If Strategy => IdealStrategy, then dualize assume the module is isomorphic to an ideal, embeds it as an ideal, and computes the dual by forming a colon. ModuleStrategy simply computes the Hom. The default Strategy for modules is ModuleStrategy, and the default Strategy for ideals is IdealStrategy. This is because there is overhead using the opposite strategy (involving embedding modules as ideals). Frequently IdealStrategy is faster, but not always. Consider first a D4 singularity in characteristic 2.
i1 : R = ZZ/2[x,y,z]/ideal(z^2-x*y*z-x^2*y-x*y^2); |
i2 : m = ideal(x,y,z); o2 : Ideal of R |
i3 : J = m^9; o3 : Ideal of R |
i4 : M = J*R^1; |
i5 : time dualize(J, Strategy=>IdealStrategy); -- used 0.3403 seconds o5 : Ideal of R |
i6 : time dualize(J, Strategy=>ModuleStrategy); -- used 2.0604 seconds o6 : Ideal of R |
i7 : time dualize(M, Strategy=>IdealStrategy); -- used 2.77818 seconds |
i8 : time dualize(M, Strategy=>ModuleStrategy); -- used 0.00789804 seconds |
i9 : time embedAsIdeal dualize(M, Strategy=>ModuleStrategy); -- used 0.00539784 seconds o9 : Ideal of R |
For monomial ideals in toric rings, frequently ModuleStrategy appears faster.
i10 : R = ZZ/7[x,y,u,v]/ideal(x*y-u*v); |
i11 : I = ideal(x,u); o11 : Ideal of R |
i12 : J = I^15; o12 : Ideal of R |
i13 : time dualize(J, Strategy=>IdealStrategy); -- used 0.205701 seconds o13 : Ideal of R |
i14 : time dualize(J, Strategy=>ModuleStrategy); -- used 0.015941 seconds o14 : Ideal of R |