We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00629646, .00254046) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0186102, .112346) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.019711, .0351788}, {.0191304, .0121071}, {.0198098, .0189954}, ------------------------------------------------------------------------ {.0807329, .02893}, {.0206647, .0399063}, {.0217909, .0391962}, ------------------------------------------------------------------------ {.0201693, .0231434}, {.0210983, .021384}, {.0163931, .0158461}, ------------------------------------------------------------------------ {.0844557, .0243393}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0323956080000001 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .025902662 o7 : RR (of precision 53) |