next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2       2   2 2    2 2     2        2   2    2   2   2    2 
o2 = ideal (b i - k*p , b q  - a v , a*m n - d, h s*u  - f , l p*r  - g ,
     ------------------------------------------------------------------------
      2 2 2    2     2 2 2
     f g o  - u , a*f h n  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 4 4     2    3 3 2 3   4 3 3   2 2 2     3 4 
o3 = ideal (d e m o*v*x  - a h n r , b c d f*h l u w - j t ,
     ------------------------------------------------------------------------
      3     2 4 2   4 4    2   2 3 3 3 3 3 4 2      3
     b g*k*m p q s*t x  - w , a d i j r t u x  - f*m )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.