
Using kgdb and the kgdb
Internals

Jason Wessel
jason.wessel@windriver.com

Tom Rini
trini@kernel.crashing.org

Amit S. Kale
amitkale@linsyssoft.com

Using kgdb and the kgdb Internals
by Jason Wessel

by Tom Rini

by Amit S. Kale

Copyright © 2008 Wind River Systems, Inc.
Copyright © 2004-2005 MontaVista Software, Inc.
Copyright © 2004 Amit S. Kale

This file is licensed under the terms of the GNU General Public License version 2. This program is licensed "as is"

without any warranty of any kind, whether express or implied.

Table of Contents
1. Introduction..1
2. Compiling a kernel...3
3. Enable kgdb for debugging ...5

3.1. Kernel parameter: kgdbwait..5
3.2. Kernel parameter: kgdboc...5

3.2.1. Using kgdboc ...5
3.3. Kernel parameter: kgdbcon...6

4. Connecting gdb ..9
5. kgdb Test Suite ...11
6. KGDB Internals ...13

6.1. Architecture Specifics ...13
kgdb_skipexception ...14
kgdb_post_primary_code...15
kgdb_disable_hw_debug..16
kgdb_breakpoint ..17
kgdb_arch_init ...18
kgdb_arch_exit...19
pt_regs_to_gdb_regs ..20
sleeping_thread_to_gdb_regs ..20
gdb_regs_to_pt_regs ..21
kgdb_arch_handle_exception ..22
kgdb_roundup_cpus...24
struct kgdb_arch...25
struct kgdb_io...26

6.2. kgdboc internals ..27
7. Credits ...29

iii

iv

Chapter 1. Introduction
kgdb is a source level debugger for linux kernel. It is used along with gdb to debug
a linux kernel. The expectation is that gdb can be used to "break in" to the kernel to
inspect memory, variables and look through call stack information similar to what
an application developer would use gdb for. It is possible to place breakpoints in
kernel code and perform some limited execution stepping.

Two machines are required for using kgdb. One of these machines is a development
machine and the other is a test machine. The kernel to be debugged runs on the test
machine. The development machine runs an instance of gdb against the vmlinux file
which contains the symbols (not boot image such as bzImage, zImage, uImage...).
In gdb the developer specifies the connection parameters and connects to kgdb. The
type of connection a developer makes with gdb depends on the availability of kgdb
I/O modules compiled as builtin’s or kernel modules in the test machine’s kernel.

1

Chapter 1. Introduction

2

Chapter 2. Compiling a kernel
To enable CONFIG_KGDB you should first turn on "Prompt for development
and/or incomplete code/drivers" (CONFIG_EXPERIMENTAL) in "General setup",
then under the "Kernel debugging" select "KGDB: kernel debugging with remote
gdb".

It is advised, but not required that you turn on the CONFIG_FRAME_POINTER
kernel option. This option inserts code to into the compiled executable which saves
the frame information in registers or on the stack at different points which will
allow a debugger such as gdb to more accurately construct stack back traces while
debugging the kernel.

If the architecture that you are using supports the kernel option
CONFIG_DEBUG_RODATA, you should consider turning it off. This option will
prevent the use of software breakpoints because it marks certain regions of the
kernel’s memory space as read-only. If kgdb supports it for the architecture you are
using, you can use hardware breakpoints if you desire to run with the
CONFIG_DEBUG_RODATA option turned on, else you need to turn off this
option.

Next you should choose one of more I/O drivers to interconnect debugging host and
debugged target. Early boot debugging requires a KGDB I/O driver that supports
early debugging and the driver must be built into the kernel directly. Kgdb I/O driver
configuration takes place via kernel or module parameters, see following chapter.

The kgdb test compile options are described in the kgdb test suite chapter.

3

Chapter 2. Compiling a kernel

4

Chapter 3. Enable kgdb for debugging
In order to use kgdb you must activate it by passing configuration information to
one of the kgdb I/O drivers. If you do not pass any configuration information kgdb
will not do anything at all. Kgdb will only actively hook up to the kernel trap hooks
if a kgdb I/O driver is loaded and configured. If you unconfigure a kgdb I/O driver,
kgdb will unregister all the kernel hook points.

All drivers can be reconfigured at run time, if CONFIG_SYSFS and
CONFIG_MODULES are enabled, by echo’ing a new config string to
/sys/module/<driver>/parameter/<option>. The driver can be
unconfigured by passing an empty string. You cannot change the configuration
while the debugger is attached. Make sure to detach the debugger with the detach
command prior to trying unconfigure a kgdb I/O driver.

3.1. Kernel parameter: kgdbwait
The Kernel command line option kgdbwait makes kgdb wait for a debugger
connection during booting of a kernel. You can only use this option you compiled a
kgdb I/O driver into the kernel and you specified the I/O driver configuration as a
kernel command line option. The kgdbwait parameter should always follow the
configuration parameter for the kgdb I/O driver in the kernel command line else the
I/O driver will not be configured prior to asking the kernel to use it to wait.

The kernel will stop and wait as early as the I/O driver and architecture will allow
when you use this option. If you build the kgdb I/O driver as a kernel module
kgdbwait will not do anything.

3.2. Kernel parameter: kgdboc
The kgdboc driver was originally an abbreviation meant to stand for "kgdb over
console". Kgdboc is designed to work with a single serial port. It was meant to
cover the circumstance where you wanted to use a serial console as your primary
console as well as using it to perform kernel debugging. Of course you can also use
kgdboc without assigning a console to the same port.

3.2.1. Using kgdboc
You can configure kgdboc via sysfs or a module or kernel boot line parameter

5

Chapter 3. Enable kgdb for debugging

depending on if you build with CONFIG_KGDBOC as a module or built-in.

1. From the module load or build-in

kgdboc=<tty-device>,[baud]

The example here would be if your console port was typically ttyS0, you would
use something like kgdboc=ttyS0,115200 or on the ARM Versatile AB you
would likely use kgdboc=ttyAMA0,115200

2. From sysfs

echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc

NOTE: Kgdboc does not support interrupting the target via the gdb remote protocol.
You must manually send a sysrq-g unless you have a proxy that splits console
output to a terminal problem and has a separate port for the debugger to connect to
that sends the sysrq-g for you.

When using kgdboc with no debugger proxy, you can end up connecting the
debugger for one of two entry points. If an exception occurs after you have loaded
kgdboc a message should print on the console stating it is waiting for the debugger.
In case you disconnect your terminal program and then connect the debugger in its
place. If you want to interrupt the target system and forcibly enter a debug session
you have to issue a Sysrq sequence and then type the letter g. Then you disconnect
the terminal session and connect gdb. Your options if you don’t like this are to hack
gdb to send the sysrq-g for you as well as on the initial connect, or to use a
debugger proxy that allows an unmodified gdb to do the debugging.

3.3. Kernel parameter: kgdbcon
Kgdb supports using the gdb serial protocol to send console messages to the
debugger when the debugger is connected and running. There are two ways to
activate this feature.

1. Activate with the kernel command line option:

kgdbcon

2. Use sysfs before configuring an io driver

echo 1 > /sys/module/kgdb/parameters/kgdb_use_con

6

Chapter 3. Enable kgdb for debugging

NOTE: If you do this after you configure the kgdb I/O driver, the setting will
not take effect until the next point the I/O is reconfigured.

IMPORTANT NOTE: Using this option with kgdb over the console (kgdboc) is not
supported.

7

Chapter 3. Enable kgdb for debugging

8

Chapter 4. Connecting gdb
If you are using kgdboc, you need to have used kgdbwait as a boot argument, issued
a sysrq-g, or the system you are going to debug has already taken an exception and
is waiting for the debugger to attach before you can connect gdb.

If you are not using different kgdb I/O driver other than kgdboc, you should be able
to connect and the target will automatically respond.

Example (using a serial port):

% gdb ./vmlinux
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyS0

Example (kgdb to a terminal server on tcp port 2012):

% gdb ./vmlinux
(gdb) target remote 192.168.2.2:2012

Once connected, you can debug a kernel the way you would debug an application
program.

If you are having problems connecting or something is going seriously wrong while
debugging, it will most often be the case that you want to enable gdb to be verbose
about its target communications. You do this prior to issuing the target remote

command by typing in: set remote debug 1

9

Chapter 4. Connecting gdb

10

Chapter 5. kgdb Test Suite
When kgdb is enabled in the kernel config you can also elect to enable the config
parameter KGDB_TESTS. Turning this on will enable a special kgdb I/O module
which is designed to test the kgdb internal functions.

The kgdb tests are mainly intended for developers to test the kgdb internals as well
as a tool for developing a new kgdb architecture specific implementation. These
tests are not really for end users of the Linux kernel. The primary source of
documentation would be to look in the drivers/misc/kgdbts.c file.

The kgdb test suite can also be configured at compile time to run the core set of
tests by setting the kernel config parameter KGDB_TESTS_ON_BOOT. This
particular option is aimed at automated regression testing and does not require
modifying the kernel boot config arguments. If this is turned on, the kgdb test suite
can be disabled by specifying "kgdbts=" as a kernel boot argument.

11

Chapter 5. kgdb Test Suite

12

Chapter 6. KGDB Internals

6.1. Architecture Specifics
Kgdb is organized into three basic components:

1. kgdb core

The kgdb core is found in kernel/kgdb.c. It contains:

• All the logic to implement the gdb serial protocol

• A generic OS exception handler which includes sync’ing the processors into
a stopped state on an multi cpu system.

• The API to talk to the kgdb I/O drivers

• The API to make calls to the arch specific kgdb implementation

• The logic to perform safe memory reads and writes to memory while using
the debugger

• A full implementation for software breakpoints unless overridden by the arch

2. kgdb arch specific implementation

This implementation is generally found in arch/*/kernel/kgdb.c. As an example,
arch/x86/kernel/kgdb.c contains the specifics to implement HW breakpoint as
well as the initialization to dynamically register and unregister for the trap
handlers on this architecture. The arch specific portion implements:

• contains an arch specific trap catcher which invokes
kgdb_handle_exception() to start kgdb about doing its work

• translation to and from gdb specific packet format to pt_regs

• Registration and unregistration of architecture specific trap hooks

• Any special exception handling and cleanup

• NMI exception handling and cleanup

• (optional)HW breakpoints

3. kgdb I/O driver

Each kgdb I/O driver has to provide an implemenation for the following:

13

Chapter 6. KGDB Internals

• configuration via builtin or module

• dynamic configuration and kgdb hook registration calls

• read and write character interface

• A cleanup handler for unconfiguring from the kgdb core

• (optional) Early debug methodology

Any given kgdb I/O driver has to operate very closely with the hardware and
must do it in such a way that does not enable interrupts or change other parts of
the system context without completely restoring them. The kgdb core will
repeatedly "poll" a kgdb I/O driver for characters when it needs input. The I/O
driver is expected to return immediately if there is no data available. Doing so
allows for the future possibility to touch watch dog hardware in such a way as
to have a target system not reset when these are enabled.

If you are intent on adding kgdb architecture specific support for a new architecture,
the architecture should define HAVE_ARCH_KGDB in the architecture specific
Kconfig file. This will enable kgdb for the architecture, and at that point you must
create an architecture specific kgdb implementation.

There are a few flags which must be set on every architecture in their <asm/kgdb.h>
file. These are:

• NUMREGBYTES: The size in bytes of all of the registers, so that we can ensure
they will all fit into a packet.

BUFMAX: The size in bytes of the buffer GDB will read into. This must be
larger than NUMREGBYTES.

CACHE_FLUSH_IS_SAFE: Set to 1 if it is always safe to call
flush_cache_range or flush_icache_range. On some architectures, these functions
may not be safe to call on SMP since we keep other CPUs in a holding pattern.

There are also the following functions for the common backend, found in
kernel/kgdb.c, that must be supplied by the architecture-specific backend unless
marked as (optional), in which case a default function maybe used if the
architecture does not need to provide a specific implementation.

kgdb_skipexception

LINUX

14

Chapter 6. KGDB Internals

Kernel Hackers ManualJanuary 2010

Name
kgdb_skipexception — (optional) exit kgdb_handle_exception early

Synopsis

int kgdb_skipexception (int exception, struct pt_regs * regs);

Arguments

exception

Exception vector number

regs

Current struct pt_regs.

Description
On some architectures it is required to skip a breakpoint exception when it occurs
after a breakpoint has been removed. This can be implemented in the architecture
specific portion of for kgdb.

kgdb_post_primary_code

LINUX

15

Chapter 6. KGDB Internals

Kernel Hackers ManualJanuary 2010

Name
kgdb_post_primary_code — (optional) Save error vector/code numbers.

Synopsis

void kgdb_post_primary_code (struct pt_regs * regs, int
e_vector, int err_code);

Arguments

regs

Original pt_regs.

e_vector

Original error vector.

err_code

Original error code.

Description
This is usually needed on architectures which support SMP and KGDB. This
function is called after all the secondary cpus have been put to a know spin state and
the primary CPU has control over KGDB.

kgdb_disable_hw_debug

LINUX

16

Chapter 6. KGDB Internals

Kernel Hackers ManualJanuary 2010

Name
kgdb_disable_hw_debug — (optional) Disable hardware debugging hook

Synopsis

void kgdb_disable_hw_debug (struct pt_regs * regs);

Arguments

regs

Current struct pt_regs.

Description
This function will be called if the particular architecture must disable hardware
debugging while it is processing gdb packets or handling exception.

kgdb_breakpoint

LINUX

Kernel Hackers ManualJanuary 2010

Name
kgdb_breakpoint — compiled in breakpoint

17

Chapter 6. KGDB Internals

Synopsis

void kgdb_breakpoint (void);

Arguments

void

no arguments

Description

This will be impelmented a static inline per architecture. This function is called by
the kgdb core to execute an architecture specific trap to cause kgdb to enter the
exception processing.

kgdb_arch_init

LINUX

Kernel Hackers ManualJanuary 2010

Name
kgdb_arch_init — Perform any architecture specific initalization.

Synopsis

int kgdb_arch_init (void);

18

Chapter 6. KGDB Internals

Arguments

void

no arguments

Description

This function will handle the initalization of any architecture specific callbacks.

kgdb_arch_exit

LINUX

Kernel Hackers ManualJanuary 2010

Name
kgdb_arch_exit — Perform any architecture specific uninitalization.

Synopsis

void kgdb_arch_exit (void);

Arguments

void

no arguments

Description

19

Chapter 6. KGDB Internals

This function will handle the uninitalization of any architecture specific callbacks,
for dynamic registration and unregistration.

pt_regs_to_gdb_regs

LINUX

Kernel Hackers ManualJanuary 2010

Name
pt_regs_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void pt_regs_to_gdb_regs (unsigned long * gdb_regs, struct
pt_regs * regs);

Arguments

gdb_regs

A pointer to hold the registers in the order GDB wants.

regs

The struct pt_regs of the current process.

Description
Convert the pt_regs in regs into the format for registers that GDB expects, stored
in gdb_regs.

20

Chapter 6. KGDB Internals

sleeping_thread_to_gdb_regs

LINUX

Kernel Hackers ManualJanuary 2010

Name
sleeping_thread_to_gdb_regs — Convert ptrace regs to GDB regs

Synopsis

void sleeping_thread_to_gdb_regs (unsigned long * gdb_regs,
struct task_struct * p);

Arguments

gdb_regs

A pointer to hold the registers in the order GDB wants.

p

The struct task_struct of the desired process.

Description
Convert the register values of the sleeping process in p to the format that GDB
expects. This function is called when kgdb does not have access to the struct pt_regs
and therefore it should fill the gdb registers gdb_regs with what has been saved in
struct thread_struct thread field during switch_to.

21

Chapter 6. KGDB Internals

gdb_regs_to_pt_regs

LINUX

Kernel Hackers ManualJanuary 2010

Name
gdb_regs_to_pt_regs — Convert GDB regs to ptrace regs.

Synopsis

void gdb_regs_to_pt_regs (unsigned long * gdb_regs, struct
pt_regs * regs);

Arguments

gdb_regs

A pointer to hold the registers we’ve received from GDB.

regs

A pointer to a struct pt_regs to hold these values in.

Description
Convert the GDB regs in gdb_regs into the pt_regs, and store them in regs.

kgdb_arch_handle_exception

LINUX

22

Chapter 6. KGDB Internals

Kernel Hackers ManualJanuary 2010

Name
kgdb_arch_handle_exception — Handle architecture specific GDB
packets.

Synopsis

int kgdb_arch_handle_exception (int vector, int signo, int
err_code, char * remcom_in_buffer, char * remcom_out_buffer,
struct pt_regs * regs);

Arguments

vector

The error vector of the exception that happened.

signo

The signal number of the exception that happened.

err_code

The error code of the exception that happened.

remcom_in_buffer

The buffer of the packet we have read.

remcom_out_buffer

The buffer of BUFMAX bytes to write a packet into.

regs

The struct pt_regs of the current process.

23

Chapter 6. KGDB Internals

Description
This function MUST handle the ’c’ and ’s’ command packets, as well packets to set
/ remove a hardware breakpoint, if used. If there are additional packets which the
hardware needs to handle, they are handled here. The code should return -1 if it
wants to process more packets, and a 0 or 1 if it wants to exit from the kgdb
callback.

kgdb_roundup_cpus

LINUX

Kernel Hackers ManualJanuary 2010

Name
kgdb_roundup_cpus — Get other CPUs into a holding pattern

Synopsis

void kgdb_roundup_cpus (unsigned long flags);

Arguments

flags

Current IRQ state

Description
On SMP systems, we need to get the attention of the other CPUs and get them be in
a known state. This should do what is needed to get the other CPUs to call
kgdb_wait. Note that on some arches, the NMI approach is not used for rounding
up all the CPUs. For example, in case of MIPS, smp_call_function is used to

24

Chapter 6. KGDB Internals

roundup CPUs. In this case, we have to make sure that interrupts are enabled before
calling smp_call_function. The argument to this function is the flags that will
be used when restoring the interrupts. There is local_irq_save call before
kgdb_roundup_cpus.

On non-SMP systems, this is not called.

struct kgdb_arch

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct kgdb_arch — Describe architecture specific values.

Synopsis
struct kgdb_arch {
unsigned char gdb_bpt_instr[BREAK_INSTR_SIZE];
unsigned long flags;
int (* set_breakpoint) (unsigned long, char *);
int (* remove_breakpoint) (unsigned long, char *);
int (* set_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
int (* remove_hw_breakpoint) (unsigned long, int, enum kgdb_bptype);
void (* remove_all_hw_break) (void);
void (* correct_hw_break) (void);

};

Members

gdb_bpt_instr[BREAK_INSTR_SIZE]

The instruction to trigger a breakpoint.

flags

Flags for the breakpoint, currently just KGDB_HW_BREAKPOINT.

25

Chapter 6. KGDB Internals

set_breakpoint

Allow an architecture to specify how to set a software breakpoint.

remove_breakpoint

Allow an architecture to specify how to remove a software breakpoint.

set_hw_breakpoint

Allow an architecture to specify how to set a hardware breakpoint.

remove_hw_breakpoint

Allow an architecture to specify how to remove a hardware breakpoint.

remove_all_hw_break

Allow an architecture to specify how to remove all hardware breakpoints.

correct_hw_break

Allow an architecture to specify how to correct the hardware debug registers.

struct kgdb_io

LINUX

Kernel Hackers ManualJanuary 2010

Name
struct kgdb_io — Describe the interface for an I/O driver to talk with KGDB.

Synopsis
struct kgdb_io {
const char * name;
int (* read_char) (void);
void (* write_char) (u8);
void (* flush) (void);
int (* init) (void);
void (* pre_exception) (void);
void (* post_exception) (void);

26

Chapter 6. KGDB Internals

};

Members

name

Name of the I/O driver.

read_char

Pointer to a function that will return one char.

write_char

Pointer to a function that will write one char.

flush

Pointer to a function that will flush any pending writes.

init

Pointer to a function that will initialize the device.

pre_exception

Pointer to a function that will do any prep work for the I/O driver.

post_exception

Pointer to a function that will do any cleanup work for the I/O driver.

6.2. kgdboc internals
The kgdboc driver is actually a very thin driver that relies on the underlying low
level to the hardware driver having "polling hooks" which the to which the tty driver
is attached. In the initial implementation of kgdboc it the serial_core was changed
to expose a low level uart hook for doing polled mode reading and writing of a
single character while in an atomic context. When kgdb makes an I/O request to the
debugger, kgdboc invokes a call back in the serial core which in turn uses the call
back in the uart driver. It is certainly possible to extend kgdboc to work with
non-uart based consoles in the future.

27

Chapter 6. KGDB Internals

When using kgdboc with a uart, the uart driver must implement two callbacks in the
struct uart_ops. Example from drivers/8250.c:

#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = serial8250_get_poll_char,
.poll_put_char = serial8250_put_poll_char,
#endif

Any implementation specifics around creating a polling driver use the #ifdef
CONFIG_CONSOLE_POLL, as shown above. Keep in mind that polling hooks have to
be implemented in such a way that they can be called from an atomic context and
have to restore the state of the uart chip on return such that the system can return to
normal when the debugger detaches. You need to be very careful with any kind of
lock you consider, because failing here is most going to mean pressing the reset
button.

28

Chapter 7. Credits
The following people have contributed to this document:

1. Amit Kale<amitkale@linsyssoft.com>

2. Tom Rini<trini@kernel.crashing.org>

In March 2008 this document was completely rewritten by:

• Jason Wessel<jason.wessel@windriver.com>

29

Chapter 7. Credits

30

	Using kgdb and the kgdb Internals
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Compiling a kernel
	Chapter 3. Enable kgdb for debugging
	3.1. Kernel parameter: kgdbwait
	3.2. Kernel parameter: kgdboc
	3.2.1. Using kgdboc

	3.3. Kernel parameter: kgdbcon

	Chapter 4. Connecting gdb
	Chapter 5. kgdb Test Suite
	Chapter 6. KGDB Internals
	6.1. Architecture Specifics
	kgdbskipexception
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbpostprimarycode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbdisablehwdebug
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbbreakpoint
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbarchinit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbarchexit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ptregstogdbregs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	sleepingthreadtogdbregs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	gdbregstoptregs
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbarchhandleexception
	LINUX
	Name
	Synopsis
	Arguments
	Description

	kgdbroundupcpus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct kgdbarch
	LINUX
	Name
	Synopsis
	Members

	struct kgdbio
	LINUX
	Name
	Synopsis
	Members

	6.2. kgdboc internals

	Chapter 7. Credits

