SHOGUN  4.0.0
NeuralLayers.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014, Shogun Toolbox Foundation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7 
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  * contributors may be used to endorse or promote products derived from this
17  * software without specific prior written permission.
18 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Written (W) 2014 Khaled Nasr
32  */
33 
35 
41 
42 using namespace shogun;
43 
45 {
46 }
47 
49 {
50  SG_UNREF(m_layers)
51 }
52 
54 {
55  return with_layer(new CNeuralInputLayer(size));
56 }
57 
59 {
60  return with_layer(new CNeuralLogisticLayer(size));
61 }
62 
64 {
65  return with_layer(new CNeuralLinearLayer(size));
66 }
67 
69 {
70  return with_layer(new CNeuralRectifiedLinearLayer(size));
71 }
72 
74 {
75  return with_layer(new CNeuralSoftmaxLayer(size));
76 }
77 
79 {
80  m_layers->push_back(layer);
81  return this;
82 }
83 
85 {
86  SG_REF(m_layers);
87  return m_layers;
88 }
89 
91 {
92  m_layers->clear_array();
93 }
94 
96 {
97  return (m_layers->get_array_size() == 0);
98 }
99 
100 const char* CNeuralLayers::get_name() const
101 {
102  return "NeuralLayers";
103 }
CNeuralLayers * logistic(int32_t size)
CNeuralLayers * rectified_linear(int32_t size)
Base class for neural network layers.
Definition: NeuralLayer.h:87
#define SG_REF(x)
Definition: SGObject.h:51
CNeuralLayers * input(int32_t size)
Neural layer with linear neurons, with a softmax activation function. can be only be used as an outpu...
CNeuralLayers * softmax(int32_t size)
CDynamicObjectArray * done()
Class SGObject is the base class of all shogun objects.
Definition: SGObject.h:112
Dynamic array class for CSGObject pointers that creates an array that can be used like a list or an a...
#define SG_UNREF(x)
Definition: SGObject.h:52
Represents an input layer. The layer can be either connected to all the input features that a network...
Neural layer with linear neurons, with an identity activation function. can be used as a hidden layer...
Neural layer with linear neurons, with a logistic activation function. can be used as a hidden layer ...
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
CNeuralLayers * linear(int32_t size)
virtual const char * get_name() const
Neural layer with rectified linear neurons.
A class to construct neural layers.
Definition: NeuralLayers.h:52
CNeuralLayers * with_layer(CNeuralLayer *layer)

SHOGUN Machine Learning Toolbox - Documentation