Tangent Vectors

The class TangentVector implements tangent vectors to a differentiable manifold.

AUTHORS:

  • Eric Gourgoulhon, Michal Bejger (2014-2015): initial version
  • Travis Scrimshaw (2016): review tweaks

REFERENCES:

  • Chap. 3 of [Lee2013]
class sage.manifolds.differentiable.tangent_vector.TangentVector(parent, name=None, latex_name=None)

Bases: sage.tensor.modules.free_module_tensor.FiniteRankFreeModuleElement

Tangent vector to a differentiable manifold at a given point.

INPUT:

  • parentTangentSpace; the tangent space to which the vector belongs
  • name – (default: None) string; symbol given to the vector
  • latex_name – (default: None) string; LaTeX symbol to denote the vector; if None, name will be used

EXAMPLES:

Tangent vector on a 2-dimensional manifold:

sage: M = Manifold(2, 'M')
sage: c_xy.<x,y> = M.chart()
sage: p = M.point((2,3), name='p')
sage: Tp = M.tangent_space(p)
sage: v = Tp((-2,1), name='v') ; v
Tangent vector v at Point p on the 2-dimensional differentiable
 manifold M
sage: v.display()
v = -2 d/dx + d/dy
sage: v.parent()
Tangent space at Point p on the 2-dimensional differentiable manifold M
sage: v in Tp
True

See also

FiniteRankFreeModuleElement for more documentation.

plot(chart=None, ambient_coords=None, mapping=None, color='blue', print_label=True, label=None, label_color=None, fontsize=10, label_offset=0.1, parameters=None, scale=1, **extra_options)

Plot the vector in a Cartesian graph based on the coordinates of some ambient chart.

The vector is drawn in terms of two (2D graphics) or three (3D graphics) coordinates of a given chart, called hereafter the ambient chart. The vector’s base point p (or its image \Phi(p) by some differentiable mapping \Phi) must lie in the ambient chart’s domain. If \Phi is different from the identity mapping, the vector actually depicted is \mathrm{d}\Phi_p(v), where v is the current vector (self) (see the example of a vector tangent to the 2-sphere below, where \Phi: S^2 \to \RR^3).

INPUT:

  • chart – (default: None) the ambient chart (see above); if None, it is set to the default chart of the open set containing the point at which the vector (or the vector image via the differential \mathrm{d}\Phi_p of mapping) is defined
  • ambient_coords – (default: None) tuple containing the 2 or 3 coordinates of the ambient chart in terms of which the plot is performed; if None, all the coordinates of the ambient chart are considered
  • mapping – (default: None) DiffMap; differentiable mapping \Phi providing the link between the point p at which the vector is defined and the ambient chart chart: the domain of chart must contain \Phi(p); if None, the identity mapping is assumed
  • scale – (default: 1) value by which the length of the arrow representing the vector is multiplied
  • color – (default: ‘blue’) color of the arrow representing the vector
  • print_label – (boolean; default: True) determines whether a label is printed next to the arrow representing the vector
  • label – (string; default: None) label printed next to the arrow representing the vector; if None, the vector’s symbol is used, if any
  • label_color – (default: None) color to print the label; if None, the value of color is used
  • fontsize – (default: 10) size of the font used to print the label
  • label_offset – (default: 0.1) determines the separation between the vector arrow and the label
  • parameters – (default: None) dictionary giving the numerical values of the parameters that may appear in the coordinate expression of self (see example below)
  • **extra_options – extra options for the arrow plot, like linestyle, width or arrowsize (see arrow2d() and arrow3d() for details)

OUTPUT:

  • a graphic object, either an instance of Graphics for a 2D plot (i.e. based on 2 coordinates of chart) or an instance of Graphics3d for a 3D plot (i.e. based on 3 coordinates of chart)

EXAMPLES:

Vector tangent to a 2-dimensional manifold:

sage: M = Manifold(2, 'M')
sage: X.<x,y> = M.chart()
sage: p = M((2,2), name='p')
sage: Tp = M.tangent_space(p)
sage: v = Tp((2, 1), name='v') ; v
Tangent vector v at Point p on the 2-dimensional differentiable
 manifold M

Plot of the vector alone (arrow + label):

sage: v.plot()
Graphics object consisting of 2 graphics primitives

Plot atop of the chart grid:

sage: X.plot() + v.plot()
Graphics object consisting of 20 graphics primitives

Plots with various options:

sage: X.plot() + v.plot(color='green', scale=2, label='V')
Graphics object consisting of 20 graphics primitives
sage: X.plot() + v.plot(print_label=False)
Graphics object consisting of 19 graphics primitives
sage: X.plot() + v.plot(color='green', label_color='black',
....:                   fontsize=20, label_offset=0.2)
Graphics object consisting of 20 graphics primitives
sage: X.plot() + v.plot(linestyle=':', width=4, arrowsize=8,
....:                   fontsize=20)
Graphics object consisting of 20 graphics primitives

Plot with specific values of some free parameters:

sage: var('a b')
(a, b)
sage: v = Tp((1+a, -b^2), name='v') ; v.display()
v = (a + 1) d/dx - b^2 d/dy
sage: X.plot() + v.plot(parameters={a: -2, b: 3})
Graphics object consisting of 20 graphics primitives

Special case of the zero vector:

sage: v = Tp.zero() ; v
Tangent vector zero at Point p on the 2-dimensional differentiable
 manifold M
sage: X.plot() + v.plot()
Graphics object consisting of 19 graphics primitives

Vector tangent to a 4-dimensional manifold:

sage: M = Manifold(4, 'M')
sage: X.<t,x,y,z> = M.chart()
sage: p = M((0,1,2,3), name='p')
sage: Tp = M.tangent_space(p)
sage: v = Tp((5,4,3,2), name='v') ; v
Tangent vector v at Point p on the 4-dimensional differentiable
 manifold M

We cannot make a 4D plot directly:

sage: v.plot()
Traceback (most recent call last):
...
ValueError: the number of coordinates involved in the plot must
 be either 2 or 3, not 4

Rather, we have to select some chart coordinates for the plot, via the argument ambient_coords. For instance, for a 2-dimensional plot in terms of the coordinates (x, y):

sage: v.plot(ambient_coords=(x,y))
Graphics object consisting of 2 graphics primitives

This plot involves only the components v^x and v^y of v. Similarly, for a 3-dimensional plot in terms of the coordinates (t, x, y):

sage: g = v.plot(ambient_coords=(t,x,z))
sage: print(g)
Graphics3d Object

This plot involves only the components v^t, v^x and v^z of v. A nice 3D view atop the coordinate grid is obtained via:

sage: (X.plot(ambient_coords=(t,x,z))  # long time
....:  + v.plot(ambient_coords=(t,x,z),
....:           label_offset=0.5, width=6))
Graphics3d Object

An example of plot via a differential mapping: plot of a vector tangent to a 2-sphere viewed in \RR^3:

sage: S2 = Manifold(2, 'S^2')
sage: U = S2.open_subset('U') # the open set covered by spherical coord.
sage: XS.<th,ph> = U.chart(r'th:(0,pi):\theta ph:(0,2*pi):\phi')
sage: R3 = Manifold(3, 'R^3')
sage: X3.<x,y,z> = R3.chart()
sage: F = S2.diff_map(R3, {(XS, X3): [sin(th)*cos(ph),
....:                                 sin(th)*sin(ph),
....:                                 cos(th)]}, name='F')
sage: F.display() # the standard embedding of S^2 into R^3
F: S^2 --> R^3
on U: (th, ph) |--> (x, y, z) = (cos(ph)*sin(th), sin(ph)*sin(th), cos(th))
sage: p = U.point((pi/4, 7*pi/4), name='p')
sage: v = XS.frame()[1].at(p) ; v  # the coordinate vector d/dphi at p
Tangent vector d/dph at Point p on the 2-dimensional differentiable
 manifold S^2
sage: graph_v = v.plot(mapping=F)
sage: graph_S2 = XS.plot(chart=X3, mapping=F, number_values=9)  # long time
sage: graph_v + graph_S2  # long time
Graphics3d Object