
Linux Kernel Procfs Guide

Erik (J.A.K.) Mouw
Delft University of Technology

Faculty of Information Technology and Systems

J.A.K.Mouw@its.tudelft.nl
PO BOX 5031

2600 GA
Delft

The Netherlands



Linux Kernel Procfs Guide
by Erik (J.A.K.) Mouw

Copyright © 2001 Erik Mouw

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any

later version.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the

Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Revision History

Revision 1.0 May 30, 2001
Initial revision posted to linux-kernel
Revision 1.1 June 3, 2001
Revised after comments from linux-kernel



Table of Contents
Preface.......................................................................................................................v
1. Introduction..........................................................................................................1
2. Managing procfs entries ......................................................................................3

2.1. Creating a regular file..................................................................................3
2.2. Creating a symlink ......................................................................................3
2.3. Creating a directory.....................................................................................3
2.4. Removing an entry......................................................................................4

3. Communicating with userland ...........................................................................5
3.1. Reading data................................................................................................5
3.2. Writing data ................................................................................................6
3.3. A single call back for many files.................................................................6

4. Tips and tricks......................................................................................................9
4.1. Convenience functions ................................................................................9
4.2. Modules.......................................................................................................9
4.3. Mode and ownership...................................................................................9

5. Example ..............................................................................................................11

iii



iv



Preface
This guide describes the use of the procfs file system from within the Linux kernel.
The idea to write this guide came up on the #kernelnewbies IRC channel (see
http://www.kernelnewbies.org/), when Jeff Garzik explained the use of procfs and
forwarded me a message Alexander Viro wrote to the linux-kernel mailing list. I
agreed to write it up nicely, so here it is.

I’d like to thank Jeff Garzik <jgarzik@pobox.com> and Alexander Viro
<viro@parcelfarce.linux.theplanet.co.uk> for their input, Tim Waugh
<twaugh@redhat.com> for his Selfdocbook
(http://people.redhat.com/twaugh/docbook/selfdocbook/), and Marc Joosen
<marcj@historia.et.tudelft.nl> for proofreading.

This documentation was written while working on the LART computing board
(http://www.lart.tudelft.nl/), which is sponsored by the Mobile Multi-media
Communications (http://www.mmc.tudelft.nl/) and Ubiquitous Communications
(http://www.ubicom.tudelft.nl/) projects.

Erik

v



Preface

vi



Chapter 1. Introduction
The /proc file system (procfs) is a special file system in the linux kernel. It’s a
virtual file system: it is not associated with a block device but exists only in
memory. The files in the procfs are there to allow userland programs access to
certain information from the kernel (like process information in /proc/[0-9]+/),
but also for debug purposes (like /proc/ksyms).

This guide describes the use of the procfs file system from within the Linux kernel.
It starts by introducing all relevant functions to manage the files within the file
system. After that it shows how to communicate with userland, and some tips and
tricks will be pointed out. Finally a complete example will be shown.

Note that the files in /proc/sys are sysctl files: they don’t belong to procfs and are
governed by a completely different API described in the Kernel API book.

1



Chapter 1. Introduction

2



Chapter 2. Managing procfs entries
This chapter describes the functions that various kernel components use to populate
the procfs with files, symlinks, device nodes, and directories.

A minor note before we start: if you want to use any of the procfs functions, be sure
to include the correct header file! This should be one of the first lines in your code:

#include <linux/proc_fs.h>

2.1. Creating a regular file

struct proc_dir_entry* create_proc_entry(const char* name,
mode_t mode, struct proc_dir_entry* parent);

This function creates a regular file with the name name, file mode mode in the
directory parent. To create a file in the root of the procfs, use NULL as parent
parameter. When successful, the function will return a pointer to the freshly created
struct proc_dir_entry; otherwise it will return NULL. Chapter 3 describes how to do
something useful with regular files.

Note that it is specifically supported that you can pass a path that spans multiple
directories. For example create_proc_entry("drivers/via0/info") will
create the via0 directory if necessary, with standard 0755 permissions.

If you only want to be able to read the file, the function
create_proc_read_entry described in Section 4.1 may be used to create and
initialise the procfs entry in one single call.

2.2. Creating a symlink

struct proc_dir_entry* proc_symlink(const char* name, struct
proc_dir_entry* parent, const char* dest);

This creates a symlink in the procfs directory parent that points from name to
dest. This translates in userland to ln -s dest name.

3



Chapter 2. Managing procfs entries

2.3. Creating a directory

struct proc_dir_entry* proc_mkdir(const char* name, struct
proc_dir_entry* parent);

Create a directory name in the procfs directory parent.

2.4. Removing an entry

void remove_proc_entry(const char* name, struct
proc_dir_entry* parent);

Removes the entry name in the directory parent from the procfs. Entries are
removed by their name, not by the struct proc_dir_entry returned by the various
create functions. Note that this function doesn’t recursively remove entries.

Be sure to free the data entry from the struct proc_dir_entry before
remove_proc_entry is called (that is: if there was some data allocated, of
course). See Section 3.3 for more information on using the data entry.

4



Chapter 3. Communicating with
userland

Instead of reading (or writing) information directly from kernel memory, procfs
works with call back functions for files: functions that are called when a specific file
is being read or written. Such functions have to be initialised after the procfs file is
created by setting the read_proc and/or write_proc fields in the struct
proc_dir_entry* that the function create_proc_entry returned:

struct proc_dir_entry* entry;

entry->read_proc = read_proc_foo;
entry->write_proc = write_proc_foo;

If you only want to use a the read_proc, the function
create_proc_read_entry described in Section 4.1 may be used to create and
initialise the procfs entry in one single call.

3.1. Reading data
The read function is a call back function that allows userland processes to read data
from the kernel. The read function should have the following format:

int read_func(char* buffer, char** start, off_t off, int
count, int* peof, void* data);

The read function should write its information into the buffer, which will be
exactly PAGE_SIZE bytes long.

The parameter peof should be used to signal that the end of the file has been
reached by writing 1 to the memory location peof points to.

The data parameter can be used to create a single call back function for several
files, see Section 3.3.

The rest of the parameters and the return value are described by a comment in
fs/proc/generic.c as follows:

You have three ways to return data:

5



Chapter 3. Communicating with userland

1. Leave *start = NULL. (This is the default.) Put the data of the requested offset
at that offset within the buffer. Return the number (n) of bytes there are from the
beginning of the buffer up to the last byte of data. If the number of supplied bytes
(= n - offset) is greater than zero and you didn’t signal eof and the reader is
prepared to take more data you will be called again with the requested offset
advanced by the number of bytes absorbed. This interface is useful for files no
larger than the buffer.

2. Set *start to an unsigned long value less than the buffer address but greater than
zero. Put the data of the requested offset at the beginning of the buffer. Return the
number of bytes of data placed there. If this number is greater than zero and you
didn’t signal eof and the reader is prepared to take more data you will be called
again with the requested offset advanced by *start. This interface is useful when
you have a large file consisting of a series of blocks which you want to count and
return as wholes. (Hack by Paul.Russell@rustcorp.com.au)

3. Set *start to an address within the buffer. Put the data of the requested offset at
*start. Return the number of bytes of data placed there. If this number is greater
than zero and you didn’t signal eof and the reader is prepared to take more data
you will be called again with the requested offset advanced by the number of bytes
absorbed.

Chapter 5 shows how to use a read call back function.

3.2. Writing data
The write call back function allows a userland process to write data to the kernel, so
it has some kind of control over the kernel. The write function should have the
following format:

int write_func(struct file* file, const char* buffer, unsigned
long count, void* data);

The write function should read count bytes at maximum from the buffer. Note
that the buffer doesn’t live in the kernel’s memory space, so it should first be
copied to kernel space with copy_from_user. The file parameter is usually
ignored. Section 3.3 shows how to use the data parameter.

Again, Chapter 5 shows how to use this call back function.

6



Chapter 3. Communicating with userland

3.3. A single call back for many files
When a large number of almost identical files is used, it’s quite inconvenient to use
a separate call back function for each file. A better approach is to have a single call
back function that distinguishes between the files by using the data field in struct
proc_dir_entry. First of all, the data field has to be initialised:

struct proc_dir_entry* entry;
struct my_file_data *file_data;

file_data = kmalloc(sizeof(struct my_file_data), GFP_KERNEL);
entry->data = file_data;

The data field is a void *, so it can be initialised with anything.

Now that the data field is set, the read_proc and write_proc can use it to
distinguish between files because they get it passed into their data parameter:

int foo_read_func(char *page, char **start, off_t off,
int count, int *eof, void *data)

{
int len;

if(data == file_data) {
/* special case for this file */

} else {
/* normal processing */

}

return len;
}

Be sure to free the data data field when removing the procfs entry.

7



Chapter 3. Communicating with userland

8



Chapter 4. Tips and tricks

4.1. Convenience functions

struct proc_dir_entry* create_proc_read_entry(const char*
name, mode_t mode, struct proc_dir_entry* parent, read_proc_t*
read_proc, void* data);

This function creates a regular file in exactly the same way as
create_proc_entry from Section 2.1 does, but also allows to set the read
function read_proc in one call. This function can set the data as well, like
explained in Section 3.3.

4.2. Modules
If procfs is being used from within a module, be sure to set the owner field in the
struct proc_dir_entry to THIS_MODULE.

struct proc_dir_entry* entry;

entry->owner = THIS_MODULE;

4.3. Mode and ownership
Sometimes it is useful to change the mode and/or ownership of a procfs entry. Here
is an example that shows how to achieve that:

struct proc_dir_entry* entry;

entry->mode = S_IWUSR |S_IRUSR | S_IRGRP | S_IROTH;
entry->uid = 0;
entry->gid = 100;

9



Chapter 4. Tips and tricks

10



Chapter 5. Example
/*
* procfs_example.c: an example proc interface

*
* Copyright (C) 2001, Erik Mouw (J.A.K.Mouw@its.tudelft.nl)

*
* This file accompanies the procfs-guide in the Linux kernel

* source. Its main use is to demonstrate the concepts and

* functions described in the guide.

*
* This software has been developed while working on the LART

* computing board (http://www.lart.tudelft.nl/), which is

* sponsored by the Mobile Multi-media Communications

* (http://www.mmc.tudelft.nl/) and Ubiquitous Communications

* (http://www.ubicom.tudelft.nl/) projects.

*
* The author can be reached at:

*
* Erik Mouw

* Information and Communication Theory Group

* Faculty of Information Technology and Systems

* Delft University of Technology

* P.O. Box 5031

* 2600 GA Delft

* The Netherlands

*
*
* This program is free software; you can redistribute

* it and/or modify it under the terms of the GNU General

* Public License as published by the Free Software

* Foundation; either version 2 of the License, or (at your

* option) any later version.

*
* This program is distributed in the hope that it will be

* useful, but WITHOUT ANY WARRANTY; without even the implied

* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

* PURPOSE. See the GNU General Public License for more

* details.

*
* You should have received a copy of the GNU General Public

* License along with this program; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place,

* Suite 330, Boston, MA 02111-1307 USA

*
*/

11



Chapter 5. Example

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/jiffies.h>
#include <asm/uaccess.h>

#define MODULE_VERS "1.0"
#define MODULE_NAME "procfs_example"

#define FOOBAR_LEN 8

struct fb_data_t {
char name[FOOBAR_LEN + 1];
char value[FOOBAR_LEN + 1];

};

static struct proc_dir_entry *example_dir, *foo_file,

*bar_file, *jiffies_file, *symlink;

struct fb_data_t foo_data, bar_data;

static int proc_read_jiffies(char *page, char **start,
off_t off, int count,
int *eof, void *data)

{
int len;

len = sprintf(page, "jiffies = %ld\n",
jiffies);

return len;
}

static int proc_read_foobar(char *page, char **start,
off_t off, int count,
int *eof, void *data)

{
int len;
struct fb_data_t *fb_data = (struct fb_data_t *)data;

/* DON’T DO THAT - buffer overruns are bad */
len = sprintf(page, "%s = ’%s’\n",

12



Chapter 5. Example

fb_data->name, fb_data->value);

return len;
}

static int proc_write_foobar(struct file *file,
const char *buffer,
unsigned long count,
void *data)

{
int len;
struct fb_data_t *fb_data = (struct fb_data_t *)data;

if(count > FOOBAR_LEN)
len = FOOBAR_LEN;

else
len = count;

if(copy_from_user(fb_data->value, buffer, len))
return -EFAULT;

fb_data->value[len] = ’\0’;

return len;
}

static int __init init_procfs_example(void)
{

int rv = 0;

/* create directory */
example_dir = proc_mkdir(MODULE_NAME, NULL);
if(example_dir == NULL) {

rv = -ENOMEM;
goto out;

}

example_dir->owner = THIS_MODULE;

/* create jiffies using convenience function */
jiffies_file = create_proc_read_entry("jiffies",

0444, example_dir,
proc_read_jiffies,
NULL);

if(jiffies_file == NULL) {
rv = -ENOMEM;

13



Chapter 5. Example

goto no_jiffies;
}

jiffies_file->owner = THIS_MODULE;

/* create foo and bar files using same callback

* functions

*/
foo_file = create_proc_entry("foo", 0644, example_dir);
if(foo_file == NULL) {

rv = -ENOMEM;
goto no_foo;

}

strcpy(foo_data.name, "foo");
strcpy(foo_data.value, "foo");
foo_file->data = &foo_data;
foo_file->read_proc = proc_read_foobar;
foo_file->write_proc = proc_write_foobar;
foo_file->owner = THIS_MODULE;

bar_file = create_proc_entry("bar", 0644, example_dir);
if(bar_file == NULL) {

rv = -ENOMEM;
goto no_bar;

}

strcpy(bar_data.name, "bar");
strcpy(bar_data.value, "bar");
bar_file->data = &bar_data;
bar_file->read_proc = proc_read_foobar;
bar_file->write_proc = proc_write_foobar;
bar_file->owner = THIS_MODULE;

/* create symlink */
symlink = proc_symlink("jiffies_too", example_dir,

"jiffies");
if(symlink == NULL) {

rv = -ENOMEM;
goto no_symlink;

}

symlink->owner = THIS_MODULE;

/* everything OK */
printk(KERN_INFO "%s %s initialised\n",

MODULE_NAME, MODULE_VERS);
return 0;

14



Chapter 5. Example

no_symlink:
remove_proc_entry("bar", example_dir);

no_bar:
remove_proc_entry("foo", example_dir);

no_foo:
remove_proc_entry("jiffies", example_dir);

no_jiffies:
remove_proc_entry(MODULE_NAME, NULL);

out:
return rv;

}

static void __exit cleanup_procfs_example(void)
{

remove_proc_entry("jiffies_too", example_dir);
remove_proc_entry("bar", example_dir);
remove_proc_entry("foo", example_dir);
remove_proc_entry("jiffies", example_dir);
remove_proc_entry(MODULE_NAME, NULL);

printk(KERN_INFO "%s %s removed\n",
MODULE_NAME, MODULE_VERS);

}

module_init(init_procfs_example);
module_exit(cleanup_procfs_example);

MODULE_AUTHOR("Erik Mouw");
MODULE_DESCRIPTION("procfs examples");
MODULE_LICENSE("GPL");

15



Chapter 5. Example

16


	Linux Kernel Procfs Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Managing procfs entries
	2.1. Creating a regular file
	2.2. Creating a symlink
	2.3. Creating a directory
	2.4. Removing an entry

	Chapter 3. Communicating with userland
	3.1. Reading data
	3.2. Writing data
	3.3. A single call back for many files

	Chapter 4. Tips and tricks
	4.1. Convenience functions
	4.2. Modules
	4.3. Mode and ownership

	Chapter 5. Example

