The generators of M are mapped to the elements in the last argument homdefs and they should be given as generalExpressionLie. It is checked by the program that f maps the relations in M to zero and commutes with the differential and that f preserves the weight and sign.
i1 : L1=lieAlgebra({a,b},{[a,a]},genSigns=>1,genDiffs=>{[],[]}, genWeights=>{{1,0},{2,1}}) o1 = L1 o1 : LieAlgebra |
i2 : L2=lieAlgebra({a,b,c},{[a,a,a,a,b],{{1,1},{[a,b,a,b],[a,c]}}}, genWeights=>{{1,0},{2,1},{5,2}},genSigns=>1,genDiffs=>{[],[a,a],[a,a,a,b]}) o2 = L2 o2 : LieAlgebra |
i3 : f=mapLie(L1,L2,{[a],[],[a,b,b]}) o3 = f o3 : MapLie |
i4 : peek f o4 = MapLie{a => [a] } b => [] c => [a, b, b] sourceLie => L2 targetLie => L1 |