網路基礎班

01 011100 01 011100 111 00 0 01 011100 100 1 0 111 00 0 01 011100 100 1 0 111 00 0 01 011100

011100

1100 1 0 111 00 0 01 011100

- 常遇到的學校網路問題
 - -LOOP 迴圈說明
 - Data Link 資料鏈結層
 - Arp 基本介紹 與封包傳送原理
 - VLAN 基本介紹
 - DHCP
 - DHCP Spoof Attacks
- Cisco Packet Tracer 網路封包虛擬器
 - 介面使用介紹
 - 廣播風暴
 - DHCP 封包觀察
 - DHCP Spoof Attacks

LOOP 迴圈

- LOOP 迴圈到底為什麼讓人心煩?
- 可能發生 LOOP 迴圈的三種狀況
 - 廣播風暴
 - 發送多個重複資料
 - MAC 位址資料庫不一致

- 動態主機組態協定 (DHCP) 以及位址解析協定 (ARP) 會使用目的地 MAC 位址為 FF:FF:FF:FF:FF:FF 的廣播封包,而交換器會在所有連接埠上發送這種廣播封包。
- 假設A設備和B設備接在一個交換器上,這個交換器再往上接 到上一層的交換器,正常狀況下,當A設備對外發送廣播封包 時:

• 接線迴圈 (loop) 下,當A設備對外發送廣播封包時:

- 5 號埠發出去的封包, 會經由網路線從3號埠回到交換器
- 交換器收到廣
- 播封包又會再送一次,只要兩者之間的網路線不拔掉,交換器會一直廣 播這個廣播封包
- 那堆廣播封包會往外丟到其他的設備或交換器上,造成網路癱瘓

交換器 - Switch (1/4)

- 訊號衝突會嚴重影響傳輸效率,必須設法減少衝突的可能性
- 交換器對於訊息的傳輸會經過三個步驟,以達到切割衝突域 (Collision Domain),減少衝突發生的目的
 - 1. 發現Machingovery):學習並紀錄每個通訊埠所連接網路設備的 MAC

- 2. 過濾 (Filtering): 交換器發現來源端與目的端位於相同通訊埠時,就 會把封包濾掉或擋掉。
- 3. 轉送 (Forwarding):

① MAC 位址表記錄著通訊埠, 與該通訊埠所

MAC 位址表

通訊埠	MAC 位址
1號	00-00-01-11-11-11
2號	00-00-01-22-22-22
3號	00-00-01-33-33-33
4號	00-00-01-44-44-44

4號

00-00-01-44-44-44

- 3. 轉送 (Forwarding):

MAC 位址

00-00-01-22-22-22

即可由 MAC 位址表中找到目的端 MAC 位址。 MAC 位址表 1號 交換器 通訊埠 MAC 位址 fill ouesaas 1號 00-00-01-11-11-11 00-00-01-33-33-3 MAC 位址 2號 00-00-01-22-22-22 2號 3號 4號 00-00-01-11-11-11 3號 00-00-01-33-33-33

D

MAC 位址

00-00-01-44-44-44

② 當訊框被送達交換器時(此時目的地為 00-00-01-33-33-33 : C).

③ 使用比對結果一致的通訊埠 (此範例為 3 號通訊埠) 來傳送訊框。

MAC 位址

00-00-01-33-33-33

交换器可以避免因為衝突造成效率降低

位址解析通訊協定 (ARP)

• 用來取得區域網路內未知接收端 MAC 位址的方法

詢問擁有該 IP 位址的主機,「請告訴我你的 MAC 位址」

ARP 資料表 (1/2)

- 儲存於主機的記憶體中的 IP 與 MAC 位址對應表
- 為了加速詢問 MAC 的速度,曾經詢問過的資料會暫存於 ARP 資料 表內一段時間
- 如何檢視 ARP 資料表?
 - Linux 系統: 在 Shell 下輸入 arp -n

[baldur@Lunch2013 ~]\$	arp -n			
Address	HWtype	HWaddress	Flags Mask	Iface
163.16.1.40	ether	00:50:56:03:00:40	С	eth3
163.16.1.12	ether	00:50:56:a9:0b:13	С	eth3
163.16.1.254	ether	00:10:db:ff:20:a2	С	eth3

ARP 資料表 (2/2)

Windows 系統:
 在命令提示字元下輸入 arp -a

C:\Users\Baldur>arp -a			
介面: 192.168.5.163 網際網路網址 192.168.5.102 192.168.5.105 192.168.5.129 192.168.5.140 192.168.5.254 192.168.5.255 224.0.0.2 224.0.0.22 239.255.255.250 255.255.255.255	0xb 官體位址 00-1c-25-ca-77-fc 00-24-7e-05-f0-40 c8-f7-33-f1-6b-ca 00-1e-65-2c-94-ec 00-10-db-ff-20-a1 ff-ff-ff-ff-ff-ff 01-00-5e-00-00-02 01-00-5e-00-00-16 01-00-5e-7f-ff-fa ff-ff-ff-ff-ff-ff	、動動動動動動育育育育育育育育 更度度度度度度度度度度度度度度度度度度度度度度度度	

ARP 封包

ARP 封包會將 IP、MAC 位址當作資料附加後再傳送出去

乙太網路 訊框	IP封包	區段資料
乙太網路 訊框		ARP 封包
位元	名稱	意義
4	位址類型	表示位址的方式
2	位址長度	表示位址的長度
2	操作碼	表示是否回應要求
6	傳送端MAC位址	傳送端的MAC位址
4	傳送端IP位址	傳送端的IP位址
6	接收端MAC位址	接收端的MAC位址
4	接收端IP位址	接收端的IP位址

一般封包 (IP 封包)

ARP 封包沒有再封裝第三層以上的 封包,這代表 ARP 封包無法跨越 網路層,只能運作於區域網路之中

ARP 的運作方式 (1/2)

利用廣播的方式傳送至網路上的所有成員,並且只回應條件符合的主機

① 希望進行傳送的主機必須先參照本身的 ARP 資料表

IP:192.168.1.1 IP:192.168.1.2 MAC:00-00-01-22-22-22 MAC:00-00-01-33-33-33

② ARP 資料表中如果沒有接收端 IP 位址時, 必須廣播 ARP 要求

ARP 的運作方式 (2/2)

③ 確認 ARP 要求的接收對象, 如果對象是自己的話就回應, 否則就丢棄該要求

④ 收到 ARP 回應時, 必須將回應結果追加在 ARP 資料表中

- Host A 要發送一個封包給 Router B, 封包內的目的地 MAC 位址指定著路由器的 MAC 位址。 Host A 送出 這個封包之後, Router B 因為與 Host A 處於同一個網路區段,所以 Router B 會從 Segment 1 收到這 個封包。
- Host A 也會把這個封包傳送給 Switch A ,而 Switch A 收到之後,因為在 MAC 位址資料庫中找不到相對 應的資料,所以會採用 Flooding 的做法,把這個封包傳送出去。
- 交換器 B 經由 Segment 2 網段收到由交換器 A 送過來的封包後,當然也會因為在 MAC 位址資料庫中找 不到相對應的資料,又再次把這個封包 Flooding 出去。最後,路由器又會收到一次由交換器 B 送出的相 同封包。

- Host A 要發送一個封包給路由器,而此時 Router B 的 MAC 位址還沒有被 下面這兩台交換器設備學習到,當 Host A 送出要給 Router B 的封包之後, 這兩台交換器設備都是從 E0 介面收到這個封包,但由於在 MAC 位址資料庫 中找不到相對應的資料,所以都會從 E1 的介面 Flooding 出去。
- 當 Host A 送出要給 Router B 的封包之後,這兩台交換器設備都是從 E0 介面收到這個封包,但由於在 MAC 位址資料庫中找不到相對應的資料,所以都會從 E1 的介面 Flooding 出去。

防止接線迴圈 (1/2)

• 有時候要查出接線迴圈並不容易:

防止接線迴圈 (2/2)

使用支援 Spanning Tree Protocol (STP, IEEE 802.1d) 的交換器,
 這類交換器使用 Spanning Tree 演算法來避免產生接線迴圈:

VLAN 原理

Application 應用層	使用者所使用的應用程式或網頁
Presentation 表現 層	資料的壓縮、解壓縮以及加解密等
Session 會談層	連線的建立與結束、資料的傳輸模式(全/半雙工)
Transport 傳輸層	流量控制、傳輸的可靠性
Network 網路層	定址及路由
Data Link 資料鏈 結層	介質存取控制的方法以及定址
Physical 實體層	訊號傳送的介質規格、訊號編碼與轉換

虛擬區域網路 (Virtual LAN, VLAN)

• 使用 VLAN 可以做到如下圖的效果,並且兩個部門彼此間不相互連

VLAN 的特色

- 縮小廣播範圍:利用 Switch 適當地切割不同的 VLAN ,可以有效地阻擋過大的 廣播網域 (broadcast domain) 與廣播型病毒攻擊,並提升 PC 與網路效能。
- 安全上的考量:部分單位擁有較多的機敏資料,不宜被其他部門所瀏覽,切割 VLAN 是區隔部門的好方法。
 除非透過路由器否則不同的 VLAN 彼此之間無法互相通訊
- 頻寬管理:部分服務需要高頻寬低延遲,例如:IP Phone,利用 VLAN 切割 後再設定適當的 QOS,可以避免被其他網路流量所干擾。
- 方便靈活:只要設定交換器連接埠至適當的 VLAN,就可以增加、移動或改 變網路。 VLAN 可以視為依照功能劃分的群組,與設備實際上的物理或地 理位置無關。

VLAN 的運作方式 (1/4)

- 在 VLAN 交換環境中,交換器的連接埠分為兩種類型
 - Access port:
 此類連接埠只屬於一個 VLAN,進入連接埠的訊框都會被視為屬於該 VLAN
 - Trunk port:
 能夠轉發多個不同 VLAN 的訊框

VLAN 的運作方式 (2/4)

• 訊框在兩台交換器之間傳輸的狀況:

- ① 訊框進入 access port 之後,交換器會幫 每個訊框貼上標籤(格式定義於 IEEE 802.1q),其中包含了 VLAN 的識別資 訊
- ② 如果兩台交換器都有正確設定 trunk port,被貼了標籤的訊框就會經由 trunk link 傳輸到另一台交換器
- ③ 交換器檢查訊框中 VLAN 的識別資訊,只 在對應的 access port 送出訊框,並在訊 框送出之前把標籤去掉

VLAN 的運作方式 (3/4)

IEEE 802.1q frame tagging •

加入標籤的 乙太網路訊框

原本的

VLAN 的運作方式 (4/4)

- 原生 VLAN (Native VLAN)
 - VLAN ID 為 1 的 VLAN 被稱為原生 VLAN
 - 交換器的初始設定會把所有通訊埠都加入原生 VLAN
 - 原生 VLAN 可以承載未貼標籤的訊框
- VLAN 的管理:
 - Static VLANs:
 由網路管理員手動設定哪些埠是屬於哪個 VLAN
 - Dynamic VLANs:
 由軟體管理,可以根據 MAC 位址、通訊協定甚至應用程式種類來決定 該設備被劃分到哪個 VLAN

動態主機組態協定 (DHCP)

DHCP 係由 2 部分所組成的, 一個是負責管理所要分配的 IP 位址, 並且實際執行分配作業的伺服器, 另一個則是被分 配的用戶端

IP 位址集區

DHCP 的封包格式

DHCP 除了分配 IP 位址之外,還可以把子網路遮罩、預設閘道、
 DNS Server 、租用期限等資訊一併傳送給用戶端

將 IP 位址以外的資訊附加在 選項後再傳送出去

乙太網路標題 IF	·標頭 UDP	· 標頭 DHCP 訊息
-----------	---------	--------------

名稱	説明
操作碼 (Operation code)	用戶端→伺服器1 伺服器→用戶端2
分配的 IP 位址	伺服器所分配的 IP 位址
伺服器 IP 位址	伺服器的位址
用戶端硬體位址	用戶端的 MAC 位址
伺服器名稱	伺服器的主機名稱
選項 (Option)	用戶端其他的設定資訊

DHCP 的運作 (1/2)

DHCP 的運作 (2/2)

DHCP 用戶端資訊

• 在 windows 的命令提示字元下輸入: ipconfig /all

乙太網路卡 區域連線:	
連線特定 DNS 尾碼	kh.edu.tw
/ ///////////////////////////////////	Realtek RTL8169/8110 Family PCI Gigabit E
thernet NIC (NDIS 6.20) 管體位任	00-50-40-01-06-60
自動設定的用	定 是 是
TPv6 位址	2001:288:8201:5:f414:38e3:1666:f72f<偏好
選項〉	
臨時 IPv6 位址	2001:288:8201:5:4c1c:ef76:fec8:6090<偏好
選項>	
<u>連結-本機 IPv6 位址</u>	fe80::f414:38e3:1666:f72f%11(偏好選項)
IPv4 位址	192.168.5.103<偏好選項>
子網路遮罩	255.255.255.0
租用取得	2014年9月1日 上午 08:41:12
租用到期	2014年9月2日 上午 11:11:17
預設閘道	fe80::10:dbff:feff:20a1%11
	192.168.5.254
DHCP 伺服器	192.168.5.254
DNS 伺服器	163.28.136.10
	163.28.136.2
	163.16.1.23
NetBIOS over Tcpip	即用

存在複數 DHCP 伺服器的影響

• 如果在同一個區域網路存在兩台 DHCP 伺服器 X 與 Y ,當 DHCP 用戶端發出租用 IP 的請求 (DHCP DISCOVER)時:

DHCP 用戶端手動租約更新 (1/2)

 用戶端取消 DHCP 租約 在 windows 的命令提示字元下輸入: ipconfig /release

乙太網路卡 區域連線:	
連線特定 DNS 尾碼	Realtek RTL8169/8110 Family PCI Gigabit E
智麗位址	00-E0-4C-01-06-6C 是 是
IPv6 位址: 選項> 臨時 IPv6 位址:	2001:288:8201:5:f414:38e3:1666:f72f< 偏好 2001:288:8201:5:4c1c:ef76:fec8:6090< 偏好
選項〉 連結-本機 IPv6 位址	<u>fe80::f414:38e3:1666:f72f%11(</u> 偏好 <u>選</u> 項)
目期設定 1904 位址	169.254.247.47()my方进项) 255.255.0.0 fe80::10:dbff:feff:20a1/11
DNS 伺服器	fec0:0:0:ffff::1%1 fec0:0:0:ffff::2%1
NetBIOS over Tcpip	teco:0:0:0:ffff::3%1 啟用

DHCP 用戶端手動租約更新 (2/2)

 重新取得 DHCP 租約 在 windows 的命令提示字元下輸入: ipconfig /renew

乙太網路卡 區域連線:	
連線特定 DNS 尾碼	kh.edu.tw Realtek RTL8169/8110 Family PCI Gigabit E
thernet NIC (NDIS 6.20)	
	00-E0-4C-01-06-6C
DHCP 已的用	
白新設定的田	単
口到 RXXCAX/TA · · · · · · · · · · · · · · · · · · ·	∞= 2001-222-2201-5-6414-22-2-1666-67267億/4
)肥TEV	2001-200-0201-3-1414-3063-1000-1721(開天)
	2004-2002-2004-5-4 4 - CDC-C - 0-C002/培护
昭明寺 IPvb 1立址	2001:288:8201:5:4c1c:ef?b:fec8:6090()
選項2	
	fe80::f414:38e3:1666:f72f%11(偏好選項)
IPv4 位址	192.168.5.103<偏好選項>
<u>子網路流置</u>	255.255.255.0
和用取得	2014年9月2日 上午 11:43:20
相角颈的	2014年9月2日 下午 12:43:20
	fe80::10:dbff:feff:20a1/11
	102 168 5 254
puop /dinteg	
	172.108.5.254
UNS 1时成招	163.28.136.10
	163.28.136.2
	163.16.1.23
NetBIOS over Topip	啟用

《防止接線迴圈的防護 DHCP Spoof Attacks

- (1)Cisco 在配發 IP 前會先用 ICMP-ping 去檢查有無使用此 IP
- (2)DHCP Snooping 使用 Untrust 及 Trust 介面去區分要不要收到 DHCP 的封包

Untrusted 不允許收到 DHCP Offer 封包

Trusted 允許收到 DHCP Offer

- (3) 啟用 DHCP Snooping 預設全部介面為 Untrust
- (4)DHCP Snooping 啟用在 L2 的 Access port

Cisco Packet Tracer 使用介紹

LAB 1 - 廣播風暴

- 因 Switch 預設會開啟 STP(Spanning Tree Protocol),故 該實驗先將該功能關閉。
 - enable(進入特權模式)
 - conft(進入 config 模式)
 - no spanning-tree vlan 1(關閉 STP)
- 利用模擬工作區,查看封包傳遞狀況,以及利用 ping 看 看是否如上述理論。

LAB 2 - 開啟 STP

- 因 Switch 預設會開啟 STP(Spanning Tree Protocol),故 該實驗先將該功能關閉。
 - enable(進入特權模式)
 - conft(進入 config 模式)
 - spanning-tree vlan 1(開啟 STP)
- 利用 Ping , 查看 ICMP 傳遞狀況。

LAB 3 - DHCP 觀察

- •利用 Packet Tracer 查看 DHCP 封包相關資訊
 - Router>enable
 - Router# conf t
 - Router(config)#hostname R1
 - R1(config)#int fa0/0
 - R1(config-if)#ip address
 192.168.10.1 255.255.255.0
 - R1(config-if)#no shut
 - R1(config-if)#exit
 - R1(config)#ip dhcp pool IP10
 - R1(dhcp-config)#net
 192.168.10.0 255.255.255.0
 - R1(dhcp-config)#default 192.168.10.1
 - R1(dhcp-config)#exit

LAB 3 - DHCP 觀察

- 點選 PC0 至 Desktop 的頁籤,再選擇"
 Command Prompt"後打下重新或去
 DHCP 的指令。指令 :ipconfig /renew
- 查看 DHCP 封包內容與 DHCP 封包確認流程。

LAB 4 – DHCP Spoof

點選 PC0 至 Desktop 的頁籤,再選擇"
 Command Prompt"後打下重新或去
 DHCP 的指令。指令 :ipconfig /renew

DHCP Server 192.168.20.1

erver-PT

PC 2

Server0

2960

PC 0

 查看 DHCP 封包流向是否已依^{IHCP Server} 照我們所設下的 DHCP Spoof 的規則呢?