MTD NAND Driver
Programming Interface

Thomas Gleixner

tglx@linutronix.de

MTD NAND Driver Programming Interface
by Thomas Gleixner

Copyright © 2004 Thomas Gleixner

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. Introduction 1
2. Known Bugs And Assumptions 3
3. Documentation hints 5
3.1. Function identifiers [XXX]cooiiiiiiiiiiiieeiiieiee et e e e 5

3.2. Struct member identifiers [XXX]......cooviiiiiiiiiiieieeeieieeee e 5

4. Basic board driver J
o R 2 7 T ol 1S5 101 T USRS 7

4.2, Partition defiNESceeeiiiieiiiiiiieeeeeeccciieeee ettt e e e et e e e e e e eearraareaeeean 7

4.3. Hardware control fUNCHIONcciiiieiiiiiiieiieciiiiieee e 7

4.4. Device ready fUnCHONccoviieiiieeiieeieecee et 8

T T 0 L 105161 5 (o) 3 PO USRS 8

4.6. EXIt fUNCHOMN.....cciiiiiiiiiiiee ettt e trae e e e e e eenaraeeeas 10

5. Advanced board driver functions........ 11
5.1. Multiple chip CONtrol.........cccceviiiiiniiiiiiiiiiecie e 11

5.2. Hardware ECC SUPPOTtcccuueiriiiiiiieiiieiiiee ettt 12
5.2.1. Functions and CONSLANtSccccvuvreeeeeieiiiiiiieeeeeeecciieeeeeeeeeeivvneenn 12

5.2.2. Hardware ECC with syndrome calculation..............cccoeevveeennneennn. 13

5.3. Bad block table SUPPOITccueeeeiieiiieeiieeiee et 13
5.3.1. Flash based tablescccceeeeiiiiiiiiiiiieeciie et 14

5.3.2. User defined tables............ceeeeiieiiiiiiieeiieeiieeeee e 15

5.4. Spare area (AutO)PlaCeMENTt......ccuvveeeriuiireiriiieeeriieeeerieeeeeieee e e e e siaeee e 17
5.4.1. Placement defined by fS driver..........cccoevvviviiieniieenieeieecee e 18

5.4.2. Automatic placementccueeruieeriieniiieeniee et 18

5.4.3. User space placement SEleCtionccoceeeveeriieenieniiennieeneeneennen. 18

5.5. Spare area autoplacement default schemes............ccocceeviiiniiinncinnennne. 19
5.5.1. 256 DYLE PAZESIZE ..vveeeuvreeeniieeiieeeiieesieeeiteesteeeiaeesaee e e sreeesavee s 19

5.5.2. S5T2 DYLE PAZESIZE c..veeeuvreeiiieeiieeeiieestee et stee ettt et 19

5.5.3. 2048 DYLE PAZESIZE ...uveenveeerieieeieeeireeteeieeeee et 20

6. Filesystem support 23
7. Tools. 25
8. Constants ... 27
8.1. Chip OPtiON CONSLANES.....ccuuieirurieiiieeniieeitee ettt ettt e et e s e e 27
8.1.1. Constants for chip id tablecccccceveriiieriiiiniieeeece e 27

8.1.2. Constants for runtime OPtiONS.........cceeerveeriueeerieeriieenieeeneeesieeenns 27

8.2. ECC SeleCtion CONSLANTS.cccuvvieeriuiieeeriiiieeeniaeeeeeiteeeesseeeeesreeeesssnseeeennns 28

8.3. Hardware control related coOnStants............cccceeeeeeeeciiiiieeeeeeeciiieeeeeee e 28

8.4. Bad block table related CONStANtS..........ccccuvviiieeeeeieiiiieeee e e e 29

i

v

9. Structures...

10. Public Functions Provided

11. Internal Functions Provided ...

struct nand_hw_CONtIol...........ccuiiiiiiiiiiiiiie e
STIUCE NANA_ECC_CUIL oo e e e e e e e e eeas
STIUCE NANA DUTTETS ..ot et e e et e e e e
SEIUCE NANA_CRIP c.etieeiiieiie ettt et e e sbee s
struct nand_flash_deV...........cooouiiiiiiiiii i
StrucCt NANA_ MANUTACTUIETS ..ot eeeeee et e e e e e e e e e eneaeeeeeneans
SIUCE NANA_ DT AESCI et e et e e e e e e eeeas
struct platform_nand_Chipcccveeiiiiiiieeiieeeee e
struct platform_nand_Ctrl.........cccoiiiiiriiiiiiieiee e
struct platform_nand_datac..ccoceeriiieiiiniinii e

NANA_ SCANL_TAEII. .. eeeeeeeeeeeeeeeee et eee e e e e e e eeeteeeeeeeeeeeeeseeraeenanaeaaeseeaeens
NANA_SCAN_LATL....oeiiiiiiiiiiiiee e et aree e
TMANIA. SCAI..eeneeeeeeee eee e e e e eaeaeeeeeaanns
NANA_TELEASE ... e et e e et e e e e e e e eeas
NANA_SCAINL DDE..ciineiiiiiiee et ettt e e e e taee e e e et e e e e eaaaeeseeaanaas
nand_default_bbt............oooiiiiiiiie e
NANA_CAICULALE ECC ...oiieiiiiieieeeee ettt e e e et e et et ee e e e aeaees
NANA__COITECT AT ..eeeeeee et e e et e e e e e e e eeeas

NANA_1eleaSe_AEVICEeeeeuviiieeiiiieeciiee ettt e e e e e e e areeeeas
NANA_TEAA_DYLE ...eeeiiiiiiiiiiieie e
nand_read_DYtel6.......cooiiiiiiiiiiiii e
NANA_TEAA. WOT.....iiiieiieeeeee ettt e e e et e e e etaeeseeeaanaas
NANA_SEIECT_ChIPeiiiiiiiiiiiiie e e
NANA_ WIIEE _DUT ..o e e e e e aee e e e e
NANA_TEAA_ DUL ..o e e e e e
NANA_VErify_DUf.....cooiiiiiiiii e
NANA_WIIEE _DUTLO ..ot e e e e e ettt eeeseeaaees
Nand_read_DUFLO........covviiiiiiie e
nand_verify_buflO. ..o
NANA_DIOCK DA ... et e e
nand_default_block markbad.........ccooovuummeieeeeiieeeeeieeeeeee et aeees
NANA_ChECK WP ..eiiiiiiiiiiiice e
Nand_blOCK CheCKDA.cooueieeeeeee e
NANA_COMIMANA ..ot e et e e e etaee e e e etaeeeeeeaaaeeeeeaanans
nand_command_IP.......coocuieiiiiiiiiieeeee e e s
NANA_ZEL_AEVICE ...eeiiiieiiiieiiieeiee ettt s
TMATNIA. WAL ettt e e e e e e et e e e e e e e e e e eee e e e e eaaeeeeeeanns
NANA_1€Ad_PAZE_TAW ..eeiiiiiiiiieiiiieeiiiieeeetee ettt et e e sitee e e et e e s s aaeeeeas
NANA_TAA_PAZE_SWECC....eeeeiieeiiieeiieeiieeieeeeteeeite et e etee et e s e e saseesseeeens

NANA_TAd_SUDPAZE......covviieiiieiiieciie ettt 76

nand_read_page_NWECCccuviiriiiiiiiiiieceeee e 77
nand_read_page_SYNAIOME.cooueerrieeriiiiiiiieniie et 78
NANA_tranSTEr _ 00D.......cooiiiiiiieee et eeees 79
NANA_dO_TEAA_OPS cvvviieeeiiiie ittt e et e s bee e 80
NANA_TEAA c.ceevveeieeee ettt ettt ee e e e e e e e e et teaaaaaeaseseeeseeseessaneaaeseseeees 81
NANA_1ead_00D_Stdccoviiiiiieiiieeee e e 82
nand_read_00b_SYNAIOMEcoruieiiieiniiiiiiieeniteeiee sttt 83
NANA_WIIEE_ 00D ST ... eieiiieeieeeee ettt e e e e e e e e e eeeeeeeaeeaeeeeaaees 84
nand_write_00b_SYNArOme...........cccuerriiriiiiiiniieniie et 85
NaNd_do_1ead_00Dcccoouiiiiiiiiiiecieee e 86
NANA_TEAA_ 00D ...eeeiiiiiiiiiieieeeeee ettt e e e e ettt eaeeees 87
NANA_WITIE_PAZE_TAW ..eeeruiriieieiiiieeaiiiieeeeiieeeestteeeesteeeessasteeesnsseeessnsseeessssseeeans 88
NANA_WITLE_PAZE_SWECC ..veeruvreeirieriiieeniteeeieeeeiteesieeessreesseeensreesseesssseesseesnnnes 89
nand_Write_Page_NWECC......ceevriiiriiiiiiieiiie ettt 90
nand_write_page_SYNAIOIMEccocueerrieeriuieinieeniteeieee st et e st esiree s e 91
NANA_WITEE_PAZE ..eeeeiviieeeiiieeeeiiieeesitteeesiteeesstteeeestteeessabaeeesnnsaeesssseeeesssseeeans 92
NANA_TILL 00D et e e e e e e e eeeeraeanaeaaeeeeaaees 93
NANA_AO_WITLE_OPS 1nvvieiniiieeiiieeiiee ettt ettt ettt et e st et e st e e sabeesabeeeanes 93
NANA WIIEE. ..ttt et ettt e e e e e e eeeteaaa e eeseseeestesssnnnaseseseeens 94
NANA_dO_WITEE_00D......ooiiiiiiieeee e et eeeees 96
NANA_ WIIEE 00D ...ttt e e e e e e e eeeteeaeeeeeeeeeseereeanaaeaaeseeeaees 96
SINGIE_ETASE_CIMA...c.uviieiiieeiiieiiie ettt st e s 97
MUIL_€IASE CIMA ..uviiiiiiiiiiiiieeeeee e e e ettt e e e e e e ee et et e e e seaeeens 98
NANA_ETASE....eeuueeieeee et e et e e ettt e e e e e e eeeete e et e eeeeseeeeresssaannaeeeeeaens 99
NANA_ETASE NAN eeeeiieiieieeee ettt e e e e eeeeteeereeeaeeseeeeerenennnnaaaesseeaeens 100
NANA_SYIIC 1.vieiniiieeiiieeitee ettt ettt e et e e bte ettt e st e e s beessabeesabeeesaseesbeeesabeeas 101
Nand_bIOCK _ISDAAooviiiiiieeee ettt eeaees 102
nand_bIOCK MATKDAcoouneeeeeee e e e 102
NANA_SUSPENAeeiiiiiiiiieiiieeeiee ettt e et e et e e siae e e e e saseesaeeeeaseeas 103
NANA_TESUINICevvieeiiiiieeeeiiee e et e e et e e et e e e eibeeeeetbeeeeeaseeeeesseeeeaasseaesensseas 104
ChECK _PALEITeoiiiiiiiiiiiie ettt 105
check_ShOTt_Pattern........c.ceiiiiiiiiiiiiii et 106
TEAA DDttt e e e e e e e e e e e e e e aaeaeeeaaaaaes 106
1€AA_ADS_ DD .oiiiiiiiiiicee e e 108
TEAA_ QDS DS et et e ettt e e e e e e e e et b b aeeaeaans 109
CTEALE. DDt e et e e e e e e e e e e e e e e e eeaas 110
SEATCH DD .ot e ettt e e e e et e e et aaaeeeenaas 111
SEATCHL TEAA DDES ...eeeieeee ettt e ettt ee e e e e eeereaaaaeness 112
A4 8 LTS o) o AR USSR 113
nand_memoTy_DDtcoooiiiiiiiiii e 114
CRECK CIEALE ..o e e e e e e e e e e aeaeeeaeaaees 115
MArk_bDt_T€ZIONeiiiiiiiiiiiie e 116

Vi

nand_update_bbt

nand_isbad_bbt..

12. Credits......

Chapter 1. Introduction

The generic NAND driver supports almost all NAND and AG-AND based chips
and connects them to the Memory Technology Devices (MTD) subsystem of the
Linux Kernel.

This documentation is provided for developers who want to implement board
drivers or filesystem drivers suitable for NAND devices.

Chapter 1. Introduction

Chapter 2. Known Bugs And
Assumptions

None.

Chapter 2. Known Bugs And Assumptions

Chapter 3. Documentation hints

The function and structure docs are autogenerated. Each function and struct
member has a short description which is marked with an [XXX] identifier. The
following chapters explain the meaning of those identifiers.

3.1. Function identifiers [XXX]

The functions are marked with [XXX] identifiers in the short comment. The
identifiers explain the usage and scope of the functions. Following identifiers are
used:

« [MTD Interface]

These functions provide the interface to the MTD kernel API. They are not
replacable and provide functionality which is complete hardware independent.

« [NAND Interface]
These functions are exported and provide the interface to the NAND kernel API.
« [GENERIC]

Generic functions are not replacable and provide functionality which is complete
hardware independent.

- [DEFAULT]

Default functions provide hardware related functionality which is suitable for
most of the implementations. These functions can be replaced by the board driver
if neccecary. Those functions are called via pointers in the NAND chip
description structure. The board driver can set the functions which should be
replaced by board dependent functions before calling nand_scan(). If the function
pointer is NULL on entry to nand_scan() then the pointer is set to the default
function which is suitable for the detected chip type.

3.2. Struct member identifiers [XXX]

The struct members are marked with [XXX] identifiers in the comment. The
identifiers explain the usage and scope of the members. Following identifiers are
used:

. [INTERN]

Chapter 3. Documentation hints

These members are for NAND driver internal use only and must not be modified.
Most of these values are calculated from the chip geometry information which is
evaluated during nand_scan().

- [REPLACEABLE]

Replaceable members hold hardware related functions which can be provided by
the board driver. The board driver can set the functions which should be replaced
by board dependent functions before calling nand_scan(). If the function pointer
is NULL on entry to nand_scan() then the pointer is set to the default function
which is suitable for the detected chip type.

- [BOARDSPECIFIC]

Board specific members hold hardware related information which must be
provided by the board driver. The board driver must set the function pointers and
datafields before calling nand_scan().

. [OPTIONAL]

Optional members can hold information relevant for the board driver. The generic
NAND driver code does not use this information.

Chapter 4. Basic board driver

For most boards it will be sufficient to provide just the basic functions and fill out
some really board dependent members in the nand chip description structure.

4.1. Basic defines

At least you have to provide a mtd structure and a storage for the ioremap’ed chip
address. You can allocate the mtd structure using kmalloc or you can allocate it
statically. In case of static allocation you have to allocate a nand_chip structure too.

Kmalloc based example

static struct mtd_info *board_mtd;
static unsigned long baseaddr;

Static example

static struct mtd_info board_mtd;
static struct nand_chip board_chip;
static unsigned long baseaddr;

4.2. Partition defines

If you want to divide your device into partitions, then enable the configuration
switch CONFIG_MTD_PARTITIONS and define a partitioning scheme suitable to
your board.

#define NUM_PARTITIONS 2

static struct mtd_partition partition_infol[] = {
{ .name = "Flash partition 1",
.0offset = O,
.size = 8 x 1024 % 1024 1},
{ .name = "Flash partition 2",
.offset = MTDPART_OFS_NEXT,
.size = MTDPART_SIZ_FULL 1},

}i

Chapter 4. Basic board driver

4.3. Hardware control function

The hardware control function provides access to the control pins of the NAND

chip(s). The access can be done by GPIO pins or by address lines. If you use

address lines, make sure that the timing requirements are met.

GPIO based example

static void board_hwcontrol (struct

{

switch (cmd) {

case
case
case
case
case
case

Address lines based example. 1t’s assumed that the nCE pin is driven by a chip

NAND_CTL_SETCLE:
NAND_CTL_CLRCLE:
NAND_CTL_SETALE:
NAND_CTL_CLRALE:
NAND_CTL_SETNCE:
NAND_CTL_CLRNCE:

select decoder.

static void board_hwcontrol (struct mtd_info *mtd,

{

struct nand_chip xthis

switch (cmd) {

case
case
case
case

NAND_CTL_SETCLE:
NAND_CTL_CLRCLE:
NAND_CTL_SETALE:
NAND_CTL_CLRALE:

/ *
/ *
/ *
/ *
/ *
/ *

this->IO_ADDR_W

Set
Set
Set
Set
Set
Set

CLE
CLE
ALE
ALE
nCE
nCE

mtd_info xmtd, int cmd)

pin
pin
pin
pin
pin
pin

high */ break;
low */ break;
high */ break;
low x/ break;
low */ break;
high %/ break;

(struct nand_chip *) mtd->priv;

= CLE_ADRR_BIT;

this->IO_ADDR W &= ~CLE_ADRR_BIT;

this->IO_ADDR_W

|= ALE_ADRR_BIT;

this->I0_ADDR_W &= ~ALE_ADRR_BIT;

4.4. Device ready function

If the hardware interface has the ready busy pin of the NAND chip connected to a
GPIO or other accesible I/O pin, this function is used to read back the state of the
pin. The function has no arguments and should return 0, if the device is busy (R/B
pin is low) and 1, if the device is ready (R/B pin is high). If the hardware interface
does not give access to the ready busy pin, then the function must not be defined
and the function pointer this->dev_ready is set to NULL.

int cmd)

break;
break;
break;
break;

Chapter 4. Basic board driver

4.5. Init function

The init function allocates memory and sets up all the board specific parameters and
function pointers. When everything is set up nand_scan() is called. This function
tries to detect and identify then chip. If a chip is found all the internal data fields are
initialized accordingly. The structure(s) have to be zeroed out first and then filled
with the neccecary information about the device.

int _ init board _init (void)
{

struct nand_chip =xthis;

int err = 0;

/+ Allocate memory for MTD device structure and private data =/
board_mtd = kzalloc(sizeof (struct mtd_info) + sizeof (struct nand_chip), ¢
if (!board mtd) {

printk ("Unable to allocate NAND MTD device structure.\n");

err = —-ENOMEM;

goto out;

}

/* map physical address =/
baseaddr = (unsigned long)ioremap (CHIP_PHYSICAL_ADDRESS, 1024);
if (!baseaddr) {

printk ("Ioremap to access NAND chip failed\n");

err = —-EIO;

goto out_mtd;

}

/* Get pointer to private data =/

this = (struct nand_chip *) ();

/* Link the private data with the MTID structure x/
board_mtd->priv = this;

/+ Set address of NAND IO lines =*/
this—>I0O_ADDR_R = baseaddr;

this->TIO_ADDR_W
/+ Reference hardware control function x/

baseaddr;

this->hwcontrol = board_hwcontrol;

/* Set command delay time, see datasheet for correct value =/
this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;

/+ Assign the device ready function, if available «/
this->dev_ready = board_dev_ready;

this—->eccmode = NAND_ECC_SOFT;

/* Scan to find existence of the device */
if (nand_scan (board_mtd, 1)) {

Chapter 4. Basic board driver

err = —-ENXIO;
goto out_ior;

}

add_mtd_partitions (board_mtd, partition_info, NUM_PARTITIONS);
goto out;

out_dor:
iounmap ((void =)baseaddr);
out_mtd:
kfree (board_mtd);
out:
return err;
}

module_init (board_init);

4.6. Exit function

10

The exit function is only neccecary if the driver is compiled as a module. It releases
all resources which are held by the chip driver and unregisters the partitions in the
MTD layer.

#ifdef MODULE

static void __exit board_cleanup (void)

{

/+ Release resources, unregister device x/
nand_release (board_mtd);

/* unmap physical address x/
iounmap ((void x)baseaddr);

/+* Free the MTD device structure */
kfree (board_mtd);

}

module_exit (board_cleanup) ;

fendif

Chapter 5. Advanced board driver
functions

This chapter describes the advanced functionality of the NAND driver. For a list of
functions which can be overridden by the board driver see the documentation of the
nand_chip structure.

5.1. Multiple chip control

The nand driver can control chip arrays. Therefor the board driver must provide an
own select_chip function. This function must (de)select the requested chip. The
function pointer in the nand_chip structure must be set before calling nand_scan().
The maxchip parameter of nand_scan() defines the maximum number of chips to
scan for. Make sure that the select_chip function can handle the requested number
of chips.

The nand driver concatenates the chips to one virtual chip and provides this virtual
chip to the MTD layer.

Note: The driver can only handle linear chip arrays of equally sized chips. There is
no support for parallel arrays which extend the buswidth.

GPIO based example
static void board_select_chip (struct mtd_info *mtd, int chip)

{
/* Deselect all chips, set all nCE pins high =*/

GPIO (BOARD_NAND_NCE) |= 0Oxff;
if (chip >= 0)
GPIO (BOARD_NAND_NCE) &= ~ (1 << chip);

Address lines based example. Its assumed that the nCE pins are connected to an
address decoder.

static void board_select_chip (struct mtd_info *mtd, int chip)
{

struct nand_chip xthis = (struct nand_chip *) mtd->priv;

/* Deselect all chips */

this—>IO ADDR_R &= ~BOARD_NAND ADDR_MASK;
this—>IO_ADDR_W &= ~BOARD_NAND_ ADDR_MASK;
switch (chip) {

11

Chapter 5. Advanced board driver functions

case 0:
this->I0O_ADDR_R |= BOARD_NAND_ADDR_CHIPO;
this->IO_ADDR_W |= BOARD_NAND_ ADDR_CHIPO;
break;
case n:
this->IO_ADDR_R |= BOARD_NAND ADDR_CHIPn;
this->I0O_ADDR_W |= BOARD_NAND ADDR_CHIPn;
break;

}

5.2. Hardware ECC support

5.2.1. Functions and constants

The nand driver supports three different types of hardware ECC.

« NAND_ECC_HW3_256

Hardware ECC generator providing 3 bytes ECC per 256 byte.
« NAND_ECC_HW3_512

Hardware ECC generator providing 3 bytes ECC per 512 byte.
« NAND_ECC_HW6_512

Hardware ECC generator providing 6 bytes ECC per 512 byte.
« NAND_ECC_HWS8_512

Hardware ECC generator providing 6 bytes ECC per 512 byte.

If your hardware generator has a different functionality add it at the appropriate
place in nand_base.c

The board driver must provide following functions:

« enable_hwecc

This function is called before reading / writing to the chip. Reset or initialize the
hardware generator in this function. The function is called with an argument
which let you distinguish between read and write operations.

» calculate_ecc

12

Chapter 5. Advanced board driver functions

This function is called after read / write from / to the chip. Transfer the ECC from
the hardware to the buffer. If the option NAND_HWECC_SYNDROME is set
then the function is only called on write. See below.

« correct_data

In case of an ECC error this function is called for error detection and correction.
Return 1 respectively 2 in case the error can be corrected. If the error is not
correctable return -1. If your hardware generator matches the default algorithm of
the nand_ecc software generator then use the correction function provided by
nand_ecc instead of implementing duplicated code.

5.2.2. Hardware ECC with syndrome calculation

Many hardware ECC implementations provide Reed-Solomon codes and calculate
an error syndrome on read. The syndrome must be converted to a standard
Reed-Solomon syndrome before calling the error correction code in the generic
Reed-Solomon library.

The ECC bytes must be placed immidiately after the data bytes in order to make the
syndrome generator work. This is contrary to the usual layout used by software
ECC. The seperation of data and out of band area is not longer possible. The nand
driver code handles this layout and the remaining free bytes in the oob area are
managed by the autoplacement code. Provide a matching oob-layout in this case.
See rts_from4.c and diskonchip.c for implementation reference. In those cases we
must also use bad block tables on FLASH, because the ECC layout is interferring
with the bad block marker positions. See bad block table support for details.

5.3. Bad block table support

Most NAND chips mark the bad blocks at a defined position in the spare area.
Those blocks must not be erased under any circumstances as the bad block
information would be lost. It is possible to check the bad block mark each time
when the blocks are accessed by reading the spare area of the first page in the block.
This is time consuming so a bad block table is used.

The nand driver supports various types of bad block tables.

« Per device

13

Chapter 5. Advanced board driver functions

14

The bad block table contains all bad block information of the device which can
consist of multiple chips.

 Per chip

A bad block table is used per chip and contains the bad block information for this
particular chip.

+ Fixed offset

The bad block table is located at a fixed offset in the chip (device). This applies to
various DiskOnChip devices.

+ Automatic placed

The bad block table is automatically placed and detected either at the end or at
the beginning of a chip (device)

» Mirrored tables

The bad block table is mirrored on the chip (device) to allow updates of the bad
block table without data loss.

nand_scan() calls the function nand_default_bbt(). nand_default_bbt() selects
appropriate default bad block table desriptors depending on the chip information
which was retrieved by nand_scan().

The standard policy is scanning the device for bad blocks and build a ram based bad
block table which allows faster access than always checking the bad block
information on the flash chip itself.

5.3.1. Flash based tables

It may be desired or neccecary to keep a bad block table in FLASH. For AG-AND
chips this is mandatory, as they have no factory marked bad blocks. They have
factory marked good blocks. The marker pattern is erased when the block is erased
to be reused. So in case of powerloss before writing the pattern back to the chip this
block would be lost and added to the bad blocks. Therefor we scan the chip(s) when
we detect them the first time for good blocks and store this information in a bad
block table before erasing any of the blocks.

The blocks in which the tables are stored are procteted against accidental access by
marking them bad in the memory bad block table. The bad block table managment
functions are allowed to circumvernt this protection.

The simplest way to activate the FLASH based bad block table support is to set the
option NAND_USE_FLASH_BBT in the option field of the nand chip structure
before calling nand_scan(). For AG-AND chips is this done by default. This

Chapter 5. Advanced board driver functions

activates the default FLASH based bad block table functionality of the NAND
driver. The default bad block table options are

- Store bad block table per chip

+ Use 2 bits per block

« Automatic placement at the end of the chip
 Use mirrored tables with version numbers

+ Reserve 4 blocks at the end of the chip

5.3.2. User defined tables

User defined tables are created by filling out a nand_bbt_descr structure and storing
the pointer in the nand_chip structure member bbt_td before calling nand_scan(). If
a mirror table is neccecary a second structure must be created and a pointer to this
structure must be stored in bbt_md inside the nand_chip structure. If the bbt_md
member is set to NULL then only the main table is used and no scan for the
mirrored table is performed.

The most important field in the nand_bbt_descr structure is the options field. The
options define most of the table properties. Use the predefined constants from
nand.h to define the options.

+ Number of bits per block
The supported number of bits is 1, 2, 4, 8.
- Table per chip

Setting the constant NAND_BBT_PERCHIP selects that a bad block table is
managed for each chip in a chip array. If this option is not set then a per device
bad block table is used.

« Table location is absolute

Use the option constant NAND_BBT_ABSPAGE and define the absolute page
number where the bad block table starts in the field pages. If you have selected
bad block tables per chip and you have a multi chip array then the start page must
be given for each chip in the chip array. Note: there is no scan for a table ident
pattern performed, so the fields pattern, veroffs, offs, len can be left uninitialized

« Table location is automatically detected

The table can either be located in the first or the last good blocks of the chip
(device). Set NAND_BBT_LASTBLOCK to place the bad block table at the end

15

Chapter 5. Advanced board driver functions

16

of the chip (device). The bad block tables are marked and identified by a pattern
which is stored in the spare area of the first page in the block which holds the bad
block table. Store a pointer to the pattern in the pattern field. Further the length of
the pattern has to be stored in len and the offset in the spare area must be given in
the offs member of the nand_bbt_descr stucture. For mirrored bad block tables
different patterns are mandatory.

Table creation

Set the option NAND_BBT_CREATE to enable the table creation if no table can
be found during the scan. Usually this is done only once if a new chip is found.

Table write support

Set the option NAND_BBT_WRITE to enable the table write support. This
allows the update of the bad block table(s) in case a block has to be marked bad
due to wear. The MTD interface function block_markbad is calling the update
function of the bad block table. If the write support is enabled then the table is
updated on FLASH.

Note: Write support should only be enabled for mirrored tables with version
control.

Table version control

Set the option NAND_BBT_VERSION to enable the table version control. It’s
highly recommended to enable this for mirrored tables with write support. It
makes sure that the risk of loosing the bad block table information is reduced to
the loss of the information about the one worn out block which should be marked
bad. The version is stored in 4 consecutive bytes in the spare area of the device.
The position of the version number is defined by the member veroffs in the bad
block table descriptor.

Save block contents on write

In case that the block which holds the bad block table does contain other useful
information, set the option NAND_BBT_SAVECONTENT. When the bad block
table is written then the whole block is read the bad block table is updated and
the block is erased and everything is written back. If this option is not set only the
bad block table is written and everything else in the block is ignored and erased.

Number of reserved blocks

For automatic placement some blocks must be reserved for bad block table
storage. The number of reserved blocks is defined in the maxblocks member of
the babd block table description structure. Reserving 4 blocks for mirrored tables
should be a reasonable number. This also limits the number of blocks which are
scanned for the bad block table ident pattern.

Chapter 5. Advanced board driver functions

5.4. Spare area (auto)placement

The nand driver implements different possibilities for placement of filesystem data
in the spare area,

+ Placement defined by fs driver
+ Automatic placement

The default placement function is automatic placement. The nand driver has built in
default placement schemes for the various chiptypes. If due to hardware ECC
functionality the default placement does not fit then the board driver can provide a
own placement scheme.

File system drivers can provide a own placement scheme which is used instead of
the default placement scheme.

Placement schemes are defined by a nand_oobinfo structure

struct nand_oobinfo {
int useecc;

int eccbytes;

int eccpos[24];

int oobfree[8][2];
bi

e useecc

The useecc member controls the ecc and placement function. The header file
include/mtd/mtd-abi.h contains constants to select ecc and placement.
MTD_NANDECC_OFF switches off the ecc complete. This is not recommended
and available for testing and diagnosis only. MTD_NANDECC_PLACE selects
caller defined placement, MTD_NANDECC_AUTOPLACE selects automatic
placement.

 eccbytes
The eccbytes member defines the number of ecc bytes per page.
+ eccpos

The eccpos array holds the byte offsets in the spare area where the ecc codes are
placed.

« oobfree

17

Chapter 5. Advanced board driver functions

18

The oobfree array defines the areas in the spare area which can be used for
automatic placement. The information is given in the format {offset, size}. offset
defines the start of the usable area, size the length in bytes. More than one area
can be defined. The list is terminated by an {0, O} entry.

5.4.1. Placement defined by fs driver

The calling function provides a pointer to a nand_oobinfo structure which defines
the ecc placement. For writes the caller must provide a spare area buffer along with
the data buffer. The spare area buffer size is (number of pages) * (size of spare
area). For reads the buffer size is (number of pages) * ((size of spare area) +
(number of ecc steps per page) * sizeof (int)). The driver stores the result of the ecc
check for each tuple in the spare buffer. The storage sequence is

<spare data page 0><ecc result 0>...<ecc result n>

<spare data page n><ecc result 0>...<ecc result n>
This is a legacy mode used by YAFFS1.

If the spare area buffer is NULL then only the ECC placement is done according to
the given scheme in the nand_oobinfo structure.

5.4.2. Automatic placement

Automatic placement uses the built in defaults to place the ecc bytes in the spare
area. If filesystem data have to be stored / read into the spare area then the calling
function must provide a buffer. The buffer size per page is determined by the
oobfree array in the nand_oobinfo structure.

If the spare area buffer is NULL then only the ECC placement is done according to
the default builtin scheme.

5.4.3. User space placement selection

All non ecc functions like mtd->read and mtd->write use an internal structure,
which can be set by an ioctl. This structure is preset to the autoplacement default.

ioctl (fd, MEMSETOOBSEL, oobsel);

Chapter 5. Advanced board driver functions

oobsel is a pointer to a user supplied structure of type nand_oobconfig. The contents
of this structure must match the criteria of the filesystem, which will be used. See an
example in utils/nandwrite.c.

5.5. Spare area autoplacement default
schemes

5.5.1. 256 byte pagesize

Offset Content Comment

0x00 ECC byte 0 Error correction code byte
0

0x01 ECC byte 1 Error correction code byte
1

0x02 ECC byte 2 Error correction code byte
2

0x03 Autoplace 0

0x04 Autoplace 1

0x05 Bad block marker If any bit in this byte is

zero, then this block is
bad. This applies only to
the first page in a block. In
the remaining pages this
byte is reserved

0x06 Autoplace 2
0x07 Autoplace 3

5.5.2. 512 byte pagesize

Offset Content Comment

0x00 ECC byte 0 Error correction code byte
0 of the lower 256 Byte
data in this page

19

Chapter 5. Advanced board driver functions

20

0x01

ECC byte 1

Error correction code byte
1 of the lower 256 Bytes
of data in this page

0x02

ECC byte 2

Error correction code byte
2 of the lower 256 Bytes
of data in this page

0x03

ECC byte 3

Error correction code byte
0 of the upper 256 Bytes
of data in this page

0x04

reserved

reserved

0x05

Bad block marker

If any bit in this byte is
zero, then this block is
bad. This applies only to
the first page in a block. In
the remaining pages this
byte is reserved

0x06

ECC byte 4

Error correction code byte
1 of the upper 256 Bytes
of data in this page

0x07

ECC byte 5

Error correction code byte
2 of the upper 256 Bytes
of data in this page

0x08 - 0xOF

Autoplace 0 - 7

5.5.3. 2048 byte pagesize

Offset Content Comment

0x00 Bad block marker If any bit in this byte is
zero, then this block is
bad. This applies only to
the first page in a block. In
the remaining pages this
byte is reserved

0x01 Reserved Reserved

0x02-0x27 Autoplace 0 - 37

0x28 ECC byte 0 Error correction code byte

0 of the first 256 Byte data
in this page

Chapter 5. Advanced board driver functions

0x29

ECC byte 1

Error correction code byte
1 of the first 256 Bytes of
data in this page

0x2A

ECC byte 2

Error correction code byte
2 of the first 256 Bytes
data in this page

0x2B

ECC byte 3

Error correction code byte
0 of the second 256 Bytes
of data in this page

0x2C

ECC byte 4

Error correction code byte
1 of the second 256 Bytes
of data in this page

0x2D

ECC byte 5

Error correction code byte
2 of the second 256 Bytes
of data in this page

0x2E

ECC byte 6

Error correction code byte
0 of the third 256 Bytes of
data in this page

0x2F

ECC byte 7

Error correction code byte
1 of the third 256 Bytes of
data in this page

0x30

ECC byte 8

Error correction code byte
2 of the third 256 Bytes of
data in this page

0x31

ECC byte 9

Error correction code byte
0 of the fourth 256 Bytes
of data in this page

0x32

ECC byte 10

Error correction code byte
1 of the fourth 256 Bytes
of data in this page

0x33

ECC byte 11

Error correction code byte
2 of the fourth 256 Bytes
of data in this page

0x34

ECC byte 12

Error correction code byte
0 of the fifth 256 Bytes of
data in this page

0x35

ECC byte 13

Error correction code byte
1 of the fifth 256 Bytes of
data in this page

21

Chapter 5. Advanced board driver functions

22

0x36

ECC byte 14

Error correction code byte
2 of the fifth 256 Bytes of
data in this page

0x37

ECC byte 15

Error correction code byte
0 of the sixt 256 Bytes of
data in this page

0x38

ECC byte 16

Error correction code byte
1 of the sixt 256 Bytes of
data in this page

0x39

ECC byte 17

Error correction code byte
2 of the sixt 256 Bytes of
data in this page

0x3A

ECC byte 18

Error correction code byte
0 of the seventh 256 Bytes
of data in this page

0x3B

ECC byte 19

Error correction code byte
1 of the seventh 256 Bytes
of data in this page

0x3C

ECC byte 20

Error correction code byte
2 of the seventh 256 Bytes
of data in this page

0x3D

ECC byte 21

Error correction code byte
0 of the eigth 256 Bytes of
data in this page

0x3E

ECC byte 22

Error correction code byte
1 of the eigth 256 Bytes of
data in this page

0x3F

ECC byte 23

Error correction code byte
2 of the eigth 256 Bytes of
data in this page

Chapter 6. Filesystem support

The NAND driver provides all neccecary functions for a filesystem via the MTD
interface.

Filesystems must be aware of the NAND pecularities and restrictions. One major
restrictions of NAND Flash is, that you cannot write as often as you want to a page.
The consecutive writes to a page, before erasing it again, are restricted to 1-3 writes,
depending on the manufacturers specifications. This applies similar to the spare
area.

Therefor NAND aware filesystems must either write in page size chunks or hold a
writebuffer to collect smaller writes until they sum up to pagesize. Available NAND
aware filesystems: JFFS2, YAFFS.

The spare area usage to store filesystem data is controlled by the spare area
placement functionality which is described in one of the earlier chapters.

23

Chapter 6. Filesystem support

24

Chapter 7. Tools

The MTD project provides a couple of helpful tools to handle NAND Flash.

- flasherase, flasheraseall: Erase and format FLASH partitions
« nandwrite: write filesystem images to NAND FLASH
« nanddump: dump the contents of a NAND FLASH partitions

These tools are aware of the NAND restrictions. Please use those tools instead of

complaining about errors which are caused by non NAND aware access methods.

25

Chapter 7. Tools

26

Chapter 8. Constants

This chapter describes the constants which might be relevant for a driver developer.

8.1. Chip option constants

8.1.1. Constants for chip id table

These constants are defined in nand.h. They are ored together to describe the chip
functionality.

/+ Chip can not auto increment pages =*/
#define NAND_NO_AUTOINCR 0x00000001
/* Buswitdh is 16 bit */
#define NAND_BUSWIDTH_16 0x00000002
/+ Device supports partial programming without padding =/
#define NAND_NO_PADDING 0x00000004
/+ Chip has cache program function =*/
#define NAND_CACHEPRG 0x00000008
/* Chip has copy back function =*/
#define NAND_COPYBACK 0x00000010
/+ AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information =/
#define NAND_IS_AND 0x00000020
/+ Chip has a array of 4 pages which can be read without
* additional ready /busy waits =/
#define NAND_4PAGE_ARRAY 0x00000040

8.1.2. Constants for runtime options

These constants are defined in nand.h. They are ored together to describe the
functionality.

/+ Use a flash based bad block table. This option is parsed by the
* default bad block table function (nand_default_bbt). x/
#define NAND_USE_FLASH_BBT 0x00010000
/+ The hw ecc generator provides a syndrome instead a ecc value on read
* This can only work if we have the ecc bytes directly behind the
* data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generat

27

Chapter 8. Constants

#define NAND_HWECC_SYNDROME 0x00020000

8.2. ECC selection constants

Use these constants to select the ECC algorithm.

/+ No ECC. Usage is not recommended ! =/
#define NAND_ECC_NONE 0

/* Software ECC 3 byte ECC per 256 Byte data =/
#define NAND_ECC_SOFT 1

/* Hardware ECC 3 byte ECC per 256 Byte data */
#define NAND_ECC_HW3_256 2

/+ Hardware ECC 3 byte ECC per 512 Byte data =/
#define NAND_ECC_HW3_512 3

/* Hardware ECC 6 byte ECC per 512 Byte data */
#define NAND_ECC_HW6_512 4

/+ Hardware ECC 6 byte ECC per 512 Byte data =/
#define NAND_ECC_HWS8_512 6

8.3. Hardware control related constants

28

These constants describe the requested hardware access function when the
boardspecific hardware control function is called

/+ Select the chip by setting nCE to low x/

#define NAND_CTL_SETNCE 1

/+ Deselect the chip by setting nCE to high */

#define NAND_CTIL_CLRNCE 2

/+ Select the command latch by setting CLE to high =/
#define NAND_CTL_SETCLE 3

/+ Deselect the command latch by setting CLE to low =/
#define NAND_CTL_CLRCLE 4

/* Select the address latch by setting ALE to high x/
#define NAND_CTL_SETALE 5

/+ Deselect the address latch by setting ALE to low x/
#define NAND_CTL_CLRALE 6

/* Set write protection by setting WP to high. Not used!

*/

Chapter 8. Constants

#define NAND_CTL_SETWP 7
/+ Clear write protection by setting WP to low. Not used! =/
#define NAND_CTL_CLRWP 8

8.4. Bad block table related constants

These constants describe the options used for bad block table descriptors.

/+ Options for the bad block table descriptors =/

/+ The number of bits used per block in the bbt on the device «/
#define NAND_BBT_NRBITS_MSK 0x0000000F

#define NAND_BBT_1BIT 0x00000001

#define NAND_BBT_2BIT 0x00000002

#define NAND_BBT_4BIT 0x00000004

#define NAND_BBT_8BIT 0x00000008

/+ The bad block table is in the last good block of the device */
#define NAND_BBT_LASTBLOCK 0x00000010

/+ The bbt is at the given page, else we must scan for the bbt */
#define NAND_BBT_ABSPAGE 0x00000020

/+ The bbt is at the given page, else we must scan for the bbt */
#define NAND_BBT_SEARCH 0x00000040

/+ bbt is stored per chip on multichip devices =/

#define NAND_BBT_PERCHIP 0x00000080

/* bbt has a version counter at offset veroffs x/

#define NAND_BBT_VERSION 0x00000100

/+ Create a bbt if none axists =/

#define NAND_ BBT_CREATE 0x00000200

/+ Search good / bad pattern through all pages of a block x*/
#define NAND_BBT_SCANALLPAGES 0x00000400

/+ Scan block empty during good / bad block scan =*/

#define NAND_ BBT_SCANEMPTY 0x00000800

/* Write bbt if neccecary =/

#define NAND_BBT _WRITE 0x00001000

/+ Read and write back block contents when writing bbt x/

#define NAND_BBT_SAVECONTENT 0x00002000

29

Chapter 8. Constants

30

Chapter 9. Structures

This chapter contains the autogenerated documentation of the structures which are
used in the NAND driver and might be relevant for a driver developer. Each struct
member has a short description which is marked with an [XXX] identifier. See the
chapter "Documentation hints" for an explanation.

struct nand_hw_control

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_hw_control — Control structure for hardware controller (e.g
ECC generator) shared among independent devices

Synopsis

struct nand_hw_control {
spinlock_t lock;
struct nand_chip % active;
wait_queue_head_t wqg;

}i

Members

lock

protection lock

active

the mtd device which holds the controller currently

wq

wait queue to sleep on if a NAND operation is in progress used instead of the
per chip wait queue when a hw controller is available

31

Chapter 9. Structures

struct nand_ecc_ctrl

32

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_ecc_ctrl — Control structure for ecc

Synopsis

struct nand_ecc_ctrl {

}i

nand_ecc_modes_t mode;

int steps;

int size;

int bytes;

int total;

int prepad;

int postpad;

struct nand_ecclayout x layout;

void (* hwctl) (struct mtd_info *mtd, int mode);

int (* calculate) (struct mtd_info *mtd,const uint8_t =dat,uint8_t =*ecc.
int (* correct) (struct mtd_info *mtd, uint8_t =*dat,ulint8_t =read_ecc, u.
int (* read_page_raw) (struct mtd_info *mtd,struct nand_chip xchip,uint
void (* write_page_raw) (struct mtd_info *mtd, struct nand_chip =*chip, co:
int (% read_page) (struct mtd_info *mtd, struct nand_chip *chip,uint8_t
void (* write_page) (struct mtd_info »mtd, struct nand_chip *chip, const
int (% read_oob) (struct mtd_info xmtd, struct nand_chip =*chip,int page,:
int (* write_oob) (struct mtd_info #*mtd, struct nand_chip =*chip, int page,

Members

mode

ecc mode

Chapter 9. Structures
steps

number of ecc steps per page

size
data bytes per ecc step
bytes
ecc bytes per step
total
total number of ecc bytes per page
prepad
padding information for syndrome based ecc generators
postpad
padding information for syndrome based ecc generators
layout
ECC layout control struct pointer
hwectl
function to control hardware ecc generator. Must only be provided if an
hardware ECC is available
calculate
function for ecc calculation or readback from ecc hardware
correct

function for ecc correction, matching to ecc generator (sw/hw)

read_page_raw

function to read a raw page without ECC

write_page_raw

function to write a raw page without ECC

read_page

function to read a page according to the ecc generator requirements

33

Chapter 9. Structures
write_page

function to write a page according to the ecc generator requirements

read_oob

function to read chip OOB data

write_oob

function to write chip OOB data

struct nand_buffers

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_buffers — buffer structure for read/write

Synopsis

struct nand_buffers {
uint8_t ecccalc[NAND_MAX_ OOBSIZE];
ulint8_t ecccode [NAND_MAX OOBSIZE];
uint8_t databuf [NAND_MAX PAGESIZE + NAND_MAX OOBSIZE];

}i

Members

ecccalc[NAND_MAX_OOBSIZE]

buffer for calculated ecc

ecccode[NAND_MAX_OOBSIZE]

buffer for ecc read from flash

34

Chapter 9. Structures
databuf[NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE]

buffer for data - dynamically sized

Description

Do not change the order of buffers. databuf and oobrbuf must be in consecutive
order.

struct nand_chip

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_chip — NAND Private Flash Chip Data

Synopsis

struct nand_chip {
void __ _iomem * IO_ADDR_R;
void __ _iomem x IO_ADDR_W;
uint8_t (x read_byte) (struct mtd_info »mtd);

ul6é (* read_word) (struct mtd_info =*mtd);

void (* write_buf) (struct mtd_info »mtd, const uint8_t xbuf, int len);
void (* read_buf) (struct mtd_info *mtd, uint8_t =<buf, int len);

int (% verify_buf) (struct mtd_info »mtd, const uint8_t xbuf, int len);

void (% select_chip) (struct mtd_info »mtd, int chip);
int (% block_bad) (struct mtd_info *mtd, loff_t ofs, int getchip);
int (* block_markbad) (struct mtd_info *mtd, loff_t ofs);

void (* cmd_ctrl) (struct mtd_info =xmtd, int dat,unsigned int ctrl);

int (% dev_ready) (struct mtd_info »*mtd);

void (% cmdfunc) (struct mtd_info *mtd, unsigned command, int column, i1
int (% waitfunc) (struct mtd_info #*mtd, struct nand_chip =*this);

void (* erase_cmd) (struct mtd_info *mtd, int page);

int (% scan_bbt) (struct mtd_info »mtd);

int (% errstat) (struct mtd_info xmtd, struct nand_chip xthis, int stat
int (* write_page) (struct mtd_info *mtd, struct nand_chip *chip,const

35

Chapter 9. Structures

int chip_delay;

unsigned int options;

int page_shift;

int phys_erase_shift;

int bbt_erase_shift;

int chip_shift;

int numchips;

unsigned long chipsize;

int pagemask;

int pagebuf;

int subpagesize;

uint8_t cellinfo;

int badblockpos;

nand_state_t state;

uint8_t * oob_poi;

struct nand_hw_control = controller;
struct nand_ecclayout * ecclayout;
struct nand_ecc_ctrl ecc;

struct nand_buffers * buffers;
struct nand_hw_control hwcontrol;
struct mtd_oob_ops ops;

uint8_t * bbt;

struct nand_bbt_descr » bbt_td;
struct nand_bbt_descr = bbt_md;
struct nand_bbt_descr x badblock_pattern;
void * priv;

}i

Members

I0_ADDR_R
[BOARDSPECIFIC] address to read the 8 I/0 lines of the flash device

I0_ADDR_W
[BOARDSPECIFIC] address to write the 8 I/0 lines of the flash device

read_byte
[REPLACEABLE] read one byte from the chip

read_word

[REPLACEABLE] read one word from the chip

36

Chapter 9. Structures
write_buf

[REPLACEABLE] write data from the buffer to the chip

read_buf
[REPLACEABLE] read data from the chip into the buffer

verify_buf
[REPLACEABLE] verify buffer contents against the chip data

select_chip

[REPLACEABLE] select chip nr

block_bad
[REPLACEABLE] check, if the block is bad

block_markbad
[REPLACEABLE] mark the block bad

cmd_ctrl
[BOARDSPECIFIC] hardwarespecific funtion for controlling ALE/CLE/nCE.
Also used to write command and address

dev_ready
[BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy
line If set to NULL no access to ready/busy is available and the ready/busy
information is read from the chip status register

cmdfunc
[REPLACEABLE] hardwarespecific function for writing commands to the
chip

waitfunc

[REPLACEABLE] hardwarespecific function for wait on ready

erase_cmd

[INTERN] erase command write function, selectable due to AND support

scan_bbt
[REPLACEABLE] function to scan bad block table

37

Chapter 9. Structures

38

errstat
[OPTIONAL] hardware specific function to perform additional error status
checks (determine if errors are correctable)

write_page

[REPLACEABLE] High-level page write function

chip_delay
[BOARDSPECIFIC] chip dependent delay for transfering data from array to
read regs (tR)
options
[BOARDSPECIFIC] various chip options. They can partly be set to inform
nand_scan about special functionality. See the defines for further explanation
page_shift
[INTERN] number of address bits in a page (column address bits)

phys_erase_shift
[INTERN] number of address bits in a physical eraseblock

bbt_erase_shift
[INTERN] number of address bits in a bbt entry

chip_shift
[INTERN] number of address bits in one chip

numchips
[INTERN] number of physical chips
chipsize
[INTERN] the size of one chip for multichip arrays

pagemask

[INTERN] page number mask = number of (pages / chip) - 1

pagebuf
[INTERN] holds the pagenumber which is currently in data_buf

subpagesize

[INTERN] holds the subpagesize

Chapter 9. Structures
cellinfo

[INTERN] MLC/multichip data from chip ident

badblockpos
[INTERN] position of the bad block marker in the oob area

state

[INTERN] the current state of the NAND device

oob_poi

poison value buffer

controller

[REPLACEABLE] a pointer to a hardware controller structure which is shared
among multiple independend devices

ecclayout

[REPLACEABLE] the default ecc placement scheme

€CC

[BOARDSPECIFIC] ecc control ctructure

buffers

buffer structure for read/write

hwcontrol

platform-specific hardware control structure

ops

oob operation operands

bbt
[INTERN] bad block table pointer

bbt_td
[REPLACEABLE] bad block table descriptor for flash lookup

bbt_md
[REPLACEABLE] bad block table mirror descriptor

39

Chapter 9. Structures
badblock_pattern
[REPLACEABLE] bad block scan pattern used for initial bad block scan

priv

[OPTIONAL] pointer to private chip date

struct nand_flash_dev

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_flash dev — NAND Flash Device ID Structure

Synopsis

struct nand_flash dev {
char * name;
int id;
unsigned long pagesize;
unsigned long chipsize;
unsigned long erasesize;
unsigned long options;

}i

Members

name

Identify the device type
id

device ID code

40

Chapter 9. Structures

pagesize

Pagesize in bytes. Either 256 or 512 or O If the pagesize is 0, then the real

pagesize and the eraseize are determined from the extended id bytes in the chip

chipsize

Total chipsize in Mega Bytes

erasesize

Size of an erase block in the flash device.

options

Bitfield to store chip relevant options

struct nand_manufacturers

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_manufacturers — NAND Flash Manufacturer ID Structure

Synopsis

struct nand_manufacturers {
int id;
char % name;

}i

Members

id

manufacturer ID code of device.

41

Chapter 9. Structures
name

Manufacturer name

struct nand _bbt descr

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct nand_bbt_descr — bad block table descriptor

Synopsis

struct nand_bbt_descr {
int options;
int pages [NAND_MAX_CHIPS];
int offs;
int veroffs;
uint8_t version[NAND_MAX_ CHIPS];
int len;
int maxblocks;
int reserved_block_code;
uint8_t = pattern;

}i

Members

options

options for this descriptor

pages[INAND_MAX_CHIPS]

the page(s) where we find the bbt, used with option BBT_ABSPAGE when bbt
is searched, then we store the found bbts pages here. Its an array and supports
up to 8 chips now

42

Chapter 9. Structures
offs

offset of the pattern in the oob area of the page

veroffs

offset of the bbt version counter in the oob are of the page

version[NAND_MAX_CHIPS]

version read from the bbt page during scan

len

length of the pattern, if O no pattern check is performed

maxblocks
maximum number of blocks to search for a bbt. This number of blocks is
reserved at the end of the device where the tables are written.
reserved_block_code

if non-0, this pattern denotes a reserved (rather than bad) block in the stored bbt

pattern

pattern to identify bad block table or factory marked good / bad blocks, can be
NULL, iflen =0

Description

Descriptor for the bad block table marker and the descriptor for the pattern which
identifies good and bad blocks. The assumption is made that the pattern and the
version count are always located in the oob area of the first block.

struct platform_nand_chip

LINUX

43

Chapter 9. Structures

Kernel Hackers ManualJanuary 2010

Name

struct platform_nand_chip — chip level device structure

Synopsis

struct platform_nand_chip {
int nr_chips;
int chip_offset;
int nr_partitions;
struct mtd_partition * partitions;
struct nand_ecclayout * ecclayout;
int chip_delay;
unsigned int options;
const char ** part_probe_types;
void * priv;

}i

Members

nr_chips

max. number of chips to scan for

chip_offset

chip number offset

nr_partitions

number of partitions pointed to by partitions (or zero)

partitions

mtd partition list

ecclayout

ecc layout info structure

chip_delay
R/B delay value in us

44

Chapter 9. Structures
options

Option flags, e.g. 16bit buswidth

part_probe_types
NULL-terminated array of probe types

priv

hardware controller specific settings

struct platform_nand_ctrl

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct platform_nand_ctrl — controller level device structure

Synopsis

struct platform_nand_ctrl {

void (* hwcontrol) (struct mtd_info *mtd, int cmd);

int (% dev_ready) (struct mtd_info »mtd);

void (% select_chip) (struct mtd_info =xmtd, int chip);

void (% cmd_ctrl) (struct mtd_info xmtd, int dat,unsigned int ctrl);

void % priv;

}i

Members

hwcontrol

platform specific hardware control structure

dev_ready

platform specific function to read ready/busy pin

45

Chapter 9. Structures
select_chip

platform specific chip select function

cmd_ctrl

platform specific function for controlling ALE/CLE/nCE. Also used to write
command and address

priv

private data to transport driver specific settings

Description

All fields are optional and depend on the hardware driver requirements

struct platform_nand_data

LINUX
Kernel Hackers ManualJanuary 2010

Name

struct platform_nand_data — container structure for platform-specific
data

Synopsis

struct platform_nand_data {
struct platform_nand_chip chip;
struct platform_nand_ctrl ctrl;

}i

46

Members
chip
chip level chip structure

ctrl

controller level device structure

Chapter 9. Structures

47

Chapter 9. Structures

48

Chapter 10. Public Functions
Provided

This chapter contains the autogenerated documentation of the NAND kernel API
functions which are exported. Each function has a short description which is marked
with an [XXX] identifier. See the chapter "Documentation hints" for an explanation.

nand_scan_ident

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_scan_ident — [NAND Interface] Scan for the NAND device

Synopsis

int nand_scan_ident (struct mtd_info x mtd, int maxchips);

Arguments

mtd

MTD device structure

maxchips

Number of chips to scan for

Description

This is the first phase of the normal nand_scan function. It reads the flash ID and
sets up MTD fields accordingly.

49

Chapter 10. Public Functions Provided

The mtd->owner field must be set to the module of the caller.

nand_scan_tail

LINUX

Kernel Hackers ManualJanuary 2010

50

Name

nand_scan_tail — [NAND Interface] Scan for the NAND device

Synopsis

int nand_scan_tail (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

Description

This is the second phase of the normal nand_scan function. It fills out all the
uninitialized function pointers with the defaults and scans for a bad block table if
appropriate.

Chapter 10. Public Functions Provided

nand_scan

LINUX
Kernel Hackers ManualJanuary 2010

Name
nand_scan — [NAND Interface] Scan for the NAND device

Synopsis

int nand_scan (struct mtd_info » mtd, int maxchips);

Arguments

mtd

MTD device structure

maxchips

Number of chips to scan for

Description

This fills out all the uninitialized function pointers with the defaults. The flash ID is
read and the mtd/chip structures are filled with the appropriate values. The
mtd->owner field must be set to the module of the caller

nand_release

LINUX

51

Chapter 10. Public Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_release — [NAND Interface] Free resources held by the NAND device

Synopsis

void nand release (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

nand_scan_bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_scan_bbt — [NAND Interface] scan, find, read and maybe create bad
block table(s)

Synopsis

int nand_scan_bbt (struct mtd_info * mtd, struct
nand_bbt_descr * bd);

52

Chapter 10. Public Functions Provided
Arguments

mtd

MTD device structure

bd

descriptor for the good/bad block search pattern

Description

The function checks, if a bad block table(s) is/are already available. If not it scans
the device for manufacturer marked good / bad blocks and writes the bad block
table(s) to the selected place.

The bad block table memory is allocated here. It must be freed by calling the
nand_free_bbt function.

nand_default bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_default_bbt — [NAND Interface] Select a default bad block table for
the device

Synopsis

int nand_default_bbt (struct mtd_info * mtd);

53

Chapter 10. Public Functions Provided
Arguments

mtd

MTD device structure

Description

This function selects the default bad block table support for the device and calls the
nand_scan_bbt function

nand_calculate ecc

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_calculate_ecc — [NAND Interface] Calculate 3-byte ECC for
256-byte block

Synopsis

int nand_calculate_ecc (struct mtd_info * mtd, const u_char =
dat, u_char = ecc_code);

Arguments

mtd

MTD block structure

54

Chapter 10. Public Functions Provided

dat

raw data

ecc_code

buffer for ECC

nand_correct_data

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_correct_data — [NAND Interface] Detect and correct bit error(s)

Synopsis

int nand_correct_data (struct mtd_info * mtd, u_char = dat,
u_char * read_ecc, u_char * calc_ecc);

Arguments
mtd
MTD block structure

dat

raw data read from the chip

read_ecc

ECC from the chip

55

Chapter 10. Public Functions Provided
calc_ecc

the ECC calculated from raw data

Description

Detect and correct a 1 bit error for 256 byte block

56

Chapter 11. Internal Functions
Provided

This chapter contains the autogenerated documentation of the NAND driver internal
functions. Each function has a short description which is marked with an [XXX]
identifier. See the chapter "Documentation hints" for an explanation. The functions
marked with [DEFAULT] might be relevant for a board driver developer.

nand_release device

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_release_device — [GENERIC] release chip

Synopsis

void nand_release_device (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

Description

Deselect, release chip lock and wake up anyone waiting on the device

57

Chapter 11. Internal Functions Provided

nand_read byte

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_byte — [DEFAULT] read one byte from the chip

Synopsis

uint8_t nand_read byte (struct mtd_info x mtd);

Arguments

mtd

MTD device structure

Description

Default read function for 8bit buswith

nand_read byte16

LINUX

58

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_read_bytel6 — [DEFAULT] read one byte endianess aware from the
chip

Synopsis

uint8_t nand_read bytel6é (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

Description

Default read function for 16bit buswith with endianess conversion

nand_read word

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_word — [DEFAULT] read one word from the chip

59

Chapter 11. Internal Functions Provided

Synopsis

ul6 nand_read_word (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

Description

Default read function for 16bit buswith without endianess conversion

nand_select_chip

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_select_chip — [DEFAULT] control CE line

Synopsis

void nand_select_chip (struct mtd_info » mtd, int chipnr);

60

Chapter 11. Internal Functions Provided

Arguments

mtd

MTD device structure

chipnr

chipnumber to select, -1 for deselect

Description

Default select function for 1 chip devices.

nand_write buf

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_buf — [DEFAULT] write buffer to chip

Synopsis

void nand_write_buf (struct mtd_info x mtd, const uint8_t =
buf, int len);

Arguments

mtd

MTD device structure

61

Chapter 11. Internal Functions Provided
buf
data buffer

len

number of bytes to write

Description

Default write function for 8bit buswith

nand_read buf

LINUX
Kernel Hackers ManualJanuary 2010

Name
nand_read_buf — [DEFAULT] read chip data into buffer

Synopsis

void nand _read buf (struct mtd_info * mtd, uint8_t = buf, int

len);

Arguments

mtd

MTD device structure

buf

buffer to store date

62

Chapter 11. Internal Functions Provided

len

number of bytes to read

Description

Default read function for 8bit buswith

nand_verify buf

LINUX
Kernel Hackers ManualJanuary 2010

Name
nand_verify_ buf — [DEFAULT] Verify chip data against buffer

Synopsis

int nand_verify buf (struct mtd_info x mtd, const uint8_t =
buf, int len);

Arguments

mtd

MTD device structure

buf

buffer containing the data to compare

len

number of bytes to compare

63

Chapter 11. Internal Functions Provided
Description

Default verify function for 8bit buswith

nand_write _buf16

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_bufl6 — [DEFAULT] write buffer to chip

Synopsis

void nand_write_bufl6é (struct mtd_info * mtd, const uint8_t =«
buf, int len);

Arguments

mtd

MTD device structure

buf
data buffer

len

number of bytes to write

Description

Default write function for 16bit buswith

64

Chapter 11. Internal Functions Provided

nand_read bufi16

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_bufl6é — [DEFAULT] read chip data into buffer

Synopsis

void nand_read bufl6é (struct mtd_info * mtd, uint8_t =* buf,
int Ien);

Arguments

mtd

MTD device structure

buf

buffer to store date

len

number of bytes to read

Description

Default read function for 16bit buswith

65

Chapter 11. Internal Functions Provided

nand_verify buf16

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_verify_bufl6 — [DEFAULT] Verify chip data against buffer

Synopsis

int nand_verify buflé (struct mtd_info x mtd, const uint8_t =
buf, int len);

Arguments

mtd

MTD device structure

buf

buffer containing the data to compare

len

number of bytes to compare

Description

Default verify function for 16bit buswith

66

Chapter 11. Internal Functions Provided

nand_ block bad

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_block_bad — [DEFAULT] Read bad block marker from the chip
Synopsis

int nand_block_bad (struct mtd_info x mtd, loff_t ofs, int
getchip) ;

Arguments

mtd

MTD device structure

ofs

offset from device start

getchip

0, if the chip is already selected

Description
Check, if the block is bad.

67

Chapter 11. Internal Functions Provided

nand_default block markbad

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_default_block_markbad — [DEFAULT] mark a block bad

Synopsis

int nand_default_block_markbad (struct mtd_info * mtd, loff_t
ofs);

Arguments

mtd

MTD device structure

ofs

offset from device start

Description

This is the default implementation, which can be overridden by a hardware specific
driver.

nand check _wp

LINUX

68

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_check_wp — [GENERIC] check if the chip is write protected

Synopsis

int nand_check_wp (struct mtd_info * mtd);

Arguments

mtd

MTD device structure Check, if the device is write protected

Description

The function expects, that the device is already selected

nand_block checkbad

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_block_checkbad — [GENERIC] Check if a block is marked bad

69

Chapter 11. Internal Functions Provided

Synopsis

int nand_block_checkbad (struct mtd_info * mtd, loff_t ofs,
int getchip, int allowbbt);

Arguments

mtd

MTD device structure

ofs

offset from device start

getchip

0, if the chip is already selected

allowbbt

1, if its allowed to access the bbt area

Description

Check, if the block is bad. Either by reading the bad block table or calling of the
scan function.

nand_command

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_command — [DEFAULT] Send command to NAND device

70

Chapter 11. Internal Functions Provided

Synopsis

void nand_command (struct mtd_info » mtd, unsigned int
command, int column, int page_addr);

Arguments

mtd

MTD device structure

command

the command to be sent

column

the column address for this command, -1 if none

page_addr

the page address for this command, -1 if none

Description

Send command to NAND device. This function is used for small page devices
(256/512 Bytes per page)

nand_command Ip

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_command_1lp — [DEFAULT] Send command to NAND large page device

71

Chapter 11. Internal Functions Provided

Synopsis

void nand_command_ lp (struct mtd_info » mtd, unsigned int
command, int column, int page_addr);

Arguments

mtd

MTD device structure

command

the command to be sent

column

the column address for this command, -1 if none

page_addr

the page address for this command, -1 if none

Description

Send command to NAND device. This is the version for the new large page devices
We dont have the separate regions as we have in the small page devices. We must
emulate NAND_CMD_READOORB to keep the code compatible.

nand_get device

72

LINUX

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_get_device — [GENERIC] Get chip for selected access

Synopsis

int nand_get_device (struct nand_chip % chip, struct mtd_info
* mtd, 1int new_state);

Arguments

chip

the nand chip descriptor

mtd

MTD device structure

new_state

the state which is requested

Description

Get the device and lock it for exclusive access

nand_wait

LINUX

73

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_wait — [DEFAULT] wait until the command is done

Synopsis

int nand wait (struct mtd_info x mtd, struct nand_chip =*
chip);

Arguments

mtd

MTD device structure

chip
NAND chip structure

Description

Wait for command done. This applies to erase and program only Erase can take up
to 400ms and program up to 20ms according to general NAND and SmartMedia
specs

nand_read page raw

LINUX

74

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_read_page_raw — [Intern] read raw page data without ecc

Synopsis

int nand_read_page_raw (struct mtd_info x mtd, struct
nand_chip % chip, uint8_t * buf);

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf

buffer to store read data

nand_read_page_swecc

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_page_swecc — [REPLACABLE] software ecc based page read
function

75

Chapter 11. Internal Functions Provided

Synopsis

int nand_read_page_swecc (struct mtd_info » mtd, struct
nand_chip * chip, uint8_t «* buf);

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf

buffer to store read data

nand_read subpage

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_subpage — [REPLACABLE] software ecc based sub-page read
function

Synopsis

int nand_read_subpage (struct mtd_info % mtd, struct nand_chip
* chip, uint32_t data _offs, uint32_t readlen, uint8_t =«
bufpoi) ;

76

Chapter 11. Internal Functions Provided

Arguments

mtd

mtd info structure

chip

nand chip info structure dataofs offset of requested data within the page
readlen data length

data_offs

-- undescribed --

readlen

-- undescribed --

bufpoi

-- undescribed --

nand_read_page_hwecc

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_page_hwecc — [REPLACABLE] hardware ecc based page read
function

Synopsis

int nand_read_page_hwecc (struct mtd_info » mtd, struct
nand_chip * chip, uint8_t = buf);

77

Chapter 11. Internal Functions Provided

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf

buffer to store read data

Description

Not for syndrome calculating ecc controllers which need a special oob layout

nand_read_page_syndrome

LINUX

Kernel Hackers ManualJanuary 2010

78

Name

nand_read_page_syndrome — [REPLACABLE] hardware ecc syndrom
based page read

Synopsis

int nand_read_page_syndrome (struct mtd_info % mtd, struct
nand_chip * chip, uint8_t = buf);

Chapter 11. Internal Functions Provided

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf

buffer to store read data

Description

The hw generator calculates the error syndrome automatically. Therefor we need a
special oob layout and handling.

nand_transfer _oob

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_transfer_oob — [Internal] Transfer oob to client buffer

Synopsis

uint8_t * nand_transfer oob (struct nand_chip * chip, uint8_t
* oob, struct mtd_oob_ops * ops, size_t Ilen);

79

Chapter 11. Internal Functions Provided
Arguments

chip
nand chip structure

oob

oob destination address

ops

oob ops structure

len

size of oob to transfer

nand_do read ops

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_do_read_ops — [Internal] Read data with ECC

Synopsis

int nand_do_read_ops (struct mtd_info x mtd,
struct mtd_oob_ops x ops);

80

loff_t from,

Chapter 11. Internal Functions Provided
Arguments

mtd

MTD device structure

from

offset to read from

ops

oob ops structure

Description

Internal function. Called with chip held.

nand_read

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read — [MTD Interface] MTD compability function for
nand_do_read_ecc

Synopsis

int nand_read (struct mtd_info * mtd, loff_t from, size_t len,
size_t % retlen, uint8_t =* buf);

81

Chapter 11. Internal Functions Provided

Arguments

mtd

MTD device structure

from

offset to read from

len

number of bytes to read

retlen

pointer to variable to store the number of read bytes

buf

the databuffer to put data

Description
Get hold of the chip and call nand_do_read

nand _read oob_std

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_read_oob_std — [REPLACABLE] the most common OOB data read
function

82

Chapter 11. Internal Functions Provided

Synopsis

int nand_read oob_std (struct mtd_info * mtd,

* chip, int page, int sndcmd);

Arguments

mtd

mtd info structure
chip

nand chip info structure

page

page number to read

sndcmd

flag whether to issue read command or not

nand_read oob syndrome

LINUX

Kernel Hackers ManualJanuary 2010

Name

struct nand_chip

nand_read_oob_syndrome — [REPLACABLE] OOB data read function for

HW ECC

83

Chapter 11. Internal Functions Provided

Synopsis

int nand_read_oob_syndrome (struct mtd_info x mtd, struct
nand_chip « chip, int page, int sndcmd) ;

Arguments

mtd

mtd info structure

chip

nand chip info structure

page

page number to read

sndcmd

flag whether to issue read command or not

Description

with syndromes

nand_write oob std

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_oob_std — [REPLACABLE] the most common OOB data write
function

84

Chapter 11. Internal Functions Provided

Synopsis

int nand_write_oob_std (struct mtd_info % mtd, struct
nand_chip « chip, int page);

Arguments
mtd
mtd info structure

chip

nand chip info structure

page

page number to write

nand_write_oob syndrome

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_oob_syndrome — [REPLACABLE] OOB data write function
for HW ECC

Synopsis

int nand_write_oob_syndrome (struct mtd_info % mtd, struct
nand_chip « chip, int page);

85

Chapter 11. Internal Functions Provided

Arguments

mtd

mtd info structure

chip

nand chip info structure

page

page number to write

Description

with syndrome - only for large page flash !

nand do read oob

LINUX

Kernel Hackers ManualJanuary 2010

Name

nand_do_read_oob — [Intern] NAND read out-of-band
Synopsis

int nand _do_read_oob (struct mtd_info = mtd,
struct mtd_oob_ops * ops);

86

loff_t from,

Chapter 11. Internal Functions Provided
Arguments

mtd

MTD device structure

from

offset to read from

ops

oob operations description structure

Description

NAND read out-of-band data from the spare area

nand read _oob

LINUX

Kernel Hackers ManualJanuary 2010

Name

nand_read_oob — [MTD Interface] NAND read data and/or out-of-band
Synopsis

int nand_read oob (struct mtd_info x mtd, loff_t from, struct
mtd_oob_ops * ops);

87

Chapter 11. Internal Functions Provided

Arguments

mtd

MTD device structure

from

offset to read from

ops

oob operation description structure

Description

NAND read data and/or out-of-band data

nand_write_page_raw

LINUX

Kernel Hackers ManualJanuary 2010

88

Name

nand_write_page_raw — [Intern] raw page write function
Synopsis

void nand_write_page_raw (struct mtd_info % mtd, struct
nand_chip % chip, const uint8_t =* buf);

Chapter 11. Internal Functions Provided

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf
data buffer

nand_write_page_swecc

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_page_swecc — [REPLACABLE] software ecc based page write

function

Synopsis

void nand_write_page_swecc (struct mtd_info *» mtd,
nand_chip = chip, const uint8_t = buf);

Arguments

mtd

mtd info structure

struct

89

Chapter 11. Internal Functions Provided
chip

nand chip info structure

buf

data buffer

nand_write_page hwecc

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_page_hwecc — [REPLACABLE] hardware ecc based page
write function

Synopsis

void nand_write_page_hwecc (struct mtd_info » mtd, struct
nand_chip = chip, const uint8_t % buf);

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf

data buffer

90

Chapter 11. Internal Functions Provided

nand_write_page_syndrome

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_page_syndrome — [REPLACABLE] hardware ecc syndrom
based page write

Synopsis

void nand_write_page_syndrome (struct mtd_info * mtd, struct
nand_chip % chip, const uint8_t =* buf);

Arguments

mtd

mtd info structure

chip

nand chip info structure

buf
data buffer

Description

The hw generator calculates the error syndrome automatically. Therefor we need a
special oob layout and handling.

91

Chapter 11. Internal Functions Provided

nand_write_page

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_page — [REPLACEABLE] write one page
Synopsis

int nand_write_page (struct mtd_info » mtd, struct nand_chip *
chip, const uint8_t * buf, int page, int cached, int raw);

Arguments

mtd

MTD device structure

chip
NAND chip descriptor

buf

the data to write

page

page number to write

cached

cached programming

92

Chapter 11. Internal Functions Provided
raw

use _raw version of write_page

nand fill oob

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_fill_ oob — [Internal] Transfer client buffer to oob
Synopsis

uint8_t * nand_£fill oob (struct nand_chip % chip, uint8_t =
oob, struct mtd_oob_ops * ops);

Arguments

chip

nand chip structure

oob

oob data buffer

ops

oob ops structure

93

Chapter 11. Internal Functions Provided

nand_do_write_ops

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_do_write_ops — [Internal] NAND write with ECC

Synopsis

int nand_do_write_ops (struct mtd_info x mtd,
struct mtd_oob_ops * ops);

Arguments

mtd

MTD device structure

to

offset to write to

ops

oob operations description structure

Description

NAND write with ECC

94

loff_t to,

Chapter 11. Internal Functions Provided

nand_write

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write — [MTD Interface] NAND write with ECC
Synopsis

int nand _write (struct mtd_info * mtd, loff_t to, size_t Ilen,
size_t x retlen, const uint8_t = buf);

Arguments

mtd

MTD device structure

to

offset to write to

len

number of bytes to write

retlen

pointer to variable to store the number of written bytes

buf

the data to write

Description

NAND write with ECC

95

Chapter 11. Internal Functions Provided

nand _do write oob

LINUX

Kernel Hackers ManualJanuary 2010

96

Name

nand_do_write_oob — [MTD Interface] NAND write out-of-band
Synopsis

int nand _do_write_oob (struct mtd_info * mtd, loff_t to,
struct mtd_oob_ops * ops);

Arguments

mtd

MTD device structure

to

offset to write to

ops

oob operation description structure

Description

NAND write out-of-band

Chapter 11. Internal Functions Provided

nand_write_oob

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_write_oob — [MTD Interface] NAND write data and/or out-of-band

Synopsis

int nand write_oob (struct mtd_info * mtd, loff_t to, struct
mtd_oob_ops * ops);

Arguments

mtd

MTD device structure

to

offset to write to

ops

oob operation description structure

single_erase_cmd

LINUX

97

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

single_erase_cmd — [GENERIC] NAND standard block erase command
function

Synopsis

void single_erase_cmd (struct mtd_info * mtd, int page);

Arguments

mtd

MTD device structure

page

the page address of the block which will be erased

Description

Standard erase command for NAND chips

multi_erase cmd

LINUX
Kernel Hackers ManualJanuary 2010

Name

multi_erase_cmd — [GENERIC] AND specific block erase command function

98

Chapter 11. Internal Functions Provided

Synopsis

void multi_erase_cmd (struct mtd_info x mtd, int page);

Arguments

mtd

MTD device structure

page

the page address of the block which will be erased

Description

AND multi block erase command function Erase 4 consecutive blocks

nand_erase

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_erase — [MTD Interface] erase block(s)

Synopsis

int nand_erase (struct mtd_info x mtd, struct erase_info «*
instr);

99

Chapter 11. Internal Functions Provided

Arguments

mtd

MTD device structure

instr

erase instruction

Description

Erase one ore more blocks

nand_erase nhand

LINUX

Kernel Hackers ManualJanuary 2010

100

Name

nand_erase_nand — [Internal] erase block(s)

Synopsis

int nand_erase_nand (struct mtd_info * mtd,
* instr, int allowbbt);

Arguments

mtd

MTD device structure

struct erase_info

Chapter 11. Internal Functions Provided
instr

erase instruction

allowbbt

allow erasing the bbt area

Description

Erase one ore more blocks

nand_sync

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_sync — [MTD Interface] sync

Synopsis

void nand_sync (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

101

Chapter 11. Internal Functions Provided
Description

Sync is actually a wait for chip ready function

nand_block isbad

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_block_isbad — [MTD Interface] Check if block at offset is bad

Synopsis

int nand_block_isbad (struct mtd_info x mtd, loff_t offs);

Arguments

mtd

MTD device structure

offs

offset relative to mtd start

nand_block markbad

LINUX

102

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

nand_block_markbad — [MTD Interface] Mark block at the given offset as
bad

Synopsis

int nand_block_markbad (struct mtd_info » mtd, loff_t ofs);

Arguments

mtd

MTD device structure

ofs

offset relative to mtd start

nand_suspend

LINUX
Kernel Hackers ManualJanuary 2010

Name
nand_suspend — [MTD Interface] Suspend the NAND flash

103

Chapter 11. Internal Functions Provided

Synopsis

int nand_suspend (struct mtd_info % mtd);

Arguments

mtd

MTD device structure

nand_resume

LINUX

Kernel Hackers ManualJanuary 2010

104

Name
nand_resume — [MTD Interface] Resume the NAND flash

Synopsis

void nand _resume (struct mtd_info * mtd);

Arguments

mtd

MTD device structure

Chapter 11. Internal Functions Provided

check_pattern

LINUX
Kernel Hackers ManualJanuary 2010

Name

check_pattern — [GENERIC] check if a pattern is in the buffer

Synopsis

int check_pattern (uint8_t x buf, int len, int paglen, struct
nand_bbt_descr * td);

Arguments

buf

the buffer to search

len

the length of buffer to search

paglen

the pagelength

td

search pattern descriptor

Description

Check for a pattern at the given place. Used to search bad block tables and good /
bad block identifiers. If the SCAN_EMPTY option is set then check, if all bytes
except the pattern area contain Oxff

105

Chapter 11. Internal Functions Provided

check_short_pattern

LINUX
Kernel Hackers ManualJanuary 2010

Name

check_short_pattern — [GENERIC] check if a pattern is in the buffer

Synopsis

int check_short_pattern (uint8_t =« buf, struct nand_bbt_descr
* td);

Arguments

buf

the buffer to search

td

search pattern descriptor

Description

Check for a pattern at the given place. Used to search bad block tables and good /
bad block identifiers. Same as check_pattern, but no optional empty check

read bbt

LINUX

106

Chapter 11. Internal Functions Provided

Kernel Hackers ManualJanuary 2010

Name

read_bbt — [GENERIC] Read the bad block table starting from page

Synopsis

int read bbt (struct mtd_info » mtd, uint8_t = buf, int page,
int num, int bits, int offs, int reserved_block_ code);

Arguments

mtd

MTD device structure

buf

temporary buffer

page

the starting page

num

the number of bbt descriptors to read

bits

number of bits per block

offs

offset in the memory table

reserved _block code

Pattern to identify reserved blocks

107

Chapter 11. Internal Functions Provided
Description

Read the bad block table starting from page.

read_abs bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

read_abs_bbt — [GENERIC] Read the bad block table starting at a given page

Synopsis

int read_abs bbt (struct mtd_info x mtd, uint8_t = buf, struct
nand_bbt_descr * td, int chip);

Arguments

mtd

MTD device structure

buf

temporary buffer

td
descriptor for the bad block table
chip

read the table for a specific chip, -1 read all chips. Applies only if
NAND_BBT_PERCHIP option is set

108

Chapter 11. Internal Functions Provided

Description

Read the bad block table for all chips starting at a given page We assume that the
bbt bits are in consecutive order.

read abs bbts

LINUX
Kernel Hackers ManualJanuary 2010

Name

read_abs_bbts — [GENERIC] Read the bad block table(s) for all chips
starting at a given page

Synopsis

int read_abs_bbts (struct mtd_info * mtd, uint8_t =* buf,
struct nand_bbt_descr = td, struct nand_bbt_descr x md);

Arguments

mtd

MTD device structure

buf

temporary buffer

td

descriptor for the bad block table

md

descriptor for the bad block table mirror

109

Chapter 11. Internal Functions Provided

Description

Read the bad block table(s) for all chips starting at a given page We assume that the
bbt bits are in consecutive order.

create bbt

LINUX

Kernel Hackers ManualJanuary 2010

110

Name

create_bbt — [GENERIC] Create a bad block table by scanning the device

Synopsis

int create_bbt (struct mtd_info * mtd, uint8_t =* buf, struct
nand_bbt_descr x bd, int chip);

Arguments

mtd

MTD device structure

buf

temporary buffer

bd

descriptor for the good/bad block search pattern

chip

create the table for a specific chip, -1 read all chips. Applies only if
NAND_BBT_PERCHIP option is set

Chapter 11. Internal Functions Provided

Description

Create a bad block table by scanning the device for the given good/bad block
identify pattern

search_bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

search_bbt — [GENERIC] scan the device for a specific bad block table

Synopsis

int search _bbt (struct mtd_info * mtd, uint8_t =* buf, struct
nand_bbt_descr * td);

Arguments

mtd

MTD device structure

buf

temporary buffer

td

descriptor for the bad block table

111

Chapter 11. Internal Functions Provided

Description

Read the bad block table by searching for a given ident pattern. Search is preformed
either from the beginning up or from the end of the device downwards. The search
starts always at the start of a block. If the option NAND_BBT_PERCHIP is given,
each chip is searched for a bbt, which contains the bad block information of this
chip. This is necessary to provide support for certain DOC devices.

The bbt ident pattern resides in the oob area of the first page in a block.

search_read bbts

LINUX
Kernel Hackers ManualJanuary 2010

Name
search_read_bbts — [GENERIC] scan the device for bad block table(s)

Synopsis

int search_read bbts (struct mtd_info » mtd, uint8_t =* buf,
struct nand_bbt_descr = td, struct nand_bbt_descr x md);

Arguments

mtd

MTD device structure

buf

temporary buffer

112

Chapter 11. Internal Functions Provided

td

descriptor for the bad block table

md

descriptor for the bad block table mirror

Description
Search and read the bad block table(s)

write bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

write_bbt — [GENERIC] (Re)write the bad block table

Synopsis

int write_bbt (struct mtd_info * mtd, uint8_t = buf, struct
nand_bbt_descr x td, struct nand_bbt_descr » md, int chipsel);

Arguments

mtd

MTD device structure

buf

temporary buffer

113

Chapter 11. Internal Functions Provided
td

descriptor for the bad block table

md

descriptor for the bad block table mirror

chipsel

selector for a specific chip, -1 for all

Description
(Re)write the bad block table

nand _memory bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_memory_bbt — [GENERIC] create a memory based bad block table

Synopsis

int nand_memory bbt (struct mtd_info x mtd, struct
nand_bbt_descr * bd);

Arguments

mtd

MTD device structure

114

Chapter 11. Internal Functions Provided
bd

descriptor for the good/bad block search pattern

Description

The function creates a memory based bbt by scanning the device for manufacturer /
software marked good / bad blocks

check create

LINUX
Kernel Hackers ManualJanuary 2010

Name

check_create — [GENERIC] create and write bbt(s) if necessary

Synopsis

int check_create (struct mtd_info » mtd, uint8_t = buf, struct
nand_bbt_descr * bd);

Arguments

mtd

MTD device structure

buf

temporary buffer

115

Chapter 11. Internal Functions Provided

bd

descriptor for the good/bad block search pattern

Description

The function checks the results of the previous call to read_bbt and creates / updates
the bbt(s) if necessary Creation is necessary if no bbt was found for the chip/device
Update is necessary if one of the tables is missing or the version nr. of one table is
less than the other

mark_bbt_region

LINUX
Kernel Hackers ManualJanuary 2010

Name
mark_bbt_region — [GENERIC] mark the bad block table regions

Synopsis

void mark_bbt_region (struct mtd_info x mtd, struct
nand_bbt_descr * td);

Arguments

mtd

MTD device structure

td

bad block table descriptor

116

Chapter 11. Internal Functions Provided

Description

The bad block table regions are marked as “bad” to prevent accidental erasures /
writes. The regions are identified by the mark 0x02.

nand_update bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_update_bbt — [NAND Interface] update bad block table(s)

Synopsis

int nand_update_bbt (struct mtd_info » mtd, loff_t offs);

Arguments

mtd

MTD device structure

offs

the offset of the newly marked block

Description

The function updates the bad block table(s)

117

Chapter 11. Internal Functions Provided

nand_isbad bbt

LINUX
Kernel Hackers ManualJanuary 2010

Name

nand_isbad_bbt — [NAND Interface] Check if a block is bad

Synopsis

int nand_isbad bbt (struct mtd_info * mtd, loff_t offs, int
allowbbt) ;

Arguments

mtd

MTD device structure

offs

offset in the device

allowbbt

allow access to bad block table region

118

Chapter 12. Credits

The following people have contributed to the NAND driver:

1. Steven J. Hill<sjhill@realitydiluted.com>
2. David Woodhouse<dwmw2@infradead.org>
3. Thomas Gleixner<tglx@linutronix.de>

A lot of users have provided bugfixes, improvements and helping hands for testing.
Thanks a lot.

The following people have contributed to this document:

1. Thomas Gleixner<tglx@linutronix.de>

119

Chapter 12. Credits

120

	MTD NAND Driver Programming Interface
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Known Bugs And Assumptions
	Chapter 3. Documentation hints
	3.1. Function identifiers [XXX]
	3.2. Struct member identifiers [XXX]

	Chapter 4. Basic board driver
	4.1. Basic defines
	4.2. Partition defines
	4.3. Hardware control function
	4.4. Device ready function
	4.5. Init function
	4.6. Exit function

	Chapter 5. Advanced board driver functions
	5.1. Multiple chip control
	5.2. Hardware ECC support
	5.2.1. Functions and constants
	5.2.2. Hardware ECC with syndrome calculation

	5.3. Bad block table support
	5.3.1. Flash based tables
	5.3.2. User defined tables

	5.4. Spare area (auto)placement
	5.4.1. Placement defined by fs driver
	5.4.2. Automatic placement
	5.4.3. User space placement selection

	5.5. Spare area autoplacement default schemes
	5.5.1. 256 byte pagesize
	5.5.2. 512 byte pagesize
	5.5.3. 2048 byte pagesize

	Chapter 6. Filesystem support
	Chapter 7. Tools
	Chapter 8. Constants
	8.1. Chip option constants
	8.1.1. Constants for chip id table
	8.1.2. Constants for runtime options

	8.2. ECC selection constants
	8.3. Hardware control related constants
	8.4. Bad block table related constants

	Chapter 9. Structures
	struct nandhwcontrol
	LINUX
	Name
	Synopsis
	Members

	struct nandeccctrl
	LINUX
	Name
	Synopsis
	Members

	struct nandbuffers
	LINUX
	Name
	Synopsis
	Members
	Description

	struct nandchip
	LINUX
	Name
	Synopsis
	Members

	struct nandflashdev
	LINUX
	Name
	Synopsis
	Members

	struct nandmanufacturers
	LINUX
	Name
	Synopsis
	Members

	struct nandbbtdescr
	LINUX
	Name
	Synopsis
	Members
	Description

	struct platformnandchip
	LINUX
	Name
	Synopsis
	Members

	struct platformnandctrl
	LINUX
	Name
	Synopsis
	Members
	Description

	struct platformnanddata
	LINUX
	Name
	Synopsis
	Members

	Chapter 10. Public Functions Provided
	nandscanident
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandscantail
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandscan
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandrelease
	LINUX
	Name
	Synopsis
	Arguments

	nandscanbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanddefaultbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandcalculateecc
	LINUX
	Name
	Synopsis
	Arguments

	nandcorrectdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 11. Internal Functions Provided
	nandreleasedevice
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadbyte
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadbyte16
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadword
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandselectchip
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwritebuf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadbuf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandverifybuf
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwritebuf16
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadbuf16
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandverifybuf16
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandblockbad
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanddefaultblockmarkbad
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandcheckwp
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandblockcheckbad
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandcommand
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandcommandlp
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandgetdevice
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwait
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadpageraw
	LINUX
	Name
	Synopsis
	Arguments

	nandreadpageswecc
	LINUX
	Name
	Synopsis
	Arguments

	nandreadsubpage
	LINUX
	Name
	Synopsis
	Arguments

	nandreadpagehwecc
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadpagesyndrome
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandtransferoob
	LINUX
	Name
	Synopsis
	Arguments

	nanddoreadops
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandread
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadoobstd
	LINUX
	Name
	Synopsis
	Arguments

	nandreadoobsyndrome
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwriteoobstd
	LINUX
	Name
	Synopsis
	Arguments

	nandwriteoobsyndrome
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanddoreadoob
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandreadoob
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwritepageraw
	LINUX
	Name
	Synopsis
	Arguments

	nandwritepageswecc
	LINUX
	Name
	Synopsis
	Arguments

	nandwritepagehwecc
	LINUX
	Name
	Synopsis
	Arguments

	nandwritepagesyndrome
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwritepage
	LINUX
	Name
	Synopsis
	Arguments

	nandfilloob
	LINUX
	Name
	Synopsis
	Arguments

	nanddowriteops
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwrite
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanddowriteoob
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandwriteoob
	LINUX
	Name
	Synopsis
	Arguments

	singleerasecmd
	LINUX
	Name
	Synopsis
	Arguments
	Description

	multierasecmd
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanderase
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nanderasenand
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandsync
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandblockisbad
	LINUX
	Name
	Synopsis
	Arguments

	nandblockmarkbad
	LINUX
	Name
	Synopsis
	Arguments

	nandsuspend
	LINUX
	Name
	Synopsis
	Arguments

	nandresume
	LINUX
	Name
	Synopsis
	Arguments

	checkpattern
	LINUX
	Name
	Synopsis
	Arguments
	Description

	checkshortpattern
	LINUX
	Name
	Synopsis
	Arguments
	Description

	readbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	readabsbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	readabsbbts
	LINUX
	Name
	Synopsis
	Arguments
	Description

	createbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	searchbbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	searchreadbbts
	LINUX
	Name
	Synopsis
	Arguments
	Description

	writebbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandmemorybbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	checkcreate
	LINUX
	Name
	Synopsis
	Arguments
	Description

	markbbtregion
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandupdatebbt
	LINUX
	Name
	Synopsis
	Arguments
	Description

	nandisbadbbt
	LINUX
	Name
	Synopsis
	Arguments

	Chapter 12. Credits

