This command allows for the product of composable NCMatrices (or ordinary matrices over the base).
i1 : B = threeDimSklyanin(QQ,{1,1,-1},{x,y,z}) --Calling Bergman for NCGB calculation. --running: bergman -i /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12468-0/0.init -on-error exit --silent > /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12468-0/3.ter ... Complete! o1 = B o1 : NCQuotientRing |
i2 : M = ncMatrix {{x, y, z}} o2 = | x y z | o2 : NCMatrix |
i3 : sigma = ncMap(B,B,{y,z,x}) o3 = NCRingMap B <--- B o3 : NCRingMap |
i4 : N = ncMatrix {{M},{sigma M}, {sigma sigma M}} o4 = | x y z | | | | y z x | | | | z x y | o4 : NCMatrix |
i5 : L = map(QQ^3,QQ^3,{{2,0,0},{1,2,0},{1,2,3}}) o5 = | 2 0 0 | | 1 2 0 | | 1 2 3 | 3 3 o5 : Matrix QQ <--- QQ |
i6 : N*L o6 = | z+y+2x 2z+2y 3z | | | | z+2y+x 2z+2x 3x | | | | 2z+y+x 2y+2x 3y | o6 : NCMatrix |