24 hours.
00 1 * * * root /home/mailrobot/SpamNotify.pl

Alternately, if you are expecting huge amounts of spam, you may wish to partition the corral (this puts less
load on the file system and avoids "out of resources" type crashes when processing the corralled spam). Here
is a crontab entry that requests 24 hour partitioning (the default):

Once a day at 01:00, notify the users of all of the spam received in
the last 24 hours. Partition the corral at the same time.
00 1 * * * root /home/mailrobot/SpamNotify.pl −−Partition

Note that the filter also has a partition setting which applies to all corralled messages (viruses as well as
spam). If you use this setting (and, if you want partitioning, you should), you needn't worry about SpamNotify
doing any partitioning, although it doesn't hurt to do it both places. SpamNotify will partition any corralled
messages that didn't get partitioned by the filter (e.g. accidentally), otherwise it will do nothing. See the
"Partition" or "−pn" options elsewhere in this document.

1.8 Set up Periodic Cleanup Jobs

The sendmail filter generates an unaltered copy of every email message that is not delivered asis. You should
add something to your cron table to clean these files up after a reasonable length of time.

The script "filterclean" cleans up all of the older filtered messages, retaining those that are less than thirty
days old (note that the directory name must match the template name in smfopts.h):

Once a day at 00:30, remove all of the filtered mail messages that are
over 30 days old.
30 0 * * * root /etc/mail/filterclean

MailCorral Documentation

1.7 Install the Optional Spam Notifier 23

Optionally, you may hack this script to enable compression of all messages older than 7 days old. To do this,
uncomment (by removing the '#' from the beginning of the line) the last line in the script that reads:

#/usr/bin/find /var/spool/MailCorral/ −not −name *.gz −depth −type f −mtime +7 −exec gzip \{\} \;

If you create debugging files (enabled by default), you should clean them up weekly using logrotate. Here's
the lines you need to add to the logrotate config file (/etc/logrotate.conf):

/var/log/sendmailfilter {
 missingok
 notifempty
}

1.9 Configuring Local Options

The operation of the sendmail filter can be altered by configuration parameters in two configuration files. One
is a global configuration file that applies to all of the messages processed by the filter. The other is a local
configuration file that only applies to the messages for an individual recipient. Typically, there is one such file
for each recipient, in their home directory.

Unless the GLOBALOPTIONS and/or LOCALOPTIONS variables in smfopts.h are changed or the "−C" flag
is used on the command line, the global configuration file will be "/etc/mail/sendmailfilter.cf" or
"/etc/sendmailfilter.cf" and the local configuration file will be ".sendmailfilter", in the recipient's home
directory.

Either of these files can contain filtering options, spam processing options, message inserts text, white lists,
black lists and spam delivery options. In addition, the globals options file can contain other startup options,
including those that can be specified on the command line.

You will probably want to update the global options files with spam processing information specific to your
installation. For example, it is suggested that, if you constantly receive spam from a particular domain, you
should add that domain to the global black list. See the Configuration section of the documentation for more
information on which options can be set in these files.

The configuration files can be edited at any time. The sendmail filter must be restarted for new global options
to take effect. Changes to the local configuration file take effect with the receipt of the next message destined
for the user in question.

1.10 Installing the RPM on RedHat Linux

MailCorral is available for installation on RedHat Linux in RPM form, which reduces the complexity of the
installation considerably. The RPM is built on RedHat 7.0 and 8.0 and requires sendmail 8.12.0 and above.
There should be no reason why it won't work on later versions of RedHat Linux, as there aren't any real OS
dependencies in the filter. Similarly, it should work on later versions of sendmail (such as 8.12.9).

To install the filter, download the appropriate RPM for your system and place it in a suitable directory on your
machine. As root or some other equally omnipotent user, type the following command:

rpm −U /xxx/MailCorral−vvv.i386.rpm

MailCorral Documentation

24 1.9 Configuring Local Options

where "xxx" is the directory where you saved the RPM and "vvv" is the version information for the RPM you
downloaded (e.g. "1.1.2−1.8.0"). If you prefer, you can install the RPM using a visual package manger such
as GnoRPM.

The RPM will set the following filter parameters to the values noted. Most of them can be overridden in the
configuration file (see the Configuration section of the documentation for more information on which options
can be set). The settings are:

TECHSUPPORT The name of the person whom users should contact if they
need assistance with filtered messages. Set to "postmaster".

REMAILROBOT The username of the message remailer robot. Set to
"mailrobot". A user account for "mailrobot" is also created by
the RPM.

POSTMASTER The name of the person to whom warning messages should be
emailed if any viruses or unknown filter types are found. Left
undefined so that no warning messages are sent.

DOMAIN The name or names of the local domain. Set to a bogus
domain name of "yourdomain.com". You will need to override
this with the "−D" command line option or the "DomainList"
config file parameter.

CORRAL_DIR The directory where all of the corralled messages and spam
will be placed. Set to "/var/spool/MailCorral".

DEBUG_FILE_NAME The name of the file where debugging information is written.
This name is left undefined. If you want to create a debugging
file, the "−d" command line option or "DebugFile" config file
parameter are available.

GLOBALOPTIONS The names of the global sendmail filter configuration files. Set
to "/etc/mail/sendmailfilter.cf;/etc/sendmailfilter.cf".

LOCALOPTIONS The name of the local sendmail filter configuration file. Set to
"~/.sendmailfilter".

The RPM installs the following files into the directories noted:

/etc/mail/filterclean A shell script that is run by the daily cron job to clean up any
corralled filtered messages and spam that are older than 30
days. You may alter this script to reduce or increase the
number of days that corralled messages are kept.

/etc/rc.d/init.d/sendmailfilter A startup script that is run, at boot time or when the runlevel is
changed, to start/stop the filter. You may want edit this script
to change the options used to start the filter.

/usr/sbin/MailRelease.pl A Perl script that is used by the mailrobot to automatically
release mail that is corralled because it contains viruses, etc.

/usr/sbin/SpamNotify.pl A Perl script that is run at regular intervals (daily) to send out
notification messages of all spam that is corralled since the last
time it was run.

MailCorral Documentation

 1.9 Configuring Local Options 25

/usr/sbin/sendmailfilter The sendmail filter itself.

/usr/share/doc/MailCorral−xxx The documentation directory. The string "xxx" is replaced
with the version of MailCorral contained in the RPM.

In addition to installing files, the RPM carries out most of the work necessary to configure the filter. It
configures the following items:

The RPM copies "/usr/lib/sendmail−cf/cf/redhat.mc", the RedHat supplied sendmail macro configuration file,
to "/usr/lib/sendmail−cf/cf/MailCorral.mc" and hacks it so that the filter will be invoked by sendmail on port
2526. It then compiles the macro file to yield "/usr/lib/sendmail−cf/cf/MailCorral.cf".

The RPM copies adds the filter startup script "/etc/rc.d/init.d/sendmailfilter" into the appropriate start/stop
directories at the right runlevels so that the filter will be started/stopped at boot time and when runlevels are
changed.

A userid of "mailrobot" is created and set up, if it doesn't exist. This userid will be configured to receive mail
messages sent to it requesting that corralled messages be released and to carry out these requests.

The SpamNotify script will be copied to the home directory of "mailrobot" and set up to run at daily intervals
through a link placed in /etc/cron.daily.

The corral cleanup script will be set up to run daily (whenever files in "/etc/cron.daily" are run). This will
cause corralled messages over 30 days old to be deleted.

All that user need do, after the RPM is installed, is complete the hacking of "MailCorral.mc". Compare it to
your sendmail config file and make whatever changes are necessary to configure sendmail as you currently
have it set up. If you prefer, add the three lines needed to start the filter to your existing configuration file. The
"Configure Sendmail" section (above) talks about how to make the changes and then compile and install the
configuration file in the sendmail directory.

MailCorral Documentation

26 1.9 Configuring Local Options

2. Sendmail Filter

2.1 Description

The MailCorral sendmail filter is a robust virus/spam filter program that runs as part of sendmail (using the
milter interface) to filter out viruses and spam from all mail delivered on the site running sendmail. The filter
handles all currently known−malicious attachments plus attached and inline HTML (the latest trick for
launching virus payloads).

This program can be installed as part of sendmail and left to run unattended. It will render harmless any
viruses found in delivered email and notify the user inline, in the message itself, of its actions. A backup copy
of the unfiltered message is kept for a fixed length of time, just in case filtering rendered it truly unusable.

Spam identification is carried out on two levels. The sendmail filter has a simple spam detection scheme,
based on white and black lists, that is always enabled (unless the "−ss" option is set or SpamFastPath is set to
"No"). You may run the filter with only this mode of spam detection enabled, which, despite its simplicity, is
amazingly effective if you work at configuring it properly. Otherwise, more elaborate Spam identification
techniques can be applied via a built−in connection to one of the popular spam recognition packages. The
spam recognition package is only called if the fast path through the white/black list processing does not
recognize a message as being spam, hence spam recognition can be very economical.

Once spam is identified, there are three delivery options which may be selected. Spam can simply not be
delivered. Or, it can be delivered with a marker in the subject to identify it as such. Finally, in lieu of being
delivered, it can be redirected to a corral where it can be released at a later time. In this delivery mode, as in
the other two, spam handling runs completely unattended by your system administrators. If you use the
optional spam handling package (SpamCorral), users can be automatically sent periodic summary messages
which will allow them to release for delivery only those pieces of spam that they actually want to see. The rest
of the spam is deleted after a short holding period.

2.2 Features

Here is a list of what we consider to be the most useful features of the product. What is left unsaid is that it is
basically install and forget. Once you set it up and it is running to your satisfaction you should not normally
ever have to touch the filter again.

Stops viruses and spam before they ever get to the recipients. This can reduce network traffic (for
spam) and guarantee that a virus will not get launched by mistake.

•

Filters all plain text and MIME components of the message.•
Removes harmful inline HTML, including that embedded in plain text and renders harmful
attachments innocuous (by renaming).

•

Decodes all encoded plain text and HTML MIME components to find viruses and spam hidden by
encoding.

•

Can filter all messages or only those from outside.•
Optionally, can send virus detection reports directly to the postmaster.•
Has built−in, fast black and white list processing as well as a statistical identifier for spam.•
Can invoke the popular spam arbitration daemon to determine if a message contains spam, using the
built−in interface.

•

Only the message body (not attachments) are passed to the spam arbitron. For large attachments, this
results in a significant speedup.

•

 2. Sendmail Filter 27

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html

The built−in black/white list processor and statistical identifier acts as a fast path front end for the
spam arbitration daemon, giving at least a threefold performance improvement for domains in those
lists and messages that meet the statistical tests.

•

Filtration messages are given in plain language, inline, in the message received.•
The text of filtration messages is configurable in the global configuration file as well as on a per−user
basis.

•

Message filtration, spam filtration and message disposition options are settable on a per−user basis.
Permits tailoring of the filter's actions for each individual message recipient.

•

Retains an unaltered copy of all filtered (i.e. altered) mail for a set period of time (chosen by you), just
in case filtering renders it unusable. No need to worry about the consequences of filtering.

•

Unaltered messages can be easily released, by the recipient, for delivery, untouched, if the optional
remailer is installed. How−to instructions are provided in the filtered message itself.

•

Three delivery modes are possible for spam: deliver it but tag it as such in the subject; put it straight
into the trash; sideline it in the corral for possible later delivery.

•

Spam that is not delivered but corralled instead may be remailed using SpamCorral or simply deleted
on a periodic basis.

•

Spam may be automatically replied to with a rejection notice or silently discarded.•
Rejected spam uses a pacing mechanism that prevents the ping ponging of rejections, rejection
rejections, etc. Once a spammer's periodic quotient of rejection notices are sent, further spam from
them is silently discarded. You pick the pacing threshold and period.

•

Using SpamCorral users can be sent periodic (usually daily) summary notification of all spam
received and corralled in that period.

•

As a result of notification, users can release any spam they want to see, from the corral, for remailing
to them. Important spam (is there such a thing) or mistakenly labeled spam is not lost.

•

Directly delivered and remailed spam is tagged (i.e. "[SPAM]") in the subject so that it can be easily
separated by recipients (e.g. a subject line filter can send it to a special mailbox).

•

Robust code − runs reliably, without human intervention.•
High performance − written entirely in C and completely reentrant.•

2.3 How it Works

This program is invoked by the milter interface of sendmail, upon startup. It registers callback routines for the
various message processing actions, as defined by the milter interface. Upon return to sendmail, the callbacks
are called by sendmail whenever it has messages to deliver. The callbacks filter the messages for noxious
entities (e.g. viruses) and warn the user of their presence by inserting warnings into the body text of the
message. In some cases (e.g. attachments), the offending entities are altered or deleted to render them
harmless.

Basic spam checking is always undertaken by MailCorral using white and black lists to compare against the
sender and recipient of a message. This basic technique can be effective against spam that is always sent from
the same domain. If attention is paid to how the lists are set up, one can arrive at a simple yet functioning
spam filter. Regardless of what other spam checking is done, this basic checking is always done (unless the
"−ss" option is set or SpamFastPath is set to "No") whether to provide the only means of spam identification
or to provide a fast path, in front of a spam arbitration daemon, that improves performance.

Further spam checking can be enabled (by informing MailCorral about a spam arbitration daemon such as
SpamAssassin). If this is done, a request for spam determination is sent to the arbitron, via a pipe, which
includes the headers and text of the message (attachments are omitted).

If either the built−in white/black list processing or the arbitron determine that the message is spam, it is

MailCorral Documentation

28 2.3 How it Works

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html
http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html
http://spamassassin.org

disposed of according to the disposition options chosen. Three choices are available: deliver the spam,
suitably tagged as such; uncerimoniously place the spam in the trash can; divert the spam to a corral where it
can be remailed to the recipient at a later date.

The first two disposition options are self−explanatory. The third option causes the spam not to be sent directly
to the recipient but instead written to a corral directory. The corralled message is given all of the usual
filtering, before it is corralled, hence it is ready for immediate remailing, should the recipient so decide (see
SpamCorral).

To do all of the above, this program must be used in conjunction with a version of sendmail that has milter
support and must be set up in the sendmail config file to be called by milter. In addition, spam recognition
requires the use of a spam arbitration daemon (unless you wish to insert your own code into the filter) to
decide which messages are, indeed, spam.

2.4 Filtered Items

MailCorral tries to disable all harmful items found in the email messages it processes, whether they be
attachments or objects embedded directly in the messages. The disabled items, such as viruses and other
malicious bits of executable code, can often damage or destroy any system that receives the messages.
Disabling these items prevents them from having their otherwise disastrous effect.

For a complete list of all items removed, see the filter tables in the program code (smfopts.h). The synopsis is:

All inline MIME types that aren't attachments are checked to see if they are in a table of acceptable
types ("AcceptableTypes" in smfopts.h). They are rejected, if not. In general, certain text types,
postscript and PDF documents, certain images and certain video streams are acceptable inline.

•

There are other, popular inline MIME types that we would like to accept but at least one well−known
mail reader erroneously converts them into something it shouldn't, thereby allowing an application
which shouldn't be allowed to do so to handle them. Allowing them through would let a malicious
person send an apparently harmless object, with one of these MIME types, that was actually a virus.
In general, these unfortunately handled MIME types are certain encryption signatures (ironic, isn't it),
certain kinds of audio streams and one kind of video stream. If your mail readers don't provide this
"feature", rejection of these MIME types can be turned off (see "NOT_BRAIN_DEAD" in
smfopts.h).

•

Attachments that are well known to contain viruses are removed. These are attachments such as
"explorer.doc", "resume.doc" and any screen saver files (extension ".scr") which have been used time
and again to carry viral material.

•

Any attachments that are identified by a virus arbitron as containing viral signatures are removed.•
Attachments that are directly executable are very likely to contain viruses, consequently they are
neutralized. Think about it. There are lots of them, such as ".exe", ".com" and ".dll" files plus
interpreted languages such as Perl, Java and Visual Basic (the entire list is in smfopts.h in the table
"FilteredFiles") in addition to all of the various scripting and batch languages.

•

Indirectly executable attachments are more insidious. These are files that you wouldn't normally think
of as being executable but which can contain code that is run when the file is opened. Such things as
compiled help text, install, setup and configuration files, OLE and control panel extensions all allow
code of one form or another to be run when they are opened. These hidden executable types are
altered to make them relatively harmless.

•

Attachments, that may be executable because they can contain macros and which could therefore
contain viruses are given a warning. These tend to be text formatting languages, spreadsheets,
database description languages and certain kinds of installation files.

•

MailCorral Documentation

 2.4 Filtered Items 29

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html

Unknown attachments and unknown embedded MIME types are given a warning and rejected.•
Just as with inline MIME types, attachments whose otherwise innocuous extensions may be converted
into executable types by some lame−brain mail programs are given a warning. Not doing so would
allow an application which shouldn't be, to be allowed handle them, thereby letting a malicious person
send an apparently harmless attachment that was actually a virus. In general, these unfortunately
handled attachment types are certain audio and video objects and GNU tar files (see the list in
smfopts.h). If your mail readers don't provide this "feature", rejection of these attachment types can be
turned off (see "NOT_BRAIN_DEAD" in smfopts.h).

•

Attachments and embedded MIME types that are known to be innocuous (e.g. ".jpg" or "image/jpeg")
are left as is.

•

HTML, whether sent as a MIME encoded entity or embedded directly into a plain text message, offers
the possibility to launch a virus payload as soon as it is received by most email readers. They typically
treat HTML as an integral part of the message and immediately interpret/display the HTML when
rendering the message. As a result of this behavior, all HTML is laundered to remove harmful tags.

•

The HTML tags <iframe>, <object>, <script>, <applet> and <embed> are always removed. These
tags are frequently used to deliver virus payloads.

•

According to the table ("RejectedHTMLs" in smfopts.h), the tags enumerated therein are also
removed if they are found anywhere (even embedded in non−HTML text). Typically, these are
potential virus launcher tags such as <frame>, , <layer>, <ilayer> and <link>.

•

Optionally, if HTML filtering is on, the tags given in the table ("AcceptableHTMLs" in smfopts.h) are
allowed while all others (except conditional tags, see below) are rejected. In addition to this, before an
acceptable tag is passed, the tag parameters found in the table ("GlobParms") are checked and
threatening ones are removed as noted. Basically, the tags that are accepted are font, formatting,
layout, block and heading tags.

•

In addition to checking for tag names, certain global parameters are checked on all tags. Presently, the
only global parameter that is checked is the "style" parameter. The subparameters allowed for style
are defined in the table ("StyleParms" in smfopts.h). To summarize, most of the style subparameters
are allowed except for the ones that are likely to embed or link to foreign objects. This permits most
innocuous messages to be formatted correctly using style sheets.

•

Several conditional HTML tags are allowed (based on the table "ConditionalHTMLs" in smfopts.h).
For these tags, acceptability depends on the parameters and subparameters in the tag. The individual
parameter tables ("BodyParms" and "MetaParms") govern which parameters are kept. As with the
global parameters, any subparameters that cannot embed or link to foreign objects are allowed.

•

All encoded text and HTML objects are unencoded for purposes of virus and spam checking, since
spam and viral payloads are frequently encoded to obscure their purpose. Alterations to the message
body are reencoded to preserve the color and flavor of the message.

•

The message subject is checked as well as the body. Several viruses are known to span their launchers
across the message subject and body to circumvent virus scanners, a technique with which they are
ably assisted by some mail readers that treat subject content as part of the message body in certain
circumstances.

•

Messages that are determined to be spam are optionally delivered, discarded or sent to the corral.
Spam determination is governed by the spam arbitron chosen by the "−s" and "−ss" command line
parameters or the "SpamProto" and "SpamFastPath" configuration file options.

•

Note that the messages that apply to each of these tests are found in the same file as the tests themselves
(smfopts.h). The English text of each message is pretty self−explanatory. Furthermore, each of the messages
may have its text overridden in the global and local configuration files, as well as by the foreign language
options. The configuration file documentation has a description of each message and its default text.

Please bear in mind that, while every attempt was made to create code that would nullify all of the known
malicious items at the time that MailCorral was written, virus writers and their ilk are very creative. As the,

MailCorral Documentation

30 2.4 Filtered Items

http://www.bsmdevelopment.com/Reference/Doc_MailCorral_Ch3.html#Message

dare we say art, of virus writing progresses, new and improved viruses may determine ways to get past
MailCorral. However, just as sex without a condom is more dangerous than with, email without a filter is
more dangerous than with. MailCorral is sure better than nothing (some testimonial, huh).

In an effort to ensure that as much nasty material as possible is caught, MailCorral is designed to pass the
validation suite that BSM Development offers elsewhere. If you think you've found a virus that isn't caught by
MailCorral, please send it to us and we'll update the validation suite as well as the filter. This will not only
help MailCorral to filter out all of the latest virus "technology" but also assist anyone else needing to verify
that their mail filter is up to date, since the validation suite is made available to everyone.

If you are sending us a sample, you could try emailing the virus directly to BSM Development but this is
unlikely to work if our virus filters are alert. Instead, an approach that obfuscates the true nature of the
message should be employed. My preferred method is to edit the mail inbox with a text editor and copy the
entire message containing the virus, from the first header to the last line of the MIME attachments. Save this
entire message, headers and all, in a text file and then zip the text file. Attach the zipped file to the mail
message that you send to us.

Many people may find the filter criteria employed by MailCorral to be fairly harsh (e.g. we often receive
complaints asking why HTML messages are tagged and altered). Although we spend much time evaluating
viral payloads and are constantly trying to eliminate noise filtration, we realize that some of the items the filter
catches may be viewed by the man in the street as acceptable. In MailCorral's defence, most of the parameters
chosen for the filter are there because actual viruses have been observed using the filtered items as delivery
mechanisms. You are more than welcome to tune the filter parameters but don't do so lightly. Turning off any
of them will certainly increase your risk of exposure and it may only be a matter of time before a virus slips
through the sieve. Weigh the annoyance factor carefully against the cost of restoring a system damaged by a
virus. We believe that being overly cautious is much better than being careless, in this case.

2.5 Message Remailing

When a message is altered to remove a harmful item, an unaltered copy of it is kept in the mail corral for a
short length of time. If a message was altered in such a way as to render it unusable, it can be retrieved in its
pristine state. Optionally, a message handling robot can be set up that will allow the recipients of altered
messages to retrieve them from the corral and remail them directly to themselves in unaltered form.

Normally, this option is not enabled, since it is dangerous to allow possible viruses to be delivered to the
recipient without filtering. The usual method of operation is to have the recipient request a Tech Support
person to deliver the message. This allows Tech Support to peruse the message and ensure that it isn't harmful
before sending it on its way.

In certain high volume mail delivery situations, however, it may not be desirable to require such human
intervention, given the quantity of mail that may be involved. In these situations, automated delivery of the
recipient's unaltered mail may be preferable, providing all concerned are made aware of the danger of
releasing live viruses from the corral.

The message remailer robot is invoked by the recipient of the message through a mail message sent to the
robot. The altered message contains instructions on how to mail the robot as well as a link which many
mailers will follow to instantly create the required mail message. Once the mail is sent to the robot, it
responds by sending the unaltered message.

MailCorral Documentation

 2.5 Message Remailing 31

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/VSuiteDL.html
mailto:products@bsmdevelopment.com?subject=Here's a Virus 4U

2.6 Spam Handling

Enhanced spam handling (other than the basic black/white list processing built in) is carried out in cooperation
with a spam arbitration daemon (arbitron), such as SpamAssassin). MailCorral prepares a representative
message that contains all of the components of each received message that are important from the standpoint
of spam arbitration. It then sends a request for spam determination, via a pipe, to the arbitron which contains
the representative message and the arbitron renders a decision as to whether the message is spam or not. The
arbitron's decision is final.

The received message is processed to create the representative message by first removing any attachments and
inline components that are not directly viewable by typical mail readers (e.g. not text/plain, text/html, etc.).
This is done for performance reasons, since large attachments do not contribute measurably to the spam
determination process but they would normally require transmission to the arbitron. Then, any MIME entities
that are encoded are decoded so that the arbitron is dealing only with plain text.

Prior to invoking the spam arbitron, the sendmailfilter plus the local and global Spam Assassin (if the arbitron
chosen is spamd) configuration files are read to extract white and black list information for the recipient of the
message. This information is then acted upon to determine if a message is spam. Next, if the white and black
lists don't result in a spam/non−spam determination, statistical information (see "Statistical Tests", below)
about the message is examined to look for spam−like qualities that indicate the message is spam. If a
determination can be made about a message without invoking the arbitron, this is done to speed up spam
processing, since calling spam arbitrons is generally slow.

Upon detection of a message's sender on a black list, the detection of spam through statistical methods or the
receipt of the arbitron's decision, the message is disposed of according to the options "−sc", "−sd" and "−st". If
the "−st" (trash) option is chosen, the message is dumped and that's that. If one of the other two options are
chosen, the results from black list processing or from the arbitron are inserted into the message, depending on
which of the three options "−s1", "−s2" or "−s3" are chosen.

Message formatting for level one ("−s1") consists of inserting a single header into the message, giving spam
percentage values (any message with a value over 100% is considered to be spam) and inserting a paragraph
into the message body, explaining that the message is spam (this is all that will be done for a black listed
message, regardless of what message formatting level is chosen). Level two formatting ("−s2") adds any
pertinent headers generated by the spam arbitron to the message as well. Level three formatting ("−s3") inserts
a report, if any, from the spam arbitron into the message body, as a paragraph, following the explanatory
paragraph inserted by level one.

If the immediate delivery option ("−sd") is chosen, the spam is tagged with a subject prefix of "[SPAM]:" and
sent on its merry way, after any virus filtering, etc. is done. If the corral option ("−sc") is chosen, the spam is
filtered and prepared for delivery and then sidelined in a corral directory where a program such as SpamCorral
can find it and send out receipt notifications.

Meanwhile, sendmail is instructed to reply to the sender or not, depending on the value of the "−r" parameter.
A value of zero causes no replies to be sent to the sender. A value greater than zero causes no more than that
many replies to be sent to the sender in a predetermined period. After that threshold is reached no more replies
are sent until the end of the period passes. If a reply is sent, it has a major and minor result code of "550" and
"5.7.1" plus a suitable message text that says the message is spam. Perhaps it is a bit naive to expect that
spammers will do anything about this kind of deliver notification so this feature is off by default.

MailCorral Documentation

32 2.6 Spam Handling

http://spamassassin.org
http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html

2.6.1 Statistical Tests

The statistical tests that are applied to messages to render a spam determination are fairly simple and, hence,
quite rapid and yield a very high true positive score when applied to messages sent via email. They rely on the
fact that normal email messages do not employ many of the tricks used by spammers to circumvent spam
filtering. By employing these tricks to get around content−based filters, the spammers are essentially flagging
their email messages as spam (how thoughtful of them). Here is a description of the tests applied (all tests are
applicable to HTML messages only):

Content−based spam identifiers (e.g. Bayesian) look at the words in a message to identify whether it is spam
or not. Spammers insert HTML comments into the middle of words (e.g. Via<!−−junk−−>gra) to break the
words up so that content−based identifiers will not see the trigger words that indicate spam. Regular email
messages never insert comments into the middle of words so a ratio of the number of embedded comments to
words gives a good indication of spamishness. Even a very small ratio is an excellent indicator.

Spammers use tables extensively, even going to the point of aligning single characters in table colums to
create words that are not detected by content−based spam identifiers. Regular email messages do not use
tables to the extent that spammers do so a high ratio of table tags to regular words can indicate spam.

Image spam presents a message through an image that is loaded from a Web server, thereby resulting in a
message with zero or almost no text content, hence nothing is available for filtering. To a lesser extent,
text−based spam (which is basically advertising) employs images to present a more visual message, since
visual messages are apparently more appealing. Regular email, although it often includes images, seldom has
these images embedded inline in a message and does not include inline images in high proportions to text.
Hence, a high ratio of inline images to regular text is a good predictor of spam.

The strength of a good spam campaign can be automatically judged by embedding links to feedback Web sites
in such a manner that, when an email message is opened, the Web site is accessed and the recipient's identity
is transmitted. In this way, a spammer can know who has received their spam and opened it. Links of this
nature are embedded into a message as innocuous images. However, real images seldom include email
addresses or parameters containing identifiers. Thus, any images that include such information should receive
a high spam score.

Similarly, links to Web pages that include email addresses as parameters (not "mailto:" type links but links to
a CGI script or Web page) probably indicate a spammer attempting to provide feedback to themselves with
the recipient's email address. Consequently, these types of links are assumed to be indicative of spam.

Perhaps there are legitimate reasons to encode plain text and HTML as if it were binary data (e.g. alternate
character sets) but the most common use of this technique has been to obscure spam and viruses from
detection by scanners. This being the case, any text or HTML MIME entities that are encoded Base64 are
given a high statistical spam score which, while not high enough to win a message a spam label all on its own,
it is high enough to ensure that any other indiscretions will push it over.

Note that the final statistical score for a message is the sum of all of the statistical tests that are enabled. These
tests are employed because they often provide a rapid determination of spam and can work very well, in many
instances. Mind you, not everyone is bound to agree with these statistical definitions of spam so any and all of
the tests can be disabled or adjusted to fit individual preferences. The statistical filtering criteria can be tuned
by altering the values assigned to the "StatXxxx" options in the configuration file (see the "Spam Processing
Options" section for more information on these options).

MailCorral Documentation

2.6 Spam Handling 33

2.7 Command Line Parameters

This filter is actually invoked by the system startup script for sendmail. It is a daemon which listens, on the
port specified, for milter requests from sendmail. The command line parameters that are passed to the filter
from the startup script (see Section 1.5) govern the filter's actions, plus define the communications connection
with sendmail and the message type arbitrons. They are:

−A Supplies the name of a file or list of files, separated by semi−colons, that
contains the name of all of the local aliases, for the purposes of allowing the
filter to determine whether local mail is actually deliverable or not
(non−deliverable local mail will not be filtered but is left untouched, instead,
thereby leaving sendmail to make the actual determination whether the mail
can be delivered or not). The name supplied by this parameter overrides any
name supplied by the "AliasList" option in the config file.

Usually, one would point this option at the standard aliases file (e.g.
"/etc/aliases") employed by sendmail. The filter is capable of reading and
processing this file, except for two small differences (which should have no
real effect on the utility of the file): it does not support includes; lines must be
continued by a '\' in the last position on any continued line. The filter also
assumes that any name in this file is not bogus (i.e. that mail will actually be
deliverable to any user named therein).

It is important, in order for filtering to work properly, that the filter know when
a local user really exists and when they do not. Sendmail does some of the
work, before it calls the filter, by determining whether the user is local but it
does not determine if mail can actually be delivered to the user (until later on,
that is). Thus, unles the filter decides this for itself, it could do work
unnecessarily or, worse, create corral files for nonexistant users.

The filter looks up all local users in the password file to see if they are valid. If
so, it assumes that mail can be delivered to them. However, this is insufficient.
Aliases will not be found in the password file, yet delivery to them is valid.
Hence the need for the filter to know what alias names are used.

−C Specify the name of the global options file to be used at startup. The default
names, if not supplied, are: "/etc/mail/sendmailfilter.cf;/etc/sendmailfilter.cf".

−c Gives the name of the local options DBM database to be used to resolve
lookups for individual user options. The options for all users are stored in this
one file, under username keys.

The database lookup feature is not used, if this option isn't specified. If it is,
the local filter and SpamAssassin config files are ignored and only the DBM
database is used instead. This option overrides the "ConfigDB" config file
option.

The database name given should not include the ".dir" and ".pag" extensions,
since these are added gratuitously by DBM. The database itself can be built by
the "ConfigEdit.cgi" program (see the chapter on "User Support") or directly
by a program of your choice.

MailCorral Documentation

34 2.7 Command Line Parameters

Note that the name used to look up the user options depends on the setting of
the "−q" or "QualifyNames" flag.

−D This option supplies the list of domain names that are used to determine
whether mail is being delivered locally or not. Any domain names in this list
are considered local, for purposes of the "−e" or FilterExt and "−i" or FilterInt
options. This option overrides the "DomainList" config file option.

The list may include one or more domain names, separated by commas. It may
also include file names. Any name that begins with a '/', '~' or '.' is assumed to
be a file name.

If a file name is given, the file should contain a list of local domain names, one
per line. Blank lines and comments beginning with '#' are ignored. Typically,
this feature would be used to point to the file "/etc/mail/local−host−names" or
the same file where sendmail gets local domain name information from.

The domain name "localhost" is forced onto the list at the end, if it isn't
specified. This name is always assumed to be a local domain name by
sendmail.

Note that the filter attempts to automatically determine whether a recipeint's
name is local or not, regardless of the contents of this list so using it is partly
supplemental. While there is no harm in giving the filter a list of all local
domain names (e.g. "/etc/mail/local−host−names"), it is not strictly necessary.
However, if you have domains that are not local to this system but are still
considered internal to your network, you might wish to include them in this list
so that messages delivered to addresses in these domains will not get filtered,
when sent from local users. Be aware, however, that some spammers spoof the
same domain name for the sender as the recipient, thereby bypassing spam
checking entirely, if the domain list includes the domains of local recipients.

It is much better, for the purposes of bypassing filtering from internal users, to
include numeric IP addresses or address ranges within the domain list. If the
domain list includes numeric IP addresses, the sender's IP address only
(recipient IP addresses are not checked) will be compared against all of the IP
addresses in the domain list. Any that match will be considered local senders.

Numeric IP addresses can be of the form "n.n.n.n" or "n.n.n.n/m". In the first
case, the IP address of the sender must match the address given exactly. In the
second case, the value "m" is a mask (range 0−32) that indicates how many
high−order bits in the address are checked. For example, "192.168.1.0/24" will
match all addresses in the range "192.168.1.0" to "192.168.1.255" while
"192.168.0.0/16" will match all addresses in the range "192.168.0.0" to
"192.168.255.255". The mask "/0" is equivalent to the mask "/32".

−Da Add to the list of users that are included in the local domain (i.e. internal users)
any sender that validates to SMTP via an AUTH protocol (whichever one it
is). This option may be useful to ISPs who have many external users who need
to be treated as virtual internal users when they connect to SMTP. This
command line option has the same effect as supplying the value "Auth" to the
"DomainIncl" global configuration parameter.

MailCorral Documentation

 2.7 Command Line Parameters 35

−Dl Treat any sender that connects to SMTP via the local IP address (127.0.0.1) as
if they were included in the local domain (i.e. an internal user). This command
line option has the same effect as supplying the value "Local" to the
"DomainIncl" global configuration parameter.

−d Turn on debugging (regardless of whether a debug file name was compiled
into the filter). The name of the file where the debugging information is
written must also be supplied as the value of this parameter. This will override
any compiled−in file name as well as any value set by the "DebugFile" config
file option.

Note that, if you expect error messages from options processing to be written
to this debug file, this option must appear first on the command line. If this
option isn't first, errors from option processing are always written to the
sendmail syslog file (wherever that is) anyway.

−d0 thru −d4 Set the debug level to 0 thru 4, overriding any value specified by the
"DebugLev" configuration file option. Increasing the debug level turns on
tracing of progressively more and more detailed debugging information. Zero
turns it off. One traces high level work. Two traces basic work. Three traces
low level work. Four traces message transport. If you'd like your debug file to
get filled up fast, pick level 3 or 4. The default is level 2.

−e Turn on filtering of messages sent externally (i.e. messages from someone
inside the domain to someone outside the domain). Any setting by the
"FilterExt" option in the config file is overridden.

−h Turn on HTML filtering for all HTML tags, regardless of where they occur in
a message. Only really harmless tags are left intact (e.g. <p>,
). Only the
setting of the "ReplaceHTML" option in the global config file is overridden by
this flag.

If this flag is on, the filter removes all HTML that could be nasty. This means
looking at tag names plus individual parameters within the tags. The tables
found in smfopts.h are used to do these checks. If this flag is off, only the tags
that are really nasty (plus embedded comments in tag names) are removed.
The really nasty tags are: iframe, object, script, applet and embed, since they
can launch code. These tags (and anything in between them and their
terminators) are always removed, if you ask for virus checking.

−i Turn on filtering of messages sent internally (i.e. messages from someone
inside the domain to someone else also inside the domain). Any setting by the
"FilterInt" option in the config file is overridden.

−k Keep all messages filtered, regardless of whether they are altered or not, in the
corral. This option can be useful for debugging or for anyone needing a
complete audit trail of all messages received. If the "KeepAll" option is set in
the config file, it is overridden.

Please bear in mind, when using this option, that only messages that are
filtered can be kept. If a message is not filtered because it is bypassed (e.g.
internal −> external), it will not be kept. Sorry, that's just the way it has to be.

MailCorral Documentation

36 2.7 Command Line Parameters

−L Set the directory used for language support to the name given. This parameter
is used in conjunction with the "Language" local configuration option (see that
option for details) as well as the "X−Accept−Language" header in received
messages. It overrides any value set in the global configuration file by the
"LanguageDirectory" option.

If a message is received that includes an "X−Accept−Language" header, the
language value supplied in that header is used to set the name of the language
configuration file used by the filter to generate message inserts. The language
value found is appended to the language directory supplied by this option and
then the suffix ".cf" is appended.

Typically, the language values used in "X−Accept−Language" headers are two
character names, as specified by the mail/MIME RFCs. Note that, prior to
composing the file name, the the language value is lowercased to insure
consistency. The language value in the header is used exactly to compose the
file name. For example, if this option is set to "/etc/mail" and the
"X−Accept−Language" header contains "fr", the following file will be
processed:

/etc/mail/fr.cf

The file is opened and processed just like a regular local configuration file,
except that the only parameters which are valid are those starting with "Msg"
(from the Message Formatting Options section of the Configuration chapter),
that is to say all of the message insert texts. The idea is to allow a separate
configuration file to be created for each language that is supported and for this
file to allow the text of all of the message inserts in it to be written in that
language. When a message is received in a particular language, the text of all
of the message inserts used is loaded from that language's configuration file.

−os Sum all of the local user options from the configurations of all of the recipients
of a message to arrive at one, single set of options to be used for processing the
message. If supplied, this parameter overrides "SumOptions" in the config file.

Normally, options from the configuration of the first or only local recipient of
a message are used, in conjunction with the global options, to process each
message (messages are only processed once, regardless of how many local
recipients a message is bound for and non−local recipients are irrelevant, since
some other system will deliver the message to them). If this option is chosen,
the configurations of all of the recipients of a message are read and then all of
their options are summed up to create a compound set of options that represent
all of their preferences. This compound set of options is then used to process
the message (it is still only processed once).

Option summation takes place as follows: for switches ("AutoRemail",
"ReplaceHTML", "SpamAlways" and "SpamFast"), the "No" setting overrides
the "Yes" setting; for the "UnknownDispo" option, the "MIME" setting
overrides the "Ignore" setting, while the "Warn" setting overrides both; for the
"SpamDel" option, the "trash" mode is overridden by the "deliver" mode
which is overridden by the "corral" mode; for the "SpamLevel" option, the

MailCorral Documentation

 2.7 Command Line Parameters 37

highest level is chosen; for the "StatXxxxRatio" options, the highest threshold
found is used and for the "StatXxxxBoost" options, the lowest boost value
found is used; for the "AddXTags" option, the "Yes" setting overrides the
"No" setting for each tag ("envelope", "version") that is set in any
configuration processed; and only the first recipient's settings are used for the
"Language", "Msg*" and "SpamProto" options.

−p The communications protocol to use in talking to sendmail. This must match
the value given in the sendmail configuration file via the mail filter option. For
example, if sendmail's m4 config file says:

INPUT_MAIL_FILTER(`filter1',`S=inet:2526@localhost, F=R')dnl

the value passed via "−p" should be:

−p inet:2526@localhost

According to the sendmail documentation, the possibilities are:

{unix|local}:/path/to/file A named pipe.
inet:port@{hostname|ip−address} An IPV4 socket.
inet6:port@{hostname|ip−address} An IPV6 socket.

One way or another, this option must be specified in order for the filter to
operate. It must either be supplied via this command line switch or in the
global config file via "SendmailProto". This parameter cannot be empty. The
command line switch overrides the config file option.

−p1 thru −p24 Select the interval to partition the corral into. The number given is the number
of hours to use for the partition interval. Acceptable values are 1, 2, 3, 4, 6, 8,
12 and 24. A value must be specified, there is no default. This value overrides
any global config file value set by the "Partition" option.

Partitioning allows the number of filtered messages, stored in the corral, to be
dramatically increased. Normally, an unpartitioned corral will hold all of the
messages filtered on a small to medium sized system. However, on some large
systems (e.g. those used in production environments and by ISPs), the number
of messages that must be stored in the corral can easily exceed reasonable
limits for the file system and preclude notification and message handler
programs from being able to examine and process corralled messages.

Partitioning circumvents this problem by splitting the corral into separate
subdirectories, based on the time interval specified. If a value of 24 is chosen,
for example, the corral will be split into chunks that each contain 24 hours
worth of corralled messages. These smaller subdirectories can be more easily
processed by notification and message handler programs.

All filtered messages are partitioned with this option. Spam, may also be
partitioned post facto (e.g. if the corral fills up and you need to partition
immediately as a quick fix to a space problem) by the separate notification
program specific to it. A reasonable partition interval is 24 hours. Lesser
intervals may be chosen if you still experience problems with the volume of

MailCorral Documentation

38 2.7 Command Line Parameters

messages in the corral.

−q Use or do not use fully qualified names (i.e. recipient name plus domain name)
for any configuration database lookup of user options that is done in
conjunction with the "−q" parameter. This parameter overrides the
"QualifyNames" configuration file option.

Users of this option typically have virtual users who do not have any real
username or home directory on the machine where mail is delivered, hence the
need to store their configuration information in a common database. Since it is
possible for the same username to exist in two domains (e.g. "custserv"), the
domain information must be used to qualify the username and ensure that the
name used to store configuration information is unique.

Note that spam saved in the spam corral is automatically saved using only the
recipient's name (domain information is stripped) for local users and using the
fully qualified name for all others. This is done so that all spam to a single
local recipient, regardless of how it was addressed to them, will be corralled
under a single name. The advantage of this behavior is that it results in the
need to send only a single notification message to each spam recipient when
telling them about the spam they've received. However, bear in mind that even
using this scheme, alias names will have their spam stored as a separate user,
regardless of who the alias resolves to.

−r If spam filtering is done, the number of replies that should be sent to a
spammer (per day), telling them that what they are sending is spam. Once the
threshold is reached for a particular spammer in a single day, all subsequent
messages from them are just dumped with no reply. The default is 0 (i.e.
always just dump all spam). The maximum is 25. Any value set by
"SpamReplies" in the configuration file is overridden.

This option is necessary because some spammers use autoresponders to reply
to any mail sent to them. This may well appear as spam too, in which case, a
reply will be sent to it. Do you see the potential for ping pong? I do.

−rm Allow automatic remailing of filtered messages. Without this option, whenever
a message is altered, a copy of it is kept and the user is supplied with the name
of the file where it is stored so that it can be used to fetch the message. They
are also given the name of a Tech Support person whom they must contact to
retrieve the message. This is the safest way of dealing with viruses, since the
Tech Support person can quiz the user to see that they know what they're doing
before releasing a possibly infected file.

With this option, the user is given the user name of a mail handling robot that
can release the message to them. Upon receipt of a message from the user,
with the subject supplied, the mail handling robot will release the original
content of the message to the system for remailing to the recipient. Note that
this method of handling infected messages, while completely automatic, is
dangerous, since the unsuspecting user can have possibly infected messages
delivered directly to them without filtering.

MailCorral Documentation

 2.7 Command Line Parameters 39

The global config file option "AutoRemail" only may be overridden by this
switch.

−s The communications protocol and port to use in talking to a spam arbitron
daemon. The protocol must be one that this filter knows about and the port
must match the one that the daemon will be listening on.

Currently, the supported protocols are:

internal − The internal, fast path spam checker.
spamd − The Spam Assassin daemon.

Except for the "internal" protocol, the port number and host name or IP
address must follow the protocol name, separated by a colon and an at sign.
So, the entire parameter should look like one of the following:

internal

or

proto:port@host

For example, if you are running spamd and it is listening on port 2527 on the
local machine, the value passed via "−s" should be:

−s spamd:2527@localhost

By supplying a valid protocol and port, you will cause all messages received to
be sent to the spam arbitron daemon. If it thinks the message is spam, it will be
treated as such. If you don't supply this parameter, only internal spam checks
will be performed (basically nothing).

Note that when any spam arbitron is used, the internal, fast path spam checker
is always run (unless the "−ss" option is set or "SpamFastPath" is set to "No"),
prior to calling the arbitron selected, to attempt to speed up spam checking by
bypassing the overhead involved with calling the arbitron.

An optional timeout value may be supplied for any of the arbitrons chosen. If
this parameter is supplied, it must follow the protocol, port number and host
name immediately and be enclosed in parenthesis. For example:

−s spamd:2527@localhost(20)

The value given is the time, in seconds that MailCorral is prepared to wait for
the entire transaction with the spam arbitron. Essentially, this is the total time
for the arbitron to respond to the spam determination request −− it includes the
elapsed time for all of the reads and writes to the arbitron. In the above
example, the time allotted to SpamAssassin would be twenty seconds.

The default timeout is set to 30 seconds, if no value is supplied. You may pick
any positive value but consider this. Sendmail is only prepared to wait for an

MailCorral Documentation

40 2.7 Command Line Parameters

answer from the filter for so long. If the arbitron timeout is to be of any use, it
should be set to some value smaller than the timeout given to sendmail in its
configuration file (no value in the sendmail configuration file means a default
timeout of 10 seconds).

A good choice would be to give the arbitron 60−80% of the timeout allotted to
the filter in the sendmail configuration file. This will ensure that the filter can
still complete the job of filtering a message in the time allowed, despite the
fact that the arbitron times out while making its decision.

Note that a time limit may be supplied to the internal arbitron but there isn't
much reason for this, since it executes extremely quickly. When calculating
how much time to allow the filter and its arbitrons, you can neglect the time
consumed by the internal arbitron.

The global config file option "SpamProto" only can be overridden by this
command line parameter.

−s1 thru −s3 Set the level of spam reporting to one thru three, overriding any global config
file value set by the "SpamLevel" option. The default is "−s1".

Level one causes a single header line to be inserted in any message that is
found to contain spam, giving the spam processing statistics as three
percentage values.

Level two causes the same header line described under "−s1" to be inserted in
any message that is found to contain spam. It also inserts any headers
generated by the spam arbitron (selected by "−s") into the message.

Level three does everything that levels one and two do, plus it formats any
report generated by the spam arbitron for insertion into the message body as a
paragraph of text.

−sa Always add the spam report to mail, regardless of whether it is spam or not.
The global option "SpamAlways" may be overridden by this switch.

−sc Set the spam delivery mode to "corral", the default. This mode will cause any
spam received to be sidelined in the spam corral, where it can be processed by
a spam notification program and/or released for delivery by the recipient at a
later date. The choice made by the global option "SpamDel" may be
overridden by this switch.

−sd Set the spam delivery mode to "deliver". This mode will cause any spam
received to be marked as such and then delivered to the recipient without
further delay. The default is "−sc". Any value set by the global option
"SpamDel" is overridden by this switch.

−ss Turn off the spam fast path check, prior to calling the designated spam
arbitron. The statistical spam fast check is turned off by this flag, too. If the
designated arbitron is "internal" this flag has no effect, since it is possible to
turn off the use of the internal check as the designated arbitron by not
specifying it at all. This switch will override the "SpamFast" config file option.

MailCorral Documentation

 2.7 Command Line Parameters 41

−st Set the spam delivery mode to "trash". This mode will cause any spam
received to be tossed directly in the trash can, straight away. I like it!
Unfortunately, the default is "−sc". The choice made by the global option
"SpamDel" may be overridden by this switch.

−t Turn on filtering of messages transiting the system (i.e. messages from
someone outside the domain to someone else outside the domain). The transit
setting is typically used by ISPs who are delivering mail for many other
systems on a mail handling gateway. Any setting by the "FilterTrans" option in
the config file is overridden.

−u A proxy userid to use in looking up mail disposition and spam processing
options. Normally, the recipient's userid, stripped of domain information, is
used to look up user−specific mail disposition options plus spam processing
options in their home directory. However, if the recipient doesn't have a home
directory and if a proxy userid is given, the options in the proxy userid's home
directory will be used instead.

This option might be useful to ISPs, who process mail for many users but who
do not have userids set up for all of them. Usually, mail delivery is governed
by user−specific options found in a ".sendmailfilter" file in each recipient's
home directory. However, if the recipient has no home directory, the
".sendmailfilter" file in the proxy userid home directory is used.

A similar situation arises with Spam Assassin, if spamd is used to arbitrate
whether a message is spam. Spam Assassin looks in the recipient's home
directory for options such as whitelists. If the user doesn't have a home
directory, the home directory of the proxy userid is used instead.

This option overrides any value set by the "ProxyUser" config file option.

Note that the values set for the "IgnoreSpam" and "IgnoreVirus" options in a
proxy user's configuration have no effect on users who have no configuration.
Such users will have their viruses and spam filtered by default and there is no
way to avoid this, short of setting up configuration information for them. It
was felt that virus and spam filtration was too important to get bypassed by
accident.

−ui Select a disposition of "Ignore, for unknown file types found as attachments to
a message. Selecting a disposition of "Ignore" will cause attachments with
unknown file types to be ignored and treated as if they were perfectly OK. No
warning will be issued for any unknown file types. This setting is more than
somewhat dangerous, since it is quite possible that a file type which the filter
doesn't know about may be harmful. Not receiving any warning could allow a
message recipient to inadvertently open a harmful attachment. This option
overrides any disposition choice made by the "UnknownDispo" option in the
global configuration file. The "−um" and "−uw" flags also affect the
disposition choice.

−um Set the disposition for unknown file types, found as attachments to a message,
to "MIME". The "MIME" disposition will cause the filter to take additional
steps to determine the file type, before issuing a warning. It will look at the
MIME type for the attachment and, if it is one of the acceptable types, no

MailCorral Documentation

42 2.7 Command Line Parameters

warning will be issued. Otherwise, a warning will be issued, as below, for the
"−uw" disposition. This option overrides any disposition choice made by the
"UnknownDispo" option in the global configuration file. The "−ui" and "−uw"
flags also affect the disposition choice.

−uw Set the disposition for unknown file types, found as attachments to a message,
to "Warn". A disposition of "Warn" will cause a warning to be inserted into the
message whenever an attachment is found with an unknown file type (i.e. it
has no extension or an extension that is not known). This is the default setting,
since it is quite possible that a file type which the filter doesn't know about
may be harmful and the assumption is made that it is best to warn about these
things. This option overrides any disposition choice made by the
"UnknownDispo" option in the global configuration file. The "−ui" and "−um"
flags also affect the disposition choice.

−X Indicate which additional headers should be added to any messages delivered.
The string that follows tells which headers should be added. Multiple header
names may be supplied in a comma separated list. The choices are:

env[elope] Add headers giving the envelope information, such as from
and to address.

ver[sion] Add a version header for MailCorral.

For example: "−Xenv,ver".

This option overrides any value set by the global "AddXTags" config file
option. However, the local config file may be used to turn off the value set by
this parameter, on an individual user basis.

2.8 Performance Expectations

No filtering of mail messages can be expected to come for free, especially not the extensive level of filtering
that is done by MailCorral. However, the filter was built with performance in mind and it has been shown to
perform very well in production environments.

A typical user of MailCorral is an ISP with thousands of users who runs sendmail on a dedicated (or mostly
dedicated) mail server. In real environments, we have observed sustained loads of 2−4 email messages per
second (which translates approximately to 10,000 messages per hour). The performance numbers stated below
are typical for server loads such as this and you can expect similar numbers on your server.

Adding filtering to the email server increases the load on the system such that the filter (plus the spam
arbitron) consumes between 25−30% of the CPU. The filter itself usually accounts for 15−20% of the CPU
and the typical spam arbitron (e.g. SpamAssassin) usually accounts for 5−10% of the CPU.

To put it another way, if your CPU is more than 70% busy running sendmail, you may experience some
performance problems by adding filtering. If it is less than 70% busy, you should see no impact. When
considering an upgrade to a machine running flat out, a 50% increase in horsepower should easily accomodate
filtering.

The guidelines above should help you in planning your mail filtering setup. If you would like more specific
performance numbers, please contact BSM Development and tell us what you'd like to see.

MailCorral Documentation

 2.8 Performance Expectations 43

mailto:products@bsmdevelopment.com?subject=MailCorral Performance Information Request

MailCorral Documentation

44 2.8 Performance Expectations

3. Configuration
The operation of the sendmail filter can be altered by configuration parameters in two configuration files, one
a global configuration file that applies to all of the messages processed and the other a local configuration file
that only applies to the messages for an individual recipient (typically, there is one such file for each recipient,
in their home directory). Usually the global configuration file is "/etc/mail/sendmailfilter.cf" or
"/etc/sendmailfilter.cf" and the local configuration file is ".sendmailfilter", in the recipient's home directory.
However, these file names may be changed when the filter is built, at compile time, by editing
GLOBALOPTIONS and LOCALOPTIONS in "smfopts.h". See the Installation Section for more information.

The format of the configuration files is the same as that employed by many Unix−style configuration files.
Comments are allowed and are indicated by '#'. They may appear on a line by themselves or at the end of any
line with a parameter on it. Once the '#' is seen, everything that follows it is ignored until the end of the line.
Blank lines are permissible and are ignored. Leading and trailing whitespace is ignored. Configuration
parameters must appear one to a line. The parameter name must be separated from its value by at least one
whitespace. The presence of a switch type parameter name is sufficient to set its default setting. Multiple
occurrences of a parameter are permissible but multiple values must be specified by repeating the parameter
name. Multiple values may not appear on a single line.

Parameter values may be continued on multiple lines by ending each line, except for the last, with '\'. The
continuation may appear anyplace in the parameter value. Whitespace preceding the '\' and beginning the
continued line is thrown away.

The message string parameters accept quoted strings that are identical to C format. Each string must begin and
end with a quote. If a second quote appears after the first, accumulation of the parameter is ended until
another quote appears. The standard escape sequences "\"", "\\", "\r", "\n" and "\t" are recognized. The sample
in Section 3.5 shows all this.

The configuration files can be edited at any time. The sendmail filter must be restarted for new global options
to take effect. Changes to the local configuration file take effect with the receipt of the next message destined
for the user in question.

3.1 Global Configuration

Global configuration information is kept in one of the two files "/etc/mail/sendmailfilter.cf" or
"/etc/sendmailfilter.cf" (unless changes were made to GLOBALOPTIONS in "smfopts.h" prior to compiling
the filter). The first file found, in the order shown, is read and processed.

All of the Filtering Options and Spam Processing Options are available in this file. With one exception (the
"−C" option, for obvious reasons), all of the command line parameters have parallel options in the global
configuration file. Global config options are overridden by any options supplied on the command line.

3.2 Local (User Specific) Configuration

Local configuration information is generally kept in ".sendmailfilter", in the recipient's home directory (unless
a change was made to LOCALOPTIONS in "smfopts.h" prior to compiling the filter). If the recipient doesn't
have a password file entry (found in "/etc/passwd") or home directory or there are no permissions on this
directory, the proxy username may be used instead, to look up options that apply to this user. The proxy
username works just like a regular user name, in that the options file for it will be processed, if found and

 3. Configuration 45

applied to the recipient of a message.

Only some of the Filtering Options (the ones marked with an asterisk) and all of the Spam Processing Options
are available in this file. All of the command line parameters that are applicable to individual message
processing have parallel options in the local configuration file. Local config options override all other options,
both from the global config file and any options supplied on the command line.

3.3 Filtering Options

The message filtering options apply to all messages that are seen by the filter. They control every aspect of
filtering from how the filter talks to sendmail to what types of messages should be filtered to how the message
are disposed.

Either of the configuration files can contain the message disposition options. All of the other options are only
available in the global options file. Here is the list of message filtering options available in the configuration
files:

AddXTags * none|env|ver Indicate which additional headers should be added to any
messages delivered. The string that follows tells which headers should
be added. Multiple header names may be supplied in a comma separated
list. The choices are:

env[elope] Add headers giving the envelope information, such as
from and to address.

ver[sion] Add a version header for MailCorral.

For example: "AddXTags env,ver".

An empty parameter value may be specified in the local (user) options
file to turn off any XTags that were turned on globally. In the global
options file, this parameter cannot be empty. The global option may be
overridden by the "−X" command line option.

AliasList Supplies the name of a file or list of files, separated by semi−colons,
that contain the names of all of the local aliases, for the purposes of
allowing the filter to determine whether local mail is actually
deliverable or not (non−deliverable local mail will not be filtered but is
left untouched, instead, thereby leaving sendmail to make the actual
determination whether the mail can be delivered or not). The name
supplied by this option is overridden by the "−A" command line
parameter.

Usually, one would point this option at the standard aliases file (e.g.
"/etc/aliases") employed by sendmail. The filter is capable of reading
and processing this file, except for two small differences (which should
have no real effect on the utility of the file): it does not support includes;
lines must be continued by a '\' in the last position on any continued line.
The filter also assumes that any name in this file is not bogus (i.e. that
mail will actually be deliverable to any user named therein).

MailCorral Documentation

46 3.3 Filtering Options

It is important, in order for filtering to work properly, that the filter
know when a local user really exists and when they do not. Sendmail
does some of the work, before it calls the filter, by determining whether
the user is local but it does not determine if mail can actually be
delivered to the user (until later on, that is). Thus, unles the filter
decides this for itself, it could do work unnecessarily or, worse, create
corral files for nonexistant users.

The filter looks up all local users in the password file to see if they are
valid. If so, it assumes that mail can be delivered to them. However, this
is insufficient. Aliases will not be found in the password file, yet
delivery to them is valid. Hence the need for the filter to know what
alias names are used.

AutoRemail[ing] * Yes|No Allow or disallow automatic remailing of filtered messages.
Without this option, whenever a message is altered, a copy of it is kept
and the user is supplied with the name of the file where it is stored so
that it can be used to fetch the message. They are also given the name of
a Tech Support person whom they must contact to retrieve the message.
This is the safest way of dealing with viruses, since the Tech Support
person can quiz the user to see that they know what they're doing before
releasing a possibly infected file.

With this option, the user is given the user name of a mail handling
robot that can release the message to them. Upon receipt of a message
from the user, with the subject supplied, the mail handling robot will
release the original content of the message to the system for remailing to
the recipient. Note that this method of handling infected messages,
while completely automatic, is dangerous, since the unsuspecting user
can have possibly infected messages delivered directly to them without
filtering.

The global option only may be overridden by the "−rm" command line
switch.

ConfigDB Gives the name of the local options DBM database to be used to resolve
lookups for individual user options. The options for all users are stored
in this one file, under username keys.

The database lookup feature is not used, if this option isn't specified. If
it is, the local filter and SpamAssassin config files are ignored and only
the DBM database is used instead. This option may be overridden by
the "−c" command line option.

The database name given should not include the ".dir" and ".pag"
extensions, since these are added gratuitously by DBM. The database
itself can be built by the "ConfigEdit.cgi" program (see the chapter on
"User Support") or directly by a program of your choice.

Note that the name used to look up the user options depends on the
setting of the "−q" or "QualifyNames" flag.

MailCorral Documentation

 3.3 Filtering Options 47

DebugFile Turn on debugging (regardless of whether a debug file name was
compiled into the filter) and set the name of the file where the
debugging information is written to the name supplied as the value of
this parameter. This will override any compiled−in file name but, will in
turn be overridden by the "−d" command line option.

Note that, if you expect error messages from options processing to be
written a debug file, a debug file name must be complied into the filter
or the "−d" command line option must be used and it must appear first
on the command line. If that isn't done, errors from option processing
are always written to the sendmail syslog file (wherever that is) anyway.

DebugLev[el] 2|0|1|3|4 Set the debug level to 0 thru 4. Increasing the debug level
turns on tracing of progressively more and more detailed debugging
information. Zero turns it off. One traces high level work. Two traces
basic work. Three traces low level work. Four traces message transport.
If you'd like your debug file to get filled up fast, pick level 3 or 4. The
default is level 2. This option may be overridden by the "−d0" thru
"−d4" command line options.

DomainIncl[udes] Auth|Local A comma separated list (no intervening whitespace is
allowed) of one or more additional classes of users that are included in
the local domain. All of the items in the list are orred together to give a
cumulative list of additional user classes. At present, there are two
acceptable values, those being "Auth" and "Local". The "−Da"
command line option has the same effect as supplying the value "Auth"
to this parameter, while the "−Dl" option is the same as "Local".

If "Auth" is chosen, any sender that validates to SMTP via an AUTH
protocol (whichever one it is), will be treated as an internal user. This
option may be useful to ISPs who have many external users who need to
be treated as virtual internal users when they connect to SMTP.

If "Local" is chosen, any sender that connects to SMTP via the local IP
address (127.0.0.1), will be treated as an internal user.

DomainList This option supplies the list of domain names that are used to determine
whether mail is being delivered locally or not. Any domain names in
this list are considered local, for purposes of the "−e" or FilterExt and
"−i" or FilterInt options. This option may be overridden by the "−D"
command line option.

The list may include one or more domain names, separated by commas.
It may also include file names. Any name that begins with a '/', '~' or '.'
is assumed to be a file name.

If a file name is given, the file should contain a list of local domain
names, one per line. Blank lines and comments beginning with '#' are
ignored. Typically, this feature would be used to point to the file
"/etc/mail/local−host−names" or the same file where sendmail gets local
domain name information from.

MailCorral Documentation

48 3.3 Filtering Options

The domain name "localhost" is forced onto the list at the end, if it isn't
specified. This name is always assumed to be a local domain name by
sendmail.

Note that the filter attempts to automatically determine whether a
recipeint's name is local or not, regardless of the contents of this list so
using it is partly supplemental. While there is no harm in giving the
filter a list of all local domain names (e.g.
"/etc/mail/local−host−names"), it is not strictly necessary. However, if
you have domains that are not local to this system but are still
considered internal to your network, you might wish to include them in
this list so that messages delivered to addresses in these domains will
not get filtered, when sent from local users. Be aware, however, that
some spammers spoof the same domain name for the sender as the
recipient, thereby bypassing spam checking entirely, if the domain list
includes the domains of local recipients.

It is much better, for the purposes of bypassing filtering from internal
users, to include numeric IP addresses or address ranges within the
domain list. If the domain list includes numeric IP addresses, the
sender's IP address only (recipient IP addresses are not checked) will be
compared against all of the IP addresses in the domain list. Any that
match will be considered local senders.

Numeric IP addresses can be of the form "n.n.n.n" or "n.n.n.n/m". In the
first case, the IP address of the sender must match the address given
exactly. In the second case, the value "m" is a mask (range 0−32) that
indicates how many high−order bits in the address are checked. For
example, "192.168.1.0/24" will match all addresses in the range
"192.168.1.0" to "192.168.1.255" while "192.168.0.0/16" will match all
addresses in the range "192.168.0.0" to "192.168.255.255". The mask
"/0" is equivalent to the mask "/32".

FilterExt[ernal] Yes|No Turn on or off filtering of messages sent externally (i.e.
messages from someone inside the domain to someone outside the
domain). This option may be overridden by the "−e" command line
option.

FilterInt[ernal] Yes|No Turn on or off filtering of messages sent internally (i.e.
messages from someone inside the domain to someone else also inside
the domain). This option may be overridden by the "−i" command line
option.

FilterTrans[it] Yes|No Turn on or off filtering of messages transiting the system (i.e.
messages from someone outside the domain to someone else outside the
domain). The transit setting is typically used by ISPs who are delivering
mail for many other systems on a mail handling gateway. This option
may be overridden by the "−t" command line option.

IgnoreVirus[es] Yes|No Turn on or off the filtering of any viruses found in messages
for this user. If this flag is set, viruses will be ignored even if they are
found. You asked for enough rope to hang yourself. Here it is! Be very
careful about using this option in the global configuration file as it will

MailCorral Documentation

 3.3 Filtering Options 49

turn off all virus filtering. Also, be aware that the "SumOptions" or
"−os" flag has no effect on this flag. Rather, the setting of this flag,
whether on or off, is applied to each user individually.

Note that, for efficiency sake, there is only one copy of any modified
email message. This being the case, it is possible that a message
containing a warning about a virus, which is sent as well to multiple
users who wish to be warned about both viruses and spam, whould be
sent to a recipient who has "IgnoreVirus" set to "Yes" and
"IgnoreSpam" set to "No". This recipient will see the virus notification,
despite the fact that they've requested not to. In this case, the wishes of
the many outweigh the wishes of the few.

KeepAll Yes|No When turned on (set to "Yes"), this option will keep all
messages filtered, regardless of whether they are altered or not, in the
corral. This option can be useful for debugging or for anyone needing a
complete audit trail of all messages received. The setting of this option
may be overridden by the "−k" command line option.

Please bear in mind, when using this option, that only messages that are
filtered can be kept. If a message is not filtered because it is bypassed
(e.g. internal −> external), it will not be kept. Sorry, that's just the way it
has to be.

Language * The name of the language configuration file used by the filter to
generate message inserts is set by this option. The name given is
appended to the language directory supplied by the "−L" or
"LanguageDirectory" options and then the suffix ".cf" is appended. Note
that case is important, since the name given is used exactly to compose
the file name. For example, if the "−L" option is set to "/etc/mail" and
the user selects "Polish" via this parameter, the following file will be
processed:

/etc/mail/Polish.cf

The file is opened and processed just like a regular local configuration
file, except that the only parameters which are valid are those starting
with "Msg" (from the Message Formatting Options section, below), that
is to say all of the message insert texts. The idea is to allow a separate
configuration file to be created for each language that is supported and
for this file to allow the text of all of the message inserts in it to be
written in a particular language. When the user selects a language, in
their local configuration, the text of all of the message inserts used for
them is loaded from the language configuration file.

This option may only be specified in the local configuration file or the
DBM configuration database.

LanguageDir[ectory] Set the directory used for language support to the name given. This
parameter is used in conjunction with the "Language" local
configuration option (see that option for details) as well as the
"X−Accept−Language" header in received messages. It is overridden by

MailCorral Documentation

50 3.3 Filtering Options

the "−L" command line option.

If a message is received that includes an "X−Accept−Language" header,
the language value supplied in that header is used to set the name of the
language configuration file used by the filter to generate message
inserts. The language value found is appended to the language directory
supplied by this option and then the suffix ".cf" is appended.

Typically, the language values used in "X−Accept−Language" headers
are two character names, as specified by the mail/MIME RFCs. Note
that, prior to composing the file name, the the language value is
lowercased to insure consistency. The language value in the header is
used exactly to compose the file name. For example, if this parameter is
set to "/etc/mail" and the "X−Accept−Language" header contains "fr",
the following file will be processed:

/etc/mail/fr.cf

The file is opened and processed just like a regular local configuration
file, except that the only parameters which are valid are those starting
with "Msg" (from the Message Formatting Options section, below), that
is to say all of the message insert texts. The idea is to allow a separate
configuration file to be created for each language that is supported and
for this file to allow the text of all of the message inserts in it to be
written in that language. When a message is received in a particular
language, the text of all of the message inserts used is loaded from that
language's configuration file.

Paranoid Yes|No Turn on or off filtering of messages from all senders.
Normally, if this option isn't turned on, messages from trusted users
such as root, mailer−daemon and other daemons, sent from the local
machine are not filtered. The reason for this is because, filtering such
messages can be annoying and there is often no need for them to be
filtered. However, if you are running in an environment where nobody
can be trusted (e.g. an ISP), you probably don't want to let any
messages, even from normally−trusted users, pass without filtering.

Partition 24|1|2|3|4|6|8|12 Select the interval to partition the corral into. The
number given is the number of hours to use for the partition interval.
Acceptable values are those shown. If a value is not specified, the
default is 24 hours. This value is overridden by the command line
option "−pn", where "n" is the partition interval.

Partitioning allows the number of filtered messages, stored in the corral,
to be dramatically increased. Normally, an unpartitioned corral will hold
all of the messages filtered on a small to medium sized system.
However, on some large systems (e.g. those used in production
environments and by ISPs), the number of messages that must be stored
in the corral can easily exceed reasonable limits for the file system and
preclude notification and message handler programs from being able to
examine and process corralled messages.

MailCorral Documentation

 3.3 Filtering Options 51

Partitioning circumvents this problem by splitting the corral into
separate subdirectories, based on the time interval specified. If a value
of 24 is chosen, for example, the corral will be split into chunks that
each contain 24 hours worth of corralled messages. These smaller
subdirectories can be more easily processed by notification and message
handler programs.

All filtered messages are partitioned with this option. Spam, may also
be partitioned post facto (e.g. if the corral fills up and you need to
partition immediately as a quick fix to a space problem) by the separate
notification program specific to it. A reasonable partition interval is 24
hours. Lesser intervals may be chosen if you still experience problems
with the volume of messages in the corral.

ProxyUser[id] A proxy userid to use in looking up mail disposition and spam
processing options. Normally, the recipient's userid, stripped of domain
information, is used to look up user−specific mail disposition options
plus spam processing options in their home directory. However, if the
recipient doesn't have a home directory and if a proxy userid is given,
the options in the proxy userid's home directory will be used instead.

This option might be useful to ISPs, who process mail for many users
but who do not have userids set up for all of them. Usually, mail
delivery is governed by user−specific options found in a
".sendmailfilter" file in each recipient's home directory. However, if the
recipient has no home directory, the ".sendmailfilter" file in the proxy
userid home directory is used.

A similar situation arises with Spam Assassin, if spamd is used to
arbitrate whether a message is spam. Spam Assassin looks in the
recipient's home directory for options such as whitelists. If the user
doesn't have a home directory, the home directory of the proxy userid is
used instead.

This option may be overridden by the "−u" command line option.

Note that the values set for the "IgnoreSpam" and "IgnoreVirus" options
in a proxy user's configuration have no effect on users who have no
configuration. Such users will have their viruses and spam filtered by
default and there is no way to avoid this, short of setting up
configuration information for them. It was felt that virus and spam
filtration was too important to get bypassed by accident.

QualifyNames Yes|No Use or do not use fully qualified names (i.e. recipient name
plus domain name) for any configuration database lookup of user
options that is done in conjunction with the "ConfigDB" option. This
option may be overridden by the "−q" command line parameter.

Users of this option typically have virtual users who do not have any
real username or home directory on the machine where mail is
delivered, hence the need to store their configuration information in a
common database. Since it is possible for the same username to exist in

MailCorral Documentation

52 3.3 Filtering Options

two domains (e.g. "custserv"), the domain information must be used to
qualify the username and ensure that the name used to store
configuration information is unique.

Note that spam saved in the spam corral is automatically saved using
only the recipient's name (domain information is stripped) for local
users and using the fully qualified name for all others. This is done so
that all spam to a single local recipient, regardless of how it was
addressed to them, will be corralled under a single name. The advantage
of this behavior is that it results in the need to send only a single
notification message to each spam recipient when telling them about the
spam they've received. However, bear in mind that even using this
scheme, alias names will have their spam stored as a separate user,
regardless of who the alias resolves to.

ReplaceHTML * Yes|No Turn on or off filtering for all HTML tags, regardless of where
they occur in a message. Only really harmless tags are left intact (e.g.
<p>,
). The global option may be overridden by the "−h" command
line option.

If this flag is on, the filter removes all HTML that could be nasty. This
means looking at tag names plus individual parameters within the tags.
The tables found in smfopts.h are used to do these checks. If this flag is
off, only the tags that are really nasty (plus embedded comments in tag
names) are removed. The really nasty tags are: iframe, object, script,
applet and embed, since they can launch code. These tags (and anything
in between them and their terminators) are always removed, if you ask
for virus checking.

SendmailProto[col] The communications protocol to use in talking to sendmail. This must
match the value given in the sendmail configuration file via the mail
filter option. For example, if sendmail's m4 config file says:

INPUT_MAIL_FILTER(`filter1',`S=inet:2526@localhost, F=R')dnl

the value of SendmailProto should be:

SendmailProto inet:2526@localhost

According to the sendmail documentation, the possibilities are:

{unix|local}:/path/to/file A named pipe.
inet:port@{hostname|ip−address} An IPV4 socket.
inet6:port@{hostname|ip−address} An IPV6 socket.

One way or another, this option must be specified in order for the filter
to operate. It must either be supplied in the global config file or via the
"−p" command line switch. This parameter cannot be empty. The
command line switch overrides the config file option.

SumOptions Yes|No Turn on or off summation of local user options. When turned
on, this causes all of the local user options from the configurations of all

MailCorral Documentation

 3.3 Filtering Options 53

of the local recipients of a message to be summed to arrive at one,
single set of options to be used for processing the message. If supplied,
the "−os" command line parameter overrides this option.

Normally, options from the configuration of the first or only local
recipient of a message are used, in conjunction with the global options,
to process each message (messages are only processed once, regardless
of how many local recipients a message is bound for and non−local
recipients are irrelevant, since some other system will deliver the
message to them). If this parameter is set to "Yes", the configurations of
all of the recipients of a message are read and then all of their options
are summed up to create a compound set of options that represent all of
their preferences. This compound set of options is then used to process
the message (it is still only processed once).

Option summation takes place as follows: for switches ("AutoRemail",
"ReplaceHTML", "SpamAlways" and "SpamFast"), the "No" setting
overrides the "Yes" setting; for the "UnknownDispo" option, the
"MIME" setting overrides the "Ignore" setting, while the "Warn" setting
overrides both; for the "SpamDel" option, the "trash" mode is
overridden by the "deliver" mode which is overridden by the "corral"
mode; for the "SpamLevel" option, the highest level is chosen; for the
"StatXxxxRatio" options, the highest threshold found is used and for the
"StatXxxxBoost" options, the lowest boost value found is used; for the
"AddXTags" option, the "Yes" setting overrides the "No" setting for
each tag ("envelope", "version") that is set in any configuration
processed; and only the first recipient's settings are used for the
"Language", "Msg*" and "SpamProto" options.

UnknownDispos[ition] * W[arn]|M[IME]|I[gnore] Chooses the disposition for unknown
file types, found as attachments to a message. The global option only
may be overridden by the "−uw", "−um" and "−ui" command line
options.

A disposition of "Warn" will cause a warning to be inserted into the
message whenever an attachment is found with an unknown file type
(i.e. it has no extension or an extension that is not known). This is the
default setting, since it is quite possible that a file type which the filter
doesn't know about may be harmful and the assumption is made that it
is best to warn about these things.

The "MIME" disposition will cause the filter to take additional steps to
determine the file type, before issuing a warning. It will look at the
MIME type for the attachment and, if it is one of the acceptable types,
no warning will be issued. Otherwise, a warning will be issued, as
above, for the "Warn" disposition.

A disposition of "Ignore" will cause attachments with unknown file
types to be ignored and treated as if they were perfectly OK. No
warning will be issued for any unknown file types. This setting is more
than somewhat dangerous, since it is quite possible that a file type

MailCorral Documentation

54 3.3 Filtering Options

which the filter doesn't know about may be harmful. Not receiving any
warning could allow a message recipient to inadvertently open a
harmful attachment.

3.4 Spam Processing Options

Spam processing options are employed by the internal spam identifier that is invoked when the spam arbitron
is chosen to be "internal" (see "−s" or "SpamProto") or an external spam arbitron (such as spamd) is chosen
and the fast path is not turned off (see "−ss" or "SpamFast"). The spam delivery options are applicable to all
messages recognized as spam, regardless of how recognition is accomplished.

Either of the configuration files can contain white lists, black lists and/or spam delivery options. By properly
tuning the global options file with black list information about the domains from which you constantly receive
spam, you can build an effective spam blocking filter at very little runtime cost. By having your users update
their local options files with black or white list information, they can further tune the behavior of the built−in
spam identifier. Here are the spam processing options available in the configuration files:

IgnoreSpam * Yes|No Turn on or off the filtering of any spam found in messages for
this user. If this flag is set, spam will be ignored even if it is found. Be
aware that the "SumOptions" or "−os" flag has no effect on this flag.
Rather, the setting of this flag, whether on or off, is applied to each user
individually.

Note that, for efficiency sake, there is only one copy of any modified
email message. This being the case, it is possible that a message
containing a warning about spam, which is sent as well to multiple users
who wish to be warned about both viruses and spam, whould be sent to
a recipient who has "IgnoreSpam" set to "Yes" and "IgnoreVirus" set to
"No". This recipient will see the spam notification, despite the fact that
they've requested not to. In this case, the wishes of the many outweigh
the wishes of the few.

SpamAlways * Yes|No Always add the spam report to mail, regardless of whether it is
spam or not. The global option may be overridden by the "−sa"
command line option.

SpamDel[ivery] * C[orral]|D[eliver]|T[rash] Set the spam delivery mode to one of the
three choices shown. The global option only may be overridden by the
"−sc", "−sd" and "−st" command line options.

The "Corral" mode will cause any spam received to be sidelined in the
spam corral, where it can be processed by a spam notification program
and/or released for delivery by the recipient at a later date.

The "Deliver" mode will cause any spam received to be marked as such
and then delivered to the recipient without further delay.

The "Trash" mode will cause any spam received to be tossed directly in
the trash can, straight away. I like it! Unfortunately, the default is
"Corral"

SpamFast[Path] *

MailCorral Documentation

 3.4 Spam Processing Options 55

No|Yes Turn off or on the spam fast path check, prior to calling the
designated spam arbitron. The statistical spam fast check is turned on or
off by this flag, too. If the designated arbitron is "internal" this flag has
no effect, since it is possible to turn off the use of the internal check as
the designated arbitron by not specifying it at all. The global option
only may be overridden by the "−ss" command line option.

SpamLevel * 1−3 Set the level of spam reporting to the number chosen (a value of 1
through 3). The global option only may be overridden by the "−s1" thru
"−s3" command line options.

Level one (the default) causes a single header line to be inserted in any
message that is found to contain spam, giving the spam processing
statistics as three percentage values.

Level two causes the same header line described under level one to be
inserted in any message that is found to contain spam. It also inserts any
headers generated by the spam arbitron (selected by "SpamProto") into
the message.

Level three does everything that levels one and two do, plus it formats
any report generated by the spam arbitron for insertion into the message
body as a paragraph of text.

SpamProto[col] * none|internal|spamd The communications protocol and port to use in
talking to a spam arbitron daemon. The protocol must be one that this
filter knows about and the port must match the one that the daemon will
be listening on.

Currently, the supported protocols are:

internal − The internal, fast path spam checker.
spamd − The Spam Assassin daemon.

Except for the "internal" protocol, the port number and host name or IP
address must follow the protocol name, separated by a colon and an at
sign. So, the entire parameter should look like one of the following:

internal

or

proto:port@host

For example, if you are running spamd and it is listening on port 2527
on the local machine, the value for SpamProto should be:

SpamProto spamd:2527@localhost

By supplying a valid protocol and port, you will cause all messages
received to be sent to the spam arbitron daemon. If it thinks the message
is spam, it will be treated as such. If you don't supply this parameter,

MailCorral Documentation

56 3.4 Spam Processing Options

only internal spam checks will be performed (basically nothing).

Note that when any spam arbitron is used, the internal, fast path spam
checker is always run (unless the "−ss" option is set or SpamFastPath is
set to "No"), prior to calling the arbitron selected, to attempt to speed up
spam checking by bypassing the overhead involved with calling the
arbitron.

An optional timeout value may be supplied for any of the arbitrons
chosen. If this parameter is supplied, it must follow the protocol, port
number and host name immediately and be enclosed in parenthesis. For
example:

SpamProto spamd:2527@localhost(20)

The value given is the time, in seconds that MailCorral is prepared to
wait for the entire transaction with the spam arbitron. Essentially, this is
the total time for the arbitron to respond to the spam determination
request −− it includes the elapsed time for all of the reads and writes to
the arbitron. In the above example, the time allotted to SpamAssassin
would be twenty seconds.

The default timeout is set to 30 seconds, if no value is supplied. You
may pick any positive value but consider this. Sendmail is only
prepared to wait for an answer from the filter for so long. If the arbitron
timeout is to be of any use, it should be set to some value smaller than
the timeout given to sendmail in its configuration file (no value in the
sendmail configuration file means a default timeout of 10 seconds).

A good choice would be to give the arbitron 60−80% of the timeout
allotted to the filter in the sendmail configuration file. This will ensure
that the filter can still complete the job of filtering a message in the time
allowed, despite the fact that the arbitron times out while making its
decision.

Note that a time limit may be supplied to the internal arbitron but there
isn't much reason for this, since it executes extremely quickly. When
calculating how much time to allow the filter and its arbitrons, you can
neglect the time consumed by the internal arbitron.

An empty parameter value may be specified in the local (user) options
file to turn off a spam arbitron that was turned on globally. In the global
options file, this parameter cannot be empty. The global option only can
be overridden by the "−s" command line parameter.

SpamReplies 0−25 If spam filtering is done, the number of replies that should be
sent to a spammer (per day), telling them that what they are sending is
spam. Once the threshold is reached for a particular spammer in a single
day, all subsequent messages from them are just dumped with no reply.
The default is 0 (i.e. always just dump all spam). The maximum is 25.
May be overridden by the "−r" command line option.

MailCorral Documentation

 3.4 Spam Processing Options 57

This option is necessary because some spammers use autoresponders to
reply to any mail sent to them. This may well appear as spam too, in
which case, a reply will be sent to it. Do you see the potential for ping
pong? I do.

StatEmbedRatio * 50, 0−1000 If statistical spam filtering is carried out by the internal
fast path spam filter, this parameter sets the weighting and threshold for
the ratio of embedded comments or escape sequences to words in the
message, for the message to be considered spam. The value is in parts
per thousand. The message's embedded ratio is multiplied by 100 and
divided by the value given. This will cause any value above the
threshold value to yield a spam value of 100%. A value less than the
threshold may still lead to a determination of spam, since all of the
spam values are summed. A value of zero disables this spam check.

Since any occurrence of embedded comments or escape sequences in
words is an excellent predictor of spam, the default threshold is set
fairly low at 50 embeds per 1000 words.

StatHREFRatio * 200, 0−1000 This parameter sets the weighting and threshold for the
ratio of HREFs to words in the message, for the message to be
considered spam, if statistical spam filtering is carried out by the
internal fast path spam filter. The value is in parts per thousand. The
message's HREF ratio is multiplied by 100 and divided by the value
given. This will cause any value above the threshold value to yield a
spam value of 100%. A value less than the threshold may still lead to a
determination of spam, since all of the spam values are summed. A
value of zero disables this spam check.

A large number of HREFs (links to Web pages) in a message is a good
indication that a message may be spam, since spammers often link their
message to a Web site with the actual content or to tracking pages that
update their database when spam is read. Keep in mind, these are actual
references to Web pages in HTML tags, not references to them in the
text of a message. Hence, someone sending a message that says, "Here's
the URL you wanted ...", should not trigger this test. The default setting
is a moderate 200 HREFs per 1000 words to allow a generous number
of links for legitimate reasons but still contribute to the spam score if a
message includes links.

StatImageRatio * 100, 0−1000 If statistical spam filtering is carried out by the internal
fast path spam filter, this parameter sets the weighting and threshold for
the ratio of images to words in the message, for the message to be
considered spam. The value is in parts per thousand. The message's
image ratio is multiplied by 100 and divided by the value given. This
will cause any value above the threshold value to yield a spam value of
100%. A value less than the threshold may still lead to a determination
of spam, since all of the spam values are summed. A value of zero
disables this spam check.

Since occurrences of images in messages are often a good predictor of
spam, the default threshold is set fairly low at 100 images per 1000

MailCorral Documentation

58 3.4 Spam Processing Options

words. A special case is recognized where a message contains no words
but just images. This is assumed to be image spam and is given a score
of 100%. However, recipients of certain kinds of newsletters that are
composed entirely of images or a high proportion of images may wish
to disable this test or set a higher threshold.

StatTableRatio * 250, 0−1000 This parameter sets the weighting and threshold for the
ratio of tables to words in the message, for the message to be considered
spam, if statistical spam filtering is carried out by the internal fast path
spam filter. The message's table ratio is multiplied by 100 and divided
by the value given, which is in parts per thousand. This will cause any
value above the threshold value to yield a spam value of 100%. A value
less than the threshold may still lead to a determination of spam, since
all of the spam values are summed. A value of zero disables this spam
check.

Spammers often use large numbers of table tags in a message to format
their message for visual effect (it is, after all, advertising) or even to
hide the text of the message from a content−based identifier. Tables do
have legitimate reasons to be in a message, however, so a moderate
threshold of 250 tables per 1000 words is the default.

StatImageParmBoost *10, 0−100 If statistical spam filtering is carried out by the internal fast
path spam filter, this parameter gives the spam score boost value (in
percent) for any images that have parameters. For each image with
parameters, the boost value is added directly to the final spam score. A
value of zero disables this spam check.

Although there are legitimate reasons to use parameters in an image,
most images are usually fixed URLs. Spammers frequently include an
empty or innocuous image in a message that includes parameters telling
them who the recipient of the message is. If the message is read and the
image fetched from their Web server, the spammer can update their
database to keep track of all of the actual recipients of their spam. The
default boost is a moderate 10% for each image with parameters.

StatLinkEmailBoost * 50, 0−100 This parameter gives the spam score boost value (in
percent) for any link (in images or HREFs) that contain an email
address, If statistical spam filtering is carried out by the internal fast
path spam filter. For each link containing an email address, the boost
value is added directly to the final spam score. A value of zero disables
this spam check. It is important to note that the boost is not given to
HREFs containing email addresses as the result of a "mailto:"
parameter.

Email addresses in links or especially in images are used by spammers
as a feedback mechanism to identify recipients of spam. If the message
is read and the image fetched from their Web server, the spammer can
update their database to keep track of all of the actual recipients of their
spam. Since there is very little real reason for including an email
address as a parameter in an image or link, the default boost is a high
50% for each image or link with an email address.

MailCorral Documentation

 3.4 Spam Processing Options 59

StatTextBase64Boost *80, 0−100 If statistical spam filtering is carried out by the internal fast
path spam filter, this parameter gives the spam score boost value (in
percent) for any text or HTML MIME entities that are encoded Base64.
For each text/HTML MIME entity that is so encoded, the boost value is
added directly to the final spam score. A value of zero disables this
spam check.

Perhaps there are legitimate reasons to encode plain text and HTML as
if it were binary data but the most common use of this technique is to
obscure spam and viruses from detection by scanners. This being the
case, the default boost is an extremely high 80% for each text/HTML
MIME entity that is so encoded.

all_spam_to * If the recipient of a message matches this option's value, they will
always receive every message sent, regardless of whether it is spam or
not. The option value may contain file name globbing style patterns. For
example: "wantspam@*.*".

blacklist_from * If the sender of a message matches this option's value, it will be treated
as spam. The option value may contain file name globbing style
patterns. For example: "*@spammers.{com|org|net}".

whitelist_from * If the sender of a message matches this option's value, it will never be
treated as spam but will always be delivered instead. The option value
may contain file name globbing style patterns. For example:
"*@goodguys.{com|org|net}".

Probably the best use for this option is in a user's local options file
where it can override one of the global black list entries to allow mail
from a user's favorite spammer to be delivered, despite the spammer's
domain being on the global blacklist.

In addition to the sendmail filter's own configuration files, the filter will also process configuration files for
certain spam arbitration daemons to support fast path detection of spam using the black and white lists of the
daemon.

If the spam arbitron chosen is spamd, the local and global Spam Assassin configuration files are read to
extract white and black list information. This information is then acted upon to determine if a message is
spam, hopefully without invoking the arbitron. The Spam Assassin configuration files processed (and the
order in which they are read) are:

~/.spamassassin/user_prefs Recipient local preferences.

/usr/local/etc/spamassassin/local.cf
/usr/pkg/etc/spamassassin/local.cf
/usr/etc/spamassassin/local.cf
/etc/mail/spamassassin/local.cf
/etc/spamassassin/local.cf

Installation overrides, set up by
sysadmin.

/usr/local/share/spamassassin/60_whitelist.cf
/usr/share/spamassassin/60_whitelist.cf

System whitelist info, shipped
with the product.

MailCorral Documentation

60 3.4 Spam Processing Options

3.5 Message Formatting Options

Message filtering inserts text into filtered mail messages whenever it detects a virus or other suspicious entity
or when the message is found to contain spam. The the text of these inserts is normally compiled into the filter
via the "smfopts.h" file. However, the text of any of the inserts can be set from either of the configuration
files. This allows the message inserts to be tailored at startup time via the global options file or at message
delivery time, on an individual user base, via the local options file.

The text inserts often have variable information substituted into them (the substitution type is indicated, where
required). If this is the case, the rules for doing the substitution follow the conventions used by the C function
sprintf. Otherwise, the text inserts themselves must be strings that begin and end with double quotes. If a
second quote appears after the first, accumulation of the text insert is ended until another quote appears. The
standard escape sequences "\"", "\\", "\r", "\n" and "\t" are recognized. The sample in Section 3.5 shows all
this.

Each text insert is usually inserted as paragraph in the mail message. The insert should be formatted through
the use of "\r\n" pairs to read properly if it is inserted into a plain text message (i.e. no lines longer than
approximately 76 characters). Do not use any HTML tags (they will be supplied for you by the filter). No text
insert can be longer than 1000 characters. If you use continuations, no continued line can be longer than 255
characters.

Obvious uses for the message formatting options are to customize the text shown to users to give a company
look and feel or to translate the text into different languages. Here is the list of message formatting options
available in the configuration files:

MsgConfig * Describes attachments that are rejected because they can contain
configuration information which may allow a virus to modify a
recipient's system. Requires that one substitution (%s) be present for the
attachment's type. The default message is:

A %s file, which supplies directives to system\r\nconfiguration or
management programs. This might allow your system to
be\r\ncompromised by a malicious outsider. There should normally be no
reason\r\nfor anyone to send files of this sort to you. Verify with the
sender of\r\nthe item what their intent was in sending you this file and
that its\r\ncontent is safe before opening it.\r\n

MsgDelete * Indicates that the filter found what it knows to be a virus in the message.
Requires no substitutions. The default message is:

SENDMAIL FILTER VIRUS ALERT: This mail message has been
scanned by a\r\nsendmail filter and was found to include attachments
that are known to\r\ncontain or that actually contain viruses. These items
have been deleted\r\nfrom the message. Less malicious items have been
rendered relatively\r\nharmless by renaming them. The summary below
describes all the attachments\r\nand explains how they are harmful. In
the case of the renamed items, if\r\nyou are sure you know who they are
from and that they are indeed harmless,\r\nyou can rename them back to
their original name and open them. The\r\ndeleted files may only be
retrieved by following the instructions for\r\nretrieving the original
message. Please proceed with extreme caution.\r\nIf you have any

MailCorral Documentation

 3.5 Message Formatting Options 61

questions or would like assistance, please
contact\r\nTECHSUPPORT.\r\n

MsgExec * Describes attachments that are rejected because they are executable and
therefore will allow a virus to modify a recipient's system. Requires that
one substitution (%s) be present for the attachment's type. The default
message is:

A %s file, which contains code that is executed\r\nas soon as you open it.
This code can do whatever it likes, including\r\nwiping your hard drive,
sending sensitive information back to its\r\noriginator and installing
viruses on your machine. Verify with the sender\r\nof the item that its
content is safe before opening it.\r\n

MsgExploit * Describes attachments that are rejected because they may be able to
exploit a security hole in the application which usually handles them.
Requires that one substitution (%s) be present for the attachment's type.
The default message is:

A %s file, which may be able to exploit a\r\nvulnerability or security hole
in the application which normally\r\nhandles it, thereby inducing the
application to unintentionally execute\r\nvirus code in the file. This code
can do whatever it likes, including\r\nwiping your hard drive, sending
sensitive information back to its\r\noriginator and installing viruses on
your machine. Verify with the sender\r\nof the item that its content is safe
before opening it.\r\n

MsgFoundItem * Names an attachment found that matches a filter criteria. Requires that
two substitution (%s, %s) be present, the first for the attachment's name
and the second for attachment's type. The default message is:

Found item %s, matching %s.\r\n

MsgFoundType * Names an inline MIME type found that matches a filter criteria. Requires
that one substitution (%s) be present for the inline MIME type's type.
The default message is:

Found inline MIME type %s.\r\n

MsgHTML * Indicates that embedded HTML was found in and removed from the
message. Requires no substitutions. The default message is:

Embedded HTML was included in the message. Since most mail readers
open\r\nand interpret HTML immediately, in a rather indiscriminate
fashion,\r\neverything but the really innocuous tags have been removed.
Hopefully,\r\nwhat remains should still be viewable yet be rendered
harmless.\r\n

MsgHTMLScript * Indicates that probably harmful embedded HTML was found in and
removed from the message. Requires no substitutions. The default
message is:

Potentially harmful embedded HTML was included in the message. The

MailCorral Documentation

62 3.5 Message Formatting Options

harmful\r\ntags have been removed. What remains will not execute in the
way that the\r\nsender intended but that is the price paid for making it
harmless.\r\n

MsgInlineMIME * Describes inline MIME types that are rejected because they may be
opened and executed immediately by many mail readers. system.
Requires no substitutions. The default message is:

Inline MIME types are probably not harmful but it is possible they
may\r\nbe so. Since many mail readers will open and interpret inline
MIME\r\ntyped objects immediately, you have no chance to verify that
the typed\r\nitem is harmless before it is opened. Innocuous MIME types
are allowed\r\nby this filter but the ones listed above are either unknown
or known\r\nto be potentially harmful. Consequently, the inline item has
been\r\nrendered harmless (i.e. unopenable).\r\n

MsgMacro * Describes attachments that are rejected because they may contain macros
that can be executed by the application which is normally associated with
them. Requires that one substitution (%s) be present for the attachment's
type. The default message is:

A %s, which may can contain harmful macros\r\nthat are executed as
soon as you open it. Verify with the sender of the\r\nitem that its content
is safe before opening it.\r\n

MsgNest * Indicates that the filter encountered an error while processing the mail
message. Requires no substitutions. The default message is:

SENDMAIL FILTER PROCESSING ERROR: This mail message was
being scanned by a\r\nsendmail filter when a processing error occurred.
It is entirely possible\r\nthat it might include attachments that are known
to contain or are highly\r\nlikely to contain viruses. Had these items
have been found, they would\r\nhave been rendered relatively harmless
by renaming them. Unfortunately,\r\n due to the processing error, the
renaming process might not have been\r\n entirely completed. The
summary below describes which files were renamed\r\nand suggests how
they might be harmful. You should proceed with extreme\r\ncaution when
opening any of the attachments included with this
message.\r\nMeanwhile, to report this filter failure or if you have any
questions or\r\nwould like assistance, please contact
TECHSUPPORT.\r\n

MsgNonSpam * Indicates that the message didn't contain any spam but that a spam report
was requested anyway. Requires no substitutions. The default message
is:

This message did not match the criteria for spam, determined by
your\r\npersonal spam filter parameters or the global or system spam
filter\r\nparameters but you asked for a spam report always, so here it
is.\r\n

MsgReject * Indicates that the filter found what it thinks is a virus in the message.
Requires no substitutions. The default message is:

MailCorral Documentation

 3.5 Message Formatting Options 63

SENDMAIL FILTER VIRUS ALERT: This mail message has been
scanned by a\r\nsendmail filter and was found to include attachments
that are known to\r\ncontain or are highly likely to contain viruses.
These items have been\r\nrendered relatively harmless by renaming
them. The summary below describes\r\nthem and suggests how they
might be harmful. If you are sure you know who\r\nthey are from and
that they are indeed harmless, you can rename them back\r\n to their
original name and open them. Please proceed with extreme caution.\r\nIf
you have any questions or would like assistance, please
contact\r\nTECHSUPPORT.\r\n

MsgRemailInst * Indicates that the filter modified the message, for whatever reason and
that a copy of the message is available for automatic remailing. Gives
instructions about how to have the message remailed. Although there are
two substitutions (%s, %s) present in the default message, both are for
the name of the saved copy. Should you wish, your message may contain
only one substitution. The default message is:

The original content of this message will be available for a short
period\r\nof time by sending a message to REMAILROBOT and
including the file name\r\n%s\r\nin the subject line. If your mail reader
supports it, you can click on\r\nthe link: mailto:%s\r\nOtherwise, you
will have to make up the message with the address and\r\nsubject
yourself. Please bear in mind that the message may quite
possibly\r\ncontain a virus but no warning will be given.\r\n

Further processing of the inserted text is done for HTML messages. If
the inserted text contains the string "mailto:...\r\n", as does the default
message, this string will be duplicated inside a set of link tags so that the
recipient may click on the link and the message will be sent to the remail
processing robot. If you wish to take advantage of this feature, the text of
your message must include a string that begins with "mailto:" and ends
with "\r\n". You could for example use the following message:

The original content of this message will be available for a short
period\r\nof time by clicking the link:\r\nmailto:%s\r\n

MsgSaveLoc * Indicates that the filter modified the message, for whatever reason and
that a copy of the message is available from Tech Support. Indicates that
the recipient should contact Tech Support and names the saved copy.
Requires one substitution (%s) for the name of the saved copy. The
default message is:

The original content of this message will be available for a short
period\r\nof time from TECHSUPPORT. Contact them and give them
this file name:\r\n%s\r\n

MsgSpam * Indicates that the message contains spam. Requires no substitutions. The
default message is:

This message matched the criteria for spam, determined by your
personal\r\nspam filter parameters or the global or system spam filter

MailCorral Documentation

64 3.5 Message Formatting Options

parameters.\r\n

MsgSpecWarn * Describes attachments that might be harmful. Requires that one
substitution (%s) be present for the attachment's type. The default
message is:

A %s, which are not normally harmful but it is\r\nremotely possible that
it may be so. Verify with the sender of the item\r\nthat its content is safe
before opening it.\r\n

MsgSuspect * Describes attachments that are rejected because they are strongly
suspected of containing a virus or were actually found to contain a virus
(by one of the virus arbitrons). There is one insert available for the
message, the name of the attachment found. The default message is:

Found %s, a file which appears suspicious or\r\nwhich actually contains
a known virus. Verify with the sender and\r\nTECHSUPPORT before
opening this item. You will need to retrieve\r\nthe original and/or
rename it to its proper name before opening it. You\r\nshould also run a
virus scanner against the attachment before opening it.\r\n

MsgTagged * Describes attachments that are rejected because they can contain tags that
cause code to be executed as soon as the attachment is opened. Requires
that one substitution (%s) be present for the attachment's type. The
default message is:

A %s file, which may contain tags that cause code to be\r\nexecuted as
soon as you open it. This code can do whatever it likes,\r\nincluding
wiping your hard drive, sending sensitive information back to\r\nits
originator and installing viruses on your machine. Verify with
the\r\nsender of the item that its content is safe before opening it and
bear in\r\nmind that tagged data of this nature is frequently used to
deliver viruses\r\nso use extreme caution.\r\n

MsgUnknownItem * Names an attachment found that doesn't match any filter criteria.
Requires that one substitution (%s) be present for the attachment's name.
The default message is:

Found unknown item %s, no filter criteria.\r\n

MsgUnknownWarn * Describes attachments that are of an unknown type which is probably not
harmful but may be so. Requires no substitutions. The default message
is:

A file of unknown type which is probably not harmful but it is
possible\r\nthat it may be so. Verify with the sender of the item what the
file is\r\nand that its content is safe before opening it.\r\n

MsgUnnamedItem * Indicates that an attachment was found that is unnamed and doesn't
match any filter criteria. Requires that no substitutions. The default
message is:

Found unnamed item, no filter criteria.\r\n

MailCorral Documentation

 3.5 Message Formatting Options 65

MsgVirus * Describes attachments that are rejected because they have a history of
being virus delivery vehicles. Requires that one substitution (%s) be
present for the attachment's type. The default message is:

A %s, which has frequently been chosen as a\r\nvirus delivery vehicle in
the past and is almost certain to contain a virus!\r\nVerify with the
sender and TECHSUPPORT before opening this item.\r\nYou will also
need to rename it to its proper name before opening it.\r\n

MsgWarning * Indicates that the filter found HTML tags, which it thinks might be
harmful, in the message. Requires no substitutions. The default message
is:

SENDMAIL FILTER WARNING: This mail message has been scanned
by a sendmail\r\nfilter and was found to include objects and/or HTML
tags that may be of\r\na malicious nature. The summary below describes
them and suggests the\r\naction you should take with respect to them. If
you have any questions or\r\nwould like assistance, please contact
TECHSUPPORT.\r\n

MsgWordHandled * Describes attachments that are rejected because they are erroneously
interpreted by MicroSoft Word on some systems. Since Word will
execute macros in the attachments, the attachments are rejected. Requires
that one substitution (%s) be present for the attachment's type. The
default message is:

A %s, which on some systems may be handled\r\nincorrectly by
Microsoft Word. This would allow a malicious person to\r\nsend an
attachment, with this file type, that was actually a Word\r\ndocument.
Since Word would handle this document instead of the
intended\r\napplication, this would present a backdoor through which
harmful macros\r\nthat are executed as soon as you open the attachment
could be sent.\r\nVerify with the sender of the item that its content is safe
before\r\nopening it. You may also need to rename the item to its proper
name,\r\nif your email program renames it to \".doc\".\r\n

3.6 Sample Configuration File

What follows is an example of a fairly typical local (user) configuration file. It turns on or off some filtering
and spam options that aren't usually. In the interests of brevity, it changes the text of most of the message
inserts to be less verbose. Finally, it blacklists all messages from a particularly nasty spammer.

#
Filtering options.
#
AutoRemailing
ReplaceHTML No
SpamAlways
SpamDelivery Deliver
SpamLevel 3
#
Filtering messages.

MailCorral Documentation

66 3.6 Sample Configuration File

#
MsgWarning \
 "SENDMAIL FILTER WARNING: This mail message has been scanned by a\r\n"\
 "sendmail filter and was found to include objects and/or HTML tags that\r\n"\
 "may be of a malicious nature. The summary below describes them and\r\n"\
 "suggests the action you should take with respect to them.\r\n"
MsgReject \
 "SENDMAIL FILTER VIRUS ALERT: This mail message has been scanned by a\r\n"\
 "sendmail filter and was found to include attachments that are known to\r\n"\
 "contain or are highly likely to contain viruses.\r\n"
MsgSaveLoc \
 "The original content of this message will be available for a short\r\n"\
 "period of time in %s.\r\n"
MsgRemailInst \
 "The original content of this message will be available for a short\r\n"\
 "period of time by sending a message to spamrobot mentioning:\r\n"\
 "%s\r\n"\
 "in the subject line. Or you can click on the link:\r\n"\
 "mailto: spamrobot?%s\r\n"
MsgInlineMIME \
 "Inline MIME types are probably not harmful but it is possible they may\r\n"\
 "be so. Consequently, the inline item has been rendered harmless.\r\n"
MsgVirus \
 "A %s, which has frequently been chosen as a virus\r\n"\
 "delivery vehicle in the past and is almost certain to contain a virus!\r\n"
MsgWordHandled \
 "A %s, which on some systems may be handled\r\n"\
 "incorrectly by Microsoft Word.\r\n"
MsgMacro \
 "A %s, which may can contain harmful macros\r\n"\
 "that are executed as soon as you open it.\r\n"
MsgSpecWarn \
 "A %s, which are not normally harmful but it is\r\n"\
 "remotely possible that it may be so.\r\n"
MsgExec \
 "A %s file, which contains code that is executed\r\n"\
 "as soon as you open it.\r\n"
MsgConfig \
 "A %s file, which supplies directives to system\r\n"\
 "configuration or management programs.\r\n"
MsgExploit \
 "A %s file, which may be able to exploit a\r\n"\
 "vulnerability or security hole in the application which normally\r\n"\
 "handles it.\r\n"
MsgTagged \
 "A %s file, which may contain tags that cause code to be\r\n"\
 "executed as soon as you open it.\r\n"
MsgHTML "Embedded HTML was included in the message.\r\n"
MsgHTMLScript \
 "Potentially harmful embedded HTML was included in the message.\r\n"
#
Spam fast path stuff.
#
blacklist_from *@spammers.com

MailCorral Documentation

 3.6 Sample Configuration File 67

MailCorral Documentation

68 3.6 Sample Configuration File

4. User Support
MailCorral provides virus and spam filtering at the system level for all mail delivered by sendmail. While
some filtering options may be applicable to all email delivered, many users may prefer to set certain options
according to their individual tastes. MailCorral allows users to tailor how it filters their mail via individual
config files or a configuration database.

4.1 Configuration Methods

Individual configuration file support allows a user to create a config file in their home directory
("~/.sendmailfilter", by default, unless "smfopts.h" is changed prior to compiling the filter) where all of the
local options may be specified. These local options are applied to each message, based on the recipient of the
message. When a message is received, the recipient's username is determined and then their local options file
is looked up and processed to arrive at the options used to filter the message.

In many instances, MailCorral is employed by organizations that have a large number of users but where the
users are essentially virtual users (e.g. ISPs). That is to say, the users don't have traditional accounts in the
sense that they have home directories or other accoutrements normally associated with real users. More
importantly from our point of view, they have no place to conveniently store a user options file.

If your system has virtual users, individual user support is still possible through MailCorral's DBM database
configuration file. Using this option, all of the user settable parameters are stored in a single configuration
database, which may be located anywhere. The virtual user's name is used to store and lookup the parameters
and everything else works as if they were a real user. This feature is enabled via the "−c" command line
option or the "ConfigDB" config file parameter.

Note that, when you are using virtual user support, you might also want to use fully qualified names for
storing configuration information in the configuration database. Since it is possible for the same username to
exist in two domains (e.g. "custserv"), domain information must be used to qualify the username and ensure
that the name used to store configuration information is unique. This is done by specifying the "−q" command
line parameter or "QualifyNames" in the global configuration file.

In the case of the individual configuration file, the user may utilize a text editor to edit the parameters within
it. However, in the case of the DBM database, this isn't possible. Either way, a nice user interface, that allows
a user to easily edit their configuration options, would be better.

The purpose of MailCorral's configuration editor ("ConfigEdit.cgi") is to provide individual users with a
simple, easy to use method of editing configuration parameters. It is a Perl program that runs as a CGI script
under a Web server. The user visits a configuration form, with their Web browser, where they see all of their
configuration parameters and where they can edit them. Once they have made changes to the form, the results
are posted back to the same CGI script which then updates the local config file or DBM database.

The configuration editor is actually a generic config file and/or DBM database editor that is driven by an
HTML template file. It can be set up to edit one or more config files and/or DBM databases in a single form.
The form, since it is governed by an HTML template, can be tailored to have whatever look and feel a site
desires, probably that of their standard configuration pages.

A sample HTML template file ("MCEdit.html") is shipped with MailCorral that implements a simple form
with all of the configuration parameters that a user would want to edit. This form defaults to edit
"~/.sendmailfilter". A comment immediately after this file name, in the template, shows how to edit the DBM

 4. User Support 69

database "/etc/mail/MCUsers". You can use the template pretty much as is or alter it to get something more to
your liking.

Note to RPM installers. The configuration editor and sample template are installed in the "/etc/mail" directory,
for want of a better place to put them, not knowing how you have your Web server set up or even if one exists
at all. You can link to them there or move them to wherever else you want.

4.2 Configuration Editor

The configuration editor ("ConfigEdit.cgi") should be moved to the appropriate CGI directory for your Web
server and given execute permissions, etc. You may have to alter the path to your Perl interpreter in the first
line of the script. The editor is invoked by placing a link to it in a HTML document. The URL of the template
to be loaded (minus the address of the server) is given by the "TplURL" parameter. Hence, the link should
look something like:

 zzz

You can debug this program and your templates by adding a value of "Debug" to the URL. For example:

<a href=/cgi−bin/ConfigEdit.cgi?TplURL=MCEdit.htmlzzz

The purpose of the template is to describe a form which displays and allows the user to edit the configuration
values in a Unix−style configuration file. This program is also reinvoked by the form in the template to
process the edits to the form data and update the configuration file. This reinvocation of the program should
look like:

<form name="Config" action="/cgi−bin/ConfigEdit.cgi?TplURL=MCEdit.html"\
 method="post">

Any parameters that are to be replaced in the template are given by names which must exactly match the
parameter names found in the config file. You can have as many parameters as necessary. Parameters will be
replaced by blocks of HTML so, if you want the output to look presentable, each parameter should occur on a
line by itself.

In addition to the HTML necessary to display the parameters, the template file must also contain three special
comment blocks which describe how the parameter replacements should be done. These can appear anywhere
in the template and will be removed before transmission.

The first block, named "configfile", simply gives the name of the config file who's parameters are to be
displayed. Multiple config file names can be supplied, separated from each other by commas, in which case
the field types (see below) need to be qualified with a number, indicating which config file the field comes
from (the default, if omitted, is 1, the first config file).

All of the usual pathname expansion features are available. If the path begins with "~/", the parameter
UserName must be supplied as one of the values when the script is invoked and this user name will be used to
look up the home directory for the user. For example:

<!−− configfile ~/.sendmailfilter −−>

requires

MailCorral Documentation

70 4.2 Configuration Editor

<a href=/cgi−bin/ConfigEdit.cgi?UserName=JoeBlow&\
 TplURL=MCEdit.html> zzz

Note that there is a potential security hole caused by this feature. A malicious person could cause a parameter
file for a particular user to be updated by figuring out which parameters to pass to this program. As such, the
program should be put in a password protected directory where it can only be executed by legitimate users
who have previously supplied the correct password to the Web server.

Also note that, in order for the form to be able to recall this script with the user name needed to update the
config file, the "$ConfigEditUserName$" parameter in the template file will be updated with the username
passed on the command line. Although this precludes having a parameter in the config file with this name, it
does allow the username to be passed along from invocation to invocation. You should probably use this
feature as follows:

<form name="Config" action="cgi−bin/ConfigEdit.cgi?\
 UserName=$ConfigEditUserName$&\
 TplURL=MCEdit.html" method="post">

Finally, if you want to be able to access user files from Apache and to be able to create user files with the
correct mode and permissions, you will need to run this script as setuid root. This shouldn't pose a problem
because the only I/O that is done is to the config file, which is specified in the HTML template, although it is
possible to supply a username and have a file created in that user's directories, wherever the template says it
should be put. Consequently, I reiterate that this program should be put in a password protected directory
where it can only be executed by legitimate users who have previously supplied the correct password to the
Web server.

An alternate form of the user config file is allowed to support DBM−based user config files. If the file name
starts with a pair of slashes (i.e. "//"), it is assumed to be a DBM database which contains the parameters as
key/value pairs. In this case, the parameter UserName must also be supplied as one of the values when the
script is invoked and this user name will be used to create unique keys for each user. For example:

<!−− configfile //global/userparms −−>

requires

 zzz

All of the discussion above, about the updating of the $ConfigEditUserName$ parameter, security and
permissions applies equally to this database. The keys in the database will have their names composed of
"username|parmname" while parameters that can have multiple values will have a numeric counter added to
their keys to make them unique.

The second template comment block, named "fieldnames" is a list of field names plus information about them.
Each field name must appear on a line by itself. The line contains the name, a type (including an optional
config file index), a template name plus some additional information. The field types can be "btn" (button),
"chk" (checkbox), "txt" (text) or "rpt" (repeating text). If the optional config file index is supplied (when the
"configfile" section names more than one config file), it follows the field type immediately with no spaces in
between (e.g. "chk2"). For each of the field types, here's how their entry in the template file must look:

fieldname|btn|tpltname|values|...
fieldname|chk|tpltname|checkedvalue|uncheckedvalue

MailCorral Documentation

 4.2 Configuration Editor 71

fieldname|txt|tpltname|value
fieldname|rpt|tpltname1|tpltname2

The templates referred to above are small chunks of HTML that describe how to display the parameter as a
field in the Web page (presumably a form). The fieldnames must match the parameter names in the config
file. If a field takes values, they follow the template names.

The values given for each field are the default values, set before the config file is read. In the case of the
checkbox, the unchecked value is set as the default value of the field but, when the substitution is made into
the template, if the value being substituted matches the checked value, that value is substituted into the
template followed by the tag "checked". Regardless of which value the parameter is set to, the checked value
is always substituted with the only difference being whether the "checked" tag is added or not. Repeating
fields have no default value but a single, extra, empty field will be created to allow for additions. The second
template in a repeating field is used to provide a delete checkbox. The checkbox is left off for the generated,
empty field.

The third special comment block, named "fieldtemplates" must contain the named field templates referred to
in the first comment block. These also must occur one per line and look like:

tpltname|replacment HTML

In each template, the name of the field (i.e. the parameter name) replaces any occurrences of "@@" and the
values replace any occurrences of "%%" and/or "^^", in the order in which they are seen and in the order of
the values. The "@@" are substituted first. Then the "%%" are substituted next. Finally the list of values is
re−substituted to replace the "^^", if any, mainly for the purpose of labeling radio buttons.

The HTML template that is given will be read and searched for all occurrences of the parameters in the config
file that match field names in the fieldnames section of the template. These parameters must be surrounded by
two dollar signs in the template (e.g. "$ParmName$") and must match the parameter names found in the
config file exactly (except for case insensitive). Each occurrence of a parameter will be replaced in situ by its
field template, after substitutions are made. Here is an example:

 <html>
 <head>
 <!−− configfile ~/.sendmailfilter,~/.otherparms −−>
 <!−− fieldtemplates
 Button1|<input type=radio name=@@ value=%%> ^^ \

<input type=radio name=@@ value=%%> ^^ \

<input type=radio name=@@ value=%%> ^^
 Button2|<input type=radio name=@@ value=%%> ^^ \
 <input type=radio name=@@ value=%%> ^^
 Check1|<input type=checkbox name=@@ value=%%>
 Text1|<input type=text name=@@ value=%% size=20 maxlength=50>
 Delete1| <input type=checkbox name=@@ value=%%>
 −−>
 <!−− fieldnames
 ParmBtn1|btn|Button1|Top|Middle|Bottom
 ParmBtn2|btn|Button1|Fast|Normal|Slow
 ParmBtn3|btn|Button2|High|Low
 ParmCheck|chk|Check1|No|Yes
 ParmText|txt|Text1|Some text
 ParmList|rpt|Text1|Delete1
 OParmTxt|txt2|Text1|Other text
 OParmChk|chk2|Check1|Maybe Not|Maybe

MailCorral Documentation

72 4.2 Configuration Editor

 −−>
 </head>
 <body>
 <form name="Config" action="cgi−bin/ConfigEdit.cgi?\
 UserName=$ConfigEditUserName$\
 TplURL=MCEdit.html" method="post">
 <table align=left cols=2 cellpadding=0 cellspacing=0 border=0>
 <tr><td width=300>
 ParmBtn1 − The button 1 parameter ...
 </td><td>
 $ParmBtn1$
 </td></tr>
 .
 .
 .
 </table>
 <hr>
 <table align=left cols=2 cellpadding=0 cellspacing=0 border=0>
 <tr><td width=300>
 OParmTxt − The other config file text 1 parameter ...
 </td><td>
 $OParmTxt$
 </td></tr>
 .
 .
 .
 </table></form>
 </body></html>

The config file itself follows the normal rules for Unix−style config files. However, for the sake of making
this program simpler, the updates are only done to the tail end of the config file. Also for the sake of
simplicity, the parameter names must not end with one or more numbers nor include the string "__delete__" in
them.

Only the parameters named in the "fieldnames" section of the template file are written to the form and updated
in the config file. All other parameters are ignored. If you are smart, you'll put the parameters that are to be
ignored at the start of the file and those that are to be updated at the end. This program makes no attempt to
preserve the order of comments or the insertion order of updated parameters. Comments on the same lines as
updated parameters are lost.

4.3 Web Page Template

The sample HTML template file ("MCEdit.html") should be copied to the appropriate HTML directory for
your Web server. As supplied, the template implements a simple form with all of the configuration parameters
that a user would want to edit. This form defaults to edit "~/.sendmailfilter". A comment immediately after
this file name, in the template, shows how to edit the DBM database "/etc/mail/MCUsers".

Since the template is editing a config file that needs a user name to locate it, you will need to invoke the
configuration editor with the "UserName" parameter. Probably the easiest way to do this is to create a simple,
top−level form that contains a single text field which asks for the user's name. The submit button of the form
should invoke the editor as follows:

MailCorral Documentation

 4.3 Web Page Template 73

Such a simple form might look like:

 <form name="User" action="/cgi−bin/ConfigEdit.cgi" method="get">
 <input type="hidden" name="TplURL" value="TplURL=MCEdit.html">
 <input type=text name="UserName" value="" size=20 maxlength=32>
 </form>

The configuration parameters that can be updated by the sample template are: AddXTags; AutoRemail;
SpamAlways; SpamDel; SpamFast; SpamLevel; blacklist_from; and whitelist_from. Each of these parameters
can be found documented in the Configuration section.

The parameters SpamDel and SpamLevel are implemented as radio buttons, in this case with three values, via
the field template "Button1". The three values that follow the field name (e.g. "Corral", "Deliver" and
"Trash") correspond to the three buttons in the field template. As an example, the first button in the field
template for the SpamDel button would get expanded to read:

<input type=radio name=SpamDel value="Corral"> Corral

A second radio button field template, Button2, is included in the sample template as an example but it isn't
used. It would be used for a parameter that had four values, like the DebugLev global parameter (it is possible
to have a form that edits the global parameters too). You can leave it there (its harmless) or remove it, if you
want.

The AutoRemail, SpamAlways and SpamFast parameters are implemented as checkboxes, via the Check1
field template. Note that the first value following the field template name, in the field, is the value that is
chosen when the box is checked, while the second value is the unchecked value. In the sample template file,
the operation of SpamFast is backwards, with "No" being the value chosen when the box is checked.

The AddXTags, blacklist_from and whitelist_from parameters are all text fields with identical characteristics,
implemented by the field template Text1. The AddXTags field has no default value so it will appear empty
when the form is brought up, unless the config file has some setting for it.

The blacklist_from and whitelist_from parameters, in addition to being text fields, are repeating fields. That
means that they can have multiple values in the config file or database and that each value will result in a
separate field in the generated form. On top of this, the Delete1 field template will be added to each
occurrence of the text field, except the last one, which will be given an empty value. This allows additions of
new values and updates or deletions of existing values.

The actual form itself is contained in a table with two columns. On the left is a paragraph explaining what
each option is. On the right is the form field where the parameter value can by typed in, the checkbox checked
or the radio buttons clicked. The repeating fields have two items on the right, a text field and a checkbox.
There is a column heading above them so that the user can tell what's what.

Note that the Language parameter was not included in the sample template file, since most installations of
MailCorral will not require language support. If you should require it, add a multi−button radio field that has
the languages you need and create a set of language configuration files in a convenient directory. Set the
values of the radio buttons to the names of the language configuration files and you should be in business.

MailCorral Documentation

74 4.3 Web Page Template

5. Interoperability

5.1 Test Suite

Most email viruses employ similar propagation techniques and are, consequently, very similar in external
appearance to one another. That being the case, it is possible to design an email virus filter that removes
viruses based on outward appearance. This is highly desirable, since it will ensure that, even when a new virus
comes along, the filter will be able to screen for it.

On the other hand, the penalty for failing to detect a virus in an email message is high. We like to know if
we've covered all the bases in MailCorral by being sure that we detect all of the important propagation
techniques?

The Email Filter Validation Suite consists of generic email messages which can be passed through an email
filter to test all of the popular methods of virus propagation. If the filter detects each message and handles it
correctly, it is probably ready for prime time.

Each time we make any changes to MailCorral, we pass all of the email messages from the validation suite
through it and examine the results. Each time we discover a new type of virus that must be specifically
scanned for, we construct a test message and add it to the validation suite. In this manner, we ensure that no
new bugs are introduced nor are any reintroduced.

5.2 Working With SpamCorral

MailCorral can redirect all received spam to the spam corral, instead of delivering it to the spammer's
intended victim. All in all, not a bad plan but it is possible that a piece of spam could prove valuable (stranger
things have happened). It is even possible that a non−spam message might be misidentified as spam and
rustled into the corral by mistake.

The ultimate decision, about whether a piece of spam is valuable or not, is best left up to the intended
recipient. After all, they are really the only ones who know whether they actually want so see the spammer's
message or not. But, if the recipient is shown every piece of spam and asked to make a decision about whether
they want to see it or not, the solution is no better than the problem. The compromise solution is to only ask
them once or twice a day, in a single message, and to provide a summary that contains sufficient information
to allow them to decide, quickly and easily, whether they want to see the spam or not.

To accomplish this goal, a spam handling package, called SpamCorral, works hand in glove with MailCorral
to provides spam notifications, through a program which can be run periodically by a cron job. When this
program is run, it will send email notification messages to all of the recipients of spam. It summarizes each of
the messages received since the last time it was run, giving the sender's address, the subject, the delivery
date/time and the associated spam statistics (as a percentage, with 100% being the threshold for classification
of a message as spam). When a user receives the notification, they can optionally reply to the message (using
their mailer's reply function), retaining the description of any pieces of spam which they wish to see and
deleting the description of those which they don't. The action is simple and natural, in that it is just like
replying to any other piece of email that they receive.

A second program in the spam handling package, the spam handling robot, listens for messages sent to it, as
replies to notification messages, requesting that spam be extracted from the mail corral and remailed to the
original recipient. Upon verification of the sender's right to remail the spam, the corralled messages will be

 5. Interoperability 75

http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/VSuiteDL.html
http://www.bsmdevelopment.com/cgi-bin/InsertDLStats.cgi?TplURL=Products/SHandlerDL.html

remailed to them but, this time, they will pass directly through the sendmail filter unscathed. The operation of
the spam handlers is automatic and unattended, simply responding to requests from the recipients to remail all
of the spam that they ask to see. No intervention by administrative personnel is required. Furthermore, no
important or interesting messages are ever dropped by accident. The recipient has final say in all decisions.

As was mentioned above, MailCorral works very closely with SpamCorral, putting the spam into the corral,
where it awaits its final disposition at the user's behest. Furthermore, when the spam handler remails spam that
has been released by the recipient, MailCorral does some special processing (very minimal in nature) to carry
out delivery of the spam with a minimum of fuss.

5.3 Creating Your Own Spam Handler

If MailCorral is asked to redirect received spam to the spam corral, you can choose to write your own spam
handling programs to process the spam that is placed therein. Here are some notes on how to go about this.

Corralled spam is completely formatted and ready for remailing. If any viruses or other obnoxious entities
were found within the message, in addition to its being spam, these have already been removed. Spam headers
have been inserted as have any descriptive messages. To remail the message for delivery, all that need be done
is to invoke sendmail and pass it the message exactly as it is stored.

When spam is remailed, be aware that there is a header in the message (SPAMHDRBYPASS in smfopts.h)
that contains a key which will instruct the filter to bypass processing of the message the second time around.
This header contains a copy of the message date/time, encrypted using the bypass tag key (SPAMKEY in
smfopts.h). For the message to be successfully remailed, without additional processing, this header must be
kept intact, the date/time must not be changed from when the message was originally sent and two other
criteria must be met. The mailer that remails the spam must be "local" and the name of the remailer must not
contain an '@' (i.e. the message must be from the local domain). All remailed spam will be tagged by the filter
as "[SPAM]" in the subject line.

The name of the original recipient of a message, from the envelope, is included in the actual name under
which the spam is stored in the corral. Remailing should be done with this name, not the to name in the
message headers. Note that, if there were multiple recipients on a piece of spam's envelope, one copy of the
message is stored without a recipient name. A symbolic link is then made to the stored message for each of
the envelope recipients. Thus, any program that processes corralled spam must consider symbolic links as
well as files and must disregard files that have no recipeint included in their name. Here are a couple of
examples:

−rw−−−−−−− 1 1650 Aug 3 14:14 spam_to_jblow_3D4C1D90
lrwxrwxrwx 1 48 Aug 3 14:21 spam_to_jblow_3D4C1F0D

 −> spam_to__3D4C1FD0
lrwxrwxrwx 1 48 Aug 3 14:21 spam_to_jdoe_3D4C1F0D

 −> spam_to__3D4C1FD0
−rw−−−−−−− 1 1644 Aug 3 14:21 spam_to__3D4C1F0D

To process the above files, send out three pieces of remailed spam, two to "jblow" and one to "jdoe". A single
copy of the first message ("spam_to_jblow_3D4C1D90") is sent to "jblow". Multiple copies of the second
message ("spam_to__3D4C1F0D") are sent to "jblow" and "jdoe". If you want to figure out when to delete the
messages, any message with a recipient name in its file name can be deleted immediately, as can any link. File
names with no recipient name in them can only be deleted when no links pointing to them remain.

MailCorral Documentation

76 5.3 Creating Your Own Spam Handler

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document's overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front−Cover Texts or Back−Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine−readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for

GNU Free Documentation License 77

drawings) some widely available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard−conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine−generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, "Title Page" means the text near the most prominent appearance of the work's
title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine−readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly−accessible computer−network location containing a complete Transparent copy of the
Document, free of added material, which the general network−using public has access to download
anonymously at no charge using public−standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

MailCorral Documentation

78 GNU Free Documentation License

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

•

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

•

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.•
D. Preserve all the copyright notices of the Document.•
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.•
F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

•

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

•

H. Include an unaltered copy of this License.•
I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

•

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

•

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

•

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

•

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

•

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

•

If the Modified Version includes new front−matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

MailCorral Documentation

GNU Free Documentation License 79

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties−−for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front−Cover Text, and a passage of up to 25 words as a
Back−Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self−contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

MailCorral Documentation

80 GNU Free Documentation License

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License provided that you
also include the original English version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

MailCorral Documentation

GNU Free Documentation License 81

MailCorral Documentation

82 GNU Free Documentation License

	Table of Contents
	 0. Preface
	 0.1 Copyright
	 0.2 Distribution
	 0.3 Contributions
	 0.4 Change Log

	 1. Installation
	 1.1 Requirements
	 1.2 Rebuild Sendmail
	 1.3 Compile the Filter
	 1.4 Configure Sendmail
	 1.5 Hack the Startup Script
	 1.6 Install the Message Remailer
	 1.7 Install the Optional Spam Notifier
	 1.8 Set up Periodic Cleanup Jobs
	 1.9 Configuring Local Options
	 1.10 Installing the RPM on RedHat Linux

	 2. Sendmail Filter
	 2.1 Description
	 2.2 Features
	 2.3 How it Works
	 2.4 Filtered Items
	 2.5 Message Remailing
	 2.6 Spam Handling
	 2.7 Command Line Parameters
	 2.8 Performance Expectations

	 3. Configuration
	 3.1 Global Configuration
	 3.2 Local (User Specific) Configuration
	 3.3 Filtering Options
	 3.4 Spam Processing Options
	 3.5 Message Formatting Options
	 3.6 Sample Configuration File

	 4. User Support
	 4.1 Configuration Methods
	 4.2 Configuration Editor
	 4.3 Web Page Template

	 5. Interoperability
	 5.1 Test Suite
	 5.2 Working With SpamCorral
	 5.3 Creating Your Own Spam Handler

	GNU Free Documentation License

