
The mac80211 subsystem for
kernel developers

Johannes Berg
johannes@sipsolutions.net

The mac80211 subsystem for kernel developers
by Johannes Berg

Copyright © 2007, 2008 Johannes Berg

mac80211 is the Linux stack for 802.11 hardware that implements only partial functionality
in hard- or firmware. This document defines the interface between mac80211 and low-level
hardware drivers.

If you’re reading this document and not the header file itself, it will be incomplete because not
all documentation has been converted yet.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General

Public License version 2 as published by the Free Software Foundation.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not, write to

the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents
I. The basic mac80211 driver interface..vii

1. Basic hardware handling..1
struct ieee80211_hw ..1
enum ieee80211_hw_flags...3
SET_IEEE80211_DEV..5
SET_IEEE80211_PERM_ADDR..6
struct ieee80211_ops..7
ieee80211_alloc_hw ..11
ieee80211_register_hw ..12
ieee80211_get_tx_led_name..13
ieee80211_get_rx_led_name ...14
ieee80211_get_assoc_led_name..15
ieee80211_get_radio_led_name ..16
ieee80211_unregister_hw ..16
ieee80211_free_hw..17

2. PHY configuration ...19
struct ieee80211_conf ..19
enum ieee80211_conf_flags...20

3. Virtual interfaces ..23
enum ieee80211_if_types ..23
struct ieee80211_if_init_conf ..24
struct ieee80211_if_conf..25

4. Receive and transmit processing..29
4.1. what should be here ..29
4.2. Frame format...29
4.3. Alignment issues...29
4.4. Calling into mac80211 from interrupts...29
4.5. functions/definitions..30

struct ieee80211_rx_status...30
enum mac80211_rx_flags ..31
/usr/src/packages/BUILD/linux-2.6.27.42-

0.1//include/net/mac80211.h
33

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h
34

ieee80211_rx..34
ieee80211_rx_irqsafe...35
ieee80211_tx_status...36
ieee80211_tx_status_irqsafe ..37
ieee80211_rts_get ..38

iii

ieee80211_rts_duration..40
ieee80211_ctstoself_get...41
ieee80211_ctstoself_duration ..42
ieee80211_generic_frame_duration...43
ieee80211_get_hdrlen_from_skb...44
ieee80211_get_hdrlen ..45
ieee80211_wake_queue ...46
ieee80211_stop_queue...47
/usr/src/packages/BUILD/linux-2.6.27.42-

0.1//include/net/mac80211.h
48

ieee80211_stop_queues ...49
ieee80211_wake_queues..49

5. Frame filtering..51
enum ieee80211_filter_flags ..51

II. Advanced driver interface..55
6. Hardware crypto acceleration ..57

enum set_key_cmd...57
struct ieee80211_key_conf ..58
enum ieee80211_key_alg...60
enum ieee80211_key_flags ..61

7. Multiple queues and QoS support..63
struct ieee80211_tx_queue_params ...63
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h 64
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h 64

8. Access point mode support ..67
ieee80211_get_buffered_bc ...67
ieee80211_beacon_get...68

9. Supporting multiple virtual interfaces ...71
10. Hardware scan offload ...73

ieee80211_scan_completed ...73
III. Rate control interface..75

11. dummy chapter...77
IV. Internals..79

12. Key handling ..81
12.1. Key handling basics ..81
12.2. MORE TBD..81

13. Receive processing...83
14. Transmit processing ...85
15. Station info handling..87

15.1. Programming information...87
struct sta_info...87

iv

enum ieee80211_sta_info_flags...93
15.2. STA information lifetime rules ...95

16. Synchronisation..97

v

vi

I. The basic mac80211 driver
interface

Table of Contents
1. Basic hardware handling...1
2. PHY configuration ...19
3. Virtual interfaces..23
4. Receive and transmit processing ..29
5. Frame filtering..51

You should read and understand the information contained within this part of the
book while implementing a driver. In some chapters, advanced usage is noted, that
may be skipped at first.

This part of the book only covers station and monitor mode functionality, additional
information required to implement the other modes is covered in the second part of
the book.

Chapter 1. Basic hardware handling
TBD

This chapter shall contain information on getting a hw struct allocated and
registered with mac80211.

Since it is required to allocate rates/modes before registering a hw struct, this
chapter shall also contain information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming
model should be in here, including the definition of ieee80211_ops which will be
referred to a lot.

Finally, a discussion of hardware capabilities should be done with references to
other parts of the book.

struct ieee80211_hw

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_hw — hardware information and state

Synopsis
struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy * wiphy;
struct workqueue_struct * workqueue;
const char * rate_control_algorithm;
void * priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
u16 queues;
u16 ampdu_queues;
u16 max_listen_interval;
s8 max_signal;

};

1

Chapter 1. Basic hardware handling

Members

conf

struct ieee80211_conf, device configuration, don’t use.

wiphy

This points to the struct wiphy allocated for this 802.11 PHY. You must fill in
the perm_addr and dev members of this structure using
SET_IEEE80211_DEV and SET_IEEE80211_PERM_ADDR. Additionally, all
supported bands (with channels, bitrates) are registered here.

workqueue

single threaded workqueue available for driver use, allocated by mac80211 on
registration and flushed when an interface is removed.

rate_control_algorithm

rate control algorithm for this hardware. If unset (NULL), the default
algorithm will be used. Must be set before calling ieee80211_register_hw.

priv

pointer to private area that was allocated for driver use along with this
structure.

flags

hardware flags, see enum ieee80211_hw_flags.

extra_tx_headroom

headroom to reserve in each transmit skb for use by the driver (e.g. for transmit
headers.)

channel_change_time

time (in microseconds) it takes to change channels.

vif_data_size

size (in bytes) of the drv_priv data area within struct ieee80211_vif.

queues

number of available hardware transmit queues for data packets. WMM/QoS
requires at least four, these queues need to have configurable access
parameters.

2

Chapter 1. Basic hardware handling

ampdu_queues

number of available hardware transmit queues for A-MPDU packets, these
have no access parameters because they’re used only for A-MPDU frames.
Note that mac80211 will not currently use any of the regular queues for
aggregation.

max_listen_interval

max listen interval in units of beacon interval that HW supports

max_signal

Maximum value for signal (rssi) in RX information, used only when
IEEE80211_HW_SIGNAL_UNSPEC or IEEE80211_HW_SIGNAL_DB

Description

This structure contains the configuration and hardware information for an 802.11
PHY.

NOTICE
All work performed on this workqueue should NEVER acquire the RTNL lock (i.e.
Don’t use the function ieee80211_iterate_active_interfaces)

enum ieee80211_hw_flags

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_hw_flags — hardware flags

3

Chapter 1. Basic hardware handling

Synopsis
enum ieee80211_hw_flags {
IEEE80211_HW_RX_INCLUDES_FCS,
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING,
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE,
IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE,
IEEE80211_HW_SIGNAL_UNSPEC,
IEEE80211_HW_SIGNAL_DB,
IEEE80211_HW_SIGNAL_DBM,
IEEE80211_HW_NOISE_DBM,
IEEE80211_HW_SPECTRUM_MGMT

};

Constants

IEEE80211_HW_RX_INCLUDES_FCS

Indicates that received frames passed to the stack include the FCS at the end.

IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING

Some wireless LAN chipsets buffer broadcast/multicast frames for power
saving stations in the hardware/firmware and others rely on the host system for
such buffering. This option is used to configure the IEEE 802.11 upper layer to
buffer broadcast and multicast frames when there are power saving stations so
that the driver can fetch them with ieee80211_get_buffered_bc.

IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE

Hardware is not capable of short slot operation on the 2.4 GHz band.

IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE

Hardware is not capable of receiving frames with short preamble on the 2.4
GHz band.

IEEE80211_HW_SIGNAL_UNSPEC

Hardware can provide signal values but we don’t know its units. We expect
values between 0 and max_signal. If possible please provide dB or dBm
instead.

IEEE80211_HW_SIGNAL_DB

Hardware gives signal values in dB, decibel difference from an arbitrary, fixed
reference. We expect values between 0 and max_signal. If possible please

4

Chapter 1. Basic hardware handling

provide dBm instead.

IEEE80211_HW_SIGNAL_DBM

Hardware gives signal values in dBm, decibel difference from one milliwatt.
This is the preferred method since it is standardized between different devices.
max_signal does not need to be set.

IEEE80211_HW_NOISE_DBM

Hardware can provide noise (radio interference) values in units dBm, decibel
difference from one milliwatt.

IEEE80211_HW_SPECTRUM_MGMT

Hardware supports spectrum management defined in 802.11h Measurement,
Channel Switch, Quieting, TPC

Description

These flags are used to indicate hardware capabilities to the stack. Generally, flags
here should have their meaning done in a way that the simplest hardware doesn’t
need setting any particular flags. There are some exceptions to this rule, however, so
you are advised to review these flags carefully.

SET_IEEE80211_DEV

LINUX

Kernel Hackers ManualJanuary 2010

Name
SET_IEEE80211_DEV — set device for 802.11 hardware

5

Chapter 1. Basic hardware handling

Synopsis

void SET_IEEE80211_DEV (struct ieee80211_hw * hw, struct
device * dev);

Arguments

hw

the struct ieee80211_hw to set the device for

dev

the struct device of this 802.11 device

SET_IEEE80211_PERM_ADDR

LINUX

Kernel Hackers ManualJanuary 2010

Name
SET_IEEE80211_PERM_ADDR — set the permanenet MAC address for 802.11
hardware

Synopsis

void SET_IEEE80211_PERM_ADDR (struct ieee80211_hw * hw, u8 *
addr);

6

Chapter 1. Basic hardware handling

Arguments

hw

the struct ieee80211_hw to set the MAC address for

addr

the address to set

struct ieee80211_ops

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_ops — callbacks from mac80211 to the driver

Synopsis
struct ieee80211_ops {
int (* tx) (struct ieee80211_hw *hw, struct sk_buff *skb);
int (* start) (struct ieee80211_hw *hw);
void (* stop) (struct ieee80211_hw *hw);
int (* add_interface) (struct ieee80211_hw *hw,struct ieee80211_if_init_conf *conf);
void (* remove_interface) (struct ieee80211_hw *hw,struct ieee80211_if_init_conf *conf);
int (* config) (struct ieee80211_hw *hw, struct ieee80211_conf *conf);
int (* config_interface) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_if_conf *conf);
void (* bss_info_changed) (struct ieee80211_hw *hw,struct ieee80211_vif *vif,struct ieee80211_bss_conf *info,u32 changed);
void (* configure_filter) (struct ieee80211_hw *hw,unsigned int changed_flags,unsigned int *total_flags,int mc_count, struct dev_addr_list *mc_list);
int (* set_tim) (struct ieee80211_hw *hw, int aid, int set);
int (* set_key) (struct ieee80211_hw *hw, enum set_key_cmd cmd,const u8 *local_address, const u8 *address,struct ieee80211_key_conf *key);
void (* update_tkip_key) (struct ieee80211_hw *hw,struct ieee80211_key_conf *conf, const u8 *address,u32 iv32, u16 *phase1key);
int (* hw_scan) (struct ieee80211_hw *hw, u8 *ssid, size_t len);
int (* get_stats) (struct ieee80211_hw *hw,struct ieee80211_low_level_stats *stats);
void (* get_tkip_seq) (struct ieee80211_hw *hw, u8 hw_key_idx,u32 *iv32, u16 *iv16);
int (* set_rts_threshold) (struct ieee80211_hw *hw, u32 value);
int (* set_frag_threshold) (struct ieee80211_hw *hw, u32 value);
int (* set_retry_limit) (struct ieee80211_hw *hw,u32 short_retry, u32 long_retr);

7

Chapter 1. Basic hardware handling

void (* sta_notify) (struct ieee80211_hw *hw, struct ieee80211_vif *vif,enum sta_notify_cmd, const u8 *addr);
int (* conf_tx) (struct ieee80211_hw *hw, u16 queue,const struct ieee80211_tx_queue_params *params);
int (* get_tx_stats) (struct ieee80211_hw *hw,struct ieee80211_tx_queue_stats *stats);
u64 (* get_tsf) (struct ieee80211_hw *hw);
void (* reset_tsf) (struct ieee80211_hw *hw);
int (* tx_last_beacon) (struct ieee80211_hw *hw);
int (* ampdu_action) (struct ieee80211_hw *hw,enum ieee80211_ampdu_mlme_action action,const u8 *addr, u16 tid, u16 *ssn);

};

Members

tx

Handler that 802.11 module calls for each transmitted frame. skb contains the
buffer starting from the IEEE 802.11 header. The low-level driver should send
the frame out based on configuration in the TX control data. This handler
should, preferably, never fail and stop queues appropriately, more importantly,
however, it must never fail for A-MPDU-queues. Must be implemented and
atomic.

start

Called before the first netdevice attached to the hardware is enabled. This
should turn on the hardware and must turn on frame reception (for possibly
enabled monitor interfaces.) Returns negative error codes, these may be seen in
userspace, or zero. When the device is started it should not have a MAC
address to avoid acknowledging frames before a non-monitor device is added.
Must be implemented.

stop

Called after last netdevice attached to the hardware is disabled. This should
turn off the hardware (at least it must turn off frame reception.) May be called
right after add_interface if that rejects an interface. Must be implemented.

add_interface

Called when a netdevice attached to the hardware is enabled. Because it is not
called for monitor mode devices, open and stop must be implemented. The
driver should perform any initialization it needs before the device can be
enabled. The initial configuration for the interface is given in the conf
parameter. The callback may refuse to add an interface by returning a negative
error code (which will be seen in userspace.) Must be implemented.

8

Chapter 1. Basic hardware handling

remove_interface

Notifies a driver that an interface is going down. The stop callback is called
after this if it is the last interface and no monitor interfaces are present. When
all interfaces are removed, the MAC address in the hardware must be cleared
so the device no longer acknowledges packets, the mac_addr member of the
conf structure is, however, set to the MAC address of the device going away.
Hence, this callback must be implemented.

config

Handler for configuration requests. IEEE 802.11 code calls this function to
change hardware configuration, e.g., channel.

config_interface

Handler for configuration requests related to interfaces (e.g. BSSID changes.)

bss_info_changed

Handler for configuration requests related to BSS parameters that may vary
during BSS’s lifespan, and may affect low level driver (e.g. assoc/disassoc
status, erp parameters). This function should not be used if no BSS has been
set, unless for association indication. The changed parameter indicates which
of the bss parameters has changed when a call is made.

configure_filter

Configure the device’s RX filter. See the section “Frame filtering” for more
information. This callback must be implemented and atomic.

set_tim

Set TIM bit. mac80211 calls this function when a TIM bit must be set or
cleared for a given AID. Must be atomic.

set_key

See the section “Hardware crypto acceleration” This callback can sleep, and is
only called between add_interface and remove_interface calls, i.e. while the
interface with the given local_address is enabled.

update_tkip_key

See the section “Hardware crypto acceleration” This callback will be called in
the context of Rx. Called for drivers which set
IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.

9

Chapter 1. Basic hardware handling

hw_scan

Ask the hardware to service the scan request, no need to start the scan state
machine in stack. The scan must honour the channel configuration done by the
regulatory agent in the wiphy’s registered bands.

get_stats

return low-level statistics

get_tkip_seq

If your device implements TKIP encryption in hardware this callback should
be provided to read the TKIP transmit IVs (both IV32 and IV16) for the given
key from hardware.

set_rts_threshold

Configuration of RTS threshold (if device needs it)

set_frag_threshold

Configuration of fragmentation threshold. Assign this if the device does
fragmentation by itself; if this method is assigned then the stack will not do
fragmentation.

set_retry_limit

Configuration of retry limits (if device needs it)

sta_notify

Notifies low level driver about addition or removal of assocaited station or AP.

conf_tx

Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), bursting) for
a hardware TX queue. Must be atomic.

get_tx_stats

Get statistics of the current TX queue status. This is used to get number of
currently queued packets (queue length), maximum queue size (limit), and
total number of packets sent using each TX queue (count). The ’stats’ pointer
points to an array that has hw->queues + hw->ampdu_queues items.

get_tsf

Get the current TSF timer value from firmware/hardware. Currently, this is
only used for IBSS mode debugging and, as such, is not a required function.
Must be atomic.

10

Chapter 1. Basic hardware handling

reset_tsf

Reset the TSF timer and allow firmware/hardware to synchronize with other
STAs in the IBSS. This is only used in IBSS mode. This function is optional if
the firmware/hardware takes full care of TSF synchronization.

tx_last_beacon

Determine whether the last IBSS beacon was sent by us. This is needed only
for IBSS mode and the result of this function is used to determine whether to
reply to Probe Requests.

ampdu_action

Perform a certain A-MPDU action The RA/TID combination determines the
destination and TID we want the ampdu action to be performed for. The action
is defined through ieee80211_ampdu_mlme_action. Starting sequence number
(ssn) is the first frame we expect to perform the action on. notice that
TX/RX_STOP can pass NULL for this parameter.

Description

This structure contains various callbacks that the driver may handle or, in some
cases, must handle, for example to configure the hardware to a new channel or to
transmit a frame.

ieee80211_alloc_hw

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_alloc_hw — Allocate a new hardware device

11

Chapter 1. Basic hardware handling

Synopsis

struct ieee80211_hw * ieee80211_alloc_hw (size_t
priv_data_len, const struct ieee80211_ops * ops);

Arguments

priv_data_len

length of private data

ops

callbacks for this device

Description

This must be called once for each hardware device. The returned pointer must be
used to refer to this device when calling other functions. mac80211 allocates a
private data area for the driver pointed to by priv in struct ieee80211_hw, the size
of this area is given as priv_data_len.

ieee80211_register_hw

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_register_hw — Register hardware device

12

Chapter 1. Basic hardware handling

Synopsis

int ieee80211_register_hw (struct ieee80211_hw * hw);

Arguments

hw

the device to register as returned by ieee80211_alloc_hw

Description

You must call this function before any other functions in mac80211. Note that
before a hardware can be registered, you need to fill the contained wiphy’s
information.

ieee80211_get_tx_led_name

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_tx_led_name — get name of TX LED

Synopsis

char * ieee80211_get_tx_led_name (struct ieee80211_hw * hw);

13

Chapter 1. Basic hardware handling

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a transmit LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

ieee80211_get_rx_led_name

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_rx_led_name — get name of RX LED

Synopsis

char * ieee80211_get_rx_led_name (struct ieee80211_hw * hw);

Arguments

hw

the hardware to get the LED trigger name for

14

Chapter 1. Basic hardware handling

Description

mac80211 creates a receive LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

ieee80211_get_assoc_led_name

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_assoc_led_name — get name of association LED

Synopsis

char * ieee80211_get_assoc_led_name (struct ieee80211_hw *
hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a association LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the

15

Chapter 1. Basic hardware handling

name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

ieee80211_get_radio_led_name

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_radio_led_name — get name of radio LED

Synopsis

char * ieee80211_get_radio_led_name (struct ieee80211_hw *
hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a radio change LED trigger for each wireless hardware that can
be used to drive LEDs if your driver registers a LED device. This function returns
the name (or NULL if not configured for LEDs) of the trigger so you can
automatically link the LED device.

16

Chapter 1. Basic hardware handling

ieee80211_unregister_hw

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_unregister_hw — Unregister a hardware device

Synopsis

void ieee80211_unregister_hw (struct ieee80211_hw * hw);

Arguments

hw

the hardware to unregister

Description

This function instructs mac80211 to free allocated resources and unregister
netdevices from the networking subsystem.

ieee80211_free_hw

LINUX

17

Chapter 1. Basic hardware handling

Kernel Hackers ManualJanuary 2010

Name
ieee80211_free_hw — free hardware descriptor

Synopsis

void ieee80211_free_hw (struct ieee80211_hw * hw);

Arguments

hw

the hardware to free

Description

This function frees everything that was allocated, including the private data for the
driver. You must call ieee80211_unregister_hw before calling this function.

18

Chapter 2. PHY configuration
TBD

This chapter should describe PHY handling including start/stop callbacks and the
various structures used.

struct ieee80211_conf

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_conf — configuration of the device

Synopsis
struct ieee80211_conf {
int radio_enabled;
int beacon_int;
u16 listen_interval;
u32 flags;
int power_level;
int max_antenna_gain;
u8 antenna_sel_tx;
u8 antenna_sel_rx;
struct ieee80211_channel * channel;
struct ieee80211_ht_info ht_conf;
struct ieee80211_ht_bss_info ht_bss_conf;

};

Members

radio_enabled

when zero, driver is required to switch off the radio. TODO make a flag

19

Chapter 2. PHY configuration

beacon_int

beacon interval (TODO make interface config)

listen_interval

listen interval in units of beacon interval

flags

configuration flags defined above

power_level

requested transmit power (in dBm)

max_antenna_gain

maximum antenna gain (in dBi)

antenna_sel_tx

transmit antenna selection, 0: default/diversity, 1/2: antenna 0/1

antenna_sel_rx

receive antenna selection, like antenna_sel_tx

channel

the channel to tune to

ht_conf

describes current self configuration of 802.11n HT capabilies

ht_bss_conf

describes current BSS configuration of 802.11n HT parameters

Description

This struct indicates how the driver shall configure the hardware.

20

Chapter 2. PHY configuration

enum ieee80211_conf_flags

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_conf_flags — configuration flags

Synopsis
enum ieee80211_conf_flags {
IEEE80211_CONF_SHORT_SLOT_TIME,
IEEE80211_CONF_RADIOTAP,
IEEE80211_CONF_SUPPORT_HT_MODE,
IEEE80211_CONF_PS

};

Constants

IEEE80211_CONF_SHORT_SLOT_TIME

use 802.11g short slot time

IEEE80211_CONF_RADIOTAP

add radiotap header at receive time (if supported)

IEEE80211_CONF_SUPPORT_HT_MODE

use 802.11n HT capabilities (if supported)

IEEE80211_CONF_PS

Enable 802.11 power save mode

Description

Flags to define PHY configuration options

21

Chapter 2. PHY configuration

22

Chapter 3. Virtual interfaces
TBD

This chapter should describe virtual interface basics that are relevant to the driver
(VLANs, MGMT etc are not.) It should explain the use of the
add_iface/remove_iface callbacks as well as the interface configuration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate
chapter, a BIG FAT note should be here about this though and the recommendation
to allow only a single interface in STA mode at first!

enum ieee80211_if_types

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_if_types — types of 802.11 network interfaces

Synopsis
enum ieee80211_if_types {
IEEE80211_IF_TYPE_INVALID,
IEEE80211_IF_TYPE_AP,
IEEE80211_IF_TYPE_STA,
IEEE80211_IF_TYPE_IBSS,
IEEE80211_IF_TYPE_MESH_POINT,
IEEE80211_IF_TYPE_MNTR,
IEEE80211_IF_TYPE_WDS,
IEEE80211_IF_TYPE_VLAN

};

23

Chapter 3. Virtual interfaces

Constants

IEEE80211_IF_TYPE_INVALID

invalid interface type, not used by mac80211 itself

IEEE80211_IF_TYPE_AP

interface in AP mode.

IEEE80211_IF_TYPE_STA

interface in STA (client) mode.

IEEE80211_IF_TYPE_IBSS

interface in IBSS (ad-hoc) mode.

IEEE80211_IF_TYPE_MESH_POINT

802.11s mesh point

IEEE80211_IF_TYPE_MNTR

interface in monitor (rfmon) mode.

IEEE80211_IF_TYPE_WDS

interface in WDS mode.

IEEE80211_IF_TYPE_VLAN

VLAN interface bound to an AP, drivers will never see this type.

struct ieee80211_if_init_conf

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_if_init_conf — initial configuration of an interface

24

Chapter 3. Virtual interfaces

Synopsis
struct ieee80211_if_init_conf {
enum ieee80211_if_types type;
struct ieee80211_vif * vif;
void * mac_addr;

};

Members

type

one of enum ieee80211_if_types constants. Determines the type of
added/removed interface.

vif

pointer to a driver-use per-interface structure. The pointer itself is also used for
various functions including ieee80211_beacon_get and
ieee80211_get_buffered_bc.

mac_addr

pointer to MAC address of the interface. This pointer is valid until the interface
is removed (i.e. it cannot be used after remove_interface callback was
called for this interface).

Description
This structure is used in add_interface and remove_interface callbacks of
struct ieee80211_hw.

When you allow multiple interfaces to be added to your PHY, take care that the
hardware can actually handle multiple MAC addresses. However, also take care that
when there’s no interface left with mac_addr != NULL you remove the MAC address
from the device to avoid acknowledging packets in pure monitor mode.

25

Chapter 3. Virtual interfaces

struct ieee80211_if_conf

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_if_conf — configuration of an interface

Synopsis
struct ieee80211_if_conf {
u32 changed;
u8 * bssid;
u8 * ssid;
size_t ssid_len;

};

Members

changed

parameters that have changed, see enum ieee80211_if_conf_change.

bssid

BSSID of the network we are associated to/creating.

ssid

used (together with ssid_len) by drivers for hardware that generate beacons
independently. The pointer is valid only during the config_interface call,
so copy the value somewhere if you need it.

ssid_len

length of the ssid field.

26

Chapter 3. Virtual interfaces

Description
This structure is passed to the config_interface callback of struct
ieee80211_hw.

27

Chapter 3. Virtual interfaces

28

Chapter 4. Receive and transmit
processing

4.1. what should be here
TBD

This should describe the receive and transmit paths in mac80211/the drivers as well
as transmit status handling.

4.2. Frame format
As a general rule, when frames are passed between mac80211 and the driver, they
start with the IEEE 802.11 header and include the same octets that are sent over the
air except for the FCS which should be calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

The first exception is for hardware encryption and decryption offload where the
IV/ICV may or may not be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the driver
from mac80211 is the MSDU, not the MPDU.

Finally, for received frames, the driver is able to indicate that it has filled a radiotap
header and put that in front of the frame; if it does not do so then mac80211 may
add this under certain circumstances.

4.3. Alignment issues
TBD

4.4. Calling into mac80211 from interrupts
Only ieee80211_tx_status_irqsafe and ieee80211_rx_irqsafe can be
called in hardware interrupt context. The low-level driver must not call any other
functions in hardware interrupt context. If there is a need for such call, the low-level

29

Chapter 4. Receive and transmit processing

driver should first ACK the interrupt and perform the IEEE 802.11 code call after
this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If the driver opts to use the _irqsafe functions, it may not also use the
non-IRQ-safe functions!

4.5. functions/definitions

struct ieee80211_rx_status

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_rx_status — receive status

Synopsis
struct ieee80211_rx_status {
u64 mactime;
enum ieee80211_band band;
int freq;
int signal;
int noise;
int qual;
int antenna;
int rate_idx;
int flag;

};

Members

mactime

value in microseconds of the 64-bit Time Synchronization Function (TSF)
timer when the first data symbol (MPDU) arrived at the hardware.

30

Chapter 4. Receive and transmit processing

band

the active band when this frame was received

freq

frequency the radio was tuned to when receiving this frame, in MHz

signal

signal strength when receiving this frame, either in dBm, in dB or unspecified
depending on the hardware capabilities flags IEEE80211_HW_SIGNAL_*

noise

noise when receiving this frame, in dBm.

qual

overall signal quality indication, in percent (0-100).

antenna

antenna used

rate_idx

index of data rate into band’s supported rates

flag

RX_FLAG_*

Description

The low-level driver should provide this information (the subset supported by
hardware) to the 802.11 code with each received frame.

enum mac80211_rx_flags

LINUX

31

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJanuary 2010

Name
enum mac80211_rx_flags — receive flags

Synopsis
enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR,
RX_FLAG_DECRYPTED,
RX_FLAG_RADIOTAP,
RX_FLAG_MMIC_STRIPPED,
RX_FLAG_IV_STRIPPED,
RX_FLAG_FAILED_FCS_CRC,
RX_FLAG_FAILED_PLCP_CRC,
RX_FLAG_TSFT

};

Constants

RX_FLAG_MMIC_ERROR

Michael MIC error was reported on this frame. Use together with
RX_FLAG_MMIC_STRIPPED.

RX_FLAG_DECRYPTED

This frame was decrypted in hardware.

RX_FLAG_RADIOTAP

This frame starts with a radiotap header.

RX_FLAG_MMIC_STRIPPED

the Michael MIC is stripped off this frame, verification has been done by the
hardware.

RX_FLAG_IV_STRIPPED

The IV/ICV are stripped from this frame. If this flag is set, the stack cannot do
any replay detection hence the driver or hardware will have to do that.

32

Chapter 4. Receive and transmit processing

RX_FLAG_FAILED_FCS_CRC

Set this flag if the FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC

Set this flag if the PCLP check failed on the frame.

RX_FLAG_TSFT

The timestamp passed in the RX status (mactime field) is valid. This is useful
in monitor mode and necessary for beacon frames to enable IBSS merging.

Description

These flags are used with the flag member of struct ieee80211_rx_status.

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h

Name
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h
— Document generation inconsistency

Oops

Warning
The template for this document tried to insert the structured
comment from the file
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h

at this point, but none was found. This dummy section is
inserted to allow generation to continue.

33

Chapter 4. Receive and transmit processing

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h

Name
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h
— Document generation inconsistency

Oops

Warning
The template for this document tried to insert the structured
comment from the file
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h

at this point, but none was found. This dummy section is
inserted to allow generation to continue.

ieee80211_rx

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_rx — receive frame

34

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_rx (struct ieee80211_hw * hw, struct sk_buff *
skb, struct ieee80211_rx_status * status);

Arguments

hw

the hardware this frame came in on

skb

the buffer to receive, owned by mac80211 after this call

status

status of this frame; the status pointer need not be valid after this function
returns

Description

Use this function to hand received frames to mac80211. The receive buffer in skb

must start with an IEEE 802.11 header or a radiotap header if RX_FLAG_RADIOTAP
is set in the status flags.

This function may not be called in IRQ context. Calls to this function for a single
hardware must be synchronized against each other. Calls to this function and
ieee80211_rx_irqsafe may not be mixed for a single hardware.

ieee80211_rx_irqsafe

LINUX

35

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJanuary 2010

Name
ieee80211_rx_irqsafe — receive frame

Synopsis

void ieee80211_rx_irqsafe (struct ieee80211_hw * hw, struct
sk_buff * skb, struct ieee80211_rx_status * status);

Arguments

hw

the hardware this frame came in on

skb

the buffer to receive, owned by mac80211 after this call

status

status of this frame; the status pointer need not be valid after this function
returns and is not freed by mac80211, it is recommended that it points to a
stack area

Description

Like ieee80211_rx but can be called in IRQ context (internally defers to a
tasklet.)

Calls to this function and ieee80211_rx may not be mixed for a single hardware.

36

Chapter 4. Receive and transmit processing

ieee80211_tx_status

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_tx_status — transmit status callback

Synopsis

void ieee80211_tx_status (struct ieee80211_hw * hw, struct
sk_buff * skb);

Arguments

hw

the hardware the frame was transmitted by

skb

the frame that was transmitted, owned by mac80211 after this call

Description

Call this function for all transmitted frames after they have been transmitted. It is
permissible to not call this function for multicast frames but this can affect statistics.

This function may not be called in IRQ context. Calls to this function for a single
hardware must be synchronized against each other. Calls to this function and
ieee80211_tx_status_irqsafe may not be mixed for a single hardware.

37

Chapter 4. Receive and transmit processing

ieee80211_tx_status_irqsafe

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_tx_status_irqsafe — IRQ-safe transmit status callback

Synopsis

void ieee80211_tx_status_irqsafe (struct ieee80211_hw * hw,
struct sk_buff * skb);

Arguments

hw

the hardware the frame was transmitted by

skb

the frame that was transmitted, owned by mac80211 after this call

Description

Like ieee80211_tx_status but can be called in IRQ context (internally defers to
a tasklet.)

Calls to this function and ieee80211_tx_status may not be mixed for a single
hardware.

38

Chapter 4. Receive and transmit processing

ieee80211_rts_get

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_rts_get — RTS frame generation function

Synopsis

void ieee80211_rts_get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, const void * frame, size_t frame_len,
const struct ieee80211_tx_info * frame_txctl, struct
ieee80211_rts * rts);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame

pointer to the frame that is going to be protected by the RTS.

frame_len

the frame length (in octets).

frame_txctl

struct ieee80211_tx_info of the frame.

rts

The buffer where to store the RTS frame.

39

Chapter 4. Receive and transmit processing

Description
If the RTS frames are generated by the host system (i.e., not in hardware/firmware),
the low-level driver uses this function to receive the next RTS frame from the
802.11 code. The low-level is responsible for calling this function before and RTS
frame is needed.

ieee80211_rts_duration

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_rts_duration — Get the duration field for an RTS frame

Synopsis

__le16 ieee80211_rts_duration (struct ieee80211_hw * hw,
struct ieee80211_vif * vif, size_t frame_len, const struct
ieee80211_tx_info * frame_txctl);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame that is going to be protected by the RTS.

40

Chapter 4. Receive and transmit processing

frame_txctl

struct ieee80211_tx_info of the frame.

Description
If the RTS is generated in firmware, but the host system must provide the duration
field, the low-level driver uses this function to receive the duration field value in
little-endian byteorder.

ieee80211_ctstoself_get

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_ctstoself_get — CTS-to-self frame generation function

Synopsis

void ieee80211_ctstoself_get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, const void * frame, size_t frame_len,
const struct ieee80211_tx_info * frame_txctl, struct
ieee80211_cts * cts);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

41

Chapter 4. Receive and transmit processing

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame

pointer to the frame that is going to be protected by the CTS-to-self.

frame_len

the frame length (in octets).

frame_txctl

struct ieee80211_tx_info of the frame.

cts

The buffer where to store the CTS-to-self frame.

Description
If the CTS-to-self frames are generated by the host system (i.e., not in
hardware/firmware), the low-level driver uses this function to receive the next
CTS-to-self frame from the 802.11 code. The low-level is responsible for calling
this function before and CTS-to-self frame is needed.

ieee80211_ctstoself_duration

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_ctstoself_duration — Get the duration field for a
CTS-to-self frame

42

Chapter 4. Receive and transmit processing

Synopsis

__le16 ieee80211_ctstoself_duration (struct ieee80211_hw * hw,
struct ieee80211_vif * vif, size_t frame_len, const struct
ieee80211_tx_info * frame_txctl);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame that is going to be protected by the CTS-to-self.

frame_txctl

struct ieee80211_tx_info of the frame.

Description
If the CTS-to-self is generated in firmware, but the host system must provide the
duration field, the low-level driver uses this function to receive the duration field
value in little-endian byteorder.

ieee80211_generic_frame_duration

LINUX

43

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJanuary 2010

Name
ieee80211_generic_frame_duration — Calculate the duration field for a
frame

Synopsis

__le16 ieee80211_generic_frame_duration (struct ieee80211_hw *
hw, struct ieee80211_vif * vif, size_t frame_len, struct
ieee80211_rate * rate);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

frame_len

the length of the frame.

rate

the rate at which the frame is going to be transmitted.

Description
Calculate the duration field of some generic frame, given its length and transmission
rate (in 100kbps).

44

Chapter 4. Receive and transmit processing

ieee80211_get_hdrlen_from_skb

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_hdrlen_from_skb — get header length from data

Synopsis

unsigned int ieee80211_get_hdrlen_from_skb (const struct
sk_buff * skb);

Arguments

skb

the frame

Description

Given an skb with a raw 802.11 header at the data pointer this function returns the
802.11 header length in bytes (not including encryption headers). If the data in the
sk_buff is too short to contain a valid 802.11 header the function returns 0.

ieee80211_get_hdrlen

LINUX

45

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_hdrlen — get header length from frame control

Synopsis

int ieee80211_get_hdrlen (u16 fc);

Arguments

fc

the frame control field (in CPU endianness)

Description

This function returns the 802.11 header length in bytes (not including encryption
headers.)

ieee80211_wake_queue

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_wake_queue — wake specific queue

46

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_wake_queue (struct ieee80211_hw * hw, int
queue);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description
Drivers should use this function instead of netif_wake_queue.

ieee80211_stop_queue

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_stop_queue — stop specific queue

Synopsis

void ieee80211_stop_queue (struct ieee80211_hw * hw, int
queue);

47

Chapter 4. Receive and transmit processing

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description
Drivers should use this function instead of netif_stop_queue.

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h

Name
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h
— Document generation inconsistency

Oops

Warning
The template for this document tried to insert the structured
comment from the file
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h

at this point, but none was found. This dummy section is
inserted to allow generation to continue.

48

Chapter 4. Receive and transmit processing

ieee80211_stop_queues

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_stop_queues — stop all queues

Synopsis

void ieee80211_stop_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

Description
Drivers should use this function instead of netif_stop_queue.

ieee80211_wake_queues

LINUX

49

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJanuary 2010

Name
ieee80211_wake_queues — wake all queues

Synopsis

void ieee80211_wake_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

Description
Drivers should use this function instead of netif_wake_queue.

50

Chapter 5. Frame filtering

mac80211 requires to see many management frames for proper operation, and users
may want to see many more frames when in monitor mode. However, for best CPU
usage and power consumption, having as few frames as possible percolate through
the stack is desirable. Hence, the hardware should filter as much as possible.

To achieve this, mac80211 uses filter flags (see below) to tell the driver’s
configure_filter function which frames should be passed to mac80211 and
which should be filtered out.

The configure_filter callback is invoked with the parameters mc_count and
mc_list for the combined multicast address list of all virtual interfaces,
changed_flags telling which flags were changed and total_flags with the new
flag states.

If your device has no multicast address filters your driver will need to check both
the FIF_ALLMULTI flag and the mc_count parameter to see whether multicast
frames should be accepted or dropped.

All unsupported flags in total_flags must be cleared. Hardware does not support
a flag if it is incapable of _passing_ the frame to the stack. Otherwise the driver
must ignore the flag, but not clear it. You must _only_ clear the flag (announce no
support for the flag to mac80211) if you are not able to pass the packet type to the
stack (so the hardware always filters it). So for example, you should clear
FIF_CONTROL, if your hardware always filters control frames. If your hardware
always passes control frames to the kernel and is incapable of filtering them, you do
not clear the FIF_CONTROL flag. This rule applies to all other FIF flags as well.

enum ieee80211_filter_flags

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_filter_flags — hardware filter flags

Synopsis
enum ieee80211_filter_flags {

51

Chapter 5. Frame filtering

FIF_PROMISC_IN_BSS,
FIF_ALLMULTI,
FIF_FCSFAIL,
FIF_PLCPFAIL,
FIF_BCN_PRBRESP_PROMISC,
FIF_CONTROL,
FIF_OTHER_BSS

};

Constants

FIF_PROMISC_IN_BSS

promiscuous mode within your BSS, think of the BSS as your network
segment and then this corresponds to the regular ethernet device promiscuous
mode.

FIF_ALLMULTI

pass all multicast frames, this is used if requested by the user or if the
hardware is not capable of filtering by multicast address.

FIF_FCSFAIL

pass frames with failed FCS (but you need to set the
RX_FLAG_FAILED_FCS_CRC for them)

FIF_PLCPFAIL

pass frames with failed PLCP CRC (but you need to set the
RX_FLAG_FAILED_PLCP_CRC for them

FIF_BCN_PRBRESP_PROMISC

This flag is set during scanning to indicate to the hardware that it should not
filter beacons or probe responses by BSSID. Filtering them can greatly reduce
the amount of processing mac80211 needs to do and the amount of CPU
wakeups, so you should honour this flag if possible.

FIF_CONTROL

pass control frames, if PROMISC_IN_BSS is not set then only those addressed
to this station

FIF_OTHER_BSS

pass frames destined to other BSSes

52

Chapter 5. Frame filtering

Frame filtering

These flags determine what the filter in hardware should be programmed to let
through and what should not be passed to the stack. It is always safe to pass more
frames than requested, but this has negative impact on power consumption.

53

Chapter 5. Frame filtering

54

II. Advanced driver interface
Table of Contents

6. Hardware crypto acceleration ..57
7. Multiple queues and QoS support ..63
8. Access point mode support..67
9. Supporting multiple virtual interfaces...71
10. Hardware scan offload...73

Information contained within this part of the book is of interest only for advanced
interaction of mac80211 with drivers to exploit more hardware capabilities and
improve performance.

Chapter 6. Hardware crypto
acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs
for encryption and decryption operations.

The set_key callback in the struct ieee80211_ops for a given device is called to
enable hardware acceleration of encryption and decryption. The callback takes an
address parameter that will be the broadcast address for default keys, the other
station’s hardware address for individual keys or the zero address for keys that will
be used only for transmission. Multiple transmission keys with the same key index
may be used when VLANs are configured for an access point.

The local_address parameter will always be set to our own address, this is only
relevant if you support multiple local addresses.

When transmitting, the TX control data will use the hw_key_idx selected by the
driver by modifying the struct ieee80211_key_conf pointed to by the key parameter
to the set_key function.

The set_key call for the SET_KEY command should return 0 if the key is now in
use, -EOPNOTSUPP or -ENOSPC if it couldn’t be added; if you return 0 then
hw_key_idx must be assigned to the hardware key index, you are free to use the full
u8 range.

When the cmd is DISABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if a key for it has been
uploaded to hardware, the stack will not make any decision based on whether a key
has been uploaded or not but rather based on the receive flags.

The struct ieee80211_key_conf structure pointed to by the key parameter is
guaranteed to be valid until another call to set_key removes it, but it can only be
used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption
acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key handler.
The update_tkip_key call updates the driver with the new phase 1 key. This
happens everytime the iv16 wraps around (every 65536 packets). The set_key call
will happen only once for each key (unless the AP did rekeying), it will not include
a valid phase 1 key. The valid phase 1 key is provided by udpate_tkip_key only. The
trigger that makes mac80211 call this handler is software decryption with wrap
around of iv16.

57

Chapter 6. Hardware crypto acceleration

enum set_key_cmd

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum set_key_cmd — key command

Synopsis
enum set_key_cmd {
SET_KEY,
DISABLE_KEY

};

Constants

SET_KEY

a key is set

DISABLE_KEY

a key must be disabled

Description

Used with the set_key callback in struct ieee80211_ops, this indicates whether a
key is being removed or added.

struct ieee80211_key_conf

LINUX

58

Chapter 6. Hardware crypto acceleration

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_key_conf — key information

Synopsis
struct ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];

};

Members

alg

The key algorithm.

hw_key_idx

To be set by the driver, this is the key index the driver wants to be given when a
frame is transmitted and needs to be encrypted in hardware.

flags

key flags, see enum ieee80211_key_flags.

keyidx

the key index (0-3)

keylen

key material length

key[0]

key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)

59

Chapter 6. Hardware crypto acceleration

Description

This key information is given by mac80211 to the driver by the set_key callback
in struct ieee80211_ops.

data block
- Temporal Encryption Key (128 bits) - Temporal Authenticator Tx MIC Key (64
bits) - Temporal Authenticator Rx MIC Key (64 bits)

enum ieee80211_key_alg

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_key_alg — key algorithm

Synopsis
enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP

};

Constants

ALG_WEP

WEP40 or WEP104

ALG_TKIP

TKIP

60

Chapter 6. Hardware crypto acceleration

ALG_CCMP

CCMP (AES)

enum ieee80211_key_flags

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_key_flags — key flags

Synopsis
enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA,
IEEE80211_KEY_FLAG_GENERATE_IV,
IEEE80211_KEY_FLAG_GENERATE_MMIC,
IEEE80211_KEY_FLAG_PAIRWISE

};

Constants

IEEE80211_KEY_FLAG_WMM_STA

Set by mac80211, this flag indicates that the STA this key will be used with
could be using QoS.

IEEE80211_KEY_FLAG_GENERATE_IV

This flag should be set by the driver to indicate that it requires IV generation
for this particular key.

IEEE80211_KEY_FLAG_GENERATE_MMIC

This flag should be set by the driver for a TKIP key if it requires Michael MIC
generation in software.

61

Chapter 6. Hardware crypto acceleration

IEEE80211_KEY_FLAG_PAIRWISE

Set by mac80211, this flag indicates that the key is pairwise rather then a
shared key.

Description

These flags are used for communication about keys between the driver and
mac80211, with the flags parameter of struct ieee80211_key_conf.

62

Chapter 7. Multiple queues and QoS
support

TBD

struct ieee80211_tx_queue_params

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct ieee80211_tx_queue_params — transmit queue configuration

Synopsis
struct ieee80211_tx_queue_params {
u16 txop;
u16 cw_min;
u16 cw_max;
u8 aifs;

};

Members

txop

maximum burst time in units of 32 usecs, 0 meaning disabled

cw_min

minimum contention window [a value of the form 2^n-1 in the range 1..32767]

cw_max

maximum contention window [like cw_min]

63

Chapter 7. Multiple queues and QoS support

aifs

arbitration interface space [0..255]

Description

The information provided in this structure is required for QoS transmit queue
configuration. Cf. IEEE 802.11 7.3.2.29.

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h

Name
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h
— Document generation inconsistency

Oops

Warning
The template for this document tried to insert the structured
comment from the file
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h

at this point, but none was found. This dummy section is
inserted to allow generation to continue.

/usr/src/packages/BUILD/linux-2.6.27.42-
0.1//include/net/mac80211.h

64

Chapter 7. Multiple queues and QoS support

Name
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h
— Document generation inconsistency

Oops

Warning
The template for this document tried to insert the structured
comment from the file
/usr/src/packages/BUILD/linux-2.6.27.42-0.1//include/net/mac80211.h

at this point, but none was found. This dummy section is
inserted to allow generation to continue.

65

Chapter 7. Multiple queues and QoS support

66

Chapter 8. Access point mode
support

TBD

Some parts of the if_conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

ieee80211_get_buffered_bc

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_get_buffered_bc — accessing buffered broadcast and multicast
frames

Synopsis

struct sk_buff * ieee80211_get_buffered_bc (struct
ieee80211_hw * hw, struct ieee80211_vif * vif);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

67

Chapter 8. Access point mode support

Description
Function for accessing buffered broadcast and multicast frames. If
hardware/firmware does not implement buffering of broadcast/multicast frames
when power saving is used, 802.11 code buffers them in the host memory. The
low-level driver uses this function to fetch next buffered frame. In most cases, this is
used when generating beacon frame. This function returns a pointer to the next
buffered skb or NULL if no more buffered frames are available.

Note
buffered frames are returned only after DTIM beacon frame was generated with
ieee80211_beacon_get and the low-level driver must thus call
ieee80211_beacon_get first. ieee80211_get_buffered_bc returns NULL if
the previous generated beacon was not DTIM, so the low-level driver does not need
to check for DTIM beacons separately and should be able to use common code for
all beacons.

ieee80211_beacon_get

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_beacon_get — beacon generation function

Synopsis

struct sk_buff * ieee80211_beacon_get (struct ieee80211_hw *
hw, struct ieee80211_vif * vif);

68

Chapter 8. Access point mode support

Arguments

hw

pointer obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from struct ieee80211_if_init_conf.

Description
If the beacon frames are generated by the host system (i.e., not in
hardware/firmware), the low-level driver uses this function to receive the next
beacon frame from the 802.11 code. The low-level is responsible for calling this
function before beacon data is needed (e.g., based on hardware interrupt). Returned
skb is used only once and low-level driver is responsible of freeing it.

69

Chapter 8. Access point mode support

70

Chapter 9. Supporting multiple virtual
interfaces

TBD

Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses
here, note which configurations are supported by mac80211, add notes about
supporting hw crypto with it.

71

Chapter 9. Supporting multiple virtual interfaces

72

Chapter 10. Hardware scan offload
TBD

ieee80211_scan_completed

LINUX

Kernel Hackers ManualJanuary 2010

Name
ieee80211_scan_completed — completed hardware scan

Synopsis

void ieee80211_scan_completed (struct ieee80211_hw * hw);

Arguments

hw

the hardware that finished the scan

Description

When hardware scan offload is used (i.e. the hw_scan callback is assigned) this
function needs to be called by the driver to notify mac80211 that the scan finished.

73

Chapter 10. Hardware scan offload

74

III. Rate control interface
Table of Contents

11. dummy chapter ..77

TBD

This part of the book describes the rate control algorithm interface and how it
relates to mac80211 and drivers.

Chapter 11. dummy chapter
TBD

77

Chapter 11. dummy chapter

78

IV. Internals
Table of Contents

12. Key handling...81
13. Receive processing..83
14. Transmit processing...85
15. Station info handling..87
16. Synchronisation..97

TBD

This part of the book describes mac80211 internals.

Chapter 12. Key handling

12.1. Key handling basics
Key handling in mac80211 is done based on per-interface (sub_if_data) keys and
per-station keys. Since each station belongs to an interface, each station key also
belongs to that interface.

Hardware acceleration is done on a best-effort basis, for each key that is eligible the
hardware is asked to enable that key but if it cannot do that they key is simply kept
for software encryption. There is currently no way of knowing this except by
looking into debugfs.

All key operations are protected internally so you can call them at any time.

Within mac80211, key references are, just as STA structure references, protected by
RCU. Note, however, that some things are unprotected, namely the key->sta
dereferences within the hardware acceleration functions. This means that
sta_info_destroy must flush the key todo list.

All the direct key list manipulation functions must not sleep because they can
operate on STA info structs that are protected by RCU.

12.2. MORE TBD
TBD

81

Chapter 12. Key handling

82

Chapter 13. Receive processing
TBD

83

Chapter 13. Receive processing

84

Chapter 14. Transmit processing
TBD

85

Chapter 14. Transmit processing

86

Chapter 15. Station info handling

15.1. Programming information

struct sta_info

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct sta_info — STA information

Synopsis
struct sta_info {
struct list_head list;
struct sta_info * hnext;
struct ieee80211_local * local;
struct ieee80211_sub_if_data * sdata;
struct ieee80211_key * key;
struct rate_control_ref * rate_ctrl;
void * rate_ctrl_priv;
spinlock_t lock;
spinlock_t flaglock;
struct ieee80211_ht_info ht_info;
u64 supp_rates[IEEE80211_NUM_BANDS];
u8 addr[ETH_ALEN];
u16 aid;
u16 listen_interval;
u8 pin_status;
u32 flags;
struct sk_buff_head ps_tx_buf;
struct sk_buff_head tx_filtered;
unsigned long rx_packets;
unsigned long rx_bytes;
unsigned long wep_weak_iv_count;
unsigned long last_rx;
unsigned long num_duplicates;

87

Chapter 15. Station info handling

unsigned long rx_fragments;
unsigned long rx_dropped;
int last_signal;
int last_qual;
int last_noise;
__le16 last_seq_ctrl[NUM_RX_DATA_QUEUES];

#ifdef CONFIG_MAC80211_DEBUG_COUNTERS
unsigned int wme_rx_queue[NUM_RX_DATA_QUEUES];

#endif
unsigned long tx_filtered_count;
unsigned long tx_retry_failed;
unsigned long tx_retry_count;
u32 tx_num_consecutive_failures;
u32 tx_num_mpdu_ok;
u32 tx_num_mpdu_fail;
unsigned int fail_avg;
unsigned long tx_packets;
unsigned long tx_bytes;
unsigned long tx_fragments;
int txrate_idx;
int last_txrate_idx;

#ifdef CONFIG_MAC80211_DEBUG_COUNTERS
unsigned int wme_tx_queue[NUM_RX_DATA_QUEUES];

#endif
struct sta_ampdu_mlme ampdu_mlme;
u8 timer_to_tid[STA_TID_NUM];
u8 tid_to_tx_q[STA_TID_NUM];

#ifdef CONFIG_MAC80211_MESH
__le16 llid;
__le16 plid;
__le16 reason;
u8 plink_retries;
bool ignore_plink_timer;
enum plink_state plink_state;
u32 plink_timeout;
struct timer_list plink_timer;

#endif
#ifdef CONFIG_MAC80211_DEBUGFS
struct sta_info_debugfsdentries debugfs;

#endif
};

88

Chapter 15. Station info handling

Members

list

global linked list entry

hnext

hash table linked list pointer

local

pointer to the global information

sdata

TBD

key

TBD

rate_ctrl

TBD

rate_ctrl_priv

TBD

lock

used for locking all fields that require locking, see comments in the header file.

flaglock

spinlock for flags accesses

ht_info

HT capabilities of this STA

supp_rates[IEEE80211_NUM_BANDS]

Bitmap of supported rates (per band)

addr[ETH_ALEN]

MAC address of this STA

89

Chapter 15. Station info handling

aid

STA’s unique AID (1..2007, 0 = not assigned yet), only used in AP (and
IBSS?) mode

listen_interval

TBD

pin_status

TBD

flags

STA flags, see enum ieee80211_sta_info_flags

ps_tx_buf

buffer of frames to transmit to this station when it leaves power saving state

tx_filtered

buffer of frames we already tried to transmit but were filtered by hardware due
to STA having entered power saving state

rx_packets

Number of MSDUs received from this STA

rx_bytes

Number of bytes received from this STA

wep_weak_iv_count

TBD

last_rx

TBD

num_duplicates

number of duplicate frames received from this STA

rx_fragments

number of received MPDUs

rx_dropped

number of dropped MPDUs from this STA

90

Chapter 15. Station info handling

last_signal

signal of last received frame from this STA

last_qual

qual of last received frame from this STA

last_noise

noise of last received frame from this STA

last_seq_ctrl[NUM_RX_DATA_QUEUES]

last received seq/frag number from this STA (per RX queue)

wme_rx_queue[NUM_RX_DATA_QUEUES]

TBD

tx_filtered_count

TBD

tx_retry_failed

TBD

tx_retry_count

TBD

tx_num_consecutive_failures

TBD

tx_num_mpdu_ok

TBD

tx_num_mpdu_fail

TBD

fail_avg

moving percentage of failed MSDUs

tx_packets

number of RX/TX MSDUs

tx_bytes

TBD

91

Chapter 15. Station info handling

tx_fragments

number of transmitted MPDUs

txrate_idx

TBD

last_txrate_idx

TBD

wme_tx_queue[NUM_RX_DATA_QUEUES]

TBD

ampdu_mlme

TBD

timer_to_tid[STA_TID_NUM]

identity mapping to ID timers

tid_to_tx_q[STA_TID_NUM]

map tid to tx queue

llid

Local link ID

plid

Peer link ID

reason

Cancel reason on PLINK_HOLDING state

plink_retries

Retries in establishment

ignore_plink_timer

TBD

plink_state

TBD

plink_timeout

TBD

92

Chapter 15. Station info handling

plink_timer

TBD

debugfs

debug filesystem info

Description

This structure collects information about a station that mac80211 is communicating
with.

enum ieee80211_sta_info_flags

LINUX

Kernel Hackers ManualJanuary 2010

Name
enum ieee80211_sta_info_flags — Stations flags

Synopsis
enum ieee80211_sta_info_flags {
WLAN_STA_AUTH,
WLAN_STA_ASSOC,
WLAN_STA_PS,
WLAN_STA_AUTHORIZED,
WLAN_STA_SHORT_PREAMBLE,
WLAN_STA_ASSOC_AP,
WLAN_STA_WME,
WLAN_STA_WDS,
WLAN_STA_PSPOLL,
WLAN_STA_CLEAR_PS_FILT

};

93

Chapter 15. Station info handling

Constants

WLAN_STA_AUTH

Station is authenticated.

WLAN_STA_ASSOC

Station is associated.

WLAN_STA_PS

Station is in power-save mode

WLAN_STA_AUTHORIZED

Station is authorized to send/receive traffic. This bit is always checked so
needs to be enabled for all stations when virtual port control is not in use.

WLAN_STA_SHORT_PREAMBLE

Station is capable of receiving short-preamble frames.

WLAN_STA_ASSOC_AP

We’re associated to that station, it is an AP.

WLAN_STA_WME

Station is a QoS-STA.

WLAN_STA_WDS

Station is one of our WDS peers.

WLAN_STA_PSPOLL

Station has just PS-polled us.

WLAN_STA_CLEAR_PS_FILT

Clear PS filter in hardware (using the
IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next frame to
this station is transmitted.

Description

These flags are used with struct sta_info’s flags member.

94

Chapter 15. Station info handling

15.2. STA information lifetime rules
STA info structures (struct sta_info) are managed in a hash table for faster lookup
and a list for iteration. They are managed using RCU, i.e. access to the list and hash
table is protected by RCU.

Upon allocating a STA info structure with sta_info_alloc, the caller owns that
structure. It must then either destroy it using sta_info_destroy (which is pretty
useless) or insert it into the hash table using sta_info_insert which demotes the
reference from ownership to a regular RCU-protected reference; if the function is
called without protection by an RCU critical section the reference is instantly
invalidated. Note that the caller may not do much with the STA info before inserting
it, in particular, it may not start any mesh peer link management or add encryption
keys.

When the insertion fails (sta_info_insert) returns non-zero), the structure will
have been freed by sta_info_insert!

Because there are debugfs entries for each station, and adding those must be able to
sleep, it is also possible to “pin” a station entry, that means it can be removed from
the hash table but not be freed. See the comment in __sta_info_unlink for more
information, this is an internal capability only.

In order to remove a STA info structure, the caller needs to first unlink it
(sta_info_unlink) from the list and hash tables and then destroy it;
sta_info_destroy will wait for an RCU grace period to elapse before actually
freeing it. Due to the pinning and the possibility of multiple callers trying to remove
the same STA info at the same time, sta_info_unlink can clear the STA info
pointer it is passed to indicate that the STA info is owned by somebody else now.

If sta_info_unlink did not clear the pointer then the caller owns the STA info
structure now and is responsible of destroying it with a call to sta_info_destroy.

In all other cases, there is no concept of ownership on a STA entry, each structure is
owned by the global hash table/list until it is removed. All users of the structure
need to be RCU protected so that the structure won’t be freed before they are done
using it.

95

Chapter 15. Station info handling

96

Chapter 16. Synchronisation
TBD

Locking, lots of RCU

97

Chapter 16. Synchronisation

98

	The mac80211 subsystem for kernel developers
	Table of Contents
	I. The basic mac80211 driver interface
	Table of Contents
	Chapter 1. Basic hardware handling
	struct ieee80211hw
	LINUX
	Name
	Synopsis
	Members
	Description
	NOTICE

	enum ieee80211hwflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	SETIEEE80211DEV
	LINUX
	Name
	Synopsis
	Arguments

	SETIEEE80211PERMADDR
	LINUX
	Name
	Synopsis
	Arguments

	struct ieee80211ops
	LINUX
	Name
	Synopsis
	Members
	Description

	ieee80211allochw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211registerhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gettxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getrxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getassocledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getradioledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211unregisterhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211freehw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 2. PHY configuration
	struct ieee80211conf
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211confflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 3. Virtual interfaces
	enum ieee80211iftypes
	LINUX
	Name
	Synopsis
	Constants

	struct ieee80211ifinitconf
	LINUX
	Name
	Synopsis
	Members
	Description

	struct ieee80211ifconf
	LINUX
	Name
	Synopsis
	Members
	Description

	Chapter 4. Receive and transmit processing
	4.1. what should be here
	4.2. Frame format
	4.3. Alignment issues
	4.4. Calling into mac80211 from interrupts
	4.5. functions/definitions
	struct ieee80211rxstatus
	LINUX
	Name
	Synopsis
	Members
	Description

	enum mac80211rxflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	/usr/src/packages/BUILD/linux2.6.27.420.1//include/net/mac80211.h
	Name
	Oops

	/usr/src/packages/BUILD/linux2.6.27.420.1//include/net/mac80211.h
	Name
	Oops

	ieee80211rx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rxirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatusirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211genericframeduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gethdrlenfromskb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gethdrlen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211wakequeue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211stopqueue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	/usr/src/packages/BUILD/linux2.6.27.420.1//include/net/mac80211.h
	Name
	Oops

	ieee80211stopqueues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211wakequeues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 5. Frame filtering
	enum ieee80211filterflags
	LINUX
	Name
	Synopsis
	Constants
	Frame filtering

	II. Advanced driver interface
	Table of Contents
	Chapter 6. Hardware crypto acceleration
	enum setkeycmd
	LINUX
	Name
	Synopsis
	Constants
	Description

	struct ieee80211keyconf
	LINUX
	Name
	Synopsis
	Members
	Description
	data block

	enum ieee80211keyalg
	LINUX
	Name
	Synopsis
	Constants

	enum ieee80211keyflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 7. Multiple queues and QoS support
	struct ieee80211txqueueparams
	LINUX
	Name
	Synopsis
	Members
	Description

	/usr/src/packages/BUILD/linux2.6.27.420.1//include/net/mac80211.h
	Name
	Oops

	/usr/src/packages/BUILD/linux2.6.27.420.1//include/net/mac80211.h
	Name
	Oops

	Chapter 8. Access point mode support
	ieee80211getbufferedbc
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	ieee80211beaconget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 9. Supporting multiple virtual interfaces
	Chapter 10. Hardware scan offload
	ieee80211scancompleted
	LINUX
	Name
	Synopsis
	Arguments
	Description

	III. Rate control interface
	Table of Contents
	Chapter 11. dummy chapter
	IV. Internals
	Table of Contents
	Chapter 12. Key handling
	12.1. Key handling basics
	12.2. MORE TBD

	Chapter 13. Receive processing
	Chapter 14. Transmit processing
	Chapter 15. Station info handling
	15.1. Programming information
	struct stainfo
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211stainfoflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	15.2. STA information lifetime rules

	Chapter 16. Synchronisation

