Linux Filesystems API

Linux Filesystems API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. The Linux VFS..... . N |
1.1. The FIleSyStem tYPeS....cccuvteriieeriieeeiieeiieeeieeeriteeeieeesireeeaeeesereeeareesaeeenenes 1
ENUM POSTLIVE_AOP_TEIUTTLS ...vveenirieeiiieeirieeireenieeeiteesteeenseeesseeenseeesseeennne 1
INC_ NIINK oo e e e e e e e e e e e e e ae e e eeaaeeenaen 2
Arop_NINK ..cooiiii e 2
ClEAr NIINK . c.eeiieiiieee et e e e e e e et e e e e eeeeeeeeaaeaaes 3
INOAE_INC_IVETSION cuiviiieeiiiieeeiiieeeeireeeesiteeeeetteeeesareeeesesaeeeessaeeeessaeaanns 4
1.2. The Directory Cachecocueiciiiiiiniiiiiiieneeeeeeeeeeeeeeeee e 5
A ANVALIAALE ..ot e e e e e e e s 5
SHIINK_ ACACHE SD et e e e e e e e ereeaaans 6
NAVE SUDIMIOUINESceieeiiiiiiteeee ettt e et e et ettt e e e e eeeeeteaaaaeneseeeas 7
shrink_dcache_parentc..ccocuerviieiiiniiniiinieieneceeeeeee e 8
AAlIOC .. it e e e et aeas 8
QU INSTANTIALE «eeevveeeee ettt e e e e e e e e eeeeee e aaeseeeeereeennnnanees 9
A AlIOC TOOL ettt e e e e e e e et et areeeeeeeeeeeeeneeanans 10
d_allOC_ANONueiiiieiiiie et e e earaaeeas 11
A_SPIICE_AlIAS ...eeeneiieiiieeee e 12
A_add_Cleiiieeceee e 13
(o I (070] 11§ o SRS 14
A_VaAlIAALEeeeeiiee et et e e e e e earaaeeas 16
[6 (51 (< TP UURRTRPPRTN 16
A oTERNASI .o 17
A IMOVE .ttt e et e e e etta e e e e a e e e eataeeeearaeeeenreaaeas 18
d_materialiSe_UNIQUEeeeruiieriieeiieeniieeriiee et stee et siee e e sbeeeeieee s 19
PR 20
INA_IN0AE NUIMDET «..coeveieeeeeee e e e e e 21
(6 B4 8 (o) TR SR SRRUSRRRRINt 22

o IR T (G USRS 23
d_add_UNIQUEcouiiiiiiiiiiieeeeete e 24
ALttt s 25
A UNNASHEA ..ot eeeee e e e e e eeeereeaaans 26
1.3. Inode Handling..........coooueeiiiiiiniiiiiieeeeee e 26
ClEAT _INOAE ... e e eea e e e e e 27
INVALIAALE INOAES....cceeeeeeeeeee e et e e e eeee e e e eeaaeneas 27
NEW_INIOAE ..ot e e e e e e e e et e eeereeeeseeeeeeeeeaeanaaaeseseeeseeneennnns 28
TUNIQUE. et eetteeitte ettt e et te ettt e st e ettt e sabeeeeateesabeeesabeesabeeesaneesabteesnbeesaseeennseens 29
HOOKUPS _NOWAIL......oiiiiiiiiiiiiiie e 30
HOOKUPS e 31
1110 70) (1§ o USSR 33
1ZELS_LOCKEA ... iiiiiiiiiieiie e 34
1ZEL_1OCKEM ...c it 35

i

_ANSErt_INOAE _NASH ceeeeeeeee e aaees 36

remove_inode_hash ..o 37
IPUL ottt st s e st e 37
[0210E2] o R O OO TOPPUTPRROTPRTP 38
BOUCH QLIIMIE ceeeee ettt e e e e e e et et e eeeeeeeeeeereaaeaneenans 39
file_update_timMe........c.eeeriieeiiieiiie ettt 40
make_bad_1NOAEc.vvieiiiiiieieiiie e 41
1S_ DAA_INOAE ..o e e e e e e e e ees 42
o0 A 11 (ST USSR 43
1.4. Registration and Superblockscccoevieriiiiiiiiiiiniiiiiieeeeeee e 44
EACTIVALE_SUPETeeeueieeiiieeiteeeite ettt e ettt e sttt e st e st e e saeee s 44
generic_ShUtdOWN_SUPET.........coiiuiiiiiiiiiiieeiee ettt 44
YL APPSO PPPRORRRTRRNt 45
o T U o) SO SRS 46
1.5, FAlE LLOCKS. . utiiiiiiiiee ettt e et e e e enaraaaeas 47
POSIX_LOCK_fI1€..ccniiiiiiiiiiiieee e 47
POSIX_1OCK_fIl€_Wall.....eoiiiiiiiiiiiiiieiiee e 48
locks_mMandatory_ar€acccueerveeeruieeriiieenieeeiieesieeeieeesneeeniaeesaeeesanee s 49
B o) (21l (S T USSP 50
lease_ZEt IMLIIMEeeeieiieiiieiiie ettt et 51
GENETIC_SELICASE ..eeveiiiiieeeiiiee ettt e e e s aree e 52
lOCK_10CK _fI1€ WALt ..oiiieeeeieieeeeeee ettt e e e e e e e e eeeeanens 53
VES_LESE_IOCK 1.t e 54
VIS _LOCK L€ ittt e e e e e e eveaaaaas 55
POSIX_UNDIOCK_10CKvviiiiiiiiieiiiee e 57
VIS _CANCEL LOCK ... it e e 57
LOCK_MAY_T€AA ...cc.ueiiiiiiiiiieeiie ettt 58
LOCK_IMAY_ WIIEC. c..neiiiiiiieiieeeite ettt 59
locks_mandatory_locKedcoceoiiiiiiiiiiniiiiiiceee 60
FONL_GELICASE ...veeeeeieeeiie e s 61
10 011 TS 1 (T 1 T USSP 62
SYS_HOCK i 63
1.6. Other FUNCHONS........ooiiiiiiiiiieee ettt e e e e e e e e 64
MPAZE_TEAAPAZES ..veevvveeerieeiiieeieeeiieeeieeesaeeertreesteeeraaeesseeessseesseeensseens 64
INPAZE_WITLEPAZES. ..eeuveeeurieriieeniteeriteerteesiteeesabeesteeesiaeesbeeessseesseeessneens 66
ZENETIC_PETTNISSION .ouvtinirieniieieeeiteeteenieeeireereesteesereereesreeseeesreesreesanesanees 67
VES_PEITNISSION ..cuiiiiiiiiiiieeeiiee ettt sttt e s 68
1T (S 1SS 4101 TE 10 3 SRS 69
PALN_ GOl st s 70
PALN_PUL. it 71
1€l€aSE_OPEN_INLENL. c....eiiiiieiiiiiiieeiite ettt sttt sbee e 72
A I o 11 0 T 0101 AL o J TS 73

1OOKUP_ONE_1EN.....iiiiiiiiiiieeiieeciee ettt e 74

LOOKUP_CIEALE ..ottt st 76
TTEEZE DAEY ettt e e e e et e 77
TNAW DAV .o e e e e es 77
SYNC_MAaPPING_DULTETSceviiieiiieeiie e 78
mark_butfer_dirtyoooveeeiiiii 79

0] (T L« F USSP 80
block_invalidatepage.coovuieriieiiiiiiieenieeeee e 81
L TW BLOCK ettt e e tee e e e e 82
bh_uptodate_or_loCK.......cceeeriiiiiiiiiiiiiiiieeeeee e 83
bh_sUbMIt_T@Ad.......ccoiriieiiiiiie e e 84
D10 _Al10C_DIOSEL ...ttt e e ettt 85
0] T o1 L AU PUPRRRR 86
B o3 (o T 1 (o) s [STRNU OO OO TSR UPPPPPPRRRRRRRRPPPRON 87
DIO_CIONEeiiieeeiiee ettt et et e e e rae e e e ara e e e enaaeas 88
DI0_ZEL NI VECS cntiiiiiieiiiee ettt sttt sttt e e s 88
D10_add_PC_PAZE «eeeeeeiiiieieiiiee ettt 89
DI0_add_PaZEeeeeiieeiieeiiieeee e s 91
D10 _UNCOPY _USET c..teeiiieeiieeeiiieeiieeeite et e sttt ee e e sbteesaneesbeeesanee s 92
D10 _COPY_USET ..ttt ettt ettt ettt e s e s 92
[0 CO T 1021 o L <) SO UPPRRRR 93
DIO_UNIMAP_USET ...vteeiiieeiieeeiteeeiieeeiteeteesite et eestee e saaeesseeeseseesseeesnneeas 95
DIO_MAP_KEIT ...eeiniiiiiiiiiiieecie e 95
D10_COPY_KEIM...coiiiiiiiiiiiiiee e 96
|03 (eI =) 116 § (o TR 98
D10 SECEOT _OFTSEE .. e eeeeiiieiieeeeee ettt ettt eee e e e e e eeeeeeeaneenaes 99
Yo [0 1) | E USSP 100
SEO_TEAA .ttt ettt et s 101
SEO_ISEEK ..ttt 102
SEU_TEIRASE .eevueieeeeiiiiee ettt ettt et e e e e st e s et e e e e aaaee s 103
SEO_ESCAPC. ¢ uvveenvreeureeaureesreeansreesseeasseeesseeaasseesseesasseesseeesaseesaseeennnees 103
regiSter_fIIESYSEIM ...eoviiiiiiiiiiiierieeeee e 104
UNregister_flleSYSIEMcouviiriiiiiiiiiiiceeeee e 105
_ MArk_in0de_diTtyceeeeiuieeiiieeiie et 106
WIIEE_INOAE_NOW...eiiuiiiieiiiiiieeeiiieeeeiieeeeete e e e e ivee e e eareeeeeaveeeeeaaeeeeeaeneas 107
SYNC_INOAE ..ttt ettt st s e s s 108
ZENETIC_OSYNC_TNOUE....cccuiiiiiiiiiiiieiieeete ettt 109
bd_claim_by_diSK......cceeviiiriiiiiieee e 111
bd_release from diSKuuueeeeeiieiiiiiiiieeeeee ettt ee et 112
check_disk_S1z€_Change..........ccocueeiieiieniiriiiiicecceceee e 113
TEVALIAALE AISK et 113
JOOKUP_DACY .. e 114
OPEN_DAEV_EXCl ...eiiiiiiiiiieeee s 115

ClOSE _DAEV_EXCL .ot e e e e e e ee e 116

2. The proc filesystem 119
2.1, SYSCH INEEITACE ..c.eeeeiieiiiiciieeece e 119
register_SySCtl_pathsccooiiiiiiiiiiiiiinccce e 119
re@ister_SYSCHL_table......ccoouiiriiiiiiieeie e 120
unregister_SySCtl_table........oociiiiiiiiiiiiiieee e 120
PTOC_AOSIIINE ..ottt ettt e e 121
PTOC_OINEVECeiiuiiieiiiiiiieeeiee ettt sttt s 123
ProC_dOINtVEC_MINMAX......eeeeuirerrieeieeenieeetieesreeeaeeesreessreessseesnsneennnes 124
proc_doulongvec_MINMAX........cccueereueeerieeriiieenieesiieenieesieeesereesieeenanes 125
proc_doulongvec_ms_jiffies_minmaxccoceeviiernieeniieinieenneeenne. 126
Proc_dointvec_JIffIes.....cocoueiriiiiiiiiiiiiiieee e 128
proc_dointvec_userhz_jiffiescccveeriiiriieiniieeie e 129
proc_dointvec_mS_JiffIesSccevvvirriiiiiiiiiiieeieee e 130

2.2. proc filesystem INterfacecoceevueevieerieriieeiieenienieeeeeese e 132
Proc_flush_taskcoouiiiiiiiiiie e 132

3. The Filesystem for Exporting Kernel Objects.......ccceceeessurescnnicssancssrnscsasesenns 135
SYSES_CIEate_fIlE....eieiiiiiiieiiiieiee e e 135
SYsfs_add_file_tO_groupcovuieeiiiiiiieiieeeteeee e 135
SYSES_ChmOd_fIl€...ccoueiiiiiiiiiii e 136
SYSTS_TEMOVE_fIl€...ccuiiieiiiieiiieciie et 137
sysfs_remove_file_from_groupcccccceeveeeriiiiniiiiiiiiieeeesee e 138
sysfs_schedule_callbackccooiiiiiiiiiiiiiiiieiicee e 139
SYSES_create TNK.........oooiiiiiiiiiii e 140
SYSTS_TEMOVE_LINK ..eveieiiieeiiieciie et 141
Sysfs_create_bin_fil........coovuiiiriiiiiiiiiiie e 142
SYSfS_1remove_bin_filecocueiiiiiiiiiiiiie e 142
4. The debugfs fIleSyStem .. .uucicrreressricssancssanicssancssanisssanessanssssassssssssssassssssssssassssnns 145
4.1. debugfs INEITACEcccuvieiiieeiie et 145
debugfs_create_filecoeeviiiiiiiiiiiiie e 145
debugfs_create_dir.........ocooviiiiiiiiiiii e 146
debugfs_create_symlinkcccccoiiiiiiiiiiiiie 147
debUES_TEMOVEeeeiiiiiiieeieece e e 148
debugfs_remove_TeCUrsive........ocueeviieriiieeriieeieesiee e 149
debugfs_renamecooueeiiiiiiiiii e 150
debugfs_create_USccooiiiiiiii e 151
debugfs_create_Ul6cooeviieiiiiieiiieee e 152
debugfs_create_U32oocuiiiiiiiiieeee e 154
debugfs_create_U64cocoeiiiriiiiiiic e 155
debugfs_create_ X8cooiiiiiiiiiii e 156
debugfs_create_X16cccveeviieiiiiieiieeee e 157

debugfs_create_X32oooiieiiiiiie s 158

debugfs_create_boolcoooiiiiiiieiiieie e 159

debugfs_create_bIObc.cooviiiiiiiiiiiiiiee e 161
5. The Linux Journalling API 163
5.1 OVEIVIEW .ottt e e e e tta e e e e e e e etae e e e e e e eenaraaeaaaeean 163
S5.1.1.DEtallS oo e 163
S5.1.2. SUMMATY .ttt ettt et 165
5.2, DAt TYPES oottt et 166
5.2.1. STIUCLUIES .ccoeiiiiieeee e ettt e e e et e e e e e ettt e e e e e e eeaaaaaeeeeeeeeannes 166
typedef handle_t.........ccooeciiiiiiiiiii e 166
typedef Journal_t........ccoovoiiiiiienieieee e 167
STIUCE NaANALE_S cooiiiiiieee et 167
SEIUCT JOUTNAL_S....eeiiiiiieiiieeiieeee e 169

5.3, FUNCHIONSoviiiiiiee et et et 174
5.3.1.Journal Level ... 174
JoUrnal_INIt_deVcoviuiiiiiiiiiiiiiie et 174
journal_init_INOdecoccueeriuiiiiiiiiiieiiee et 175
JOUINAL_CTEALE.....cueveeeiieeiiieeiieeetieeieeeeteeere e et e eaaeeebeeeaaeeenbeeenns 176
JOUrNAl_10adooiiiiiiiiieie e 177
JOUINAL_AESIIOY ..ueviiiiiieiiieeiie ettt 178
journal_check_used_features............ccoecveeriieeniieeiiieeniienieenieeee 179
journal_check_available_features...........cccccceevvieiniiencieinieecieen, 180
Journal_Set_fEatUresceevvueeerieeriiieeniieeiieeeiee e e 181
journal_update_format............cocceeriiiiiiiiiiiiiiiineeee e 182
Journal_flush ..o 183
JOUTNAI_WIPE niiieeeiiiiee ettt e eee e e e e e 183
JOUINAL_ADOTE....eiiiiiieiiieiieee e 184
JOUINAL_ETTINO...ceiuiiiiiiiieitie ettt sttt e 186
JOUrNAl_ClEAr_ITeiiuiiiiiiiiiiiiiice et 187
JOUINAL_ACK_EIT ..vviiiiiiiiieeiie e 188
JOUINAL_TECOVET ...uvvieiiieeiiieeiieeeiieeeieeesiee ettt e sireesbeeeaaeesnbeeenns 188
Journal_SKip_TECOVETY ...ccueeriuiiiniieiiiieriee ettt 189
5.3.2. Transasction Levelcc.oeeiiiiiiiiiiiiiiceeceee e, 190
20y 1B S 71 A SRR 190
JOUrNAl_eXteNd.....cuviieiiieiiieeiie ettt e 191
JOUINAL_TESTATT ..eeeuvvieeiiieeiiieeite ettt st et e e e ebee e 192
journal_1ock_updatesccceeeviiiiiiiiniiiiieeeeeeee e 193
journal_unlock_updatesccoceeriiiiiiiiiiiiiniiiiieeeeeee 194
Journal_get_WIIte_ACCESS ...ccvuirriueerriieerieeeiieenieessireesieeenineesreeenns 195
journal_get_Create_aACCESS.......ievuierriieiriieriieenieesieeesieesnireesreeenns 196
journal_get_undo_aCCEeSSc.uerrrieriiiiniieiiieeniee et 197
Journal_dirty_data........cocceeeiiiiiiiiiiiieee e 198
journal_dirty_metadataccocueeeiiiiiniiieiieeeee e 199
JOUINAL_fOTZEL...eiiiiiiiiiiiiie e 201

vii

viil

JOUINAL_STOP.ceevieeiiieeiieeeteeeteeetee et e eteeeeeeesaeesareesbeeeaaeeenbeeenes 202

journal_force_COMMUL.......ccecuiirriieiiiieiie e 203
journal_try_to_free_bufferscccceiviiiiiiiniiiee 203
journal_invalidatepageccevveeriiieinieeniieeniee et 205

540 SEE ALSO it 206
6. splice API... 207
SPLICE_O_PIPE c..veenveeiiieiiieieerite ettt e 207
generic_file_Splice_readcoouiiiiiiiiiiiiiiiiie e 208
splice_from_pipe_feed........cccoeviiiiiiiiiiie e 209
SPlICE_fTOM_PIPE_NEXL...ueiiiiiieiiieeiiieeiieeieee ettt eiee et e s sbee s e sbeeenes 210
splice_from_pipe_DeZIN.........coouiiiiiiiiiiiiiieeiieeee e 211
splice_from_pipe_end............coouieeiiiiiiiiiiiieeiiieeee e 211
 SPHCE_fTOM_PIPC..ccueriiiiieeiiieeiie ettt ettt e eeaaeeeevee s 212
SPIICE_fTOM_PIPE...eiiuiiiiiiieeiiieeiie ettt ettt ettt eeiaeesabee e 213
generic_file_splice_write_NOlOCKcoceeriiriiiriiiniiniieiececnecceeece 215
generic_file_SPlICE_WIILEcooiiiiiiiiiiiiiiiiieeiec et 216
generiC_SPliCe_SeNAPAZE......ccuveeruveeeiieeiiieeiieecteeeriteeeiee e e e e beeesareeeaeeenaseeas 217
SPlICE_AIT@CE_tO_ACTOT .uevieeiiiieiiieeiiee et ettt ettt e e e e e e sabee e 218
O_SPIICE_AITECE ..ttt 219
7. PIPES APL.aeeniiiiiiiiiinninninsninnisssisssississssesssssssissssessssssssssssssssessssssssssssns 221
SEIUCE PIPE_DUITET ..o 221
struct pipe_in0de_iNfocccueiiiiieiiiiiiie e 222
generic_pPipe_buf MapP.......cooouiiiiiiiiiiiiieeeeee e 224
generic_pipe_buf UNMAP........cooviiiiiiiiieieieeee e 225
generic_pipe_buf_Stealcceeeviieeiiiiiiieeieeee e 225
ENETIC_PIPE_DUL_ZEL...eiiiiiiiiiiiiiieee e 226
generic_pipe_buf CONfITMcoovuiiiiiiiiiiiieie e 227

Chapter 1. The Linux VFS

1.1. The Filesystem types

enum positive_aop_returns

LINUX
Kernel Hackers ManualJanuary 2010

Name

enum positive_aop_returns — aop return codes with specific semantics

Synopsis

enum positive_aop_returns {
AOP_WRITEPAGE_ACTIVATE,
AOP_TRUNCATED_PAGE

}i

Constants

AOP_WRITEPAGE_ACTIVATE

Informs the caller that page writeback has completed, that the page is still
locked, and should be considered active. The VM uses this hint to return the
page to the active list -- it won’t be a candidate for writeback again in the near
future. Other callers must be careful to unlock the page if they get this return.
Returned by writepage;

AOP_TRUNCATED_PAGE

The AOP method that was handed a locked page has unlocked it and the page
might have been truncated. The caller should back up to acquiring a new page
and trying again. The aop will be taking reasonable precautions not to livelock.
If the caller held a page reference, it should drop it before retrying. Returned
by readpage.

Chapter 1. The Linux VFS
Description

address_space_operation functions return these large constants to indicate special
semantics to the caller. These are much larger than the bytes in a page to allow for
functions that return the number of bytes operated on in a given page.

inc_nlink

LINUX
Kernel Hackers ManualJanuary 2010

Name

inc_nlink — directly increment an inode’s link count

Synopsis

void ine_nlink (struct inode * inode);

Arguments

inode

inode

Description

This is a low-level filesystem helper to replace any direct filesystem manipulation of
i_nlink. Currently, it is only here for parity with dec_nlink.

Chapter 1. The Linux VFS

drop_nlink

LINUX
Kernel Hackers ManualJanuary 2010

Name

drop_nlink — directly drop an inode’s link count

Synopsis

void drop_nlink (struct inode x inode);

Arguments

inode

inode

Description

This is a low-level filesystem helper to replace any direct filesystem manipulation of
i_nlink. In cases where we are attempting to track writes to the filesystem, a
decrement to zero means an imminent write when the file is truncated and actually
unlinked on the filesystem.

clear_nlink

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

clear_nlink — directly zero an inode’s link count

Synopsis

void elear nlink (struct inode =* inode);

Arguments

inode

inode

Description

This is a low-level filesystem helper to replace any direct filesystem manipulation of
i_nlink. See drop_n1link for why we care about i_nlink hitting zero.

inode_inc_iversion

LINUX
Kernel Hackers ManualJanuary 2010

Name

inode_inc_iversion — increments i_version

Chapter 1. The Linux VFS

Synopsis

void inode_inc_iversion (struct inode * inode);

Arguments

inode

inode that need to be updated

Description

Every time the inode is modified, the i_version field will be incremented. The
filesystem has to be mounted with i_version flag

1.2. The Directory Cache

d_invalidate

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_invalidate — invalidate a dentry

Synopsis

int d_invalidate (struct dentry x dentry);

Chapter 1. The Linux VFS

Arguments

dentry

dentry to invalidate

Description

Try to invalidate the dentry if it turns out to be possible. If there are other dentries
that can be reached through this one we can’t delete it and we return -EBUSY. On
success we return 0.

no dcache lock.

shrink_dcache_sb

LINUX
Kernel Hackers ManualJanuary 2010

Name

shrink_dcache_sb — shrink dcache for a superblock

Synopsis

void shrink_dcache_sb (struct super_block % sb);

Chapter 1. The Linux VFS
Arguments

sb

superblock

Description

Shrink the dcache for the specified super block. This is used to free the dcache
before unmounting a file system

have submounts

LINUX
Kernel Hackers ManualJanuary 2010

Name

have_submounts — check for mounts over a dentry

Synopsis

int have_submounts (struct dentry x parent);

Arguments

parent

dentry to check.

Chapter 1. The Linux VFS
Description

Return true if the parent or its subdirectories contain a mount point

shrink_dcache_parent

LINUX
Kernel Hackers ManualJanuary 2010

Name

shrink_dcache_parent — prune dcache

Synopsis

void shrink_dcache_parent (struct dentry = parent);

Arguments

parent

parent of entries to prune

Description

Prune the dcache to remove unused children of the parent dentry.

Chapter 1. The Linux VFS

d _alloc

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_alloc — allocate a dcache entry

Synopsis

struct dentry x d_alloc (struct dentry x parent, const struct
gstr * name);

Arguments

parent

parent of entry to allocate

name

gstr of the name

Description

Allocates a dentry. It returns NULL if there is insufficient memory available. On a
success the dentry is returned. The name passed in is copied and the copy passed in
may be reused after this call.

d_instantiate

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

d_instantiate — fill in inode information for a dentry

Synopsis

void d_instantiate (struct dentry * entry, struct inode =
inode) ;

Arguments

entry

dentry to complete

inode

inode to attach to this dentry

Description

Fill in inode information in the entry.
This turns negative dentries into productive full members of society.

NOTE! This assumes that the inode count has been incremented (or otherwise set)
by the caller to indicate that it is now in use by the dcache.

d_alloc _root

LINUX

10

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

d_alloc_root — allocate root dentry

Synopsis

struct dentry x d_alloc_root (struct inode *x root_inode);

Arguments

root__inode

inode to allocate the root for

Description

Allocate a root (“/”’) dentry for the inode given. The inode is instantiated and
returned. NULL is returned if there is insufficient memory or the inode passed is
NULL.

d_alloc_anon

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_alloc_anon — allocate an anonymous dentry

11

Chapter 1. The Linux VFS

Synopsis

struct dentry x d_alloc_anon (struct inode x inode);

Arguments

inode

inode to allocate the dentry for

Description

This is similar to d_alloc_root. It is used by filesystems when creating a dentry for a
given inode, often in the process of mapping a filehandle to a dentry. The returned
dentry may be anonymous, or may have a full name (if the inode was already in the
cache). The file system may need to make further efforts to connect this dentry into
the dcache properly.

When called on a directory inode, we must ensure that the inode only ever has one
dentry. If a dentry is found, that is returned instead of allocating a new one.

On successful return, the reference to the inode has been transferred to the dentry. If
NULL is returned (indicating kmalloc failure), the reference on the inode has not
been released.

d_splice alias

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_splice_alias — splice a disconnected dentry into the tree if one exists

12

Chapter 1. The Linux VFS

Synopsis

struct dentry » d_splice_alias (struct inode * inode, struct
dentry * dentry);

Arguments

inode

the inode which may have a disconnected dentry

dentry

a negative dentry which we want to point to the inode.

Description

If inode is a directory and has a ’disconnected’ dentry (i.e. IS_ROOT and
DCACHE_DISCONNECTED), then d_move that in place of the given dentry and
return it, else simply d_add the inode to the dentry and return NULL.

This is needed in the lookup routine of any filesystem that is exportable (via knfsd)
so that we can build dcache paths to directories effectively.

If a dentry was found and moved, then it is returned. Otherwise NULL is returned.
This matches the expected return value of ->lookup.

d_add_ci

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_add_ci — lookup or allocate new dentry with case-exact name

13

Chapter 1. The Linux VFS

Synopsis

struct dentry x d_add_ci (struct dentry = dentry, struct inode
* inode, struct gstr x name);

Arguments

dentry

the negative dentry that was passed to the parent’s lookup func

inode

the inode case-insensitive lookup has found

name

the case-exact name to be associated with the returned dentry

Description

This is to avoid filling the dcache with case-insensitive names to the same inode,
only the actual correct case is stored in the dcache for case-insensitive filesystems.

For a case-insensitive lookup match and if the the case-exact dentry already exists
in in the dcache, use it and return it.

If no entry exists with the exact case name, allocate new dentry with the exact case,
and return the spliced entry.

d_lookup

LINUX

14

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

d_lookup — search for a dentry

Synopsis

struct dentry x d_lookup (struct dentry =% parent, struct gstr
* name) ;

Arguments

parent

parent dentry

name

gstr of name we wish to find

Description

Searches the children of the parent dentry for the name in question. If the dentry is
found its reference count is incremented and the dentry is returned. The caller must
use d_put to free the entry when it has finished using it. NULL is returned on failure.

__d_lookup is dcache_lock free. The hash list is protected using RCU. Memory
barriers are used while updating and doing lockless traversal. To avoid races with
d_move while rename is happening, d_lock is used.

Overflows in memcmp, while d_move, are avoided by keeping the length and name
pointer in one structure pointed by d_gstr.

rcu_read_lock and rcu_read_unlock are used to disable preemption while
lookup is going on.

The dentry unused LRU is not updated even if lookup finds the required dentry in
there. It is updated in places such as prune_dcache, shrink_dcache_sb, select_parent
and __dget_locked. This laziness saves lookup from dcache_lock acquisition.

15

Chapter 1. The Linux VFS

d_lookup is protected against the concurrent renames in some unrelated directory
using the seqlockt_t rename_lock.

d_validate

LINUX

Kernel Hackers ManualJanuary 2010

16

Name

d_validate — verify dentry provided from insecure source
Synopsis

int d_validate (struct dentry *» dentry, struct dentry x
dparent) ;

Arguments

dentry

The dentry alleged to be valid child of dparent

dparent

The parent dentry (known to be valid)

Description

An insecure source has sent us a dentry, here we verify it and dget it. This is used
by ncpfs in its readdir implementation. Zero is returned in the dentry is invalid.

Chapter 1. The Linux VFS

d delete

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_delete — delete a dentry

Synopsis

void d_delete (struct dentry x dentry);

Arguments

dentry
The dentry to delete

Description

Turn the dentry into a negative dentry if possible, otherwise remove it from the hash
queues so it can be deleted later

d rehash

LINUX

17

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

d_rehash — add an entry back to the hash

Synopsis

void d_rehash (struct dentry *» entry);

Arguments

entry

dentry to add to the hash

Description

Adds a dentry to the hash according to its name.

d _move

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_move — move a dentry

18

Chapter 1. The Linux VFS

Synopsis

void d_move (struct dentry % dentry, struct dentry % target);

Arguments

dentry

entry to move

target

new dentry

Description

Update the dcache to reflect the move of a file name. Negative dcache entries should
not be moved in this way.

d_materialise_unique

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_materialise_unique — introduce an inode into the tree
Synopsis

struct dentry » d_materialise_unique (struct dentry = dentry,
struct inode x inode);

19

Chapter 1. The Linux VFS

Arguments

dentry

candidate dentry

inode

inode to bind to the dentry, to which aliases may be attached

Description

Introduces an dentry into the tree, substituting an extant disconnected root directory
alias in its place if there is one

d_path

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_path — return the path of a dentry

Synopsis

char * d_path (const struct path % path, char * buf, int
buflen);

20

Chapter 1. The Linux VFS

Arguments

path

path to report

buf

buffer to return value in

buflen

buffer length

Description

Convert a dentry into an ASCII path name. If the entry has been deleted the string
(deleted)” is appended. Note that this is ambiguous.

Returns the buffer or an error code if the path was too long.

“buflen” should be positive.

find_inode _number

LINUX
Kernel Hackers ManualJanuary 2010

Name

find_inode_number — check for dentry with name

Synopsis

ino_t find_inode_number (struct dentry * dir, struct gstr =

name) ;

(13

21

Chapter 1. The Linux VFS
Arguments

dir
directory to check

name

Name to find.

Description

Check whether a dentry already exists for the given name, and return the inode
number if it has an inode. Otherwise 0 is returned.

This routine is used to post-process directory listings for filesystems using synthetic
inode numbers, and is necessary to keep get cwd working.

__d _drop

LINUX
Kernel Hackers ManualJanuary 2010

Name

__d_drop — drop a dentry
Synopsis

void __d_drop (struct dentry x dentry);

22

Chapter 1. The Linux VFS
Arguments

dentry

dentry to drop

Description

d_drop unhashes the entry from the parent dentry hashes, so that it won’t be found
through a VFS lookup any more. Note that this is different from deleting the dentry
- d_delete will try to mark the dentry negative if possible, giving a successful
negative lookup, while d_drop will just make the cache lookup fail.

d_drop is used mainly for stuff that wants to invalidate a dentry for some reason
(NFS timeouts or autofs deletes).

__d_drop requires dentry->d_lock.

d_add

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_add — add dentry to hash queues

Synopsis

void d_add (struct dentry *» entry, struct inode x inode);

23

Chapter 1. The Linux VFS
Arguments

entry

dentry to add

inode

The inode to attach to this dentry

Description

This adds the entry to the hash queues and initializes i node. The entry was actually
filled in earlier during d_alloc.

d_add_unique

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_add_unique — add dentry to hash queues without aliasing

Synopsis

struct dentry » d_add_unique (struct dentry » entry, struct
inode * inode);

Arguments

entry

dentry to add

24

Chapter 1. The Linux VFS

inode

The inode to attach to this dentry

Description

This adds the entry to the hash queues and initializes i node. The entry was actually
filled in earlier during d_alloc.

dget

LINUX
Kernel Hackers ManualJanuary 2010

Name

dget — get a reference to a dentry

Synopsis

struct dentry * dget (struct dentry x dentry);

Arguments

dentry

dentry to get a reference to

Description

Given a dentry or NULL pointer increment the reference count if appropriate and
return the dentry. A dentry will not be destroyed when it has references. dget

25

Chapter 1. The Linux VFS

should never be called for dentries with zero reference counter. For these cases
(preferably none, functions in dcache.c are sufficient for normal needs and they take
necessary precautions) you should hold dcache_lock and call dget_locked instead
of dget.

d _unhashed

LINUX
Kernel Hackers ManualJanuary 2010

Name

d_unhashed — is dentry hashed

Synopsis

int d_unhashed (struct dentry =* dentry);

Arguments

dentry

entry to check

Description

Returns true if the dentry passed is not currently hashed.

26

Chapter 1. The Linux VFS

1.3. Inode Handling

clear_inode

LINUX
Kernel Hackers ManualJanuary 2010

Name

clear inode — clear an inode

Synopsis

void eclear_inode (struct inode * inode);

Arguments

inode

inode to clear

Description

This is called by the filesystem to tell us that the inode is no longer useful. We just
terminate it with extreme prejudice.

invalidate_inodes

LINUX

27

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

invalidate_inodes — discard the inodes on a device

Synopsis

int invalidate_inodes (struct super_block * sb);

Arguments
sb

superblock

Description

Discard all of the inodes for a given superblock. If the discard fails because there
are busy inodes then a non zero value is returned. If the discard is successful all the
inodes have been discarded.

new_inode

LINUX
Kernel Hackers ManualJanuary 2010

Name

new_inode — obtain an inode

28

Chapter 1. The Linux VFS

Synopsis

struct inode * new_inode (struct super_block * sb);

Arguments

sb

superblock

Description

Allocates a new inode for given superblock. The default gfp_mask for allocations
related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE. If HIGHMEM
pages are unsuitable or it is known that pages allocated for the page cache are not
reclaimable or migratable, mapping_set_gfp_mask must be called with suitable
flags on the newly created inode’s mapping

iunique

LINUX
Kernel Hackers ManualJanuary 2010

Name

iunique — get a unique inode number

Synopsis

ino_t iunique (struct super_block % sb, ino_t max_reserved);

29

Chapter 1. The Linux VFS
Arguments

sb

superblock

max_reserved

highest reserved inode number

Description

Obtain an inode number that is unique on the system for a given superblock. This is
used by file systems that have no natural permanent inode numbering system. An
inode number is returned that is higher than the reserved limit but unique.

BUGS

With a large number of inodes live on the file system this function currently
becomes quite slow.

ilookup5_nowait

LINUX
Kernel Hackers ManualJanuary 2010

Name

ilookup5_nowait — search for an inode in the inode cache

Synopsis

struct inode * ilookup5_nowait (struct super_block x sb,
unsigned long hashval, int (xtest) (struct inode %, void =x),
void = data);

30

Chapter 1. The Linux VFS

Arguments

sb

super block of file system to search

hashval

hash value (usually inode number) to search for

test

callback used for comparisons between inodes

data

opaque data pointer to pass to test

Description

ilookupb5 uses i find to search for the inode specified by hashval and data in
the inode cache. This is a generalized version of ilookup for file systems where
the inode number is not sufficient for unique identification of an inode.

If the inode is in the cache, the inode is returned with an incremented reference
count. Note, the inode lock is not waited upon so you have to be very careful what
you do with the returned inode. You probably should be using i 1ookup5 instead.

Otherwise NULL is returned.

Note, test is called with the inode_lock held, so can’t sleep.

ilookup5

LINUX

31

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

ilookup5 — search for an inode in the inode cache

Synopsis

struct inode * ilookup5 (struct super_block x sb, unsigned
long hashval, int (xtest) (struct inode %, void x), void =
data) ;

Arguments

sb

super block of file system to search

hashval

hash value (usually inode number) to search for

test

callback used for comparisons between inodes

data

opaque data pointer to pass to test

Description

ilookupb uses ifind to search for the inode specified by hashval and data in
the inode cache. This is a generalized version of i1lookup for file systems where
the inode number is not sufficient for unique identification of an inode.

If the inode is in the cache, the inode lock is waited upon and the inode is returned
with an incremented reference count.

Otherwise NULL is returned.

Note, test is called with the inode_lock held, so can’t sleep.

32

Chapter 1. The Linux VFS

ilookup

LINUX
Kernel Hackers ManualJanuary 2010

Name

ilookup — search for an inode in the inode cache

Synopsis

struct inode * ilookup (struct super_block *x sb, unsigned long

ino);

Arguments

sb
super block of file system to search
ino

inode number to search for

Description

ilookup uses ifind_fast to search for the inode ino in the inode cache. This is
for file systems where the inode number is sufficient for unique identification of an
inode.

If the inode is in the cache, the inode is returned with an incremented reference
count.

Otherwise NULL is returned.

33

Chapter 1. The Linux VFS

iget5_locked

LINUX
Kernel Hackers ManualJanuary 2010

Name

iget5_locked — obtain an inode from a mounted file system
Synopsis

struct inode * iget5_locked (struct super_block * sb, unsigned
long hashval, int (xtest) (struct inode %, void *), int (*set)
(struct inode *, void *), void = data);

Arguments

sb

super block of file system

hashval

hash value (usually inode number) to get

test

callback used for comparisons between inodes

set

callback used to initialize a new struct inode

data

opaque data pointer to pass to test and set

34

Chapter 1. The Linux VFS

Description

iget5_locked uses ifind to search for the inode specified by hashval and
data in the inode cache and if present it is returned with an increased reference
count. This is a generalized version of iget_locked for file systems where the
inode number is not sufficient for unique identification of an inode.

If the inode is not in cache, get_new_inode is called to allocate a new inode and
this is returned locked, hashed, and with the _NEW flag set. The file system gets to
fill it in before unlocking it via unlock_new_inode.

Note both test and set are called with the inode_lock held, so can’t sleep.

iget_locked

LINUX
Kernel Hackers ManualJanuary 2010

Name

iget_locked — obtain an inode from a mounted file system

Synopsis

struct inode * iget_locked (struct super_block * sb, unsigned
long ino);

Arguments

sb

super block of file system
ino

inode number to get

35

Chapter 1. The Linux VFS

Description

iget_lockeduses ifind_fast to search for the inode specified by ino in the
inode cache and if present it is returned with an increased reference count. This is
for file systems where the inode number is sufficient for unique identification of an
inode.

If the inode is not in cache, get_new_inode_fast is called to allocate a new
inode and this is returned locked, hashed, and with the I_NEW flag set. The file
system gets to fill it in before unlocking it via unlock_new_inode.

__insert_inode_hash

LINUX

Kernel Hackers ManualJanuary 2010

36

Name

__insert_inode_hash — hash an inode

Synopsis

void __insert_inode_hash (struct inode x inode, unsigned long
hashval);

Arguments

inode

unhashed inode

hashval

unsigned long value used to locate this object in the inode_hashtable.

Chapter 1. The Linux VFS

Description

Add an inode to the inode hash for this superblock.

remove_inode hash

LINUX
Kernel Hackers ManualJanuary 2010

Name

remove_inode_ hash — remove an inode from the hash

Synopsis

void remove_inode_hash (struct inode * inode);

Arguments

inode

inode to unhash

Description

Remove an inode from the superblock.

37

Chapter 1. The Linux VFS

iput

LINUX
Kernel Hackers ManualJanuary 2010

Name

iput — put an inode

Synopsis

void iput (struct inode x inode);

Arguments

inode

inode to put

Description

Puts an inode, dropping its usage count. If the inode use count hits zero, the inode is
then freed and may also be destroyed.

Consequently, iput can sleep.

bmap

LINUX

38

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

bmap — find a block number in a file

Synopsis

sector_t bmap (struct inode x inode, sector_t block);

Arguments

inode

inode of file

block

block to find

Description

Returns the block number on the device holding the inode that is the disk block
number for the block of the file requested. That is, asked for block 4 of inode 1 the
function will return the disk block relative to the disk start that holds that block of
the file.

touch_atime

LINUX

39

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

touch_atime — update the access time

Synopsis

void touch_atime (struct vfsmount * mnt, struct dentry =
dentry) ;

Arguments

mnt

mount the inode is accessed on

dentry

dentry accessed

Description

Update the accessed time on an inode and mark it for writeback. This function
automatically handles read only file systems and media, as well as the “noatime”
flag and inode specific “noatime” markers.

file_update_time

LINUX

40

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

file_update_time — update mtime and ctime time

Synopsis

void file_update_time (struct file x file);

Arguments

file

file accessed

Description

Update the mtime and ctime members of an inode and mark the inode for
writeback. Note that this function is meant exclusively for usage in the file write
path of filesystems, and filesystems may choose to explicitly ignore update via this
function with the S_NOCTIME inode flag, e.g. for network filesystem where these
timestamps are handled by the server.

make bad _inode

LINUX
Kernel Hackers ManualJanuary 2010

Name

make bad_inode — mark an inode bad due to an I/O error

41

Chapter 1. The Linux VFS

Synopsis

void make_bad_inode (struct inode * inode);

Arguments

inode

Inode to mark bad

Description

When an inode cannot be read due to a media or remote network failure this
function makes the inode “bad” and causes I/O operations on it to fail from this
point on.

is_bad _inode

LINUX
Kernel Hackers ManualJanuary 2010

Name

is_bad_inode — is an inode errored

Synopsis

int is_bad_inode (struct inode * inode);

42

Chapter 1. The Linux VFS
Arguments

inode

inode to test

Description

Returns true if the inode in question has been marked as bad.

iget_failed

LINUX
Kernel Hackers ManualJanuary 2010

Name

iget_failed— Mark an under-construction inode as dead and release it

Synopsis

void iget_failed (struct inode *x inode);

Arguments

inode

The inode to discard

Description

Mark an under-construction inode as dead and release it.

43

Chapter 1. The Linux VFS

1.4. Registration and Superblocks

deactivate_super

LINUX

Kernel Hackers ManualJanuary 2010

44

Name

deactivate_super — drop an active reference to superblock

Synopsis

void deactivate_super (struct super_block * s);

Arguments

superblock to deactivate

Description

Drops an active reference to superblock, acquiring a temprory one if there is no
active references left. In that case we lock superblock, tell fs driver to shut it down
and drop the temporary reference we had just acquired.

Chapter 1. The Linux VFS

generic_shutdown_super

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_shutdown_super — common helper for ->kil11_sb

Synopsis

void generic_shutdown_super (struct super_block * sbh);

Arguments

sb

superblock to kill

Description

generic_shutdown_super does all fs-independent work on superblock
shutdown. Typical ->ki11_sb should pick all fs-specific objects that need
destruction out of superblock, call generic_shutdown_super and release
aforementioned objects. Note: dentries and inodes _are_ taken care of and do not
need specific handling.

Upon calling this function, the filesystem may no longer alter or rearrange the set of
dentries belonging to this super_block, nor may it change the attachments of
dentries to inodes.

45

Chapter 1. The Linux VFS

sget

LINUX
Kernel Hackers ManualJanuary 2010

Name

sget — find or create a superblock
Synopsis

struct super_block * sget (struct file_system_ _type x type,
(xtest) (struct super_block *,void x), int (xset) (struct
super_block *,void x), void * data);

Arguments

type

filesystem type superblock should belong to

test

comparison callback

set

setup callback

data

argument to each of them

46

int

Chapter 1. The Linux VFS

get_super

LINUX
Kernel Hackers ManualJanuary 2010

Name

get_super — get the superblock of a device

Synopsis

struct super_block * get_super (struct block_device x bdev);

Arguments

bdev

device to get the superblock for

Description

Scans the superblock list and finds the superblock of the file system mounted on the
device given. NULL is returned if no match is found.

1.5. File Locks

posix_lock file

LINUX

47

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

posix_lock_file — Apply a POSIX-style lock to a file

Synopsis

int posix_lock_file (struct file % filp, struct file_lock =
f1, struct file_lock x conflock);

Arguments

filp

The file to apply the lock to

£l

The lock to be applied

conflock

Place to return a copy of the conflicting lock, if found.

Description

Add a POSIX style lock to a file. We merge adjacent & overlapping locks whenever
possible. POSIX locks are sorted by owner task, then by starting address

Note that if called with an FL_EXISTS argument, the caller may determine whether
or not a lock was successfully freed by testing the return value for -ENOENT.

posix_lock file wait

48

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

posix_lock_file_wait — Apply a POSIX-style lock to a file

Synopsis

int posix_lock_file_wait (struct file x filp, struct file_lock
* I1);

Arguments

filp

The file to apply the lock to

£l

The lock to be applied

Description

Add a POSIX style lock to a file. We merge adjacent & overlapping locks whenever
possible. POSIX locks are sorted by owner task, then by starting address

locks_mandatory_area

LINUX

49

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

locks_mandatory_area — Check for a conflicting lock

Synopsis

int locks_mandatory_area (int read write, struct inode =
inode, struct file » filp, loff_t offset, size_t count);

Arguments

read _write

FLOCK_VERIFY WRITE for exclusive access, FLOCK_VERIFY_ READ for
shared

inode

the file to check

filp

how the file was opened (if it was)

offset

start of area to check

count

length of area to check

Description

Searches the inode’s list of locks to find any POSIX locks which conflict. This
function is called from rw_verify_area and locks_verify_truncate.

50

Chapter 1. The Linux VFS

__break_lease

LINUX
Kernel Hackers ManualJanuary 2010

Name

__break_lease —revoke all outstanding leases on file

Synopsis

int _ break_lease (struct inode x inode, unsigned int mode);

Arguments

inode

the inode of the file to return

mode

the open mode (read or write)

Description

break_lease (inlined for speed) has checked there already is at least some kind of
lock (maybe a lease) on this file. Leases are broken on a call to open or t runcate.
This function can sleep unless you specified 0O_NONBLOCK to your open.

lease _get mtime

LINUX

51

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

lease_get_mtime — get the last modified time of an inode

Synopsis

void lease_get_mtime (struct inode % inode, struct timespec =

time) ;

Arguments

inode
the inode
time

pointer to a timespec which will contain the last modified time

Description

This is to force NFS clients to flush their caches for files with exclusive leases. The
justification is that if someone has an exclusive lease, then they could be modifying
it.

generic_setlease

52

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

generic_setlease — sets a lease on an open file

Synopsis

int generic_setlease (struct file x filp, long arg, struct
file_lock xx flp);

Arguments
filp
file pointer

arg

type of lease to obtain

flp

input - file_lock to use, output - file_lock inserted

Description

The (input) flp->fl_Imops->fl_break function is required by break_lease.

Called with kernel lock held.

flock lock file wait

LINUX

53

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

flock_lock_file_wait — Apply a FLOCK-style lock to a file

Synopsis

int flock_lock file_wait (struct file * filp, struct file_lock
* I1);

Arguments

filp

The file to apply the lock to

£l

The lock to be applied

Description
Add a FLOCK style lock to a file.

vis test lock

LINUX
Kernel Hackers ManualJanuary 2010

Name

vis_test_lock — test file byte range lock

54

Chapter 1. The Linux VFS

Synopsis

int vfs_test_lock (struct file % filp, struct file_lock * f1);

Arguments

filp

The file to test lock for

£l

The lock to test; also used to hold result

Description

Returns -ERRNO on failure. Indicates presence of conflicting lock by setting
conf->fl_type to something other than F_UNLCK.

vis lock_file

LINUX
Kernel Hackers ManualJanuary 2010

Name

vfs_lock_file — file byte range lock
Synopsis

int vfs_lock_file (struct file x filp, unsigned int cmd,
struct file_lock * f1, struct file_lock = conf);

55

Chapter 1. The Linux VFS

56

Arguments

filp

The file to apply the lock to

cmd

type of locking operation (F_SETLK, F_GETLK, etc.)

£l

The lock to be applied

conf

Place to return a copy of the conflicting lock, if found.

Description

A caller that doesn’t care about the conflicting lock may pass NULL as the final
argument.

If the filesystem defines a private ->1ock method, then conf will be left
unchanged; so a caller that cares should initialize it to some acceptable default.

To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
locks, the ->1ock interface may return asynchronously, before the lock has been
granted or denied by the underlying filesystem, if (and only if) fl_grant is set.
Callers expecting ->1ock to return asynchronously will only use F_SETLK, not
F_SETLKW; they will set FL._SLEEP if (and only if) the request is for a blocking
lock. When ->1ock does return asynchronously, it must return
FILE_LOCK_DEFERRED, and call ->f1_grant when the lock request completes.
If the request is for non-blocking lock the file system should return
FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
with the result. If the request timed out the callback routine will return a nonzero
return code and the file system should release the lock. The file system is also
responsible to keep a corresponding posix lock when it grants a lock so the VFS can
find out which locks are locally held and do the correct lock cleanup when required.
The underlying filesystem must not drop the kernel lock or call ->f1_grant before
returning to the caller with a FILE_LOCK_DEFERRED return code.

Chapter 1. The Linux VFS

posix_unblock lock

LINUX
Kernel Hackers ManualJanuary 2010

Name

posix_unblock_lock — stop waiting for a file lock

Synopsis

int posix_unblock_lock (struct file » filp, struct file_lock =«

waiter) ;

Arguments

filp

how the file was opened

walter

the lock which was waiting

Description

lockd needs to block waiting for locks.

vfs _cancel lock

LINUX

57

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

vfs_cancel_lock — file byte range unblock lock

Synopsis

int vfs_cancel_lock (struct file » filp, struct file_lock =«
r1);

Arguments

filp

The file to apply the unblock to

£l

The lock to be unblocked

Description

Used by lock managers to cancel blocked requests

lock_may read

LINUX
Kernel Hackers ManualJanuary 2010

Name

lock_may_read — checks that the region is free of locks

58

Chapter 1. The Linux VFS

Synopsis

int lock_may_read (struct inode x inode, loff_t start,
unsigned long Ien);

Arguments

inode

the inode that is being read

start

the first byte to read

len

the number of bytes to read

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share
modes) can prohibit a read and byte-range POSIX locks can prohibit a read if they
overlap.

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

lock_may_write

LINUX
Kernel Hackers ManualJanuary 2010

Name

lock_may_write — checks that the region is free of locks

59

Chapter 1. The Linux VFS

Synopsis

int lock_may_write (struct inode % inode, loff_t start,
unsigned long len);

Arguments

inode

the inode that is being written

start

the first byte to write

len

the number of bytes to write

Description

Emulates Windows locking requirements. Whole-file mandatory locks (share
modes) can prohibit a write and byte-range POSIX locks can prohibit a write if they
overlap.

N.B. this function is only ever called from knfsd and ownership of locks is never
checked.

locks _mandatory locked

LINUX
Kernel Hackers ManualJanuary 2010

Name

locks_mandatory_locked — Check for an active lock

60

Chapter 1. The Linux VFS

Synopsis

int locks_mandatory_ locked (struct inode * inode);

Arguments

inode

the file to check

Description

Searches the inode’s list of locks to find any POSIX locks which conflict. This
function is called from locks_verify_locked only.

fcntl_getlease

LINUX
Kernel Hackers ManualJanuary 2010

Name

fcntl_getlease — Enquire what lease is currently active

Synopsis

int fentl_getlease (struct file x filp);

61

Chapter 1. The Linux VFS
Arguments

filp
the file

Description

The value returned by this function will be one of (if no lease break is pending):
F_RDLCK to indicate a shared lease is held.

F_WRLCK to indicate an exclusive lease is held.

F_UNLCK to indicate no lease is held.

(if a lease break is pending):

F_RDLCK to indicate an exclusive lease needs to be changed to a shared lease (or
removed).

F_UNLCK to indicate the lease needs to be removed.

XXX

sfr & willy disagree over whether F_INPROGRESS should be returned to
userspace.

fcntl_setlease

LINUX
Kernel Hackers ManualJanuary 2010

Name

fecntl_setlease — sets a lease on an open file

62

Chapter 1. The Linux VFS

Synopsis

int fcntl_setlease (unsigned int fd, struct file x filp, long
arqg);

Arguments

£d

open file descriptor

filp

file pointer

arg

type of lease to obtain

Description

Call this fentl to establish a lease on the file. Note that you also need to call
F_SETSIG to receive a signal when the lease is broken.

sys_flock

LINUX
Kernel Hackers ManualJanuary 2010

Name

sys_flock — flock system call.

63

Chapter 1. The Linux VFS

Synopsis

long sys_flock (unsigned int fd, unsigned int cmd) ;

Arguments

fd

the file descriptor to lock.

cmd

the type of lock to apply.

Description

Apply a FL_FLOCK style lock to an open file descriptor. The cmd can be one of
LOCK_SH -- a shared lock.

LOCK_EX -- an exclusive lock.

LOCK_UN -- remove an existing lock.

LOCK_MAND -- a ‘mandatory’ flock. This exists to emulate Windows Share Modes.

LOCK_MAND can be combined with LOCK_READ or LOCK_WRITE to allow other
processes read and write access respectively.

1.6. Other Functions

mpage_readpages

LINUX

64

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

mpage_readpages — populate an address space with some pages & start reads
against them

Synopsis

int mpage_readpages (struct address_space % mapping, struct
list_head x pages, unsigned nr_pages, get_block_t get_block);

Arguments

mapplng

the address_space

pages
The address of a list_head which contains the target pages. These pages have
their ->index populated and are otherwise uninitialised. The page at
pages->prev has the lowest file offset, and reads should be issued in
pages->prev to pages->next order.

nr._pages

The number of pages at *pages

get_block

The filesystem’s block mapper function.

Description

This function walks the pages and the blocks within each page, building and
emitting large BIOs.

If anything unusual happens, such as:

65

Chapter 1. The Linux VFS

- encountering a page which has buffers - encountering a page which has a non-hole
after a hole - encountering a page with non-contiguous blocks

then this code just gives up and calls the buffer_head-based read function. It does
handle a page which has holes at the end - that is a common case: the end-of-file on
blocksize < PAGE_CACHE_SIZE setups.

BH_Boundary explanation

There is a problem. The mpage read code assembles several pages, gets all their
disk mappings, and then submits them all. That’s fine, but obtaining the disk
mappings may require I/O. Reads of indirect blocks, for example.

So an mpage read of the first 16 blocks of an ext2 file will cause 1/0 to be

submitted in the following order

120123456789101113141516

because the indirect block has to be read to get the mappings of blocks 13,14,15,16.
Obviously, this impacts performance.

So what we do it to allow the filesystem’s get_block function to set
BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
after this one will require I/O against a block which is probably close to this one. So
you should push what I/0 you have currently accumulated.

This all causes the disk requests to be issued in the correct order.

mpage_writepages

LINUX
Kernel Hackers ManualJanuary 2010

Name

mpage_writepages — walk the list of dirty pages of the given address space &
writepage all of them

66

Chapter 1. The Linux VFS

Synopsis

int mpage_writepages (struct address_space x mapping, struct
writeback_control * whc, get_block_t get_block);

Arguments

mapping

address space structure to write

whbc

subtract the number of written pages from *wbc->nr_to_write

get_block

the filesystem’s block mapper function. If this is NULL then use
a_ops->writepage. Otherwise, go direct-to-BIO.

Description

This is a library function, which implements the writepages
address_space_operation.

If a page is already under I/O, generic_writepages skips it, even if it’s dirty.
This is desirable behaviour for memory-cleaning writeback, but it is INCORRECT
for data-integrity system calls such as fsync. fsync and msync need to guarantee
that all the data which was dirty at the time the call was made get new 1/O started
against them. If wbc->sync_mode is WB_SYNC_ALL then we were called for data
integrity and we must wait for existing 1O to complete.

generic_permission

LINUX

67

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

generic_permission — check for access rights on a Posix-like filesystem

Synopsis

int generic_permission (struct inode » inode, int mask, int
(xcheck_acl) (struct inode *inode, int mask));

Arguments

inode

inode to check access rights for

mask

right to check for (MAY_READ, MAY _WRITE, MAY EXEC)

check_acl

optional callback to check for Posix ACLs

Description

Used to check for read/write/execute permissions on a file. We use “fsuid” for this,
letting us set arbitrary permissions for filesystem access without changing the
“normal” uids which are used for other things..

vis_permission

LINUX

68

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

vis_permission — check for access rights to a given path

Synopsis

int vfs_permission (struct nameidata x nd, int mask);

Arguments

nd

lookup result that describes the path

mask

right to check for (MAY_READ, MAY_WRITE, MAY_EXEC)

Description

Used to check for read/write/execute permissions on a path. We use “fsuid” for this,
letting us set arbitrary permissions for filesystem access without changing the
“normal” uids which are used for other things.

file_permission

LINUX

69

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

file_permission — check for additional access rights to a given file

Synopsis

int file_permission (struct file % file, int mask);

Arguments
file
file to check access rights for

mask

right to check for (MAY_READ, MAY_WRITE, MAY_EXEC)

Description

Used to check for read/write/execute permissions on an already opened file.

Note

Do not use this function in new code. All access checks should be done using

vis_permission.

path_get

70

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

path_get — get a reference to a path

Synopsis

void path_get (struct path » path);

Arguments

path

path to get the reference to

Description

Given a path increment the reference count to the dentry and the vfsmount.

path_put

LINUX
Kernel Hackers ManualJanuary 2010

Name

path_put — put a reference to a path

71

Chapter 1. The Linux VFS

Synopsis

void path_put (struct path » path);

Arguments

path

path to put the reference to

Description

Given a path decrement the reference count to the dentry and the vfsmount.

release_open_intent

LINUX
Kernel Hackers ManualJanuary 2010

Name

release_open_intent — free up open intent resources

Synopsis

void release_open_intent (struct nameidata * nd);

72

Chapter 1. The Linux VFS
Arguments

nd

pointer to nameidata

vis_path_lookup

LINUX
Kernel Hackers ManualJanuary 2010

Name

vEs_path_lookup — lookup a file path relative to a dentry-vfsmount pair
Synopsis

int vfs_path_lookup (struct dentry x dentry, struct vifsmount =
mnt, const char » name, unsigned int flags, struct nameidata =
nd) ;

Arguments

dentry

pointer to dentry of the base directory

mnt

pointer to vfs mount of the base directory

name

pointer to file name

73

Chapter 1. The Linux VFS
flags

lookup flags

nd

pointer to nameidata

lookup_one_len

LINUX
Kernel Hackers ManualJanuary 2010

Name

lookup_one_len — filesystem helper to lookup single pathname component

Synopsis

struct dentry * lookup_one_len (const char x name, struct
dentry * base, int len);

Arguments

name

pathname component to lookup

base

base directory to lookup from

len

maximum length 1en should be interpreted to

74

Chapter 1. The Linux VFS

Description

Note that this routine is purely a helper for filesystem usage and should not be
called by generic code. Also note that by using this function the nameidata
argument is passed to the filesystem methods and a filesystem using this helper
needs to be prepared for that.

filp_open

LINUX
Kernel Hackers ManualJanuary 2010

Name

filp_open — open file and return file pointer

Synopsis

struct file x filp_open (const char * filename, int flags, int

mode) ;

Arguments

filename

path to open

flags

open flags as per the open(2) second argument

mode

mode for the new file if O_CREAT is set, else ignored

75

Chapter 1. The Linux VFS
Description

This is the helper to open a file from kernelspace if you really have to. But in
generally you should not do this, so please move along, nothing to see here..

lookup_create

LINUX
Kernel Hackers ManualJanuary 2010

Name

lookup_create — lookup a dentry, creating it if it doesn’t exist

Synopsis

struct dentry * lookup_create (struct nameidata * nd, int

is dir);

Arguments

nd

nameidata info
is_dir

directory flag

Description

Simple function to lookup and return a dentry and create it if it doesn’t exist. Is
SMP-safe.

Returns with nd->path.dentry->d_inode->i_mutex locked.

76

Chapter 1. The Linux VFS

freeze bdev

LINUX
Kernel Hackers ManualJanuary 2010

Name

freeze_bdev — - lock a filesystem and force it into a consistent state

Synopsis

struct super_block » freeze_bdev (struct block_device * bdev);

Arguments

bdev

blockdevice to lock

Description

This takes the block device bd_mount_sem to make sure no new mounts happen on
bdev until thaw_bdev is called. If a superblock is found on this device, we take the
s_umount semaphore on it to make sure nobody unmounts until the snapshot
creation is done.

thaw bdev

LINUX

77

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

thaw_bdev — - unlock filesystem

Synopsis

void thaw_bdev (struct block_device x bdev, struct super_block
* sSb);

Arguments

bdev

blockdevice to unlock

sb

associated superblock

Description

Unlocks the filesystem and marks it writeable again after freeze_bdev.

sync_mapping_buffers

LINUX
Kernel Hackers ManualJanuary 2010

Name

sync_mapping_buf fers — write out & wait upon a mapping’s “associated”

78

Chapter 1. The Linux VFS
buffers

Synopsis

int sync_mapping buffers (struct address_space * mapping);

Arguments

mapping

the mapping which wants those buffers written

Description

Starts 1/0 against the buffers at mapping->private_list, and waits upon that I/O.

Basically, this is a convenience function for £sync. mapping is a file or directory
which needs those buffers to be written for a successful £sync.

mark_buffer_dirty

LINUX
Kernel Hackers ManualJanuary 2010

Name

mark_buffer_dirty — mark a buffer_head as needing writeout

Synopsis

void mark buffer dirty (struct buffer_head x bh);

79

Chapter 1. The Linux VFS

Arguments

bh

the buffer_head to mark dirty

Description

mark_buffer_dirty will set the dirty bit against the buffer, then set its backing
page dirty, then tag the page as dirty in its address_space’s radix tree and then attach
the address_space’s inode to its superblock’s dirty inode list.

mark_buffer_dirty is atomic. It takes bh->b_page->mapping->private_lock,
mapping->tree_lock and the global inode_lock.

__bread

LINUX
Kernel Hackers ManualJanuary 2010

Name

___bread — reads a specified block and returns the bh

Synopsis

struct buffer _head * _ bread (struct block_device x bdev,
sector_t block, unsigned size);

80

Chapter 1. The Linux VFS
Arguments

bdev

the block_device to read from

block

number of block

size

size (in bytes) to read

Description

Reads a specified block, and returns buffer head that contains it. It returns NULL if
the block was unreadable.

block_invalidatepage

LINUX
Kernel Hackers ManualJanuary 2010

Name

block_invalidatepage — invalidate part of all of a buffer-backed page

Synopsis

void block_invalidatepage (struct page * page, unsigned long
offset);

81

Chapter 1. The Linux VFS

Arguments

page

the page which is affected

offset

the index of the truncation point

Description

block_invalidatepage is called when all or part of the page has become
invalidatedby a truncate operation.

block_invalidatepage does not have to release all buffers, but it must ensure

that no dirty buffer is left outside of fset and that no I/O is underway against any
of the blocks which are outside the truncation point. Because the caller is about to
free (and possibly reuse) those blocks on-disk.

Il_rw_block

LINUX

Kernel Hackers ManualJanuary 2010

82

Name
11_rw_block — level access to block devices (DEPRECATED)

Synopsis

void 1ll_rw block (int rw, int nr, struct buffer_head * bhs[]);

Chapter 1. The Linux VFS
Arguments

rw

whether to READ or WRITE or SWRITE or maybe READA (readahead)

nr

number of struct buffer_heads in the array

bhs[]

array of pointers to struct buffer_head

Description

11_rw_block takes an array of pointers to struct buffer_heads, and requests an I/O
operation on them, either a READ or a WRITE. The third SWRITE is like WRITE only
we make sure that the *current* data in buffers are sent to disk. The fourth READA
option is described in the documentation for generic_make_request which
11_rw_block calls.

This function drops any buffer that it cannot get a lock on (with the BH_Lock state
bit) unless SWRITE is required, any buffer that appears to be clean when doing a
write request, and any buffer that appears to be up-to-date when doing read request.
Further it marks as clean buffers that are processed for writing (the buffer cache
won’t assume that they are actually clean until the buffer gets unlocked).

1I_rw_block sets b_end_io to simple completion handler that marks the buffer
up-to-date (if approriate), unlocks the buffer and wakes any waiters.

All of the buffers must be for the same device, and must also be a multiple of the
current approved size for the device.

bh_uptodate or_lock

LINUX

83

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

bh_uptodate_or_lock — Test whether the buffer is uptodate

Synopsis

int bh_uptodate_or_lock (struct buffer_head x bh);

Arguments

bh

struct buffer_head

Description

Return true if the buffer is up-to-date and false, with the buffer locked, if not.

bh_submit_read

LINUX
Kernel Hackers ManualJanuary 2010

Name

bh_submit_read — Submit a locked buffer for reading

84

Chapter 1. The Linux VFS

Synopsis

int bh_submit_read (struct buffer_head =* bh);

Arguments

bh

struct buffer_head

Description

Returns zero on success and -EIO on error.

bio_alloc_bioset

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_alloc_bioset — allocate a bio for I/O

Synopsis

struct bio x bio_alloc_bioset (gfp_t gfp mask, int nr_iovecs,
struct bio_set x bs);

85

Chapter 1. The Linux VFS
Arguments

gfp_mask

the GFP_ mask given to the slab allocator

nr_iovecs

number of iovecs to pre-allocate

the bio_set to allocate from

Description

bio_alloc_bioset will first try it’s on mempool to satisfy the allocation. If
__GFP_WAIT is set then we will block on the internal pool waiting for a struct bio
to become free.

allocate bio and iovecs from the memory pools specified by the bio_set structure.

bio put

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_put — release a reference to a bio

Synopsis

void bio_put (struct bio * bio);

86

Chapter 1. The Linux VFS
Arguments

bio

bio to release reference to

Description

Put a reference to a struct bio, either one you have gotten with bio_alloc or bio_get.
The last put of a bio will free it.

__bio_clone

LINUX
Kernel Hackers ManualJanuary 2010

Name

_ _bio_clone —clone abio

Synopsis

void _ _bio_clone (struct bio * bio, struct bio * bio_src);

Arguments

bio
destination bio

bio_src

bio to clone

87

Chapter 1. The Linux VFS
Description

Clone a bio. Caller will own the returned bio, but not the actual data it points to.
Reference count of returned bio will be one.

bio _clone

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_clone — clone a bio

Synopsis

struct bio x bio_clone (struct bio x bio, gfp_t gfp mask);

Arguments

bio
bio to clone

gfp_mask

allocation priority

Description

Like __bio_clone, only also allocates the returned bio

88

Chapter 1. The Linux VFS

bio_get nr_vecs

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_get_nr_vecs — return approx number of vecs

Synopsis

int bio_get_nr vecs (struct block_device * bdev);

Arguments

bdev

I/O target

Description

Return the approximate number of pages we can send to this target. There’s no
guarantee that you will be able to fit this number of pages into a bio, it does not
account for dynamic restrictions that vary on offset.

bio_add pc_page

LINUX

89

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

bio_add_pc_page — attempt to add page to bio

Synopsis

int bio_add_pc_page (struct request_gqueue » g, struct bio =
bio, struct page * page, unsigned int Ien, unsigned int
offset) ;

Arguments

the target queue
bio
destination bio

page

page to add

len

vec entry length

offset

vec entry offset

Description

Attempt to add a page to the bio_vec maplist. This can fail for a number of reasons,
such as the bio being full or target block device limitations. The target block device
must allow bio’s smaller than PAGE_SIZE, so it is always possible to add a single
page to an empty bio. This should only be used by REQ_PC bios.

90

Chapter 1. The Linux VFS

bio_add_page

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_add_page — attempt to add page to bio

Synopsis

int bio_add_page (struct bio x bio, struct page * page,
unsigned int Ien, unsigned int offset);

Arguments

bio
destination bio

page

page to add

len

vec entry length

offset

vec entry offset

91

Chapter 1. The Linux VFS

Description

Attempt to add a page to the bio_vec maplist. This can fail for a number of reasons,
such as the bio being full or target block device limitations. The target block device
must allow bio’s smaller than PAGE_SIZE, so it is always possible to add a single
page to an empty bio.

bio_uncopy_user

LINUX

Kernel Hackers ManualJanuary 2010

92

Name

bio_uncopy_user — finish previously mapped bio

Synopsis

int bio_uncopy_user (struct bio x bio);

Arguments

bio

bio being terminated

Description

Free pages allocated from bio_copy_user and write back data to user space in
case of a read.

Chapter 1. The Linux VFS

bio_copy_user

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_copy_user — copy user data to bio
Synopsis

struct bio x bio_copy_user (struct request_qgqueue * g, unsigned
long uaddr, unsigned int len, int write to_vm);

Arguments

destination block queue

uaddr

start of user address

len

length in bytes

write to_vm

bool indicating writing to pages or not

Description

Prepares and returns a bio for indirect user 10, bouncing data to/from kernel pages
as necessary. Must be paired with call bio_uncopy_user on io completion.

93

Chapter 1. The Linux VFS

bio_map_user

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_map_user — map user address into bio

Synopsis

struct bio x bio_map_user (struct request_queue * g, struct

block_device % bdev, unsigned long uaddr,
int write_to_vm);

Arguments

the struct request_queue for the bio

bdev

destination block device

uaddr

start of user address

len

length in bytes

write to_vm

bool indicating writing to pages or not

94

unsigned int Ien,

Chapter 1. The Linux VFS

Description

Map the user space address into a bio suitable for io to a block device. Returns an
error pointer in case of error.

bio unmap_user

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_unmap_user — unmap a bio

Synopsis

void bio_unmap_user (struct bio *x bio);

Arguments

bio

the bio being unmapped

Description

Unmap a bio previously mapped by bio_map_user. Must be called with a process

context.

bio_unmap_user may sleep.

95

Chapter 1. The Linux VFS

bio_map_kern

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_map_kern — map kernel address into bio

Synopsis

struct bio x bio_map_kern (struct request_queue * g, void =*
data, unsigned int len, gfp_t gfp_mask);

Arguments

the struct request_queue for the bio

data

pointer to buffer to map

len

length in bytes

gfp_mask

allocation flags for bio allocation

Description

Map the kernel address into a bio suitable for io to a block device. Returns an error
pointer in case of error.

96

Chapter 1. The Linux VFS

bio_copy_kern

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_copy_kern — copy kernel address into bio
Synopsis

struct bio x bio_copy_kern (struct request_qgqueue * g, void *
data, unsigned int len, gfp_t gfp_mask, int reading);

Arguments

the struct request_queue for the bio

data

pointer to buffer to copy

len

length in bytes

gfp_mask

allocation flags for bio and page allocation

reading

data direction is READ

97

Chapter 1. The Linux VFS
Description

copy the kernel address into a bio suitable for 10 to a block device. Returns an error
pointer in case of error.

bio_endio

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_endio —end I/O on a bio

Synopsis

void bio_endio (struct bio * bio, int error);

Arguments
bio

bio
error

error, if any

Description

bio_endio will end I/O on the whole bio. bio_endio is the preferred way to end
I/0 on a bio, it takes care of clearing BIO_UPTODATE on error. error is 0 on
success, and and one of the established -Exxxx (-EIO, for instance) error values in

98

Chapter 1. The Linux VFS

case something went wrong. Noone should call bi_end_io directly on a bio unless
they own it and thus know that it has an end_io function.

bio sector offset

LINUX
Kernel Hackers ManualJanuary 2010

Name

bio_sector_offset — Find hardware sector offset in bio
Synopsis

sector_t bio_sector_offset (struct bio x* bio, unsigned short
index, unsigned int offset);

Arguments
bio
bio to inspect

index

bio_vec index

offset

offset in bv_page

99

Chapter 1. The Linux VFS
Description

Return the number of hardware sectors between beginning of bio and an end point
indicated by a bio_vec index and an offset within that vector’s page.

seq_open

LINUX
Kernel Hackers ManualJanuary 2010

Name

seq_open — initialize sequential file

Synopsis

int seq open (struct file x file, const struct seq_operations
* op);

Arguments
file
file we initialize

op

method table describing the sequence

Description

seqg_open sets £ile, associating it with a sequence described by op. op->start
sets the iterator up and returns the first element of sequence. op->stop shuts it
down. op->next returns the next element of sequence. op->show prints element

100

Chapter 1. The Linux VFS

into the buffer. In case of error ->start and ->next return ERR_PTR(error). In the
end of sequence they return NULL. ->show returns O in case of success and negative
number in case of error. Returning SEQ_SKIP means “discard this element and
move on’.

seq_read

LINUX
Kernel Hackers ManualJanuary 2010

Name

seq_read — ->read method for sequential files.

Synopsis

ssize_t seq read (struct file * file, char _ _user x buf,
size_t size, loff_t x ppos);

Arguments

file

the file to read from

buf

the buffer to read to

size

the maximum number of bytes to read

prpros

the current position in the file

101

Chapter 1. The Linux VFS
Description

Ready-made ->f_op->read

seq_lseek

LINUX
Kernel Hackers ManualJanuary 2010

Name

seq_lseek — ->11seek method for sequential files.

Synopsis

loff_t seq lseek (struct file x file, loff_t offset, int
origin);

Arguments

file

the file in question

offset

new position

origin

0 for absolute, 1 for relative position

Description

Ready-made ->f_op->11seek

102

Chapter 1. The Linux VFS

seq_release

LINUX
Kernel Hackers ManualJanuary 2010

Name

seq_release — free the structures associated with sequential file.

Synopsis

int seq _release (struct inode * inode, struct file x file);

Arguments

inode

file->f_path.dentry->d_inode

file

file in question

Description

Frees the structures associated with sequential file; can be used as
->f_op->release if you don’t have private data to destroy.

103

Chapter 1. The Linux VFS

se(q_escape

LINUX
Kernel Hackers ManualJanuary 2010

Name

seq_escape — print string into buffer, escaping some characters

Synopsis

int seq escape (struct seg _file x m, const char x s, const
char * esc);

Arguments

target buffer

string

esc

set of characters that need escaping

Description

Puts string into buffer, replacing each occurrence of character from esc with usual
octal escape. Returns 0 in case of success, -1 - in case of overflow.

104

Chapter 1. The Linux VFS

register_filesystem

LINUX
Kernel Hackers ManualJanuary 2010

Name

register_filesystem — register a new filesystem

Synopsis

int register_filesystem (struct file_system_ type x fs);

Arguments

fs

the file system structure

Description

Adds the file system passed to the list of file systems the kernel is aware of for
mount and other syscalls. Returns 0 on success, or a negative errno code on an error.

The struct file_system_type that is passed is linked into the kernel structures and
must not be freed until the file system has been unregistered.

unregister_filesystem

LINUX

105

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

unregister_filesystem — unregister a file system

Synopsis

int unregister_ filesystem (struct file_system _type * fs);

Arguments

fs

filesystem to unregister

Description

Remove a file system that was previously successfully registered with the kernel.
An error is returned if the file system is not found. Zero is returned on a success.

Once this function has returned the struct file_system_type structure may be freed
or reused.

__mark_inode_dirty

LINUX
Kernel Hackers ManualJanuary 2010

Name

__mark_inode_dirty — internal function

106

Chapter 1. The Linux VFS

Synopsis

void __mark_inode_dirty (struct inode * inode, int flags);

Arguments

inode

inode to mark

flags

what kind of dirty (i.e. I_DIRTY_SYNC) Mark an inode as dirty. Callers
should use mark_inode_dirty or mark_inode_dirty_sync.

Description

Put the inode on the super block’s dirty list.

CAREFUL! We mark it dirty unconditionally, but move it onto the dirty list only if
it is hashed or if it refers to a blockdev. If it was not hashed, it will never be added to
the dirty list even if it is later hashed, as it will have been marked dirty already.

In short, make sure you hash any inodes _before_ you start marking them dirty.

This function *must* be atomic for the I_DIRTY_PAGES case - set_page_dirty
is called under spinlock in several places.

Note that for blockdevs, inode->dirtied_when represents the dirtying time of the
block-special inode (/dev/hdal) itself. And the ->dirtied_when field of the
kernel-internal blockdev inode represents the dirtying time of the blockdev’s pages.
This is why for I_DIRTY_PAGES we always use page->mapping->host, so the
page-dirtying time is recorded in the internal blockdev inode.

write_inode _nhow

LINUX

107

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

write inode now — write an inode to disk

Synopsis

int write_inode_now (struct inode x inode, int sync);

Arguments

inode

inode to write to disk

sync

whether the write should be synchronous or not

Description

This function commits an inode to disk immediately if it is dirty. This is primarily
needed by knfsd.

The caller must either have a ref on the inode or must have set I WILL_FREE.

sync_inode

108

LINUX

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

sync_inode — write an inode and its pages to disk.

Synopsis

int sync_inode (struct inode * inode, struct writeback_control
* wbc) ;

Arguments

inode

the inode to sync

wbc

controls the writeback mode

Description

sync_inode will write an inode and its pages to disk. It will also correctly update
the inode on its superblock’s dirty inode lists and will update inode->i_state.

The caller must have a ref on the inode.

generic_osync_inode

LINUX

109

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

generic_osync_inode — flush all dirty data for a given inode to disk

Synopsis

int generic_osync_inode (struct inode x inode, struct
address_space * mapping, int what);

Arguments

inode

inode to write

mapping
the address_space that should be flushed

what

what to write and wait upon

Description

This can be called by file_write functions for files which have the O_SYNC flag set,
to flush dirty writes to disk.

what 1s a bitmask, specifying which part of the inode’s data should be written and
waited upon.

OSYNC_DATA

i_mapping’s dirty data

110

Chapter 1. The Linux VFS

OSYNC_METADATA

the buffers at i_mapping->private_list

OSYNC_INODE

the inode itself

bd claim_by disk

LINUX
Kernel Hackers ManualJanuary 2010

Name

bd_claim_by_disk — wrapper function for bd_claim_by_kobject
Synopsis

int bd_claim by _disk (struct block_device % bdev, void *
holder, struct gendisk = disk);

Arguments

bdev

block device to be claimed

holder

holder’s signature

disk

holder’s gendisk

111

Chapter 1. The Linux VFS
Description

Call bd_claim_by_kobject with getting disk->slave_dir.

bd release from_disk

LINUX
Kernel Hackers ManualJanuary 2010

Name

bd_release_from_disk — wrapper function for

bd_release_from_kobject

Synopsis

void bd_release from disk (struct block_device * bdev, struct
gendisk * disk);

Arguments

bdev

block device to be claimed

disk

holder’s gendisk

Description

Call bd_release_from_kobject and put disk->slave_dir.

112

Chapter 1. The Linux VFS

check _disk_size change

LINUX
Kernel Hackers ManualJanuary 2010

Name

check_disk_size_change — checks for disk size change and adjusts

Synopsis

void check_disk_size_change (struct gendisk * disk, struct
block_device * bdev);

Arguments

disk

struct gendisk to check

bdev

struct bdev to adjust.

Description

This routine checks to see if the bdev size does not match the disk size and adjusts it
if it differs.

Description

This routine checks to see if the bdev size does not match the disk size and adjusts it
if it differs.

113

Chapter 1. The Linux VFS

revalidate disk

LINUX

Kernel Hackers ManualJanuary 2010

114

Name

revalidate_disk — wrapper for lower-level driver’s revalidate_disk

Synopsis

int revalidate_disk (struct gendisk * disk);

Arguments

disk

struct gendisk to be revalidated

Description

This routine is a wrapper for lower-level driver’s revalidate_disk call-backs. It is
used to do common pre and post operations needed for all revalidate_disk
operations.

Description

This routine is a wrapper for lower-level driver’s revalidate_disk call-backs. It is
used to do common pre and post operations needed for all revalidate_disk
operations.

Chapter 1. The Linux VFS

lookup bdev

LINUX
Kernel Hackers ManualJanuary 2010

Name

lookup_bdev — lookup a struct block_device by name

Synopsis

struct block_device x lookup_bdev (const char x path);

Arguments

path

special file representing the block device

Description

Get a reference to the blockdevice at path in the current namespace if possible and
return it. Return ERR_PTR(error) otherwise.

open_bdev_excl

LINUX

115

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

open_bdev_excl — open a block device by name and set it up for use

Synopsis

struct block_device » open_bdev_excl (const char » path, int
flags, void % holder);

Arguments

path

special file representing the block device

flags

MS_RDONLY for opening read-only

holder

owner for exclusion

Description

Open the blockdevice described by the special file at path, claim it for the holder.

close bdev excl

LINUX

116

Chapter 1. The Linux VFS

Kernel Hackers ManualJanuary 2010

Name

close_bdev_excl — release a blockdevice openen by open_bdev_excl

Synopsis

void close_bdev_excl (struct block_device * bdev);

Arguments

bdev

blockdevice to close

Description

This is the counterpart to open_bdev_excl.

117

Chapter 1. The Linux VFS

118

Chapter 2. The proc filesystem

2.1. sysctl interface

register_sysctl_paths

LINUX
Kernel Hackers ManualJanuary 2010

Name

register_sysctl_paths — register a sysctl table hierarchy

Synopsis

struct ctl_table_header register_sysctl_paths (const struct
ctl_path % path, struct ctl_table x table);

Arguments

path
The path to the directory the sysctl table is in.

table

the top-level table structure

Description

Register a sysctl table hierarchy. table should be a filled in ctl_table array. A
completely O filled entry terminates the table.

See __register_sysctl_paths for more details.

119

Chapter 2. The proc filesystem

register_sysctl_table

LINUX

Kernel Hackers ManualJanuary 2010

120

Name

register_sysctl_table — register a sysctl table hierarchy

Synopsis

struct ctl_table_header * register_sysctl_table (struct
ctl_table * table);

Arguments

table

the top-level table structure

Description

Register a sysctl table hierarchy. table should be a filled in ctl_table array. A
completely O filled entry terminates the table.

See register_sysctl_paths for more details.

Chapter 2. The proc filesystem

unregister_sysctl_table

LINUX
Kernel Hackers ManualJanuary 2010

Name

unregister_sysctl_table — unregister a sysctl table hierarchy

Synopsis

void unregister_sysctl_table (struct ctl_table_header =*
header) ;

Arguments

header

the header returned from register_sysctl_table

Description

Unregisters the sysctl table and all children. proc entries may not actually be
removed until they are no longer used by anyone.

proc_dostring

LINUX

121

Chapter 2. The proc filesystem
Kernel Hackers ManualJanuary 2010

Name

proc_dostring — read a string sysctl

Synopsis

int proc_dostring (struct ctl_table » table, int write, struct
file » filp, void __user * buffer, size_t x lenp, loff_t =«

ppos) ;

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

prppros

file position

Description

Reads/writes a string from/to the user buffer. If the kernel buffer provided is not
large enough to hold the string, the string is truncated. The copied string is

122

Chapter 2. The proc filesystem

NULL-terminated. If the string is being read by the user process, it is copied and
a newline \n’ is added. It is truncated if the buffer is not large enough.

Returns O on success.

proc_dointvec

LINUX
Kernel Hackers ManualJanuary 2010

Name

proc_dointvec — read a vector of integers

Synopsis

int proc_dointvec (struct ctl_table » table, int write, struct
file x filp, void __user * buffer, size_t x lenp, loff_t =«

ppos) ;

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

123

Chapter 2. The proc filesystem
lenp

the size of the user buffer

prpros

file position

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the
user buffer, treated as an ASCII string.

Returns O on success.

proc_dointvec_minmax

LINUX
Kernel Hackers ManualJanuary 2010

Name

proc_dointvec_minmax — read a vector of integers with min/max values

Synopsis

int proc_dointvec_minmax (struct ctl_table x table, int write,
struct file % filp, void __user x buffer, size_t = lenp,
loff_t * ppos);

Arguments

table

the sysctl table

124

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

ppos

file position

Description

Chapter 2. The proc filesystem

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the

user buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral

(min) and table->extra2 (max).

Returns O on success.

proc_doulongvec minmax

LINUX

Kernel Hackers ManualJanuary 2010

Name

proc_doulongvec_minmax — read a vector of long integers with min/max

values

125

Chapter 2. The proc filesystem

Synopsis

int proc_doulongvec_minmax (struct ctl_table % table, int
write, struct file x filp, void __ _user x buffer, size_t *
lenp, loff_t x ppos);

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file
filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

prpros

file position

Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values
from/to the user buffer, treated as an ASCII string.

This routine will ensure the values are within the range specified by table->extral
(min) and table->extra2 (max).

Returns O on success.

126

Chapter 2. The proc filesystem

proc_doulongvec_ms_jiffies_minmax

LINUX
Kernel Hackers ManualJanuary 2010

Name

proc_doulongvec_ms_Jjiffies_minmax — read a vector of millisecond
values with min/max values

Synopsis

int proc_doulongvec_ms_jiffies_minmax (struct ctl_table «*
table, int write, struct file % filp, void _ _user x buffer,
size_t * lenp, loff_t x ppos);

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

ppos

file position

127

Chapter 2. The proc filesystem
Description

Reads/writes up to table->maxlen/sizeof(unsigned long) unsigned long values
from/to the user buffer, treated as an ASCII string. The values are treated as
milliseconds, and converted to jiffies when they are stored.

This routine will ensure the values are within the range specified by table->extral
(min) and table->extra2 (max).

Returns O on success.

proc_dointvec_jiffies

LINUX
Kernel Hackers ManualJanuary 2010

Name

proc_dointvec_jiffies — read a vector of integers as seconds

Synopsis

int proc_dointvec_jiffies (struct ctl_table % table, int
write, struct file » filp, void _ _user * buffer, size_t =
lenp, loff_t x ppos);

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

128

Chapter 2. The proc filesystem
filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

prppros

file position

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the
user buffer, treated as an ASCII string. The values read are assumed to be in
seconds, and are converted into jiffies.

Returns O on success.

proc_dointvec_userhz_jiffies

LINUX
Kernel Hackers ManualJanuary 2010

Name

proc_dointvec_userhz_jiffies —read a vector of integers as
1/USER_HZ seconds

Synopsis

int proc_dointvec_userhz_jiffies (struct ctl_table x table,
int write, struct file x filp, void __user x buffer, size_t =
lenp, loff_t x ppos);

129

Chapter 2. The proc filesystem

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

ppros

pointer to the file position

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the
user buffer, treated as an ASCII string. The values read are assumed to be in
1/USER_HZ seconds, and are converted into jiffies.

Returns O on success.

proc_dointvec_ms _jiffies

LINUX

130

Kernel Hackers ManualJanuary 2010

Name

Chapter 2. The proc filesystem

proc_dointvec_ms_Jjiffies —read a vector of integers as 1 milliseconds

Synopsis

int proc_dointvec_ms_jiffies (struct ctl_table x table, int

write, struct file x filp, void _ _user * buffer, size_t =

lenp, loff_t x ppos);

Arguments

table

the sysctl table

write

TRUE if this is a write to the sysctl file

filp

the file structure

buffer

the user buffer

lenp

the size of the user buffer

prppros

the current position in the file

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the
user buffer, treated as an ASCII string. The values read are assumed to be in 1/1000

131

Chapter 2. The proc filesystem

seconds, and are converted into jiffies.

Returns O on success.

2.2. proc filesystem interface

proc_flush_task

LINUX

Kernel Hackers ManualJanuary 2010

132

Name

proc_flush_task — Remove dcache entries for task from the /proc dcache.

Synopsis

void proc_flush_ task (struct task_struct * task);

Arguments

task

task that should be flushed.

Description

When flushing dentries from proc, one needs to flush them from global proc
(proc_mnt) and from all the namespaces’ procs this task was seen in. This call is
supposed to do all of this job.

Chapter 2. The proc filesystem

Looks in the dcache for /proc/pid /proc/t gid/task/pid if either directory is present
flushes it and all of it’ts children from the dcache.

It is safe and reasonable to cache /proc entries for a task until that task exits. After
that they just clog up the dcache with useless entries, possibly causing useful
dcache entries to be flushed instead. This routine is proved to flush those useless
dcache entries at process exit time.

NOTE

This routine is just an optimization so it does not guarantee that no dcache entries
will exist at process exit time it just makes it very unlikely that any will persist.

133

Chapter 2. The proc filesystem

134

Chapter 3. The Filesystem for
Exporting Kernel Objects

sysfs create file

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_create_file — create an attribute file for an object.

Synopsis

int sysfs_create_file (struct kobject x kobj, const struct
attribute * attr);

Arguments

kob7j

object we’re creating for.

attr

attribute descriptor.

sysfs _add file to_group

LINUX

135

Chapter 3. The Filesystem for Exporting Kernel Objects
Kernel Hackers ManualJanuary 2010

Name

sysfs_add_file_to_group — add an attribute file to a pre-existing group.

Synopsis

int sysfs_add_file_to_group (struct kobject x kobj, const
struct attribute x attr, const char x group);

Arguments

kobj

object we’re acting for.

attr

attribute descriptor.

group

group name.

sysfs_chmod file

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_chmod_file — update the modified mode value on an object attribute.

136

Chapter 3. The Filesystem for Exporting Kernel Objects

Synopsis

int sysfs_chmod file (struct kobject x kobj, struct attribute
* attr, mode_t mode);

Arguments

kobj

object we’re acting for.

attr

attribute descriptor.

mode

file permissions.

sysfs _remove file

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_remove_file — remove an object attribute.

Synopsis

void sysfs_remove_file (struct kobject x kobj, const struct
attribute x attr);

137

Chapter 3. The Filesystem for Exporting Kernel Objects
Arguments

kobj

object we’re acting for.

attr

attribute descriptor.

Description

Hash the attribute name and kill the victim.

sysfs remove file from_group

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_remove_file_ from_group — remove an attribute file from a group.
Synopsis

void sysfs_remove_ file from_group (struct kobject » kobj,
const struct attribute % attr, const char x group);

Arguments

kob7

object we’re acting for.

138

Chapter 3. The Filesystem for Exporting Kernel Objects
attr

attribute descriptor.

group

group name.

sysfs schedule callback

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_schedule_callback — helper to schedule a callback for a kobject

Synopsis

int sysfs_schedule_callback (struct kobject * kobj, void
(xfunc) (void =), void * data, struct module * owner);

Arguments

kobj

object we’re acting for.

func

callback function to invoke later.

data

argument to pass to func.

139

Chapter 3. The Filesystem for Exporting Kernel Objects

owner

module owning the callback code

Description

sysfs attribute methods must not unregister themselves or their parent kobject
(which would amount to the same thing). Attempts to do so will deadlock, since
unregistration is mutually exclusive with driver callbacks.

Instead methods can call this routine, which will attempt to allocate and schedule a
workqueue request to call back func with data as its argument in the workqueue’s
process context. kobj will be pinned until func returns.

Returns 0 if the request was submitted, -ENOMEM if storage could not be
allocated, -ENODEYV if a reference to owner isn’t available.

sysfs create link

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_create_link — create symlink between two objects.

Synopsis

int sysfs_create_link (struct kobject x kobj, struct kobject =

target, const char * name);

140

Chapter 3. The Filesystem for Exporting Kernel Objects
Arguments

kobj

object whose directory we’re creating the link in.

target

object we’re pointing to.

name

name of the symlink.

sysfs remove link

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_remove_link — remove symlink in object’s directory.

Synopsis

void sysfs_remove_link (struct kobject x kobj, const char =«
name) ;

Arguments

kobj

object we’re acting for.

141

Chapter 3. The Filesystem for Exporting Kernel Objects
name

name of the symlink to remove.

sysfs create bin_file

LINUX
Kernel Hackers ManualJanuary 2010

Name

sysfs_create_bin_file — create binary file for object.

Synopsis

int sysfs_create_bin_ file (struct kobject » kobj, struct
bin_attribute * attr);

Arguments

kobj

object.

attr

attribute descriptor.

sysfs remove bin_file

LINUX

142

Chapter 3. The Filesystem for Exporting Kernel Objects
Kernel Hackers ManualJanuary 2010

Name

sysfs_remove_bin_file — remove binary file for object.

Synopsis

void sysfs_remove_bin_file (struct kobject * kobj, struct
bin_attribute * attr);

Arguments

kobj

object.

attr

attribute descriptor.

143

Chapter 3. The Filesystem for Exporting Kernel Objects

144

Chapter 4. The debugfs filesystem

4.1. debugfs interface

debugfs create file

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_create_file — create a file in the debugfs filesystem

Synopsis

struct dentry * debugfs_create_file (const char * name, mode_t
mode, struct dentry % parent, void % data, const struct
file_operations x fops);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this paramater is NULL, then the file will be created in the root of the
debugfs filesystem.

145

Chapter 4. The debugfs filesystem

data
a pointer to something that the caller will want to get to later on. The
inode.i_private pointer will point to this value on the open call.
fops

a pointer to a struct file_operations that should be used for this file.

Description

This is the basic “create a file” function for debugfs. It allows for a wide range of
flexibility in createing a file, or a directory (if you want to create a directory, the
debugfs_create_dir function is recommended to be used instead.)

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned.

debugfs create dir

LINUX

Kernel Hackers ManualJanuary 2010

146

Name

debugfs_create_dir — create a directory in the debugfs filesystem

Synopsis

struct dentry debugfs_create_dir (const char * name, struct
dentry * parent);

Chapter 4. The debugfs filesystem
Arguments

name

a pointer to a string containing the name of the directory to create.

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this paramater is NULL, then the directory will be created in the root of
the debugfs filesystem.

Description

This function creates a directory in debugfs with the given name.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned.

debugfs create symlink

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_create_symlink — create a symbolic link in the debugfs filesystem

Synopsis

struct dentry » debugfs_create_symlink (const char x name,
struct dentry * parent, const char x target);

147

Chapter 4. The debugfs filesystem
Arguments

name

a pointer to a string containing the name of the symbolic link to create.

parent

a pointer to the parent dentry for this symbolic link. This should be a directory
dentry if set. If this paramater is NULL, then the symbolic link will be created
in the root of the debugfs filesystem.

target

a pointer to a string containing the path to the target of the symbolic link.

Description

This function creates a symbolic link with the given name in debugfs that links to
the given target path.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the symbolic link is to be removed
(no automatic cleanup happens if your module is unloaded, you are responsible
here.) If an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned.

debugfs remove

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_remove — removes a file or directory from the debugfs filesystem

148

Chapter 4. The debugfs filesystem

Synopsis

void debugfs_remove (struct dentry x dentry);

Arguments

dentry

a pointer to a the dentry of the file or directory to be removed.

Description

This function removes a file or directory in debugfs that was previously created with
a call to another debugfs function (like debugfs_create_file or variants
thereof.)

This function is required to be called in order for the file to be removed, no
automatic cleanup of files will happen when a module is removed, you are
responsible here.

debugfs remove recursive

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_remove_recursive — recursively removes a directory

Synopsis

void debugfs_remove_recursive (struct dentry * dentry);

149

Chapter 4. The debugfs filesystem

Arguments

dentry

a pointer to a the dentry of the directory to be removed.

Description

This function recursively removes a directory tree in debugfs that was previously
created with a call to another debugfs function (like debugfs_create_file or
variants thereof.)

This function is required to be called in order for the file to be removed, no
automatic cleanup of files will happen when a module is removed, you are
responsible here.

debugfs rename

LINUX

Kernel Hackers ManualJanuary 2010

150

Name

debugfs_rename — rename a file/directory in the debugfs filesystem

Synopsis

struct dentry * debugfs_rename (struct dentry x old dir,
struct dentry x old dentry, struct dentry * new dir, const

char * new_name);

Chapter 4. The debugfs filesystem
Arguments

old _dir
a pointer to the parent dentry for the renamed object. This should be a
directory dentry.

old _dentry

dentry of an object to be renamed.

new_dir
a pointer to the parent dentry where the object should be moved. This should
be a directory dentry.

new_name

a pointer to a string containing the target name.

Description

This function renames a file/directory in debugfs. The target must not exist for
rename to succeed.

This function will return a pointer to old_dentry (which is updated to reflect
renaming) if it succeeds. If an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned.

debugfs create u8

LINUX

Kernel Hackers ManualJanuary 2010

Name

debugfs_create_u8 — create a debugfs file that is used to read and write an
unsigned 8-bit value

151

Chapter 4. The debugfs filesystem

152

Synopsis

struct dentry * debugfs_create_u8 (const char * name, mode_t
mode, struct dentry x parent, u8 * value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

Description

This function creates a file in debugfs with the given name that contains the value of
the variable value. If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or INULL instead as to
eliminate the need for #ifdef in the calling code.

Chapter 4. The debugfs filesystem
debugfs create u16

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_create_ul6 — create a debugfs file that is used to read and write an
unsigned 16-bit value

Synopsis

struct dentry * debugfs_create_ulé (const char * name, mode_t
mode, struct dentry * parent, ul6 x value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

Description

This function creates a file in debugfs with the given name that contains the value of
the variable value. If the mode variable is so set, it can be read from, and written to.

153

Chapter 4. The debugfs filesystem

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or !NULL instead as to
eliminate the need for #ifdef in the calling code.

debugfs create u32

LINUX

Kernel Hackers ManualJanuary 2010

154

Name

debugfs_create_u32 — create a debugfs file that is used to read and write an
unsigned 32-bit value

Synopsis

struct dentry * debugfs_create_u32 (const char * name, mode_t
mode, struct dentry x parent, u32 x value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

Chapter 4. The debugfs filesystem

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

Description

This function creates a file in debugfs with the given name that contains the value of
the variable value. If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or !NULL instead as to
eliminate the need for #ifdef in the calling code.

debugfs create u64

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_create_u64 — create a debugfs file that is used to read and write an
unsigned 64-bit value

Synopsis

struct dentry * debugfs_create_u64 (const char * name, mode_t
mode, struct dentry *x parent, u64 x value);

155

Chapter 4. The debugfs filesystem

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

Description

This function creates a file in debugfs with the given name that contains the value of
the variable value. If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or !NULL instead as to
eliminate the need for #ifdef in the calling code.

debugfs create x8

156

LINUX

Chapter 4. The debugfs filesystem

Kernel Hackers ManualJanuary 2010

Name

debugfs_create_x8 — create a debugfs file that is used to read and write an
unsigned 8-bit value

Synopsis

struct dentry * debugfs_create_x8 (const char * name, mode_t
mode, struct dentry x parent, u8 * value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

debugfs create x16

LINUX

157

Chapter 4. The debugfs filesystem

Kernel Hackers ManualJanuary 2010

Name

debugfs_create_x16 — create a debugfs file that is used to read and write an
unsigned 16-bit value

Synopsis

struct dentry * debugfs_create_x16 (const char x name, mode_t
mode, struct dentry x parent, ul6 x value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

debugfs create x32

158

LINUX

Chapter 4. The debugfs filesystem

Kernel Hackers ManualJanuary 2010

Name

debugfs_create_x32 — create a debugfs file that is used to read and write an
unsigned 32-bit value

Synopsis

struct dentry * debugfs_create_x32 (const char x name, mode_t
mode, struct dentry x parent, u32 x value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

debugfs create bool

LINUX

159

Chapter 4. The debugfs filesystem

Kernel Hackers ManualJanuary 2010

160

Name

debugfs_create_bool — create a debugfs file that is used to read and write a
boolean value

Synopsis

struct dentry * debugfs_create_bool (const char * name, mode_t
mode, struct dentry x parent, u32 x value);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

value

a pointer to the variable that the file should read to and write from.

Description

This function creates a file in debugfs with the given name that contains the value of
the variable value. If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

Chapter 4. The debugfs filesystem

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or !NULL instead as to
eliminate the need for #ifdef in the calling code.

debugfs create blob

LINUX
Kernel Hackers ManualJanuary 2010

Name

debugfs_create_blob — create a debugfs file that is used to read and write a
binary blob

Synopsis

struct dentry » debugfs_create_blob (const char * name, mode_t
mode, struct dentry x parent, struct debugfs_blob_wrapper =
blob);

Arguments

name

a pointer to a string containing the name of the file to create.

mode

the permission that the file should have

parent

a pointer to the parent dentry for this file. This should be a directory dentry if
set. If this parameter is NULL, then the file will be created in the root of the
debugfs filesystem.

161

Chapter 4. The debugfs filesystem

162

blob

a pointer to a struct debugfs_blob_wrapper which contains a pointer to the
blob data and the size of the data.

Description

This function creates a file in debugfs with the given name that exports b1ob->data
as a binary blob. If the mode variable is so set it can be read from. Writing is not
supported.

This function will return a pointer to a dentry if it succeeds. This pointer must be
passed to the debugfs_remove function when the file is to be removed (no
automatic cleanup happens if your module is unloaded, you are responsible here.) If
an error occurs, NULL will be returned.

If debugfs is not enabled in the kernel, the value -ENODEV will be returned. It is not
wise to check for this value, but rather, check for NULL or !NULL instead as to
eliminate the need for #ifdef in the calling code.

Chapter 5. The Linux Journalling API

5.1. Overview

5.1.1. Details

The journalling layer is easy to use. You need to first of all create a journal_t data
structure. There are two calls to do this dependent on how you decide to allocate the
physical media on which the journal resides. The journal_init_inode() call is for
journals stored in filesystem inodes, or the journal_init_dev() call can be use for
journal stored on a raw device (in a continuous range of blocks). A journal_tis a
typedef for a struct pointer, so when you are finally finished make sure you call
journal_destroy() on it to free up any used kernel memory.

Once you have got your journal_t object you need to “mount’ or load the journal
file, unless of course you haven’t initialised it yet - in which case you need to call
journal_create().

Most of the time however your journal file will already have been created, but
before you load it you must call journal_wipe() to empty the journal file. Hang on,
you say , what if the filesystem wasn’t cleanly umount()’d . Well, it is the job of the
client file system to detect this and skip the call to journal_wipe().

In either case the next call should be to journal_load() which prepares the journal
file for use. Note that journal_wipe(..,0) calls journal_skip_recovery() for you if it
detects any outstanding transactions in the journal and similarly journal_load() will
call journal_recover() if necessary. I would advise reading fs/ext3/super.c for
examples on this stage. [RGG: Why is the journal_wipe() call necessary - doesn’t
this needlessly complicate the API. Or isn’t a good idea for the journal layer to hide
dirty mounts from the client fs]

Now you can go ahead and start modifying the underlying filesystem. Almost.

You still need to actually journal your filesystem changes, this is done by wrapping
them into transactions. Additionally you also need to wrap the modification of each
of the buffers with calls to the journal layer, so it knows what the modifications you
are actually making are. To do this use journal_start() which returns a transaction
handle.

journal_start() and its counterpart journal_stop(), which indicates the end of a
transaction are nestable calls, so you can reenter a transaction if necessary, but
remember you must call journal_stop() the same number of times as journal_start()
before the transaction is completed (or more accurately leaves the update phase).
Ext3/VFES makes use of this feature to simplify quota support.

163

Chapter 5. The Linux Journalling API

164

Inside each transaction you need to wrap the modifications to the individual buffers
(blocks). Before you start to modify a buffer you need to call
journal_get_{create,write,undo}_access() as appropriate, this allows the journalling
layer to copy the unmodified data if it needs to. After all the buffer may be part of a
previously uncommitted transaction. At this point you are at last ready to modify a
buffer, and once you are have done so you need to call journal_dirty_{meta, }data().
Or if you’ve asked for access to a buffer you now know is now longer required to be
pushed back on the device you can call journal_forget() in much the same way as
you might have used bforget() in the past.

A journal_flush() may be called at any time to commit and checkpoint all your
transactions.

Then at umount time , in your put_super() (2.4) or write_super() (2.5) you can then
call journal_destroy() to clean up your in-core journal object.

Unfortunately there a couple of ways the journal layer can cause a deadlock. The
first thing to note is that each task can only have a single outstanding transaction at
any one time, remember nothing commits until the outermost journal_stop(). This
means you must complete the transaction at the end of each file/inode/address etc.
operation you perform, so that the journalling system isn’t re-entered on another
journal. Since transactions can’t be nested/batched across differing journals, and
another filesystem other than yours (say ext3) may be modified in a later syscall.

The second case to bear in mind is that journal_start() can block if there isn’t
enough space in the journal for your transaction (based on the passed nblocks
param) - when it blocks it merely(!) needs to wait for transactions to complete and
be committed from other tasks, so essentially we are waiting for journal_stop(). So
to avoid deadlocks you must treat journal_start/stop() as if they were semaphores
and include them in your semaphore ordering rules to prevent deadlocks. Note that
journal_extend() has similar blocking behaviour to journal_start() so you can
deadlock here just as easily as on journal_start().

Try to reserve the right number of blocks the first time. ;-). This will be the
maximum number of blocks you are going to touch in this transaction. I advise
having a look at at least ext3_jbd.h to see the basis on which ext3 uses to make
these decisions.

Another wriggle to watch out for is your on-disk block allocation strategy. why?
Because, if you undo a delete, you need to ensure you haven’t reused any of the
freed blocks in a later transaction. One simple way of doing this is make sure any
blocks you allocate only have checkpointed transactions listed against them. Ext3
does this in ext3_test_allocatable().

Lock is also providing through journal_{un, }lock_updates(), ext3 uses this when it
wants a window with a clean and stable fs for a moment. eg.

Chapter 5. The Linux Journalling API

journal_lock_updates () //stop new stuff happening..

journal_flush () // checkpoint everything.
..do stuff on stable fs
journal_unlock_updates () // carry on with filesystem use.

The opportunities for abuse and DOS attacks with this should be obvious, if you
allow unprivileged userspace to trigger codepaths containing these calls.

A new feature of jbd since 2.5.25 is commit callbacks with the new
journal_callback_set() function you can now ask the journalling layer to call you
back when the transaction is finally committed to disk, so that you can do some of
your own management. The key to this is the journal_callback struct, this maintains
the internal callback information but you can extend it like this:-

struct myfs_callback_s {

//Data structure element required by jbd..
struct Jjournal_callback for_jbd;

// Stuff for myfs allocated together.
myfs_inodex i_commited;

this would be useful if you needed to know when data was committed to a particular
inode.

5.1.2. Summary

Using the journal is a matter of wrapping the different context changes, being each
mount, each modification (transaction) and each changed buffer to tell the
journalling layer about them.

Here is a some pseudo code to give you an idea of how it works, as an example.

journal_tx my_jnrl = Jjournal_create();
journal_init_{dev, inode} (jnrl, ...)

if (clean) journal_wipe () ;
journal_load() ;

foreach (transaction) { /*transactions must be
completed before
a syscall returns to
userspacex*/

handle_t x xct=journal_start (my_Jjnrl);

foreach (bh) {
journal_get_{create,write,undo}_access (xact,bh);
if (myfs_modify(bh)) { /x returns true

165

Chapter 5. The Linux Journalling API

if makes changes */
journal_dirty_ {meta, }data (xact,bh);
} else {
journal_forget (bh) ;
}
}

journal_stop (xct);

}

journal_destroy (my_jrnl);

5.2. Data Types

The journalling layer uses typedefs to "hide’ the concrete definitions of the
structures used. As a client of the JBD layer you can just rely on the using the
pointer as a magic cookie of some sort. Obviously the hiding is not enforced as this
is’C’.

5.2.1. Structures

typedef handle t

LINUX
Kernel Hackers ManualJanuary 2010

Name

typedef handle_t — The handle_t type represents a single atomic update
being performed by some process.

Synopsis

typedef handle_t;

Description

166

Chapter 5. The Linux Journalling API

All filesystem modifications made by the process go through this handle. Recursive
operations (such as quota operations) are gathered into a single update.

The buffer credits field is used to account for journaled buffers being modified by
the running process. To ensure that there is enough log space for all outstanding
operations, we need to limit the number of outstanding buffers possible at any time.
When the operation completes, any buffer credits not used are credited back to the
transaction, so that at all times we know how many buffers the outstanding updates
on a transaction might possibly touch.

This is an opaque datatype.

typedef journal t

LINUX
Kernel Hackers ManualJanuary 2010

Name

typedef Jjournal_t — The journal_t maintains all of the journaling state
information for a single filesystem.

Synopsis

typedef journal_t;

Description

journal_t is linked to from the fs superblock structure.

We use the journal_t to keep track of all outstanding transaction activity on the
filesystem, and to manage the state of the log writing process.

This is an opaque datatype.

167

Chapter 5. The Linux Journalling API

struct handle s

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct handle_s — this is the concrete type associated with handle_t.

Synopsis

struct handle_s {
transaction_t * h_transaction;
int h_buffer_credits;
int h_ref;
int h_err;
unsigned int h_sync:1;
unsigned int h_jdata:1;
unsigned int h_aborted:1;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map h_lockdep_map;
#endif
bi

Members

h_transaction

Which compound transaction is this update a part of?

h_buffer credits

Number of remaining buffers we are allowed to dirty.

h_ref

Reference count on this handle

h_err

Field for caller’s use to track errors through large fs operations

168

Chapter 5. The Linux Journalling API
h_sync

flag for sync-on-close

h_jdata

flag to force data journaling

h_aborted

flag indicating fatal error on handle

h_lockdep_map
lockdep info for debugging lock problems

struct journal_s

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct journal_s — this is the concrete type associated with journal_t.

Synopsis

struct journal_s {
unsigned long j_flags;
int j_errno;
struct buffer_head x j_sb_buffer;
journal_superblock_t * j_superblock;
int j_format_version;
spinlock_t j_state_lock;
int Jj_barrier_count;
struct mutex j_barrier;
transaction_t * j_running_transaction;
transaction_t x j_committing_transaction;
transaction_t % Jj_checkpoint_transactions;
wait_queue_head_t j_wait_transaction_locked;
wait_queue_head_t j_wait_logspace;
wait_queue_head_t j_wait_done_commit;

169

Chapter 5. The Linux Journalling API

170

wailt_queue_head_t j_wait_checkpoint;
wait_queue_head_t j_wait_commit;
wait_queue_head_t j_wait_updates;
struct mutex j_checkpoint_mutex;
unsigned long Jj_head;

unsigned long Jj_tailj;

unsigned long j_free;

unsigned long j_first;

unsigned long Jj_last;

struct block_device % Jj_dev;

int j_blocksize;

unsigned long Jj_blk_offset;
struct block_device x j_fs_dev;
unsigned int Jj_maxlen;

spinlock_t j_list_lock;

struct inode x Jj_inode;

tid_t j_tail_sequence;

tid_t Jj_transaction_sequence;
tid_t j_commit_sequence;

tid_t j_commit_request;

__u8 j_uuidl[le6];

struct task_struct » j_task;

int Jj_max_transaction_buffers;
unsigned long Jj_commit_interval;
struct timer_list j_commit_timer;
spinlock_t j_revoke_lock;

struct jbd_revoke_table_s x j_revoke;
struct Jbd_revoke_table_s % Jj_revoke_table[2];
struct buffer_head *xx j_wbuf;

int j_wbufsize;

pid_t j_last_sync_writer;

void % j_private;

}i

Members

j_flags
General journaling state flags

j_errno

Is there an outstanding uncleared error on the journal (from a prior abort)?

Chapter 5. The Linux Journalling API
j_sb_buffer
First part of superblock buffer

J_superblock
Second part of superblock buffer

j_format_version

Version of the superblock format

j_state_lock

Protect the various scalars in the journal

j_barrier_count

Number of processes waiting to create a barrier lock

j_barrier

The barrier lock itself

j_running_transaction

The current running transaction..

j_committing_transaction

the transaction we are pushing to disk

j_checkpoint_transactions

a linked circular list of all transactions waiting for checkpointing

J_wait_transaction_locked

Wait queue for waiting for a locked transaction to start committing, or for a
barrier lock to be released

J_wait_logspace

Wait queue for waiting for checkpointing to complete

j_wait_done_commit

Wait queue for waiting for commit to complete

j_wait_checkpoint

Wait queue to trigger checkpointing

171

Chapter 5. The Linux Journalling API
j_wait_commit

Wait queue to trigger commit

J_wait_updates

Wait queue to wait for updates to complete

j_checkpoint_mutex

Mutex for locking against concurrent checkpoints

j_head

Journal head - identifies the first unused block in the journal
j_tail
Journal tail - identifies the oldest still-used block in the journal.

J_free

Journal free - how many free blocks are there in the journal?

J_first
The block number of the first usable block

j_last

The block number one beyond the last usable block

j_dev

Device where we store the journal

j_blocksize

blocksize for the location where we store the journal.

J_blk_offset

starting block offset for into the device where we store the journal

j_fs_dev

Device which holds the client fs. For internal journal this will be equal to j_dev

j_maxlen

Total maximum capacity of the journal region on disk.

j_list_lock

Protects the buffer lists and internal buffer state.

172

Chapter 5. The Linux Journalling API
j_inode

Optional inode where we store the journal. If present, all journal block
numbers are mapped into this inode via bmap.

j_tail_sequence

Sequence number of the oldest transaction in the log

J_transaction_sequence

Sequence number of the next transaction to grant

j_commit_sequence

Sequence number of the most recently committed transaction

j_commit_request
Sequence number of the most recent transaction wanting commit

j_uuid[16]

Uuid of client object.

J_task

Pointer to the current commit thread for this journal

j_max_transaction_buffers
Maximum number of metadata buffers to allow in a single compound commit
transaction

j_commit_interval

What is the maximum transaction lifetime before we begin a commit?

j_commit_timer

The timer used to wakeup the commit thread

j_revoke_lock

Protect the revoke table

j_revoke

The revoke table - maintains the list of revoked blocks in the current
transaction.

j_revoke_table[2]

alternate revoke tables for j_revoke

173

Chapter 5. The Linux Journalling API
j_wbuf

array of buffer_heads for journal_commit_transaction

J_wbufsize

maximum number of buffer_heads allowed in j_wbuf, the number that will fit
in j_blocksize

j_last_sync_writer

most recent pid which did a synchronous write

J_private

An opaque pointer to fs-private information.

5.3. Functions

The functions here are split into two groups those that affect a journal as a whole,
and those which are used to manage transactions

5.3.1. Journal Level

journal_init_dev

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_init_dev — creates and initialises a journal structure

174

Chapter 5. The Linux Journalling API

Synopsis

journal_t * journal_init_dev (struct block_device * bdev,
struct block_device * fs _dev, int start, int len, int
blocksize);

Arguments

bdev

Block device on which to create the journal

fs _dev

Device which hold journalled filesystem for this journal.

start

Block nr Start of journal.

len

Length of the journal in blocks.

blocksize

blocksize of journalling device

Returns

a newly created journal _t *

journal_init_dev creates a journal which maps a fixed contiguous range of blocks on
an arbitrary block device.

journal_init_inode

LINUX

175

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

Name

journal_init_inode — creates a journal which maps to a inode.

Synopsis

journal_t * journal_init_inode (struct inode * inode);

Arguments

inode

An inode to create the journal in

Description

journal_init_inode creates a journal which maps an on-disk inode as the journal.
The inode must exist already, must support bmap and must have all data blocks
preallocated.

journal_create

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_create — Initialise the new journal file

176

Chapter 5. The Linux Journalling API

Synopsis

int journal_create (journal_t =* journal);

Arguments

journal

Journal to create. This structure must have been initialised

Description

Given a journal_t structure which tells us which disk blocks we can use, create a
new journal superblock and initialise all of the journal fields from scratch.

journal_load

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_load — Read journal from disk.

Synopsis

int journal_load (journal_t * journal);

177

Chapter 5. The Linux Journalling API
Arguments

journal

Journal to act on.

Description

Given a journal_t structure which tells us which disk blocks contain a journal, read
the journal from disk to initialise the in-memory structures.

journal_destroy

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_destroy — Release a journal_t structure.

Synopsis

int journal_destroy (journal_t =x journal);

Arguments

journal

Journal to act on.

178

Chapter 5. The Linux Journalling API
Description

Release a journal_t structure once it is no longer in use by the journaled object.
Return <0 if we couldn’t clean up the journal.

journal_check _used features

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_check_used_features — Check if features specified are used.

Synopsis

int journal_check_used_ features (journal_t x journal, unsigned
long compat, unsigned long ro, unsigned long incompat);

Arguments

journal

Journal to check.

compat

bitmask of compatible features

ro

bitmask of features that force read-only mount

incompat

bitmask of incompatible features

179

Chapter 5. The Linux Journalling API

Description

Check whether the journal uses all of a given set of features. Return true (non-zero)
if it does.

journal_check_available features

LINUX

Kernel Hackers ManualJanuary 2010

180

Name

journal_check_available_features — Check feature set in journalling
layer

Synopsis

int journal_check_available_features (journal_t = journal,
unsigned long compat, unsigned long ro, unsigned long
incompat) ;

Arguments

journal

Journal to check.

compat

bitmask of compatible features

ro

bitmask of features that force read-only mount

Chapter 5. The Linux Journalling API
incompat

bitmask of incompatible features

Description

Check whether the journaling code supports the use of all of a given set of features
on this journal. Return true

journal_set features

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_set_features — Mark a given journal feature in the superblock

Synopsis

int journal_set_features (journal_t = journal, unsigned long
compat, unsigned long ro, unsigned long incompat);

Arguments

journal

Journal to act on.

compat

bitmask of compatible features

181

Chapter 5. The Linux Journalling API
ro

bitmask of features that force read-only mount

incompat

bitmask of incompatible features

Description

Mark a given journal feature as present on the superblock. Returns true if the
requested features could be set.

journal_update format

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_update_format — Update on-disk journal structure.

Synopsis

int journal_update_format (journal_t x journal);

Arguments

journal

Journal to act on.

182

Chapter 5. The Linux Journalling API
Description

Given an initialised but unloaded journal struct, poke about in the on-disk structure
to update it to the most recent supported version.

journal_flush

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_flush — Flush journal

Synopsis

int journal_flush (journal_t * journal);

Arguments

journal

Journal to act on.

Description

Flush all data for a given journal to disk and empty the journal. Filesystems can use
this when remounting readonly to ensure that recovery does not need to happen on
remount.

183

Chapter 5. The Linux Journalling API

journal_wipe

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_wipe — Wipe journal contents

Synopsis

int journal_wipe (journal_t = journal, int write);

Arguments

journal

Journal to act on.

write

flag (see below)

Description

Wipe out all of the contents of a journal, safely. This will produce a warning if the
journal contains any valid recovery information. Must be called between
journal_init_*() and journal_load.

If *write’ is non-zero, then we wipe out the journal on disk; otherwise we merely
suppress recovery.

184

Chapter 5. The Linux Journalling API

journal_abort

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_abort — Shutdown the journal immediately.

Synopsis

void journal_abort (journal_t = journal, int errno);

Arguments

journal

the journal to shutdown.

errno

an error number to record in the journal indicating the reason for the shutdown.

Description

Perform a complete, immediate shutdown of the ENTIRE journal (not of a single
transaction). This operation cannot be undone without closing and reopening the
journal.

The journal_abort function is intended to support higher level error recovery
mechanisms such as the ext2/ext3 remount-readonly error mode.

Journal abort has very specific semantics. Any existing dirty, unjournaled buffers in
the main filesystem will still be written to disk by bdflush, but the journaling
mechanism will be suspended immediately and no further transaction commits will
be honoured.

185

Chapter 5. The Linux Journalling API

Any dirty, journaled buffers will be written back to disk without hitting the journal.
Atomicity cannot be guaranteed on an aborted filesystem, but we _do_ attempt to
leave as much data as possible behind for fsck to use for cleanup.

Any attempt to get a new transaction handle on a journal which is in ABORT state
will just result in an -EROFS error return. A journal_stop on an existing handle will
return -EIO if we have entered abort state during the update.

Recursive transactions are not disturbed by journal abort until the final journal_stop,
which will receive the -EIO error.

Finally, the journal_abort call allows the caller to supply an errno which will be
recorded (if possible) in the journal superblock. This allows a client to record failure
conditions in the middle of a transaction without having to complete the transaction
to record the failure to disk. ext3_error, for example, now uses this functionality.

Errors which originate from within the journaling layer will NOT supply an errno; a
null errno implies that absolutely no further writes are done to the journal (unless
there are any already in progress).

journal_errno

LINUX

Kernel Hackers ManualJanuary 2010

186

Name

journal_errno — returns the journal’s error state.

Synopsis

int journal_errno (journal_t = journal);

Chapter 5. The Linux Journalling API

Arguments

journal

journal to examine.

Description

This is the errno numbet set with journal_abort, the last time the journal was
mounted - if the journal was stopped without calling abort this will be 0.

If the journal has been aborted on this mount time -EROFS will be returned.

journal_clear_err

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal clear err — clears the journal’s error state
J

Synopsis

int journal_clear_err (journal_t = journal);

Arguments

journal

journal to act on.

187

Chapter 5. The Linux Journalling API
Description

An error must be cleared or Acked to take a FS out of readonly mode.

journal_ack err

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_ack_err — Ack journal err.

Synopsis

void journal_ack_err (journal_t = journal);

Arguments

journal

journal to act on.

Description

An error must be cleared or Acked to take a FS out of readonly mode.

188

Chapter 5. The Linux Journalling API

journal_recover

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_recover — recovers a on-disk journal

Synopsis

int journal_recover (journal_t x journal);

Arguments

journal

the journal to recover

Description

The primary function for recovering the log contents when mounting a journaled
device.

Recovery is done in three passes. In the first pass, we look for the end of the log. In
the second, we assemble the list of revoke blocks. In the third and final pass, we
replay any un-revoked blocks in the log.

journal_skip_recovery

LINUX

189

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

Name

journal_skip_recovery — Start journal and wipe exiting records

Synopsis

int journal_skip_recovery (journal_t x journal);

Arguments

journal

journal to startup

Description

Locate any valid recovery information from the journal and set up the journal
structures in memory to ignore it (presumably because the caller has evidence that it
is out of date). This function does’nt appear to be exorted..

We perform one pass over the journal to allow us to tell the user how much recovery
information is being erased, and to let us initialise the journal transaction sequence
numbers to the next unused ID.

5.3.2. Transasction Level

journal_start

190

LINUX

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

Name

journal_start — Obtain a new handle.

Synopsis

handle_t * journal_start (journal_t = journal, int nblocks);

Arguments

journal

Journal to start transaction on.

nblocks

number of block buffer we might modify

Description

We make sure that the transaction can guarantee at least nblocks of modified buffers
in the log. We block until the log can guarantee that much space.

This function is visible to journal users (like ext3fs), so is not called with the journal
already locked.

Return a pointer to a newly allocated handle, or NULL on failure

journal_extend

LINUX

191

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

192

Name

Journal_extend — extend buffer credits.

Synopsis

int journal_extend (handle_t * handle, int nblocks);

Arguments

handle

handle to ’extend’

nblocks

nr blocks to try to extend by.

Description

Some transactions, such as large extends and truncates, can be done atomically all
at once or in several stages. The operation requests a credit for a number of buffer
modications in advance, but can extend its credit if it needs more.

journal_extend tries to give the running handle more buffer credits. It does not
guarantee that allocation - this is a best-effort only. The calling process MUST be
able to deal cleanly with a failure to extend here.

Return O on success, non-zero on failure.

return code < 0 implies an error return code > 0 implies normal transaction-full
status.

Chapter 5. The Linux Journalling API

journal_restart

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_restart — restart a handle.

Synopsis

int journal_restart (handle_t * handle, int nblocks);

Arguments

handle

handle to restart

nblocks

nr credits requested

Description

Restart a handle for a multi-transaction filesystem operation.

If the journal_extend call above fails to grant new buffer credits to a running
handle, a call to journal_restart will commit the handle’s transaction so far and
reattach the handle to a new transaction capabable of guaranteeing the requested
number of credits.

193

Chapter 5. The Linux Journalling API

journal_lock updates

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_lock_updates — establish a transaction barrier.

Synopsis

void journal_lock_updates (journal_t * journal);

Arguments

journal

Journal to establish a barrier on.

Description

This locks out any further updates from being started, and blocks until all existing
updates have completed, returning only once the journal is in a quiescent state with
no updates running.

The journal lock should not be held on entry.

journal_unlock updates

LINUX

194

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

Name

Journal_unlock_updates — release barrier

Synopsis

void journal_unlock_updates (journal_t = journal);

Arguments

journal

Journal to release the barrier on.

Description

Release a transaction barrier obtained with journal_lock_updates.

Should be called without the journal lock held.

journal_get write _access

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_get_write_access — notify intent to modify a buffer for metadata
(not data) update.

195

Chapter 5. The Linux Journalling API

Synopsis

int journal_get_write_access (handle_t % handle, struct
buffer_head * bh);

Arguments

handle

transaction to add buffer modifications to

bh

bh to be used for metadata writes

Description

Returns an error code or 0 on success.

In full data journalling mode the buffer may be of type BJ_AsyncData, because
we’re writeing a buffer which is also part of a shared mapping.

journal_get_create_access

LINUX

Kernel Hackers ManualJanuary 2010

196

Name

journal_get_create_access — notify intent to use newly created bh

Chapter 5. The Linux Journalling API

Synopsis

int journal_get_create_access (handle_t * handle, struct
buffer_head * bh);

Arguments

handle

transaction to new buffer to

bh

new buffer.

Description

Call this if you create a new bh.

journal_get undo_access

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_get_undo_access — Notify intent to modify metadata with
non-rewindable consequences

Synopsis

int journal_get_undo_access (handle_t x handle, struct
buffer_head * bh);

197

Chapter 5. The Linux Journalling API

Arguments

handle

transaction

bh

buffer to undo

Description

Sometimes there is a need to distinguish between metadata which has been
committed to disk and that which has not. The ext3fs code uses this for freeing and
allocating space, we have to make sure that we do not reuse freed space until the
deallocation has been committed, since if we overwrote that space we would make
the delete un-rewindable in case of a crash.

To deal with that, journal_get_undo_access requests write access to a buffer for
parts of non-rewindable operations such as delete operations on the bitmaps. The
journaling code must keep a copy of the buffer’s contents prior to the undo_access
call until such time as we know that the buffer has definitely been committed to disk.

We never need to know which transaction the committed data is part of, buffers
touched here are guaranteed to be dirtied later and so will be committed to a new
transaction in due course, at which point we can discard the old committed data
pointer.

Returns error number or O on success.

journal_dirty_data

198

LINUX

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

Name

journal_dirty_data — mark a buffer as containing dirty data to be flushed

Synopsis

int journal_dirty_data (handle_t % handle, struct buffer_ head
* bh);

Arguments

handle

transaction

bh

bufferhead to mark

Description

Mark a buffer as containing dirty data which needs to be flushed before we can
commit the current transaction.

The buffer is placed on the transaction’s data list and is marked as belonging to the
transaction.

Returns error number or O on success.

journal_dirty_data can be called via page_launder->ext3_writepage by
kswapd.

199

Chapter 5. The Linux Journalling API

journal_dirty metadata

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_dirty_metadata — mark a buffer as containing dirty metadata

Synopsis

int journal_dirty metadata (handle_t x handle, struct
buffer_head = bh);

Arguments

handle

transaction to add buffer to.

bh

buffer to mark

Description

Mark dirty metadata which needs to be journaled as part of the current transaction.

The buffer is placed on the transaction’s metadata list and is marked as belonging to
the transaction.

Returns error number or 0 on success.

Special care needs to be taken if the buffer already belongs to the current
committing transaction (in which case we should have frozen data present for that
commit). In that case, we don’t relink the

200

Chapter 5. The Linux Journalling API

buffer

that only gets done when the old transaction finally completes its commit.

journal_forget

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_forget — bforget for potentially-journaled buffers.

Synopsis

int journal_forget (handle_t * handle, struct buffer_head =
bh) ;

Arguments

handle

transaction handle

bh

bh to *forget’

Description

We can only do the bforget if there are no commits pending against the buffer. If the
buffer is dirty in the current running transaction we can safely unlink it.

bh may not be a journalled buffer at all - it may be a non-JBD buffer which came off
the hashtable. Check for this.

201

Chapter 5. The Linux Journalling API
Decrements bh->b_count by one.

Allow this call even if the handle has aborted --- it may be part of the caller’s
cleanup after an abort.

journal_stop

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_stop — complete a transaction

Synopsis

int journal_stop (handle_t = handle);

Arguments

handle

tranaction to complete.

Description

All done for a particular handle.

There is not much action needed here. We just return any remaining buffer credits to
the transaction and remove the handle. The only complication is that we need to
start a commit operation if the filesystem is marked for synchronous update.

journal_stop itself will not usually return an error, but it may do so in unusual
circumstances. In particular, expect it to return -EIO if a journal_abort has been
executed since the transaction began.

202

Chapter 5. The Linux Journalling API

journal_force commit

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_force_commit — force any uncommitted transactions

Synopsis

int journal_force_commit (journal_t * journal);

Arguments

journal

journal to force

For synchronous operations

force any uncommitted transactions to disk. May seem kludgy, but it reuses all the
handle batching code in a very simple manner.

journal_try to free buffers

LINUX

203

Chapter 5. The Linux Journalling API

Kernel Hackers ManualJanuary 2010

204

Name

journal_try_to_free_buffers — try to free page buffers.

Synopsis

int journal_try to_free buffers (journal_t = journal, struct
page * page, gfp_t gfp mask);

Arguments

journal

journal for operation

page

to try and free

gfp_mask

we use the mask to detect how hard should we try to release buffers. If
__ GFP_WAIT and __GFP_FS is set, we wait for commit code to release the
buffers.

Description

For all the buffers on this page, if they are fully written out ordered data, move them
onto BUF_CLEAN so try_to_free_buffers can reap them.

This function returns non-zero if we wish try_to_free_buffers to be called.
We do this if the page is releasable by try_to_free_buffers. We also do it if the
page has locked or dirty buffers and the caller wants us to perform sync or async
writeout.

This complicates JBD locking somewhat. We aren’t protected by the BKL here. We
wish to remove the buffer from its committing or running transaction’s ->t_datalist
via __journal_unfile_buffer.

Chapter 5. The Linux Journalling API

This may *change* the value of transaction_t->t_datalist, so anyone who looks at
t_datalist needs to lock against this function.

Even worse, someone may be doing a journal_dirty_data on this buffer. So we need
to lock against that. journal dirty_data will come out of the lock with the
buffer dirty, which makes it ineligible for release here.

Who else is affected by this? hmm... Really the only contender is
do_get_write_access - it could be looking at the buffer while
journal_try_to_free_buffer is changing its state. But that cannot happen
because we never reallocate freed data as metadata while the data is part of a
transaction. Yes?

Return O on failure, 1 on success

journal_invalidatepage

LINUX
Kernel Hackers ManualJanuary 2010

Name

journal_invalidatepage — invalidate a journal page

Synopsis

void journal_invalidatepage (journal_t =* journal, struct page
* page, unsigned long offset);

Arguments

journal

journal to use for flush

205

Chapter 5. The Linux Journalling API
page

page to flush

offset

length of page to invalidate.

Description

Reap page buffers containing data after offset in page.

5.4. See also

[Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen Tweedie
(ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/journal-design.ps.gz)]

[Ext3 Journalling FileSystem, OLS 2000, Dr. Stephen Tweedie
(http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html)]

206

Chapter 6. splice API

splice is a method for moving blocks of data around inside the kernel, without
continually transferring them between the kernel and user space.

splice_to_pipe

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_to_pipe — fill passed data into a pipe

Synopsis

ssize_t splice_to_pipe (struct pipe_inode_info x pipe, struct
splice_pipe_desc x spd);

Arguments
pipe
pipe to fill

spd
data to fill

Description

spd contains a map of pages and len/offset tuples, along with the struct
pipe_buf_operations associated with these pages. This function will link that data to
the pipe.

207

Chapter 6. splice API

generic_file_splice_read

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_file_splice_read — splice data from file to a pipe
Synopsis

ssize_t generic_file_splice_read (struct file % in, loff_t =«
ppos, struct pipe_inode_info * pipe, size_t Ien, unsigned int
flags);

Arguments

in

file to splice from

prpros

position in in
pipe

pipe to splice to

len

number of bytes to splice

flags

splice modifier flags

208

Chapter 6. splice API
Description

Will read pages from given file and fill them into a pipe. Can be used as long as the
address_space operations for the source implements a readpage hook.

splice _from_pipe feed

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_from_pipe_feed — feed available data from a pipe to a file

Synopsis

int splice_from pipe_feed (struct pipe_inode_info x pipe,
struct splice_desc_ext x esd, splice_actor * actor);

Arguments
pipe
pipe to splice from

esd

-- undescribed --

actor

handler that splices the data

209

Chapter 6. splice API
Description

This function loops over the pipe and calls actor to do the actual moving of a
single struct pipe_buffer to the desired destination. It returns when there’s no more
buffers left in the pipe or if the requested number of bytes (sd->total_len) have been
copied. It returns a positive number (one) if the pipe needs to be filled with more
data, zero if the required number of bytes have been copied and -errno on error.

This, together with splice_from_pipe_{begin,end,next}, may be used to implement
the functionality of __splice_from_pipe when locking is required around
copying the pipe buffers to the destination.

splice_from_pipe_ next

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_from_pipe_next — wait for some data to splice from

Synopsis

int splice_from pipe_next (struct pipe_inode_info x pipe,
struct splice_desc_ext * esd);

Arguments

pipe

pipe to splice from

esd

-- undescribed --

210

Chapter 6. splice API
Description

This function will wait for some data and return a positive value (one) if pipe
buffers are available. It will return zero or -errno if no more data needs to be spliced.

splice_from_pipe begin

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_from pipe_begin — start splicing from pipe

Synopsis

void splice_from_pipe_begin (struct splice_desc_ext x esd);

Arguments

esd

-- undescribed --

Description

This function should be called before a loop containing splice_from_pipe_next
and splice_from_pipe_feed to initialize the necessary fields of sd.

211

Chapter 6. splice API

splice_from_pipe_end

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_from_ pipe_end — finish splicing from pipe

Synopsis

void splice_from_pipe_end (struct pipe_inode_info x pipe,
struct splice_desc_ext * esd);

Arguments

pipe

pipe to splice from

esd

-- undescribed --

Description

This function will wake up pipe writers if necessary. It should be called after a loop
containing splice_from_pipe_next and splice_from_pipe_feed.

__splice_from_pipe

LINUX

212

Chapter 6. splice API

Kernel Hackers ManualJanuary 2010

Name

__splice_from_pipe — splice data from a pipe to given actor

Synopsis

ssize_t __ splice_from pipe (struct pipe_inode_info x pipe,
struct splice_desc x sd, splice_actor * actor);

Arguments
pipe
pipe to splice from

sd

information to actor

actor

handler that splices the data

Description

This function does little more than loop over the pipe and call actor to do the
actual moving of a single struct pipe_buffer to the desired destination. See
pipe_to_file, pipe_to_sendpage, or pipe_to_user.

splice_from_pipe

LINUX

213

Chapter 6. splice API

Kernel Hackers ManualJanuary 2010

Name

splice_from_pipe — splice data from a pipe to a file

Synopsis

ssize_t splice_from_pipe (struct pipe_inode_info x pipe,
struct file % out, loff_t x ppos, size_t Ilen, unsigned int
flags, splice_actor * actor);

Arguments
pipe
pipe to splice from

out

file to splice to

prpros

position in out

len

how many bytes to splice

flags

splice modifier flags

actor

handler that splices the data

Description

See __splice_from_pipe. This function locks the pipe inode, otherwise it’s identical

to__splice_from pipe.

214

Chapter 6. splice API

generic_file_splice_write_nolock

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_file_splice_write_nolock — generic_file_splice_write
without mutexes

Synopsis

ssize_t generic_file_splice_write_nolock (struct
pipe_inode_info » pipe, struct file * out, loff_t x ppos,
size_t len, unsigned int flags);

Arguments
pipe
pipe info

out

file to write to

prpros

position in out

len

number of bytes to splice

flags

splice modifier flags

215

Chapter 6. splice API
Description

Will either move or copy pages (determined by r1ags options) from the given pipe
inode to the given file. The caller is responsible for acquiring i_mutex on both
inodes.

generic_file_splice write

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_file_ splice_write — splice data from a pipe to a file

Synopsis

ssize_t generic_file_splice_write (struct pipe_inode_info =*
pipe, struct file = out, loff t % ppos, size_t len, unsigned
int flags);

Arguments
pipe
pipe info

out

file to write to

ppros

position in out

216

Chapter 6. splice API
len

number of bytes to splice

flags

splice modifier flags

Description

Will either move or copy pages (determined by r1ags options) from the given pipe
inode to the given file.

generic_splice_sendpage

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_splice_sendpage — splice data from a pipe to a socket

Synopsis

ssize_t generic_splice_sendpage (struct pipe_inode_info x*
pipe, struct file * out, loff_t x ppos, size_t len, unsigned
int flags);

Arguments

pipe

pipe to splice from

217

Chapter 6. splice API
out

socket to write to

prpros

position in out

len

number of bytes to splice

flags

splice modifier flags

Description

Will send 1en bytes from the pipe to a network socket. No data copying is involved.

splice_direct_to_actor

LINUX
Kernel Hackers ManualJanuary 2010

Name

splice_direct_to_actor — splices data directly between two non-pipes
Synopsis

ssize_t splice_direct_to_actor (struct file x in, struct
splice_desc * sd, splice_direct_actor % actor);

218

Chapter 6. splice API
Arguments

in
file to splice from

sd

actor information on where to splice to

actor

handles the data splicing

Description

This is a special case helper to splice directly between two points, without requiring
an explicit pipe. Internally an allocated pipe is cached in the process, and reused
during the lifetime of that process.

do_splice_direct

LINUX
Kernel Hackers ManualJanuary 2010

Name

do_splice_direct — splices data directly between two files

Synopsis

long do_splice_direct (struct file x in, loff_t x ppos, struct
file % out, size_t len, unsigned int flags);

219

Chapter 6. splice API
Arguments

in

file to splice from

prppros

input file offset

out

file to splice to

len

number of bytes to splice

flags

splice modifier flags

Description

For use by do_sendfile. splice can easily emulate sendfile, but doing it in the
application would incur an extra system call (splice in + splice out, as compared to
just sendfile). So this helper can splice directly through a process-private pipe.

220

Chapter 7. pipes API

Pipe interfaces are all for in-kernel (builtin image) use. They are not exported for
use by modules.

struct pipe_buffer

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct pipe_buffer — alinux kernel pipe buffer

Synopsis

struct pipe_buffer {
struct page x page;
unsigned int offset;
unsigned int len;
const struct pipe_buf_operations * ops;
unsigned int flags;
unsigned long private;

}i

Members
page
the page containing the data for the pipe buffer

offset

offset of data inside the page

len

length of data inside the page

221

Chapter 7. pipes API
ops

operations associated with this buffer. See pipe buf_operations.

flags
pipe buffer flags. See above.

private

private data owned by the ops.

struct pipe_inode_info

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct pipe_inode_info — alinux kernel pipe

Synopsis

struct pipe_inode_info {
walt_queue_head_t wait;
unsigned int nrbufs;
unsigned int curbuf;
struct page x tmp_page;
unsigned int readers;
unsigned int writers;
unsigned int waiting_writers;
unsigned int r_counter;
unsigned int w_counter;
struct fasync_struct x fasync_readers;
struct fasync_struct * fasync_writers;
struct inode * inode;
struct pipe_buffer bufs[PIPE_BUFFERS];
bi

222

Chapter 7. pipes API
Members

wait

reader/writer wait point in case of empty/full pipe

nrbufs

the number of non-empty pipe buffers in this pipe

curbuf

the current pipe buffer entry

tmp_page

cached released page

readers

number of current readers of this pipe

writers

number of current writers of this pipe

waiting_writers

number of writers blocked waiting for room

r_counter

reader counter

w_counter

writer counter

fasync_readers

reader side fasync

fasync_writers

writer side fasync

inode

inode this pipe is attached to

bufs[PIPE_ BUFFERS]

the circular array of pipe buffers

223

Chapter 7. pipes API

generic_pipe_buf _map

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_pipe_buf_map — virtually map a pipe buffer

Synopsis

void x generic_pipe_buf map (struct pipe_inode_info x pipe,
struct pipe_buffer x buf, int atomic);

Arguments

pipe
the pipe that the buffer belongs to

buf

the buffer that should be mapped

atomic

whether to use an atomic map

Description

This function returns a kernel virtual address mapping for the pipe_buffer passed in
buf. If atomic is set, an atomic map is provided and the caller has to be careful not
to fault before calling the unmap function.

Note that this function occupies KM_USERO if atomic !=0.

224

Chapter 7. pipes API

generic_pipe_buf _unmap

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_pipe_buf_unmap — unmap a previously mapped pipe buffer

Synopsis

void generic_pipe_buf unmap (struct pipe_inode_info x pipe,
struct pipe_buffer x buf, void * map_data);

Arguments
pipe
the pipe that the buffer belongs to

buf

the buffer that should be unmapped

map_data

the data that the mapping function returned

Description

This function undoes the mapping that ->map provided.

225

Chapter 7. pipes API

generic_pipe_buf_steal

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_pipe_buf_steal — attempt to take ownership of a pipe_buffer

Synopsis

int generic_pipe buf steal (struct pipe_inode_info * pipe,
struct pipe_buffer * buf);

Arguments

pipe
the pipe that the buffer belongs to

buf

the buffer to attempt to steal

Description

This function attempts to steal the struct page attached to buf. If successful, this
function returns 0 and returns with the page locked. The caller may then reuse the
page for whatever he wishes; the typical use is insertion into a different file page
cache.

226

Chapter 7. pipes API

generic_pipe_buf get

LINUX
Kernel Hackers ManualJanuary 2010

Name

generic_pipe_buf_get — get a reference to a struct pipe_buffer

Synopsis

void generic_pipe_buf get (struct pipe_inode_info x pipe,
struct pipe_buffer * buf);

Arguments

pipe

the pipe that the buffer belongs to

buf

the buffer to get a reference to

Description

This function grabs an extra reference to buf. It’s used in in the tee system call,
when we duplicate the buffers in one pipe into another.

generic_pipe_buf_confirm

LINUX

227

Chapter 7. pipes API
Kernel Hackers ManualJanuary 2010

Name

generic_pipe_buf_confirm— verify contents of the pipe buffer

Synopsis

int generic_pipe buf confirm (struct pipe_inode_info = info,
struct pipe_buffer = buf);

Arguments

info

the pipe that the buffer belongs to

buf

the buffer to confirm

Description

This function does nothing, because the generic pipe code uses pages that are
always good when inserted into the pipe.

228

	Linux Filesystems API
	Table of Contents
	Chapter 1. The Linux VFS
	1.1. The Filesystem types
	enum positiveaopreturns
	LINUX
	Name
	Synopsis
	Constants
	Description

	incnlink
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dropnlink
	LINUX
	Name
	Synopsis
	Arguments
	Description

	clearnlink
	LINUX
	Name
	Synopsis
	Arguments
	Description

	inodeinciversion
	LINUX
	Name
	Synopsis
	Arguments
	Description

	1.2. The Directory Cache
	dinvalidate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	shrinkdcachesb
	LINUX
	Name
	Synopsis
	Arguments
	Description

	havesubmounts
	LINUX
	Name
	Synopsis
	Arguments
	Description

	shrinkdcacheparent
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dalloc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dinstantiate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dallocroot
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dallocanon
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dsplicealias
	LINUX
	Name
	Synopsis
	Arguments
	Description

	daddci
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dlookup
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dvalidate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ddelete
	LINUX
	Name
	Synopsis
	Arguments
	Description

	drehash
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dmove
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dmaterialiseunique
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dpath
	LINUX
	Name
	Synopsis
	Arguments
	Description

	findinodenumber
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ddrop
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dadd
	LINUX
	Name
	Synopsis
	Arguments
	Description

	daddunique
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dunhashed
	LINUX
	Name
	Synopsis
	Arguments
	Description

	1.3. Inode Handling
	clearinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	invalidateinodes
	LINUX
	Name
	Synopsis
	Arguments
	Description

	newinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	iunique
	LINUX
	Name
	Synopsis
	Arguments
	Description
	BUGS

	ilookup5nowait
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ilookup5
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ilookup
	LINUX
	Name
	Synopsis
	Arguments
	Description

	iget5locked
	LINUX
	Name
	Synopsis
	Arguments
	Description

	igetlocked
	LINUX
	Name
	Synopsis
	Arguments
	Description

	insertinodehash
	LINUX
	Name
	Synopsis
	Arguments
	Description

	removeinodehash
	LINUX
	Name
	Synopsis
	Arguments
	Description

	iput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bmap
	LINUX
	Name
	Synopsis
	Arguments
	Description

	touchatime
	LINUX
	Name
	Synopsis
	Arguments
	Description

	fileupdatetime
	LINUX
	Name
	Synopsis
	Arguments
	Description

	makebadinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	isbadinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	igetfailed
	LINUX
	Name
	Synopsis
	Arguments
	Description

	1.4. Registration and Superblocks
	deactivatesuper
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericshutdownsuper
	LINUX
	Name
	Synopsis
	Arguments
	Description

	sget
	LINUX
	Name
	Synopsis
	Arguments

	getsuper
	LINUX
	Name
	Synopsis
	Arguments
	Description

	1.5. File Locks
	posixlockfile
	LINUX
	Name
	Synopsis
	Arguments
	Description

	posixlockfilewait
	LINUX
	Name
	Synopsis
	Arguments
	Description

	locksmandatoryarea
	LINUX
	Name
	Synopsis
	Arguments
	Description

	breaklease
	LINUX
	Name
	Synopsis
	Arguments
	Description

	leasegetmtime
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericsetlease
	LINUX
	Name
	Synopsis
	Arguments
	Description

	flocklockfilewait
	LINUX
	Name
	Synopsis
	Arguments
	Description

	vfstestlock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	vfslockfile
	LINUX
	Name
	Synopsis
	Arguments
	Description

	posixunblocklock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	vfscancellock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	lockmayread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	lockmaywrite
	LINUX
	Name
	Synopsis
	Arguments
	Description

	locksmandatorylocked
	LINUX
	Name
	Synopsis
	Arguments
	Description

	fcntlgetlease
	LINUX
	Name
	Synopsis
	Arguments
	Description
	XXX

	fcntlsetlease
	LINUX
	Name
	Synopsis
	Arguments
	Description

	sysflock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	1.6. Other Functions
	mpagereadpages
	LINUX
	Name
	Synopsis
	Arguments
	Description
	BHBoundary explanation
	submitted in the following order

	mpagewritepages
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericpermission
	LINUX
	Name
	Synopsis
	Arguments
	Description

	vfspermission
	LINUX
	Name
	Synopsis
	Arguments
	Description

	filepermission
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	pathget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	pathput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	releaseopenintent
	LINUX
	Name
	Synopsis
	Arguments

	vfspathlookup
	LINUX
	Name
	Synopsis
	Arguments

	lookuponelen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	filpopen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	lookupcreate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	freezebdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	thawbdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syncmappingbuffers
	LINUX
	Name
	Synopsis
	Arguments
	Description

	markbufferdirty
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	blockinvalidatepage
	LINUX
	Name
	Synopsis
	Arguments
	Description

	llrwblock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bhuptodateorlock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bhsubmitread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioallocbioset
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioclone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioclone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biogetnrvecs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioaddpcpage
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioaddpage
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biouncopyuser
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biocopyuser
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biomapuser
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biounmapuser
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biomapkern
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biocopykern
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bioendio
	LINUX
	Name
	Synopsis
	Arguments
	Description

	biosectoroffset
	LINUX
	Name
	Synopsis
	Arguments
	Description

	seqopen
	LINUX
	Name
	Synopsis
	Arguments
	Description

	seqread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	seqlseek
	LINUX
	Name
	Synopsis
	Arguments
	Description

	seqrelease
	LINUX
	Name
	Synopsis
	Arguments
	Description

	seqescape
	LINUX
	Name
	Synopsis
	Arguments
	Description

	registerfilesystem
	LINUX
	Name
	Synopsis
	Arguments
	Description

	unregisterfilesystem
	LINUX
	Name
	Synopsis
	Arguments
	Description

	markinodedirty
	LINUX
	Name
	Synopsis
	Arguments
	Description

	writeinodenow
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syncinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericosyncinode
	LINUX
	Name
	Synopsis
	Arguments
	Description
	OSYNCDATA
	OSYNCMETADATA
	OSYNCINODE

	bdclaimbydisk
	LINUX
	Name
	Synopsis
	Arguments
	Description

	bdreleasefromdisk
	LINUX
	Name
	Synopsis
	Arguments
	Description

	checkdisksizechange
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Description

	revalidatedisk
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Description

	lookupbdev
	LINUX
	Name
	Synopsis
	Arguments
	Description

	openbdevexcl
	LINUX
	Name
	Synopsis
	Arguments
	Description

	closebdevexcl
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 2. The proc filesystem
	2.1. sysctl interface
	registersysctlpaths
	LINUX
	Name
	Synopsis
	Arguments
	Description

	registersysctltable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	unregistersysctltable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdostring
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdointvec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdointvecminmax
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdoulongvecminmax
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdoulongvecmsjiffiesminmax
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdointvecjiffies
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdointvecuserhzjiffies
	LINUX
	Name
	Synopsis
	Arguments
	Description

	procdointvecmsjiffies
	LINUX
	Name
	Synopsis
	Arguments
	Description

	2.2. proc filesystem interface
	procflushtask
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	Chapter 3. The Filesystem for Exporting Kernel Objects
	sysfscreatefile
	LINUX
	Name
	Synopsis
	Arguments

	sysfsaddfiletogroup
	LINUX
	Name
	Synopsis
	Arguments

	sysfschmodfile
	LINUX
	Name
	Synopsis
	Arguments

	sysfsremovefile
	LINUX
	Name
	Synopsis
	Arguments
	Description

	sysfsremovefilefromgroup
	LINUX
	Name
	Synopsis
	Arguments

	sysfsschedulecallback
	LINUX
	Name
	Synopsis
	Arguments
	Description

	sysfscreatelink
	LINUX
	Name
	Synopsis
	Arguments

	sysfsremovelink
	LINUX
	Name
	Synopsis
	Arguments

	sysfscreatebinfile
	LINUX
	Name
	Synopsis
	Arguments

	sysfsremovebinfile
	LINUX
	Name
	Synopsis
	Arguments

	Chapter 4. The debugfs filesystem
	4.1. debugfs interface
	debugfscreatefile
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreatedir
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreatesymlink
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfsremove
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfsremoverecursive
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfsrename
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreateu8
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreateu16
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreateu32
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreateu64
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreatex8
	LINUX
	Name
	Synopsis
	Arguments

	debugfscreatex16
	LINUX
	Name
	Synopsis
	Arguments

	debugfscreatex32
	LINUX
	Name
	Synopsis
	Arguments

	debugfscreatebool
	LINUX
	Name
	Synopsis
	Arguments
	Description

	debugfscreateblob
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 5. The Linux Journalling API
	5.1. Overview
	5.1.1. Details
	5.1.2. Summary

	5.2. Data Types
	5.2.1. Structures

	typedef handlet
	LINUX
	Name
	Synopsis
	Description

	typedef journalt
	LINUX
	Name
	Synopsis
	Description

	struct handles
	LINUX
	Name
	Synopsis
	Members

	struct journals
	LINUX
	Name
	Synopsis
	Members

	5.3. Functions
	5.3.1. Journal Level

	journalinitdev
	LINUX
	Name
	Synopsis
	Arguments
	Returns

	journalinitinode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalcreate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalload
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journaldestroy
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalcheckusedfeatures
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalcheckavailablefeatures
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalsetfeatures
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalupdateformat
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalflush
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalwipe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalabort
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalerrno
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalclearerr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalackerr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalrecover
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalskiprecovery
	LINUX
	Name
	Synopsis
	Arguments
	Description
	5.3.2. Transasction Level

	journalstart
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalextend
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalrestart
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journallockupdates
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalunlockupdates
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalgetwriteaccess
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalgetcreateaccess
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalgetundoaccess
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journaldirtydata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journaldirtymetadata
	LINUX
	Name
	Synopsis
	Arguments
	Description
	buffer

	journalforget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalstop
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalforcecommit
	LINUX
	Name
	Synopsis
	Arguments
	For synchronous operations

	journaltrytofreebuffers
	LINUX
	Name
	Synopsis
	Arguments
	Description

	journalinvalidatepage
	LINUX
	Name
	Synopsis
	Arguments
	Description

	5.4. See also

	Chapter 6. splice API
	splicetopipe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericfilespliceread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipefeed
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipenext
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipebegin
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipeend
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicefrompipe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericfilesplicewritenolock
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericfilesplicewrite
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericsplicesendpage
	LINUX
	Name
	Synopsis
	Arguments
	Description

	splicedirecttoactor
	LINUX
	Name
	Synopsis
	Arguments
	Description

	dosplicedirect
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 7. pipes API
	struct pipebuffer
	LINUX
	Name
	Synopsis
	Members

	struct pipeinodeinfo
	LINUX
	Name
	Synopsis
	Members

	genericpipebufmap
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericpipebufunmap
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericpipebufsteal
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericpipebufget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	genericpipebufconfirm
	LINUX
	Name
	Synopsis
	Arguments
	Description

