ooRexx Documentation 4.2

Open Object Rexx™

Reference

R

W. David Ashley
Rony G. Flatscher
Mark Hessling
Rick McGuire
Lee Peedin
Oliver Sims

Jon Wolfers

Open Object Rexx™

ooRexx Documentation 4.2 Open Object Rexx™

Reference

Edition 1

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Jon Wolfers

Copyright © 2005-2014 Rexx Language Association. All rights reserved.
Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html

Preface XV
I B o Tox [g 1= o | 0] 0 V=] o1 i o o PP XV
1.1. Typographic CONVENTIONSc.uuiiiiiii ettt e e e XV

1.2. PUll-QUOtE CONVENTIONSieiiiiii i e e e e e e e e e e e e e e e e e e eaneeeaes XVi

I O o) (== U (o A= Vg 1T Xvil

2. How to Read the Syntax Diagramscoeuoiiiiiiciie e e e eans Xviii
3. Getting Help and Submitting FEedback ... XiX
3.1. The Open Object RexX SOUICEFOrge Siteciiiiiiiiiiiiiiiiieei e XX

3.2. The Rexx Language Association Mailing LiStocoiuiiiiiiiiiniiiiie e XXi

3.3. cOMP.IANG.rEXX NEWSHIOUD .uuevrneriineeeieeeiietie e et eeet e eea e eeanseeetneeeaaeetnaeeenaeaaneees XXi

4. Related INfOrMAtION ... et e e et e e e eat e e eees XXi
1. Open Object Rexx General Concepts 1
1.1. What Is Object-Oriented Programming?coooeiiiiiiiiiiiie e 1
2 Y/ Fo To [U] = 1 g4 T o R 10 | = W 1
I VT To 1= 11 o @] o] [T o £ 3
I oY @ o TT=Tod £ 1] 1= = T 4
ST /11 1 0 To To £ PSPPSR 4
1.6, POIYMOIPRISIN oot e e e et e et e e e 5
1.7. ClasseS @nd INSLANCESuoiiiiiiiiie ettt e e e e e e e e et e e e e aneeeanas 5
1.8, Data ADSIIACHON ...iiiiiiii e et aen 7
1.9. Subclasses, Superclasses, and INNEMTANCEc.viiiiiiiiiii e 7
1.10. Structure and GENEral SYNEAXc.uiiiiiiieiie et e e e e eans 8
O I O ¢ -V = Tor (] £ TP 8
1.20.2. WHRITESPACE ...etueiiiii ettt ettt ettt e e et eaaas 9

I 0 TR T o 0] . [£ PP 9
0 I S o] (=T o PSPPSR 11
1.10.5. Implied SEMICOIONSuiiiiiii e e e e eaa s 16
1.10.6. CONLINUALIONSeetniiite ittt et et et e et e e e e e e e et e e eaa e eanaeeees 17
1.11. Terms, EXpressions, and OPEIatOrScccuu it et e e eai e aai e eanaaeanas 17
1.12.1. Terms and EXPrE@SSIONScccuuuiieiuuniaeeiiiieeeeit e ettt e e et e e e eat e e eeat e e eenanaeeeees 17
B O o 1T =1 (0] = PSP P T SPPP PRI 18
1.11.3. Parentheses and Operator PreCedeNCEecccuviviiieiiieii e e e e e 21

O B |V LT F= o = =T 0 23
1.11.5. MESSAJE SEUUENCESieniitreitaei ettt et e et e et e et et e et e ea e e et e et e et eeneenaeens 25
1.12. Clauses and INSIFUCLIONSiieuiiii it e et e e et e e e e e aeens 25
2 O VLT | T £ = PR 26

O 2 0 T =1 11 = 26
L.12.3. LADEIS o 26
2 131 T 1o PP 26

I T =] T [T =T 1 27
1.12.6. COMMANAS ettt ettt e e e et e e et e e ta e e e et e e et e e et e eaneeanns 27
1.13. Assignments and SYMDOIScoouuuiiiiii 27
1.13.1. Extended ASSIGNMENEScouuuiiiiiii ettt e et e et e eaean s 28
1.13.2. Constant SYMDBOISccouiiiiiiii e e 29
1.13.3. SIMPIE SYMDOIS ...ceiiiiiici e e 29
R B] (<] 0 - SRR PTPPPTN 29
1.13.5. Compound SYMDOIS ...t 32
1.13.6. Environment SYMDOISuuiiiiiii e 34
1.14. MeSSAQE INSIIUCIONSuiiiiiii e et e e e et e e e 35
1.15. Commands to External ENVIFONMENTScoouiiiiiiiiiciii e 36
O T 1 1Y/ o 1011 o PP 36
1.15.2. COMMEANAS ..otniiiiiiit et ettt et et e et e et e e et e e e b e e e eeanns 36
1.16. Using Rexx on WIiNdOWS and URNIXooouiiiiniiieei e e e e e 38

Open Object Rexx™

2. Keyword Instructions 41
2.0, ADDRESS ..ottt e a 41
2.2, ARG o e e e e e e et a e aaaa 43
2.3 AL it et 44
2 5 1 L PSP 47
b2 T 5 (@ | PP 49
S T = N PP 50
A R =5 o 1 S 51
2.8, FORW ARD ..ot e e 52
2.9, GUARD ..o 54
2205 T | PSPPI 55
b0 O VI3] = P 57
b 8 1 A I PSP 59
0 TR I N Y PP 59
2 S I © 1O] = PSP 60
2,05, NP i ettt 62
2.16. NUMERIC ..ottt e et r e ettt e e ettt e e e et e e e e aa s 63
b R ©] [N 1 P 64
2,08, PARSE ..ot e 64
2.19. PROCEDURE ..ottt ettt et e et e e e e e et e e e et n e e e et e e e e et eas 67
22 0 R L | PP 70
2,20 PUSH o e 71
2.22. QUEUE ...t 71
2,23, RAISE .o e 72
2,24, REPLY ittt 74
b T = 4 116 | P 75
2,26, SAY it e e e e e e e e e e e e e e et e e et a e e aaaan 76
2. 27 SELE CT ittt 76
2.28. SIGNAL .t 78
2.29. TRACKE .ot 79

2.29.1. Trace Alphabetic Character (Word) OpLioNSoviiuiiiiiiiiiiiieiiieeei e 81
2.29.2. PrefiX OPLON ...uuieiiii ettt 82
2.29.3. NUMEIC OPLIONS ...ttt ettt ettt e et et a et e e enaans 82
b I I - Vo o T I 82
2.29.5. The Format of Trace OULPULiiiiniiiii e e e e e e e e e 83
2.30. USE ittt e e a et e 84

3. Directives 89
B . AT T RIBUTE oo e e e e e e et e e e e e e e e e e e aaaas 89
] O 0 1 S PP 91
B B 61 @ 11N 1S 1721 N PP 93
B |V 1 I T SRR 94
T ©] = [] 1 S 96
3.6. IREQUIRES ...ttt e e e e e e a e aaaa 98
G TR A 0 L I I 1 99

4. Objects and Classes 103
4.1, TYPES OF ClaSSES ...ivuiiiiiiiiii i e e e e e e e e ees 103

4.01.1. ODJECE CIASSES ...euniietiiit ettt e e et et e e e et e et eean e ees 103
A.0.2. MIXIN ClASSES ..evuiiiitieii ettt ettt e et e e e et e et e et e aaa s 104
O T AN o 11 = Tt A O o] 104
O B Y 1Y - T = 1 104
4.2. Creating and Using Classes and Methodsccoviiiiiiiiiiiciiinc e 107
o N U L= Vo T = 1T = 108
2.2, SOOI ittt ettt ea e e a e 109

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCEDcccccvviiee. 109

4.2.4. Method NAMES ... e 109
4.2.5. Default Search Order for Method Selectioncccooviieiii i, 110
4.2.6. Defining an UNKNOWN Methodiiiiiiiiicicee e 110
4.2.7. Changing the Search Order for Methodsccocoiiiiiiii e, 111
4.2.8. Public and Private Methodsooooiiiiii e 111
4.2.9. INILALZALION ...eeeeee e ettt e e e eaa e 112
4.2.10. Object Destruction and Uninitializationc.occviiiiiiiiiineie e 113
4.2.11. Required String ValUESuuiiiiiiiiiiiii e 113
o B @0 o o1 B (=] oY 115

4.3. Overview of Classes Provided DY REXXc.ciiiuiiiiiiiiiiiiiii e e e e e e 115
4.3.1. The Class HIerarChy ..ot 115
4.3.2. Class LiDrary NOESuiiiiiiiiiei e e 117

5. The Builtin Classes 119
5.1. The FUNDamMENTal CIASSEScccuuuiiiiiii ettt e e ettt e eeeab e e e eaeaeeees 119
5.1.1. The ODBJECE ClaSSitiiiiiiii it et e s 119
B5.1.2. ThE ClaSS ClasSccuiiiiiii i e e e e e e e ens 131
5.1.3. The SIHNG ClaSsS ...cevuiiiiiiiieii et 141
N I S I L= Y/ =1 1 T Yo I = 1 187
5.1.5. The ROULINE CIASSciiiiiieiiiiiieee ettt e et eeeees 191
5.1.6. The Package ClassScccuuiiiiiiiiiiiieiii et e e e e e e e et e e e e e eanees 194
B5.1.7. The MESSAJE ClaSS ..iuuiiiiiiiiiii ittt e e e 201

5.2, The Sre@m CIASSESieuuiiiiiiii ettt e e et e et e e et e e et e e et e eanaeees 206
5.2.1. The INPULSIrEamM ClaSSuiiiiiiiieiiii et 206
5.2.2. The OULPULSIrEam CIASSoiviiiiiiiiii e 208
5.2.3. The INputOUtpUtSLream ClassSccceuiiiiiiiiiii e e e e e 210
5.2.4. The SIream ClaSScciiiiiiiiiiii ettt e s 211

5.3. The CollECHON ClIASSEScuuiiiiiiiii ettt et et e e e e e ea e eaaas 231
5.3.1. Organization of the Collection CIaSSeSooiiuiiiiiiiiiieii e 232
5.3.2. The CollECtiON CIASSuiiiiiiiieiie et e e e e 233
5.3.3. The MapColleCtion CIaSSc.uuuiiiiiiiiiiiii e 238
5.3.4. The OrderedCollection ClasScccuuiiiiiiiiiiei e 239
5.3.5. The SetColleCtion ClIaSSccuuiiiiiiiiieiiiiie et e e e eeees 244
LR T T I (= B Y = Y O - T 245
L A I 1= = T Vo O - TP 263
5.3.8. The CircularQUEUE ClIaSScccuuiiiiiiiiiie e 266
5.3.9. The DIreCtOry ClASSciceuuiiiiiii et 274
5.3.10. The LISt CIaSS ...eeuuuiiiiiiiiei ettt ettt e e et e e e et e e e eabn e aees 281
5.3.11. The Properties ClassSccciiiiuiiiiiii it e e e e e e aaees 289
5.3.12. The QUEUE ClASScouiiiiiii i e e e e e e e ans 293
5.3.13. The Relation Classciuuiiiiiiiiae et ea e 302
5.3.14. The St ClASS ..uieuniiiiii i e e e e ean s 310
LR 0 T I Lo (=T 0 T O TP 313
5.3.16. The Table CIASScccuuiiiiiiiiie e 319
5.3.17. The IdentityTable Classccuiiiiiiiiii e eaaas 324
5.3.18. Sorting Ordered CollECIONSoouiiiiii e 328
5.3.19. The Concept of Set OPEratioNScc..iiiuuiiiiiiiiiiie e 331

5.4. The ULIIILY CIASSES ...iiiiiiiiiiiii ettt ettt ettt e e e aaa s 336
5.4.1. The DAteTimMe ClaSS ...cceuuiiiiiiiiiieii et e e e e e e e e e e eeens 336
5.4.2. The AIAIM ClASS ..ceeviiiiiii i 354
5.4.3. The TIMESPAN CIASS ...euuiiiiniiiiiiiii et e e e e e e e e e e anas 356
5.4.4. The Comparable CIassociuiiiiii e 365
5.4.5. The Orderable Class ..o 366

Open Object Rexx™

5.4.6. The CompParator ClAaSSoceuuiiiiiii e e eaas 368
5.4.7. The CaselessComparator CIaSSoeciiuuiiieiiiieeiiie e 369
5.4.8. The ColumnComparator Classcoouuuiiiiiiiiieiei e 370
5.4.9. The CaselessColumnComparator CIassccovvveiiieiiieeiieeiiieeer e e e 371
5.4.10. The DescendingComparator CIASsSc..oveiuieiiiieiiiiieii e e e e e e e 372
5.4.11. The CaselessDescendingComparator CIassc.oeveuieiiiiiiiiiiiiiieeeeieeeennn 373
5.4.12. The InvertingComparator ClassSovieuiiiiiiiii e 375
5.4.13. The NumericComparator CIASSuuiiiiiuuniiiiiiiieieeiie e 376
L S I L= YT) o] O = T PP 377
5.4.15. The MutableBuUuffer Classoooiiiiiiiiiii e 379
5.4.16. The RegularEXpression Classcc.cveiuiiiiiiiiiiii i 392
5.4.17. The ReXXQUEUE CIASSccuuiiiiiieiiei et e e e e e e e een 398
5.4.18. The SUPPHEr ClASSccuuiiiiiiiii e 403
5.4.19. The StreamSupPPlier CIAaSSuiiiiiiiiieiii e 406
5.4.20. The ReXXCONEXE ClIASS ...uuiiieniiiii ittt e e e e e e e en s 408
5.4.21. The StaCkFrame ClaSScccuuiiiiiiiiiiieiiiiii e e 411
5.4.22. The WeakReferencCe Classiviiiiiiiiiiiii et 414
5.4.23. The POINEI CIASS ...uuiiiiiiiii ittt et e e eaans 415
5.4.24. The BUFfer CIASS ...t 417
5.4.25. The File CIASS . .cuuiiiiiiiiiie ettt e e e e e e e e e 418

6. Rexx Runtime Objects 431
6.1. The Environment Directory ((ENVIRONMENT)oiiiiiiiiiieiii e 431
6.1.1. The ENDOFLINE Constant (.ENDOFLINE)ccccuiiiiiiiiiieiiiiinieveiie e 431
6.1.2. The FALSE Constant ((FALSE)oiiiiiiiiiiiiii e e e 431
6.1.3. The NIL ODBJECE ((NIL) ...eiiiiiieiiie et e e e e e 431
6.1.4. The TRUE Constant (TRUE)iiiiiiiii e 431

6.2. The Local DireCtory ((LOCAL) ..uiiiieiei et e e e e e e e e e e e ean s 432
6.3. The Debug Input Monitor (DEBUGINPUT)ccuiiiiiiiiiee e e e e 433
6.4. The Error Monitor (LERRORY)oouiiiiiii e e e 433
6.5. The Input MoNItor (INPUT) ..o eaa s 433
6.6. The Output MoNItor (LOUTPUT) ...ciiiiiiiiii e 433
6.7. The Trace Output Monitor (TRACEOUTPUT) ...ccuuiiiiiiiieiiiii e 433
6.8. The STDERR Stream ((STDERR)iiiiiiiiiiicii e e e e 433
6.9. The STDIN Stream ((STDIN) ...icuuiiiiiei e e e e e e e e e e e et e ranaeee 434
6.10. The STDOUT Stream (.STDOUT) ...oiiiiiiiiiiiiiiieeeiie e e et e et e e e e eaaenns 434
6.11. The STDQUE Queue (.STDQUE)cccuuuiiiiiiiiieiiiiie e e e e e e n e eeaae s 434
6.12. The Rexx Context ((CONTEXT) ..ottt e e eeee 434
6.13. The Line NUMDBEr ((LLINE)uiiiiii et 434
6.14. The METHODS Directory (METHODS)ccouiiiiiiiiiiceie e e e e e e 434
6.15. The ROUTINES Directory ((ROUTINES)viiiiiiiieiiiiine e 435
6.16. The Return StatuS ((RS)ooiiiiii e e eaas 435
7. Functions 437
A S = O PSPPI 437
7.2. FUNCLIONS and SUDBIOULINEScveeiiiieiii e e e e e e e e e e et e e e e e eeeen 437
7.2.1. SEAICH OFUEI ...ttt e e e e e e et aeanas 438
7.2.2. Errors during EXECULIONuiiuiiiiii e e e e e e e ees 442

7.3, REIUMN VAIUEBS ...t ettt e et e et e e e e eans 442
7.4, BUI-IN FUNCLIONS ...t e e e e e e e e et e e e ean s 443
7.4.1. ABBREV (ADDIeViation)ieiiiiiieiiiiiiee ettt 444
7.4.2. ABS (ADSOIULE VAIUE)eiiiiiiiiiii et 445
T.4.3. ADDRESS ... 445
A S o A o 1 1 1T o) 446
7.4.5. B2X (Binary to HexadecCimal)coouiiiiiiiiiii e 447

vi

T.A.6. BEEP ..o 448

7.4.7. BITAND (Bit BY Bit AND) ..ouuuiiiiiiiiiiiiiis e e e e e e et e e e s 449
7.4.8. BITOR (Bit DY Bit OR) ...cvoiiviiiiieiieeeeee et 449
7.4.9. BITXOR (Bit by Bit EXCIUSIVE OR) ...uiiviiiiiiciiie e 450
7.4.10. C2D (Character to DeCIMal)couuiiiiiiiiiii i e 450
7.4.11. C2X (Character to HexadecCimal)coooiiiiiiiiiiiieee e 451
7.4.12. CENTER (0r CENTRE) ..cioviiiiiiiiii et e e e e e 452
7.4.13. CHANGESTR .ottt e e e e et e e et e e e et e e eananas 452
7.4.14. CHARIN (Character INPUL)uuiiiiiiieieii e 453
7.4.15. CHAROUT (Character OULPUL)cvvuneeiiieiii e e eeee e e e e e e e e e 454
7.4.16. CHARS (Characters Re€mMaining)coceuuieeeiieriiiieiiieeeiireeiieeeie e eeneeanneeaenns 455
TA.LT7. COMPARE ... et e et a e 456
A T @@]\ [1 N SR 456
A R TR O] = S 458
T.4.20. COUNTSTR oot e e e eaas 458
7.4.21. D2C (Decimal t0 Character)coevuuiiieiiieii e e e e e eens 459
7.4.22. D2X (Decimal to Hexadecimal)ooveiiiiiiiiiii e 459
T.4.23. DATATYPE .ottt e e et e et e et aaan s 460
A S Y N PP 461
7.4.25. DELSTR (Delete SIING) ...uuieeeeinieieiiie ettt 466
7.4.26. DELWORD (Delete WOrd)ooiiiiiiiiiiiii e 467
TA.27. DIGITS i e e et aaan 467
7.4.28. DIRECTORY ..ottt ittt e et e e et e e et e e e et s 467
7.4.29. ENDLOCAL (LINUX ONIY) tittiiitiiiieee it e e e et e et e e e e e e eaan e eeenens 468
7.4.30. ERRORTEXT .iiiitiiiiiiiiiiettiii e ettt s et s e et e et s e e et s e e eat s e e aaann e e e esnnaeeanees 469
AR i R o 1 I S PP 469
T.4.32. FORM oo e e 470
7433, FORM AT ittt ettt e e et e ettt e e et e et a e aae 470
TABA FUZZ ... 472
A e LT 1N] = PP 472
7.4.36. LASTPOS (LaSt POSITION) ...civeieiiiiiiiiiieeiiiie et e et e e e e e 473
AR O T 473
T.4.38. LENGTH Lo e e e e e 474
7.4.39. LINEIN (LINE INPUL) ©..eeeiiiiieeeii ettt e e 474
7.4.40. LINEOUT (LiN€ OULPUL) eevvtiieeiiiie ettt sttt e e e e et e et e e e e 475
7.4.41. LINES (LIN€S REMAINING) ..eevuieniiiiiiiei e e e e e e e e e e e e e anaeen 477
A @ LY 1 o P 478
7.4.43. MAX (MAXIMIUITY) ©ottuiiiiiiiieeeiii e e eett s e e et s e e e ettt e e eese s e e aestn s eeeestn s eeaestnaaeaestnaaaaes 478
7.4.44. MIN (MINIMUM) it e et et e et e e e ena e 479
7445, OVERLAY .ottt ettt et e e 479
7.4.46. POS (POSItION) ..euuiiiiiiiiie i e e e e e e e e e e e e e e e e e e et e e et e e et eeanaees 480
A A @ 0 7 PP 480
T.4.48. QUEUEDcoiiiiiiiii st e et e e e e e e et e e et 481
T.4.49. RANDOM ...ouiiiiiii ittt e et e e e e e e e b e e e e e e eaaan 481
T.4.50. REVERSE ... e e en 482
TA5L. RIGHT oo ettt e e e 482
T.4.52. RXFUNGCADD ...ouiiiiiiiii ettt e e et e e et e e e et e e e enenns 483
7.4.53. RXFUNCDROP ..ottt e e et e e et e e e et e e e eatnneeaees 483
7.4.54. RXFUNCQUERY ...iiiiiiiiiii ittt e e e e e e et 484
7.4.55. RXQUEUE ..ottt e e et e e e et s e e e et aeeeeataeeaaes 484
7.4.56. SETLOCAL (LINUX ONIY) eeutiiiiiiieiiiii ettt 485
TA5T7. SIGN Lo e e 486
7.4.58. SOURCELINE ...ttt e et e et e e e e 486
T4.59. SPACE ..ottt 487

Open Object Rexx™

7.4.60. STREAM ..o ettt e e e e e n s 487
TABL. STRIP et e e ettt e e et et e e e e e e eaaaa 495
7.4.62. SUBSTR (SUDSTIING) ...eieeiiieiiiiii ettt 496
7.4.63. SUBWORDouiiiiiiiiiiee ettt 496
TA.B4. SYMBOL ..ottt 497
TAB5. TIME ..ttt et 497
TA.66. TRACE ..ot e e e et e b e e e e e e e e b et e a e e 502
T.A.67. TRANSLATE ..ttt et e ettt e e e e e e eeaaaan s 502
7.4.68. TRUNC (TTUNCALE) ..eevuuiiiiiiieiiiti ettt ettt ettt et e et e e e e e e eeanns 503
T.4.89. UPPER ...oooii ittt et 504
TAT0. USERID ...ttt e e 504
TATL VALUE ..t 504
TAT2. VAR e 507
TAT3. VERIFY ettt e e e e n b 508
TATA WORD ... et 509
T.4.75. WORDINDEX ...ttt e e e e 509
7.4.76. WORDLENGTH ..ottt 509
7.4.77. WORDPOS (WOrd POSItION) ...covviiiiiiiiieeciiiiiii et 510
TAT8. WORDS ..ot e e ettt et e e e et et e e aaaaaee 510
7.4.79. X2B (Hexadecimal t0 BiNAry)c.iiiiiiiiiiiiiiiiecce e 511
7.4.80. X2C (Hexadecimal to Character)ooeuuiiiiiiiiiieii e 512
7.4.81. X2D (Hexadecimal to DeCimal)cc.ovevuniiiiiiii e 512
7.4.82. XRANGE (Hexadecimal RANQE)vvvuiiiiiiiiiiei e e e e e 513

8. Rexx Utilities (RexxUtil) 515
8.1. A NOtE ON EITOr COUEBS ...uiieiieii ettt e e e e e e e e e et e e e e e eean s 515
8.2. List of Rexx ULtility FUNCHONSccouiiii i e e e e 515
8.3. RxMessageBoX (WINAOWS ONIY)cvuiiiiiiiiii e e e e e e e e e ees 520
8.4. RXWINEXEC (WINAOWS ONIY) ..oouiiiiiiiie e et e e e e e eaas 522
8.5. SYSAUUREXXIMACTO ...ttt et et e e et e e e et e e e e e e e ean s 523
8.6. SysBoOtDrive (WINAOWS ONIY) ...covuiiiiii et 523
8.7. SYSCIEArREXXMACTOSPACE ... ceevviieiiiii ettt et et e et e et e e e e et e e eate e aens 524
8.8. SYSCIOSEEVENTSEIM L .ouiiiii it ee e e e e e e e e e e et e et e e e e et s e e eeaneees 524
8.9, SYSCIOSEMULIEXSEM ...iiiiiii et e e e e e e e e e e e e e e et e e et e e et r e et e e aaneeeanns 524
B.L0. SYSCIS ittt ettt e e et et e e e e e e aeene 525
8.11. SYSCreateEVENISEIMuii i ettt e e et e enaaeans 525
8.12. SYSCreateMULEXSEIM ...ttt et e e ea s 526
8.13. SysCreatePipe (UNIX ONIY) oo e 526
8.14. SysSCUrP0OS (WINAOWS ONIY) .uuiiiiiiii et e e e e e e e e e e e e eanneees 526
8.15. SysCurState (WINAOWS ONIY) ..ovuiiiiiieiiee e e e e e e e e e e e e e e e eanaeees 527
8.16. SysDrivelnfo (WINAOWS ONIY)ieniiii e e e e e ans 528
8.17. SysDriveMap (WINAOWS ONIY) ...uniiiiiiii e e e ees 528
8.18. SYSDIOPFUNCS ...oeeiiiiiiiii ettt e et 529
8.19. SYSDIOPREXXMEACTOeiieiiiieiei ettt et ettt e e e e e 529
8.20. SySDUMPVANADIEScceviiiiiiii e e 530
S I S V=1 1 1=] 530
8.22. SYSFIIEDEIELE ...oieiiie i 531
8.23. SYSFIIEEXISS ...ttt et e s 532
8.24. SysFileMove (WINAOWS ONIY)uiiiiiiiiiiiiii ettt et e e e e 533
8.25. SYSFIIESEAICH ... 533
8.26. SysFileSystemType (WINAOWS ONIY) ...cvvuuiiiiiieiii e e e e e e e e e e s 535
S I S V= 1 L= 1= S 535
8.28. SYSFOrK (UNIX ONIY) ..o e e e e e aaas 538
8.29. SysFromUnicode (WINAOWS ONIY)iiuniiiiiii et 540

viii

8.30.
8.31.
8.32.
8.33.
8.34.
8.35.
8.36.
8.37.
8.38.
8.39.
8.40.
8.41.
8.42.
8.43.
8.44.
8.45.
8.46.
8.47.
8.48.
8.49.
8.50.
8.51.
8.52.
8.53.
8.54.
8.55.
8.56.
8.57.
8.58.
8.59.
8.60.
8.61.
8.62.
8.63.
8.64.
8.65.
8.66.
8.67.
8.68.
8.69.
8.70.
8.71.
8.72.
8.73.
8.74.
8.75.
8.76.
8.77.
8.78.
8.79.
8.80.
8.81.
8.82.
8.83.

SYSGEIEITOIMEXL ...ttt et et et e e e et e et eea e e eens 542
SYSGELFIEDAIETIME ..oeii ittt e et eenan s 542
SY S GBI BY ittt 543
SysGetMessage (UNIX ONIY) ...oiueiei e e e e e e e e e e e e e anaeees 543
SysGetMessageX (UNIX ONIY) ..o e e e e e ean s 544
SYSINT (WINAOWS ONIY) e e e e e e e e e e e e enas 545
SY SISO et e et e e 547
SyslsFileCompressed (WINAOWS ONIY)coviiiiiiiii e 548
SYSISFIHEDITECIONY ...ttt ettt et e e 549
SyslsFileEncrypted (WINAOWS ONIY) ...vuiiiiiiii e e e e e 549
YA £ 1= N 550
SyslsFileNotContentindexed (WINdows only)coooiiiiiiiii e, 550
SyslsFileOffline (WINAOWS ONIY) ... e 551
SyslsFileSparse (WINAOWS ONIY)cooiiiiiiii e 551
SyslsFileTemporary (WIiNdOWS ONIY) ...o.uuniiiiiiiii e 552
SYSLINVETr (LINUX ONIY) ..iiiiiii et e e e e e e e e e et e e aa e e ennns 552
V25T I = Lo | U Tt 553
SYSLOAAREXXIMACTOSPACEevuneiein et e ettt e et et e et e e e e et a et e eanaeeees 553
SYSIMKDIE ..t e a e e e e ea e eaas 553
SYSOPENEVENTISEIM .ooiiiiiiiiii ittt e e e en e 554
SYSOPENMULIEXSEIM ...ttt ettt ettt e e e e e eeas 554
SYSPOSITEVENISEIM ..eeiiiiii et e e e e e 555
SysPulseEventSem (WINAOWS ONIY)vvvniiiiiiii e e e e 555
SYSQUEBTYPIOCESS ...ttt e e e e e e 556
SYSQUENYREXXIMACTO ...ttt ettt ettt e e e e e e e e e e e aaeanes 557
SYSREIEASEMULEXSEM ...ttt e e enaas 557
SYSREOIAEIREXXIMBCIOeeeviieieiti ettt ettt e et eeeae s 558
SYSREQUESIMULEXSEM ...eiitii e e e e e e e e e et e et e e e eeaeeaeees 558
SYSRESEIEVENISEM L..eiiiiiii e 559
32T 41101 | 559
SYSSAVEREXXMACIOSPACEuieiiitieiiee ettt et e e e e e 561
SYSSEAIChPALN .. .oeiiiii e 561
SYSSEtFIEDAETIME ..ottt eea e eaeas 562
YT £SE L= £ 170 562
SysShutdownSystem (WINAOWS ONIY) ...oovvniiii e e e e e 563
)Y S3o] (1= o I TP UP PP UPTRUPRRN 565
) 01 (=] 10640 o) PP 565
SYSSIEMDEIETE ... e e 567
SYSSIEMINSEIT ..ot ettt et 567
Y3 (=] 1 5 T 568
SysSwitchSession (WINdOWS ONIY)ciiiiiiiic e e 569
SysSystemDirectory (WIiNdOWS ONIY)iuniiiiiic e e s 570
SYSTEMPFIIENAME ... et e e e eanns 570
SysTextScreenRead (WINAOWS ONIY) ...ooouuiiiiiiiiii e 571
SysTextScreenSize (WINAOWS ONIY)iiiiiiiiiii e 572
SysToUnicode (WINAOWS ONIY)cieeiiiiiiiii e e e e e e e e e e e eanae e 572
YY1 1LY Z=T £ (o] o 574
Y2V 4T 1 o o P 575
SysVolumeLabel (WINdOWS ONIY)iieii e e 575
SYSWaL (UNIX ONIY) ittt enanas 576
SYSWAITEVENISEIM ...oiiiiiiiii ettt ettt e et e e e aaa s 576
SysWaitNamedPipe (WINAOWS ONIY) ...oovuiieiiiiiece e e e e e e 577
SysWinDecryptFile (WINAOWS ONIY)ooviiiiiici e 577
SysWinEncryptFile (WIiNdOWS ONIY) ... 578

Open Object Rexx™

8.84. SysWinGetDefaultPrinter (WIiNdOWS ONIY)couniiiiiiiiiiei e
8.85. SysWinGetPrinters (WIiNdOWS ONIY)oiiiiiiiiiiii e
8.86. SysWinSetDefaultPrinter (WIiNdOws ONIY)ccouuiiiiiiiiii e
8.87. SysWinVer (WINAOWS ONIY) ...ccuuiiiiiiiiiee e e e e e e e e e e e e e e e e eens

9. Parsing
9.1. Simple Templates for Parsing iNt0 WOISoiiiiiiiiiiiiii e
9.1.1. Message Term ASSIGNMENTSiiiiuui ittt e e eab e e eai e
9.1.2. The Period as a Placeholderoovoiiiiiiiiiii e
9.2. Templates Containing String Patternscc.oveiiiiiiiii i e
9.3. Templates Containing Positional (Numeric) Patternscccccoeeviiiiiiiiiiii e
9.3.1. Combining Patterns and Parsing into WOrdscooooiiiiiiiiiiiiiieeeeee
9.4. Parsing with Variable Patternscooiiiiiiiiii e
9.5. Using UPPER, LOWER, and CASELESSccooiiiiiii e
9.6. Parsing INStrUCtiONS SUMMIAIYccuuiiiiiie e e e e e e e e e e e eanas
9.7. Parsing INStructions EXamMPIEScccviiiiiiiiiii e
9.8. Advanced TOPICS iN ParSiNgccuuiiiiiiiiiiiee e e e e e e eans
9.8.1. Parsing SeVeral SIHNGQSc.uiiuuiiiiaiiee et e e e e eanas
9.8.2. Combining String and Positional Patternsccciiiiiiiiiieiiieeee e
9.8.3. Conceptual Overview Of Parsingcoooeeuiiiieiiiice e

10. Numbers and Arithmetic
O TR o = To) £ o o TSP PTTT PP
10.2. ArtNMELIC OPEIALOISiiiiiii ettt ettt ettt et e e e e e e e e e e eenan s
02 T o 11 P
O 2 101 (=T o = g DY/ T I
10.2.3. REMAINAET ...ttt e e e e e e e e e e e e eenne
10.2.4. Operator EXAmMPIEScvvii i
10.3. EXponential NOTALIONiiiiiiiiiii et e e e e e e et eaea e eean s
10.4. NUMENC COMPATISONSeertieietti ettt e eeti et e et e et e et et e e ettt e e e eab e e e ernaes
10.5. Limits and Errors when Rexx Uses NUmMbers DireCtlyccooeevvuiiiieiiiiiniiiiiiineeeciinn,

11. Conditions and Condition Traps
11.1. Action Taken when a Condition IS NOt Trappedocoeuiiiiiiiiiiiiiiiee e
11.2. Action Taken when a Condition IS Trappedcooeiiiiiiiiiiiiii e
11.3. Condition INFOrMALIONceeeiii e e e e e e e e e e eenaees
11.3.1. DESCIIPLVE SIHNUS ..eertneiiiiii et e et ettt e et e e e e e aeanens
11.3.2. Additional Object INfOrmationccooiiiiiiiiiii e
11.3.3. The Special Variable RC ... e
11.3.4. The Special Variable SIGLcc.i e
11.3.5. CONAItION ODJECESciiiiiiee it

12. Concurrency
D T = 5 Y =T o
12.2. MESSAQE ODJECLS ...ttt
12.3. Default CONCUITENCYiiiitieetiit ettt ettt ettt e et e et e e et e e e e et e e e eba s
12.3.1. Sending Messages Within an ACHIVILYc.oiviiiiiiiiiiiiii e
12.4. Using Additional Concurrency MechaniSMScovoiiiiiiiiiiiiiieeii e
12.4.1. SETUNGUARDED Method and UNGUARDED OptioNnccoovevvieeriiiininneeenn.
12.4.2. GUARD ON and GUARD OFFcooiiiiiiiiiiieeieeei e
12.4.3. Guarded MEtNOUSiiiiiiiiiiiii e e e
12.4.4. Additional EXAMPIEScooiiiiiiiii e

13. The Security Manager
13.1. Calls to the Security MANAQEToiiiiiieiiii e e e e e e e eaa s
1300, EXAMPIE e e e

14. Input and Output Streams
14.1. The Input and OULPUL MOEIiiiiiiiii e
L1411, INPUL SEIEAIMS ..eeeeiiiiie ettt ettt et e e et et et e e et e e e e eaaneees
I @ T 11 0 B S 1 =T o
14.1.3. External Data QUEUEccouuiiiieeiiiiee e e e e et e e et e e e e e et e e e e e e e eannas
14.1.4. Default Stream NAMESiiiiiii e e
14.1.5. Line versus Character POSItIONINGccuuiiiiiiiiiiiaii e
14.2. IMPIEMENTALION ..uuiiiiiti ettt e ettt e et et e e e et eeeeaa s
14.3. Operating SYStemM SPECITICSviiiiriiiiiii e
14.4. Examples of Input and OULIPULoieuiiiiiiei e e e e e e e e ees
14.5. Errors during Input and OULIPULeiiiiiiiieii e e e e e e e e e e e e e eanaeees
14.6. Summary of Rexx I/O Instructions and Methodsccocoviiiiii i,

15. Debugging Aids
15.1. Interactive Debugging Of Programscoiiiiiiiiiiiiiii e
15.2. DebUGQING AIGS ...ouiiiiiiit ettt ea
15.3. RXTRACE Variableooiiiiiiiieiii e e e e e et eeeee

16. Reserved Keywords
17. Special Variables

18. Useful Services
S 70 I VAV T To [0 YA @0 4 g =1 o £
18.2. LINUX COMIMANGAS ..ouiitiiitieit e et et et et e e et e et e et e e et e et e et e et e st eanesaaeeaeeeeens
18.3. Subcommand HanNIEr SEIVICESivuiiiiiiiiiie e
18.3.1. The RXSUBCOM COMMANGuiviiiiiiiiiiiieiei e e e e ans
18.3.2. The RXQUEUE FiltEIccuniiiiiie e
18.4. Distributing Programs WithOUt SOUICEooiiiiiiiiiiiiiie e

A. Using DO and LOOP

AL SIMPIE DO GIOUP ...ttt ettt et et e et e e et e e e ta e e e e e et e e et e eanaaenes
A.2. REPELILIVE LOOPS ...iieiiieiitiie ettt et e et ettt e et e et b e e e e e e e aa s

A.2.1. SIMple REPELILIVE LOOPS ..evuniiiiiiiiieiitii ettt e e

A.2.2. Controlled RePEtitive LOOPSovevnieieieii e e e e e e e e e e ean s
A.3. Repetitive Loops over COIECHIONSuiiiiiiii e e
A.4. Conditional Phrases (WHILE and UNTIL)ooiuuiiiiiiiiiee e e e
AL, LABEL PRIASE ...ttt ettt e a e
A.6. Conceptual MOdel OF LOOPSuuiiiieiiiiiiiiie ettt e eeaans

B. Migration
B.1. Error Codes and RetUrn COUESc.uiiiuiiiiiiiiii e e e e e e eaa s
B.2. Error Detection and REPOIINGc.uuuiiiiiiiieiiii ettt e e
B.3. Environment Variablesc..oiiiiiiiii e
B.4. Stems VErsUS COIECHIONScciiiiieiiiiie e e et e e et e eeees
B.5. Input and Output Using Functions and Methodscccooeiiiiiiiiiiin i
B.6. \ENVIFONMENT ..ottt e et e e e e e
B.7. Deleting Environment Variables ...
B.8. Trace iN MACIOSPACEiieeiiieiiiti ettt ettt e e et e e et e e e et e e e eeba s

C. Error Numbers and Messages
L I ¢ (o]) PR
C.1.1. Error 3 - Failure during initializationcooooeiiiiiiiiiii e
C.1.2. Error 4 - Program interrupteduiiiiiiiiiiiii e
C.1.3. Error 5 - System resources exhaustedccooevviiiiiiiiiii e
C.1.4. Error 6 - Unmatched "/*" oF QUOLEccvviiiiiiiici e
C.1.5. Error 7 - WHEN or OTHERWISE eXxpectedcooeiiiiiiiiiiiiieeiecei e

Open Object Rexx™

C.1.6. Error 8 - Unexpected THEN OF ELSEoiiiiiiiiiiic e 675
C.1.7. Error 9 - Unexpected WHEN or OTHERWISEccooiiiiiiiiiiiiiiecc e 675
C.1.8. Error 10 - Unexpected or unmatched ENDcoooiiiiiiiiiiiiiiniiiii e, 676
C.1.9. Error 11 - Control stack fullooiiiiiiii e 676
C.1.10. Error 13 - Invalid character in Programcoeveuiieeiiieeiieeein e e e e e 677
C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IFcoiiiiiiiiiiiiieec e, 677
C.1.12. Error 15 - Invalid hexadecimal or binary Stringccccooiiiiiiiiiiiiiiiiieeen, 677
C.1.13. Error 16 - Label NOt fOUNGcoouniii e 678
C.1.14. Error 17 - Unexpected PROCEDUREccooiiiiiiiiiiiiii e 678
C.1.15. Error 18 - THEN eXPECIEAc.uuiiiiiieii e e e e e e e e e 679
C.1.16. Error 19 - String or symbol expectedcccccoiiiiiiiiiiiiiiiie e 679
C.1.17. Error 20 - Symbol eXpectedooiuuiiiiiiiiiii e 681
C.1.18. Error 21 - Invalid data on end of Clauseccoiiiiiiiiiiii 682
C.1.19. Error 22 - Invalid character Stringcoveeiiiiiiiiiiiiiciei e 683
C.1.20. Error 23 - Invalid data SIHNGcc.uuieiiiiiieiiiiiee e 683
C.1.21. Error 24 - Invalid TRACE reqUESEoiviiiiiei e 683
C.1.22. Error 25 - Invalid subkeyword foundccooeiiiiiiiiiiin e 683
C.1.23. Error 26 - Invalid whole nUMDEr ..., 686
C.1.24. Error 27 - INValid DO SYNEAX ...ieuuiiiiieiii i e e e 687
C.1.25. Error 28 - Invalid LEAVE or ITERATEouiiiiiiiii e 687
C.1.26. Error 29 - Environment Name t00 lONQuviiiiiiiiiiiiiieeii e 687
C.1.27. Error 30 - Name Or String t00 ONQvvveiiii e e e e 688
C.1.28. Error 31 - Name starts with number or "."ccooiiiiiii e, 688
C.1.29. Error 33 - Invalid expression reSUlLccuviiiiiiiiiie e 689
C.1.30. Error 34 - Logical value Not 0 OF 1coouiiiiiiiiii e e 689
C.1.31. Error 35 - INValid @XPreSSIONcccuuuuieiiiiiieieiii e et e et e e e e e e eeni e eees 690
C.1.32. Error 36 - Unmatched "(" or "[" iN @XPreSSIONcccevuiiiiiiiiiieeiiii e 692
C.1.33. Error 37 - Unexpected "), "), OF " i 692
C.1.34. Error 38 - Invalid template or patternccooooiiiiiiiiin e 693
C.1.35. Error 39 - Evaluation stack overflow ..o 693
C.1.36. Error 40 - Incorrect call t0 rOULINGc..iiiiiiiiiiiii e 693
C.1.37. Error 41 - Bad arithmetiC CONVEISIONcoeuiiiiiiiiieeii e 696
C.1.38. Error 42 - Arithmetic overflow/underflowcooviiiiiiiiiii e, 696
C.1.39. Error 43 - Routine Not fOUNduiiiiiiiiiii e 697
C.1.40. Error 44 - Function or message did not return dataccoevevvvevinneinneennnn. 697
C.1.41. Error 45 - No data specified on function RETURNccoiiiiiiiiiiiiinieenn, 698
C.1.42. Error 46 - Invalid variable reference ..o 698
C.1.43. Error 47 - Unexpected 1abel ..o 698
C.1.44. Error 48 - Failure in SYStem SEIVICEoviiiiiiiiiiiiii e 698
C.1.45. Error 49 - INterpretation ©ITOFcvueiieiieeeee e e e e e e e e e e e e e eanaeees 699
C.1.46. Error 88 - Invalid argumEeNtc.couuiiiiiiiiiiii e e e e e 699
C.1.47. Error 89 - Variable or message term expectedcccoceuiiiiiiiiiiiiiiiieiieeenn. 700
C.1.48. Error 90 - External name Not fouNdoooouiiiiiiiiiii e 700
C.1.49. Error 91 - NO result ODJECEuiiiiiii 701
C.1.50. Error 92 - OLE @IT0r .. ouniii et e e 701
C.1.51. Error 93 - Incorrect call to Methodcooiviiiiiiiiiin e 702
C.1.52. Error 97 - Object method Not fouNdooeviiiiiii i 706
C.1.53. Error 98 - EXECULION EITOKcuuiiiieiii it e e e e 706
C.1.54. Error 99 - Translation ©ITOrcccuiiiiiiiii e 708
C.2. RXSUBCOM ULIlItY PrOGIamMc.uuiiiiitiieeieii ettt e e 710
C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect.cc.......... 710
C.2.2. Error 117 - The RXSUBCOM parameter DROP is INCOMrect.cccovevvvnveennnnnns 711
C.2.3. Error 118 - The RXSUBCOM parameter LOAD iS iNCOIMTECt.cccvevevveevnnennnnn. 711
C.2.4. Error 125 - The RXSUBCOM parameter QUERY is INCOMect.cooeeevneennnn. 711

Xii

C.3. RXQUEUE ULIlIty PrOgramcocouuiiiiiiiieiiiie ettt e et e e 711

C.3.1. Error 119 - The REXX queuing system is not initialized.cc....oceiiiernnnnn. 711

C.3.2. Error 120 - The size of the data iS INCOIMECt.ocovviiiiiiiiiiiiii e, 711

C.3.3. Error 121 - Storage for data queues is exhausted.c.oceeviiiiveiiiniiiineennnnns 712

C.3.4. Error 122 - The name %1 is not a valid queue Nname.c.ccceeeevviieviiieennneennnn. 712

C.3.5. Error 123 - The queue access mode iS NOt COMECt.ccuivveuniiiineiiiieiiineeennnn. 712

C.3.6. Error 124 - The queue %1 does NOt EXISt.cccuuiiiiiiiiiieiii e 712

C.3.7. Error 131 - The syntax of the command iS iNnCOrrectcccccoveviiiiiieiiniinnennnnn, 712

C.3.8. Error 132 - System error occurred while processing the command 712

C.4. ReXXC ULIlItY PrOQramMcceeiiiie ettt e e e e e e e e e e e e et e e e e an s 712
C.4.1. Error 127 - The REXXC command parameters are inCorrect.cccocvuuneennnn.. 712

C.4.2. Error 128 - Output file name must be different from input file name. 713

C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S] 713

C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check 713

C.4.5. Error 133 - SYNTAX: REXXC InProgramName [OutProgramName] [-S] 713

D. Notices 715
D I = To (= 4 4 P-4 PP SPPP 715

D.2. Source Code FOor ThisS DOCUMENTuiiiiiiiiiiieii e 716

E. Common Public License Version 1.0 717
[B = 11 011 1o PPN 717

E.2. Grant of RIGNTS ... 717

S R =0 U =T 0 =T £ 718

E.4. Commercial DiStribDULIONccoiiiiiiiii e 718

T N o IR VAT = T = T o PPN 719

E.6. Disclaimer oOf Liabilitycc..ioiiiiii e e 719

S =T T - TP 719

F. Revision History 721
Index 723

Xiii

Xiv

Preface

This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts" set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctr1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

! https://fedorahosted.org/liberation-fonts/

XV

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences — Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications —. Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then
click the Copy button. Now switch back to your document and choose Edit - Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -0 remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

XVi

Notes and Warnings

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

o Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

XVii

Preface

2. How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>- - - symbol indicates the beginning of a statement.

The - - -> symbol indicates that the statement syntax is continued on the next line.
The >- - - symbol indicates that a statement is continued from the previous line.
The - - ->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >- - - symbol and end
with the - - -> symbol.

« Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item---------cmmmmmm oo ><

« Optional items appear below the main path.

>>-STATEMENT - -4--------------- B ><
+-optional_item-+

« If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choicel-+--------mmmmmmmmm oo ><
+-required_choice2-+

* If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT - -#-----=-----mm oo - e ><
+-optional_choicel-+
+-optional_choice2-+

« If one of the items is the default, it appears above the main path and the remaining choices are
shown below.

+-default_choice--+
>>-STATEMENT - -+=- === == m oo e oo oo R C TP ><
+-optional_choice-+

XViii

Getting Help and Submitting Feedback

+-optional_choice-+

« An arrow returning to the left above the main line indicates an item that can be repeated.

>>-STATEMENT-- - -repeatable_item-+-----------------o ><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

» A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |---------cmmmmmm i ><
fragment:

| - -expansion_provides_greater_detail------------------------~----

» Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but
you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

« If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

v I
>>-MAX(----NUMber-+--)-----mcmm oo ><

3. Getting Help and Submitting Feedback

The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

XiX

Preface

3.1. The Open Object Rexx SourceForge Site

The Open Object Rexx Project2 utilizes SourceForge3 to house the ooRexx F’rojecz‘4 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and
that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions®
page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions6 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions’ page.
This list is only used to announce significant oo0Rexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions8 page. This
list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Repon‘9 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report10 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requesl‘s11 page.

2 http://www.oorexx.org/

8 http://sourceforge.net/

4 http://sourceforge.net/projects/oorexx

® http://sourceforge.net/mail/?group_id=119701

e http://sourceforge.net/mail/?group_id=119701

7 http://sourceforge.net/mail/?group_id=119701

8 http://sourceforge.net/mail/?group_id=119701

o http://sourceforge.net/tracker/?group_id=119701&atid=684730
10 http://sourceforge.net/tracker/?group_id=119701&atid=1001880
™ http://sourceforge.netitracker/?group_id=119701&atid=684733

XX

http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733

The Rexx Language Association Mailing List

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report12 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums™ page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List

The Rexx Language Association* maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page15 or the RexxLA Membership A,oplication16 page.

3.3. comp.lang.rexx Newsgroup

The comp./ang.rexx17 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

4. Related Information

See also: Open Object Rexx: Reference

12 http://sourceforge.net/tracker/?group_id=119701&atid=684732
13 http://sourceforge.net/forum/?group_id=119701

1 http://www.rexxla.org/

' http://rexxla.org/

16 http://lwww.rexxla.org/rexxla/join.html

7 http:/igroups.google.com/group/comp.lang.rexx/topics?hl=en

XXi

http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en

XXii

Chapter 1.

Open Object Rexx General Concepts

The Rexx language is particularly suitable for:
 Application scripting

» Command procedures

» Application front ends

» User-defined macros (such as editor subcommands)
* Prototyping

» Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM's
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause on
a line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You can,
therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and
word by word, without first being translated to machine language (compiled.) One of the advantages of
this is that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to tokenize Rexx
programs. Tokenizing a program is not the same as compiling a program to machine language. See
Appendix A. Distributing Programs without Source of the Open Object Rexx Programming Guide for
details on rexxc and tokenizing.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Essentially, the objects are the "nouns", while the actions are the
"verbs".

1.2. Modularizing Data

Chapter 1. Open Object Rexx General Concepts

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one

simple action. You might have a PRINT module, a SEND module, an ERASE module. The data these
modules operate on must be constructed by the programmer and passed to the modules to perform an
action.

PROGRAM ...
PRINT ———mmoo——-
data
data
data cdata
data data
data data
data data
SEND - data data
data
ERASE ——————-

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data. The programmer that
uses the objects need only be aware of the operations an object performs and not how the data is
organized internally.

PRINT
Report

data
data
data
data
data

SEND
3114

ERASE
Figure 1.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.

2

Modeling Objects

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

1.3. Modeling Objects

In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

BOUNCE

Size
Shape
Comp
Weight
Color
Speed
Pos

THROW
HO1VvO

ROLL ——TOSS
Figure 1.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated
data value that can change over time. The variables represent the internal state of the object, and can
be directly accessed only by the code that implements the object's actions.

BOUNCE
Size = 3
Shape = round
< Comp = rubber Q
8 Weight = 2 a
E Color = yellow T
Speed = 32
Pos = 4

ROLL ——TOSS

Figure 1.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these

Chapter 1. Open Object Rexx General Concepts

actions is an interface to the object's data. The data is said to be encapsulated because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics of
an object are its variables. The variables are associated with an object and exist for the lifetime of that
object:

Subtraction

Addition
3
uoIsiaIg

Multiplication
Figure 1.4. Encapsulated 5 Object

1.4. How Objects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or
both. A message to an object must specify:

« Areceiving object

* The "message send" symbol, ~, which is called the twiddle
» The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:

object~action(parameters)

Assume that the object is the string 1iH. Sending it a message to use its REVERSE action:

"IiH"~reverse

returns the string object Hi! .

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some
underlying code. The action-generating code is called a method. When you send a message to an

4

Polymorphism

object, the message is the name of the target method. Method names are character strings like
REVERSE. In the preceding example, sending the reverse message to the !iH object causes it to
run the REVERSE method. Most objects are capable of more than one action, and so have a humber
of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your
own classes, you can write new methods for them in Rexx code. Much of the object programming in
Rexx is writing the code for the methods you create.

1.6. Polymorphism

Rexx lets you send the same message to objects that are different:

Example 1.1. Polymorphism

"1iH"~reverse /* Reverses the characters "!iH" to form "Hi!" */
pen~reverse /* Reverses the direction of a plotter pen */
ball~reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is called polymorphism. As a result of information hiding, each object in the previous example
knows only its own version of REVERSE. And even though the objects are different, each reverses
itself as dictated by its own code.

Although the !1iH object's REVERSE code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. The ability to reuse the
same method name so that one message can initiate more than one function is another feature

of polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same

illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
In that Icon class you can include all the icon objects with similar actions and characteristics:

Chapter 1. Open Object Rexx General Concepts

Icon class

Windows system icon instance
shredder icon instance
information icon instance

Figure 1.5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Icon class

Windows system icon instance
(position='20,20"

shredder icon instance
(position='20,30"

information icon instance
(position='20,40"

Figure 1.6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name.

All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.

Data Abstraction

e

lcon class
(position=)

Windows system icon instance
('20,20"

shredder icon instance
('20,30"

information icon instance
('20,40"

Figure 1.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a
drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once

you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):

Superclass
|
I | I

Subclass Subclass Subclass

Figure 1.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Chapter 1. Open Object Rexx General Concepts

Screen-Object class
|
I | I

lconclass Window class Bitmap class

Figure 1.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object. Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Screen-Object Art-Object
|
I

Icon Window Bitmap

Figure 1.10. Multiple Inheritance

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:
« Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)
» A sequence of tokens (see Section 1.10.4, “Tokens”)

« Zero or more whitespace characters (again ignored)

A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing
it are identified. Instruction keywords are recognized at this stage, comments are removed, and
sequences of whitespace characters (except within literal strings) are converted to single blanks.
Whitespace characters adjacent to operator characters and special characters are also removed.

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation
of data. You can usually enter a character with a single keystroke. The coded representation of

a character is its representation in digital form. A character, the letter A, for example, differs from
its coded representation or encoding. Various coded character sets (such as ASCII and EBCDIC)
use different encodings for the letter A (decimal values 65 and 193, respectively). This book uses
characters to convey meanings and not to imply a specific character code, except where otherwise
stated. The exceptions are certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on the character set
used.

A code page specifies the encodings for each character in a set. Be aware that:
« Some code pages do not contain all characters that Rexx defines as valid (for example, the logical
NOT character).

Whitespace

» Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace

A whitespace character is one that the interpreter recognizes as a "blank” or "space" character. There
are two characters used by Rexx as whitespace that can be used interchangeably:

(blank)
A "blank" or "space" character. This is represented by '20'X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by '09'X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab
characters and blanks to be use interchangeably in source. Additionally, Rexx operations such as the
PARSE instruction or the SUBWORD() built-in function will also accept either blank or tab characters
as word delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program
but acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:
* A line comment, where the comment is limited to one line
* The standard Rexx comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"
'You shouldn''t' -- Same as "You shouldn't"

In this example, the language processor processes the statements from 'Fred' to 'You
shouldn''t"', ignores the words following the line comment, and continues to process the statement

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */.
Within these delimiters any characters are allowed. Standard comments can contain other standard
comments, as long as each begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

Chapter 1. Open Object Rexx General Concepts

Example 1.2. Comments

o1 parse pull input

02 if substr(input,1,5) = "/*123"
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input

02 /* if substr(input,1,5) = "/*123"
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal
string /*123 as the start of a nested standard comment. It would not process the rest of the program
because it would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"
You could comment out lines 2 and 3 correctly as follows:

Example 1.3. Comments

01 parse pull input

02 /* if substr(input,1,5) = "/" || "*123"
03 then call process

04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

Example 1.4. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't"

" -- The null string */

In this example, the language processor ignores everything after 'You shouldn''t' up to the end
of the last line. In this case, the standard comment has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of the standard comment /*
is not in the line commented out with the line comment signs.

10

Tokens

Example 1.5. Comments

"Fred"

"Don't Panic!"

'You shouldn''t' -- Same as /* "You shouldn't"
" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

* Literal strings

» Hexadecimal strings
 Binary strings

* Symbols

* Numbers

» Operator characters

» Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line feed (X"10") and delimited by a
single quotation mark (') or a double quotation mark ("). You use two consecutive double quotation
marks ("") to represent one double quotation mark (") within a string delimited by double quotation
marks. Similarly, you use two consecutive single quotation marks (' ') to represent one single
guotation mark (') within a string delimited by single quotation marks. A literal string is a constant and
its contents are never modified when it is processed. Literal strings must be complete on a single line.
This means that unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length @) is called a null string.

These are valid strings:

Example 1.6. Valid strings

"Fred"

"Don't Panic!"

'You shouldn''t' /* Same as "You shouldn't" */
" /* The null string */

11

Chapter 1. Open Object Rexx General Concepts

A literal string has no upper bound on the number of characters, limited only by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a
function. If immediately followed by the symbol X or X, it is considered to be a hexadecimal string. If
followed immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading

0 is assumed, if necessary, at the beginning of the string to make an even number of hexadecimal
digits. The groups of digits are optionally separated by one or more whitespace characters, and the
whole sequence is delimited by single or double quotation marks and immediately followed by the
symbol X or x. Neither x nor X can be part of a longer symbol. The whitespace characters, which can
only be byte boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing
the hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its
equivalent character, for example, "41"X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

Example 1.7. Valid hexadecimal strings

"ABCD"x
"1d ec f8"X
"1 d8"x

@

A hexadecimal string is not a representation of a number. It is an escape mechanism that lets

a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, "20"X is the encoding for a blank. In every case, a string of the form "....."X is an alternative
to a straightforward string. In ASCII "41"x and "A" are identical, as are "20"x and a blank, and
must be treated identically.

The packed length of a hexadecimal string (the string with whitespace removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
can have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,
making a total of four digits. The groups of digits are optionally separated by one or more whitespace
characters, and the whole sequence is delimited by matching single or double quotation marks and
immediately followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The

12

Tokens

whitespace characters, which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing.
Binary strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

Example 1.8. Valid binary strings

"11110000"b /* == "fo"x */
"101 1101"b /* == "5d"x */
"1"b /* == "00000001"b and "O1"x */
"10000 10101010"b /* == "EOO01 0000 1010 1010"b */
Illlb /* == mn */

The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:
» English alphabetic characters (A-Z and a-z).
» Numeric characters (0-9)

* Characters . ! ? and underscore ().

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Example 1.9. Valid symbols

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned a value to it, its value is the characters of the symbol itself, translated
to uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot directly be assigned a value. (See Section 1.13.6, “Environment
Symbols”.)

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The character sequence to the left of the "E" or "e" must be
a valid simple number, consisting only of digits or '.". There must be at least one digit and at most one
'.". The sign in this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

13

Chapter 1. Open Object Rexx General Concepts

Example 1.10. Valid exponential numbers

17.3E-12
.03e+9

These are not valid numbers in exponential notation, but rather multiple tokens with an operator
between:

Example 1.11. Invalid exponential numbers

.E-12 -- no digits
3ae+6 -- non-digit character
3..0e+9 -- more than one '.'

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a
plus (+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point.
A number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase
or lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Chapter 10,
Numbers and Arithmetic for a full definition of numbers.

Numbers can have leading whitespace (before and after the sign) and trailing whitespace.
Whitespace characters cannot be embedded among the digits of a number or in the exponential part.
Note that a symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

Example 1.12. Valid numbers

12

"_17.9"
127.0650
73e+128

" + 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can
be prefix minus if no term is to the left of it) followed by a positive number. The result of the operation
is a number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

14

Tokens

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

1.10.4.6. Operator Characters

The characters+ - \ / % * | & = = > <andthe sequences >= <= \> \< \= >< <> ==

\== // && || ** > A< A= A== >> << >>= \<< << \>> >> <<= indicate operations
(see Section 1.11.2, “Operators”). A few of these are also used in parsing templates, and the equal
sign and the sequences +=, -=, *= /=, %=, //=, ||=, &, |=, and &&= are also used to

indicate assignment. Whitespace characters adjacent to operator characters are removed. Therefore,
the following are identical in meaning:

Example 1.13. White space and numbers

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section) might not be available
in all character sets. In this case, appropriate translations can be used. In particular, the vertical bar (|)
is often shown as a split vertical bar (}).

@e

The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the logical
OR operator. Depending on the code page or keyboard for your particular country, ASCIl 124 can
be shown as a solid vertical bar (|) or a split vertical bar (}). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in
program, on an instruction including a vertical bar character, make sure this character is ASCII
124.

Throughout the language, the NOT (=) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 ('AA'X) and ASCII character 172 ('AC'X) for
the logical NOT operator. Depending on your country, the = might not appear on your keyboard. If the
character is not available, you can use the backslash (\) in place of —.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

15

Chapter 1. Open Object Rexx General Concepts

These characters constitute the set of special characters. They all act as token delimiters, and
whitespace characters (blank or horizontal tab) adjacent to any of these are removed. There is an
exception: a whitespace character adjacent to the outside of a parenthesis or bracket is deleted only

if it is also adjacent to another special character (unless the character is a parenthesis or bracket and
the whitespace character is outside it, too). For example, the language processor does not remove the
blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalentto (A)+(Z).

1.10.4.8. Example

The following example shows how a clause is composed of tokens:

Example 1.14. Special characters

"REPEAT" A+ 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (A,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the
3 are removed. However, one of the blanks between the "REPEAT" and the A remains as an operator.
Thus, this clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the
semicolon at a line end, after certain keywords, and after a colon if it follows a single symbol. This
means that you need to include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:
* The line ends in the middle of a comment. The clause continues on to the next line.

« The last token was the continuation character (a comma or a minus sign) and the line does not end
in the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string,
a label) and after certain keywords when they are in the correct context. The keywords that have
this effect are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

16

Continuations

The two characters forming the comment delimiters, /* and */, must not be split by a line end
(thatis, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added.

1.10.6. Continuations

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is
referred to as the continuation character. The continuation character is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following example shows how to use the continuation character to continue a clause:

Example 1.15. Continuations

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various
ways to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections.
You can also define and create objects that are useful in particular applications—for example, a menu
object for user interaction. See Section 1.3, “Modeling Objects” for more information.

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms, function calls, or subexpressions interspersed with
zero or more operators that denote operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit
or a period can be the name of a variable; in this case the value of that variable is used. A symbol

17

Chapter 1. Open Object Rexx General Concepts

that begins with a period can identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Section 1.11.4, “Message Terms”.

Function calls (see Chapter 7, Functions), which are of the following form:

>>-symbolorstring(----+------------ B) R ><
+-expression-+

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the
usual algebraic manner (see Section 1.11.3, “Parentheses and Operator Precedence”). Expressions
are wholly evaluated, unless an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or two
terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols,
strings, function calls, message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Whitespace characters (and comments) adjacent
to operator characters have no effect on the operator; thus, operators constructed from more than
one character can have embedded whitespace and comments. In addition, one or more whitespace
characters, if they occur in expressions but are not adjacent to another operator, also act as an
operator. The language processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the operator as a message to
the term on the left, passing the term on the right as an argument. For example, the sequence

say 1+2

is functionally equivalent to:

say 1~"4" (2)

The blank concatenation operator sends the message " " (a single blank), and the abuttal
concatenation operator sends the "™ message (a null string). When the - character is used in an
operator, it is changed to a \. That is, the operators -= and \= both send the message \= to the target
object.

18

Operators

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx
sends a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Section 5.1.1.2, “Operator Methods” for operator methods of the Object class and Section 5.1.3.7,
“Arithmetic Methods” for operator methods of the String class.

There are four types of operators:
» Concatenation

* Arithmetic
« Comparison

 Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank) Concatenate terms with one blank in between
|l Concatenate without an intervening blank
(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the | | operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This
can occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they
are only separated by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred"%" evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.
The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of

Fred/* The NOT operator precedes Peter. */-Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/* The NOT operator precedes Peter. */(-Peter)

results in an abuttal, and evaluates to 37 . 40.

1.11.2.2. Arithmetic

19

Chapter 1. Open Object Rexx General Concepts

You can combine character strings that are valid numbers (see Section 1.10.4.5, “Numbers”) using the
following arithmetic operators:

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

1 Remainder (divide and return the remainder—not modulo, because the result
can be negative)

* Power (raise a number to a whole-number power)

Prefix - Same as the subtraction: ® - number

Prefix + Same as the addition: @ + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is
likely that rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or @ otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The
==, \==, and === operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison,
with no padding of either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than the other and is a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators also do not attempt to perform a humeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Section 10.4, “Numeric Comparisons”) is effected. Otherwise, both terms are treated as character
strings, leading and trailing whitespace characters are ignored, and the shorter string is padded with
blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact
collating order might depend on the character set used for the implementation. In an ASCII
environment, such as Windows and *nix, the ASCII character value of digits is lower than that of the
alphabetic characters, and that of lowercase alphabetic characters is higher than that of uppercase
alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (hnumerically or when padded)

\=, -= True if the terms are not equal (inverse of =)
> Greater than

< Less than

>< Greater than or less than (same as not equal)

20

Parentheses and Operator Precedence

<> Greater than or less than (same as not equal)
>= Greater than or equal to

\<, =< Not less than

<= Less than or equal to

\>, > Not greater than

== True if terms are strictly equal (identical)

==, n== True if the terms are not strictly equal (inverse of ==
>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, =<< Strictly not less than

<<= Strictly less than or equal to

\>> —->> Strictly not greater than

@roe

Throughout the language, the NOT (=) character is synonymous with the backslash(\). You can
use the two characters interchangeably, according to availability and personal preference. The
backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and \>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if it is @, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than 0 or 1 are not permitted.

& AND — returns 1 if both terms are true.

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is true.
Prefix \, - Logical NOT— negates; 1 becomes 0, and @ becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

» When parentheses are encountered—other than those that identify the arguments on messages
(see Section 1.11.4, “Message Terms”) and function calls—the entire subexpression between the
parentheses is evaluated immediately when the term is required.

« When the sequence

terml operatorl term2 operator2 term3

is encountered, and operator2 has precedence over operatoril, the subexpression (term2
operator2 term3) is evaluated first.

21

Chapter 1. Open Object Rexx General Concepts

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if a strict left-to-right evaluation occurred). To force the addition to occur before
the multiplication, you could rewrite the expression as (3+2) *5. Adding the parentheses makes the
first three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9)
because the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

~ ~\

+ - =\
* | % |/
+ -
(blank) || (abuttal)
= > <
== >> <<
\= A=

>< <>

> >

< =<
>> ->>
<< <<
>= >>=
<= <<=
&

| &&

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and

(message send)

(prefix operators)

(power)

(multiply and divide)

(add and subtract)

(concatenation with or without blank)

(comparison operators)

(and)

(or, exclusive or)

other variables are uninitialized. Then:

Example 1.16. Arithmetic

A+5
A-4*2
A/2
0.5%*2
(A+1)>7

n II:II n

n I|::II n

n ll\::ll n

/* that is,
(A+1)*3=12

l|077ll>l|11ll

True

ngn
n_gn
"1.5"
"0.25"
ngn
nqn
ngn
nqn

nqn
nqn

/*
/*
/*

/*
/*

that
that
that

that
that

is,
is,
is,

is,
is,

False
True
False

True
True

*/
*/
*/

*/
*/

22

Message Terms

IIO77II >> II11II -> IIOII /* that lS,
Ilabcll >> Ilabll -> Il1ll /* that lS,
"abc" << "abd" -> "t /* that is,
Ilab n << Ilabdll -> II1II /* that lS,
Today is Day -> "TODAY IS Monday"

"If it is" day -> "If it is Monday"
Substr(Day, 2, 3) -> "ond" /* Substr is a
"!"XXX"!" -> II!XXX!II

False */
True */
True */
True */

function */

The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common

notations:

e The prefix minus operator always has a higher priority than the power operator.

« Power operators (like other operators) are evaluated from left to right.

For example:

Example 1.17. Arithmetic

-3**2 == 9 /* not -9 */
-(2+#1)**2 == 9 /* not -9 */
2%*2%*3 == 64 /* not 256 */

1.11.4. Message Terms

You can include messages to objects in an expression wherever a term, such as a literal string, is
valid. A message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

>>-receiver-+- ~ --+-messagename--+--------- R T >
o == od +-:symbol-+
Socdboncncncnonsonocncncncnonoas Poocncncncocosocncncncocosososoaoao ><
Fo(me e - +--)-+
I + |
| v I

+---expression-+-+

>>-receiver[--+---------------- e ><

+---expression-+-+

23

Chapter 1. Open Object Rexx General Concepts

The receiver is a term (see Section 1.11.1, “Terms and Expressions” for a definition of term). It
receives the message. The ~ or ~~ indicates sending a message. The messagename is a literal
string or a symbol that is taken as a constant. The expressions (separated by commas) between

the parentheses or brackets are the arguments for the message. The receiver and the argument
expressions can themselves include message terms. If the message has no arguments, you can omit
the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term.
(A blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during the execution of the called method. Any ARG, PARSE
ARG, or USE ARG instruction or ARG() built-in function in the called method accesses these objects
while the called method is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver object is evaluated, followed by one or more expression arguments. The message

name (in uppercase) and the resulting argument objects are then sent to the receiver object. The
receiver object selects a method to be run based on the message name (see Figure 4.1, “Classes
and Inheritance (part 1 of 9)”), and runs the selected method with the specified argument objects. The
receiver eventually returns, allowing processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included
in the original expression as if the entire message term had been replaced by the name of a variable
whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c~pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see Section 5.1.2, “The
Class Class”) and, assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions
within the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~"[]" (b).

For example, the message [] is valid for arrays (see Section 5.3.6, “The Array Class”) and you could
code:

Example 1.18. Arrays

24

Message Sequences

a = .array~of(10,20)

say "Second item is" a[2] /* Same as: a~at(2) */
/* or a~"[1"(2) */

/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE"~POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of

a variable (usually the special variable SUPER--see page SUPER) or an environment symbol (see
Section 1.13.6, “Environment Symbols™). The resulting value changes the usual method selection. For
more information, see Section 4.2.7, “Changing the Search Order for Methods”.

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using ~
returns the result of the method. Using ~~ returns the object that received the message. Here is an
example:

Example 1.19. Messages

/* Two ways to use the INSERT method to add items to a list */
/* Using only ~ */

team = .list~of("Bob", "Mary")

team~insert("Jane")

team~insert("Joe")

team~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */
/* Do the same thing using ~~ */
team=.list~of("Bob", "Mary")

/* Because ~~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team~~insert("Jane")~~insert("Joe")~~insert("Steve")

say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in the
sequence.

1.12. Clauses and Instructions

Clauses can be subdivided into the following types:
* Null clauses

» Directives

e Labels

Instructions

» Assignments

25

Chapter 1. Open Object Rexx General Concepts

* Message instructions
« Keyword instructions

« Commands

1.12.1. Null Clauses

A clause consisting only of whitespace characters, comments, or both is a null clause . It is completely
ignored.

@oe

A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start
in any column. They divide a program into separate executable units (methods and routines) and
supply information about the program or its executable units. Directives perform various functions,
such as creating new Rexx classes (::CLASS directive) or defining a method (::METHOD directive).
See Chapter 3, Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in a program.
The duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL,
or function invocation.

1.12.4. Instructions

26

Assignments

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a (new) value to a variable. See Section 1.13, “Assignments and Symbols”.

1.12.5.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= can be used
to create extended assignments. These sequences combine an operation with the assignment. See
Section 1.13.1, “Extended Assignments” for more details.

1.12.5.2. Message Instructions

A message instruction is a single clause in the form of a message term (see Section 1.11.4, “Message
Terms”) or in the form messageterm=expression. A message is sent to an object, which responds by
performing some action. See Section 1.14, “Message Instructions”.

1.12.5.3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
instruction
instruction
instruction

END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

1.12.6. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

1.13. Assignments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process
of changing the value of a variable is called assigning a new value to it. The value of a variable is a
single object. Note that an object can be composed of other objects, such as an array or directory
object.

27

Chapter 1. Open Object Rexx General Concepts

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, the
VALUE built-in function, or the but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign.

Example:

/* Next line gives FRED the value "Frederic" */
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol
has a defined value at all times. A variable to which you have not assigned a value is uninitialized.

Its value is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to
uppercase A-Z). However, if it is a compound symbol (described in Section 1.13.5, “Compound
Symbols”), its value is the derived name of the symbol.

Example 1.20. Derived symbol names

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use
simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables although the collection classes might be
preferable in many cases. See Section 5.3.2, “The Collection Class”.

1.13.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= can be used
to create extended assignment instructions. An extended assignment combines a non-prefix operator
with an assignment where the term on the left side of the assignment is also used as the left term of
the operator. For example,

a +=1

is exactly equivalent to the instruction

28

Constant Symbols

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters
of the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

Example 1.21. Constants

77

827.53

.12345

12e5 /* Same as 12E5 */
3D

17E-3

Symbols, where the first character is a period and the second character is alphabetic, are environment
symbols (Section 1.13.6, “Environment Symbols”) and may have a value other other than the symbol
name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

Example 1.22. Simple symbols

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with
a digit.

These are stems:

Example 1.23. Stems

FRED.

29

Chapter 1. Open Object Rexx General Concepts

The value of a stem is always a Stem object. (See Section 5.3.15, “The Stem Class”.) The stem
variable's Stem object is automatically created the first time you use the stem variable or a compound
variable (Section 1.13.5, “Compound Symbols”) containing the stem variable name. The Stem object's
assigned name is the name of the stem variable (with the characters translated to uppercase). If

the stem variable has been assigned a value, or the Stem object has been given a default value,

the assigned name overrides the default stem name. A reference to a stem variable will return the
associate Stem object.

When a stem is the target of an assignment, the action taken depends on the value being assigned.
If the new value is a Stem object, the new Stem object will replace the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to the same
Stem object, effectively creating a variable alias.

Example 1.24. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19

/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,
replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the
new value until another value is assigned to the stem, the Stem object, or the individual compound
variable.

Example 1.25. Stems

hole. = "empty"

hole.19 = "full"

say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.

Example 1.26. Stems

30

Stems

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i = 1 to count
stem.i = random(1,100)
end
return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results. The resulting return value is
the Stem object associated with the stem variable.

Example 1.27. Stems

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i =1 to count
stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the
associated Stem object. The Stem object will forward many object messages to it's default value. For
example, the STRING method will return the Stem object's default value's string representation:

Example 1.28. Stems

total. = 0
say total. /* says "o" */

The [] method with no arguments will return the currently associated default value. variables can
always be obtained by using the stem. However, this is not the same as using a compound variable
whose derived name is the null string.

Example 1.29. Stems

total. = @
null = ""

31

Chapter 1. Open Object Rexx General Concepts

total.null = total.null + 5
say total.[] total.null /* says "©@ 5" */

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of
variables, referred to by their stems. DROP FRED. assigns a hew Stem object to the specified stem.
(See Section 2.5, “DROP”.) EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible
variables with that stem (see Section 2.7, "EXPOSE” and Section 2.19, “PROCEDURE").

The DO instruction can also iterate over all of the values assigned to a stem variable. See Section 2.4,
“DO” for more details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical with an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=)
is an assignment, rather than an expression (or a keyword instruction). This is not a restriction,
because you can ensure that the clause is processed as a command, such as by putting a null
string before the first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS
instruction:

Address="10 Downing Street";

3. You can use the VAR function (see Section 7.4.72, “VAR”) to test whether a symbol has been
assigned a value. In addition, you can set SIGNAL ON NOVALUE (NOVALUE) to trap the use of
any uninitialized variables (except when they are tails in compound variables or stem variables,
which are always initialized with a Stem object when first used.)

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit
or a period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is
followed by a tail, which are parts of the name (delimited by periods) that are constant symbols,
simple symbols, or null. Note that you cannot use constant symbols with embedded signs (for
example, 12.3E+5) after a stem; in this case the whole symbol would not be valid.

These are compound symbols:

Example 1.30. Compound symbols

FRED.3
Array.I.J
AMESSY. .One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, and One in the

32

Compound Symbols

examples), thus generating a new, derived tail. The value of a compound symbol is, by default, its the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods
and blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn
is given by
do.vi.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s@ and v1 to vn are the
values of the constant or simple symbols s1 through sn. Any of the symbols s1 to sh can be null.
The values v1 to vn can also be null and can contain any characters (including periods). Lowercase
characters are not translated to uppercase, blanks are not removed, and periods have no special
significance. There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program;

Example 1.31. Compound symbols

a=3 /* assigns "3" to the variable A */
z=4 /* 4" to z */
c="Fred" /* "Fred" to C */
a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /* "5" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /* "g" to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z Cc a.a a.z a.c c.a a.fred y.a.4

/* displays the string: */

/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables

The value of a stem variable is always a Stem object (see Section 5.3.15, “The Stem Class” for
details). A Stem object is a type of collection that supports the [] and []= methods used by other
collection classes. The [] method provides an alternate means of accessing compound variables that
also allows embedded subexpressions.

Tails for compound variables are normally specified by symbols separated by periods. An alternative
is to specify the tail as a bracketed list of expressions separated by commas. The expressions are

33

Chapter 1. Open Object Rexx General Concepts

evaluated to character strings. These are concatenated with intervening periods and the resulting
string is used as tail. This notation can be used in assignments to compound variables as well as
when referencing them. Examples:

Example 1.32. Evaluated compound variables

a.[1+2,3+4]=17 -- assigns A.3.7

Say a.3.7 -- = 17

vi='1+2'

v2="3+4"'

a.vl.v2=18 -- tail used: '1+2.3+4'
Say a.['1+2','3+4'] -- => 18

Parse vValue '1 2 3' with . a.[1,1+1] .

Say a.1.2 o = 2

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. The symbol may
not be a valid Rexx number. By default the value of an environment symbol is the string consisting of
the characters of the symbol (translated to uppercase). If the symbol identifies an object in the current
environment, its value is the mapped object.

These are environment symbols:

Example 1.33. Environment symbols

.method // A reference to the Rexx Method class
.true // The Rexx "true" object. Has the value "1"
.Xyz // Normally the value .XYZ

.3DGlasses // Normally the value .3DGLASSES

When you use an environment symbol, the language processor performs a series of searches to see if
the environment symbol has an assigned value. The search locations and their ordering are:
1. The directory of classes declared on ::CLASS directives (see Section 3.2, “::CLASS”) within
the current program package or added to the current package using the addClass() method
(Section 5.1.6.3, “addClass”.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with
a :REQUIRES directive or added to the current Package instance using the addPackage()
method (Section 5.1.6.3, “addClass”).

3. The local environment directory specific to the current interpreter instance. The local environment
includes process-specific objects such as the .INPUT and .OUTPUT objects. You can directly
access the local environment directory by using the .LOCAL environment symbol. (See
Section 6.2, “The Local Directory ((LOCAL)".)

4. The global environment directory. The global environment includes all permanent Rexx
objects such as the Rexx supplied classes ((ARRAY and so on) and constants such as .TRUE
and .FALSE. You can directly access the global environment by using the .ENVIRONMENT
environment symbol (see Section 6.1, “The Environment Directory ((ENVIRONMENT)”). Entries

34

Message Instructions

in the global environment directory can also be accessed via the VALUE built-in function (see
Section 7.4.71, “VALUE") by using a null string for the selector argument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-in
environment objects (Chapter 6, Rexx Runtime Objects). The currently defined built-in objects
are .RS, .LINE, .METHODS, .ROUTINES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

@

You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that
you place in either directory include at least one period in the entry name.

Example:

/* establish settings directory */
.local~setentry("MyProgram.settings", .directory~new)

1.14. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a
message instruction if the main purpose of the message is to perform an action. You use a message
term (see Section 1.11.4, “Message Terms”) if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

>>-messageterm--+------------- Paofoccoscassosansoacoocassoaanos ><
+-=expression-+

If there is only a messageterm, the message is sent in exactly the same way as for a message term
(see Section 1.11.4, “Message Terms”). If the message yields a result object, it is assigned to the
sender's special variable RESULT. If you use the ~~ form of message term, the receiver object is used
as the result. If there is no result object, the variable RESULT is dropped (becomes uninitialized). A
message term using ~~ is sometimes referred to as a cascading message.

Example 1.34. Message instructions

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

35

Chapter 1. Open Object Rexx General Concepts

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example 1.35. Message instructions

person~age = 39 /* Same as person~"AGE="(39) */
table[i] = 5 /* Same as table~"[]="(5,1) */

The expressions are evaluated in the order in which the arguments are passed to the method.
That is, the language processor evaluates the =expressaion first. Then it evaluates the argument
expressions within any [] pairs from left to right.

The extended assignment form may also be used with messaging terms.

Example 1.36. Message instructions

table[i] += 1 -- Same as table[i] = table[i] + 1
See Section 1.13.1, “Extended Assignments” for more details

1.15. Commands to External Environments

Issuing commands to the surrounding environment is an integral part of Rexx.

1.15.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You

can change the environment by using the ADDRESS instruction. You can find out the name of the
current environment by using the ADDRESS built-in function. The underlying operating system
defines environments external to the Rexx program. The environments selected depend on the caller.
Normally the default environment is the used shell, mostly "CMD" on Windows systems and "bash" on
Linux systems. If called from an editor that accepts subcommands from the language processor, the
default environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands
to make changes, test return codes to check that the subcommands have been processed as
expected, and display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx
language processor. See the Open Object Rexx: Programming Guide for a discussion of this
mechanism.

1.15.2. Commands

To send a command to the currently addressed environment, use a clause of the form:

36

Commands

expression;

The expression (which must not be an expression that forms a valid message instruction— see
Section 1.14, “Message Instructions”) is evaluated, resulting in a character string value (which can be
the null string), which is then prepared as appropriate and submitted to the environment specified by
the current ADDRESS setting.

The environment then processes the command and returns control to the language processor after
setting a return code. A return code is a string, typically a number, that returns some information
about the command processed. A return code usually indicates if a command was successful but can
also represent other information. The language processor places this return code in the Rexx special
variable RC. See Chapter 17, Special Variables.

In addition to setting a return code, the underlying system can also indicate to the language processor
if an error or failure occurred. An error is a condition raised by a command to which a program that
uses that command can respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a command to which
a program that uses that command cannot respond, for example, a command that is not executable or
cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or
FAILURE is ON (see Chapter 11, Conditions and Condition Traps). They can also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is
the default— see Section 2.29, “TRACE".

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment
symbol .RS has the value -1. When a command error occurs, .RS has a value of 1. If the command
did not have a FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the
sequence:

Example 1.37. Commands

fname = "CHESHIRE"
exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

Example 1.38. Commands

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or
a nonzero value if the file could not be found in the current directory.

37

Chapter 1. Open Object Rexx General Concepts

Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Example 1.39. Commands - Windows

delete "*".lst /* not "multiplied by" */
var.003 = anyvalue

type "var.003" /* not a compound symbol */
w = any

dir"/w" /* not "divided by ANY" */

Example 1.40. Commands - Linux

rm "*". 1st /* not "multiplied by" */
var.003 = anyvalue

cat "var.003" /* not a compound symbol */
w = any

1s "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example,
the clause

myfile~linein
causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)

would submit the return value from the linein method as a command to the external environment.

1.16. Using Rexx on Windows and Unix

Rexx programs can call other Rexx programs as external functions or subroutines with the CALL
(Section 2.3, “CALL”) instruction.

If a program is called with the CALL (Section 2.3, “CALL”) instruction, the program runs in the same
process as the calling program. If you call another program by a Rexx command, the program is
executed in a new process and therefore does not share .environment, .local, or the Windows/Unix
shell environment.

38

Using Rexx on Windows and Unix

Example 1.41. Calling other Rexx scripts

/* runs in the same process */
/* runs in a new child process */
/* runs in a new detached process */

call "other.REX"
"rexx other.REX"
"start rexx other.REX"

When Rexx programs call other Rexx programs as commands, the return code of the command is
the exit value of the called program provided that this value is a whole number in the range -32768 to
32767. Otherwise, the exit value is ignored and the called program is given a return code of 0.

39

40

Chapter 2.

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case-dependent. The symbols if, If,
and iF all have the same effect. Note also that you can usually omit most of the clause delimiters (;)
shown because the end of a line implies them.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function.

A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT
instruction. The keyword THEN is also recognized in the body of an IF or WHEN clause. In other
contexts, keywords are not reserved and can be used as labels or as the names of variables (though
this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from
the subsequent token. One or more whitespace characters following VALUE are required to separate
the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"| |number

2.1. ADDRESS

>>-ADDRESS - =+ - == === === == - o e oo R ><
+-environment--+------------ +-+
| +-expression-+ |
R +--expressionl------ T
+-VALUE-+

41

Chapter 2. Keyword Instructions

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only
an expression or by using the ADDRESS instruction. (See Section 1.15, “Commands to External
Environments”.)

To send a single command to a specified environment, code an environment, a literal string or a
single symbol, which is taken to be a constant, followed by an expression. The environment name
is the name of an external procedure or process that can process commands. The expression is
evaluated to produce a character string value, and this string is routed to the environment to be
processed as a command. After execution of the command, environment is set back to its original
state, thus temporarily changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands processed in this way are
trapped or traced.

Example 2.1. Instructions - ADDRESS (Windows)

ADDRESS CMD "DIR C:\CONFIG.SYS"

Example 2.2. Instructions - ADDRESS (Linux)

ADDRESS "bash" "ls /usr/lib"

If you specify only environment, a lasting change of destination occurs: all commands (see
Section 1.15.2, “Commands”) that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is saved.

Assume that the environment for a Windows text editor is registered by the name EDIT:

Example 2.3. Instructions - ADDRESS environments

address CMD

"DIR C:\AUTOEXEC.BAT"

if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here
expressionl, which can be a variable name, is evaluated, and the resulting character string value
forms the name of the environment. You can omit the subkeyword VALUE if expression1 does not
begin with a literal string or symbol, that is, if it starts with a special character such as an operator
character or parenthesis.

Example 2.4. Instructions - ADDRESS environments

42

ARG

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"||number */

With no arguments, commands are routed back to the environment that was selected before the
previous change of the environment, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name (") is the same as using the
default environment.

The two environment names are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (Section 2.3, “CALL”") for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. (See Section 7.4.3, “"ADDRESS”.) The Open Object
Rexx: Programming Guide describes the creation of alternative subcommand environments.

2.2. ARG

>>-ARG--#-----mmm e T T ><
+-template_list-+

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns
them to variables. It is a short form of the instruction:

>>-PARSE UPPER ARG--+-==--=======n-- T TP ><
+-template_list-+

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Chapter 9, Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do
not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.

Example 2.5. Instructions - ARG

/* String passed is "Easy Rider" */
Arg adjective noun .

43

Chapter 2. Keyword Instructions

/* Now: ADJECTIVE contains "EASY" */
/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsing template_list so each template is selected in turn.

Example 2.6. Instructions - ARG

/* Function is called by FRED("data X",1,5) */
Fred: Arg string, numl, num2

/* Now: STRING contains "DATA X" */

/* NUM1 contains "1" */

/* NUM2 contains "5" */
Notes:

1. The ARG built-in function can also retrieve or check the arguments. See Section 7.4.4, "ARG
(Argument)”.

2. The USE ARG instruction (see Section 2.30, “USE”) is an alternative way of retrieving arguments.
USE ARG performs a direct, one-to-one assignment of argument objects to Rexx variables. You
should use this when your program needs a direct reference to the argument object, without string
conversion or parsing. ARG and PARSE ARG produce string values from the argument objects,
and the language processor then parses the string values.

2.3. CALL

To,ocooccooseoooa ar
v I
>>-CALL--+-+-name---+----4-cceccceaan-- E e +--;--><
| +-(expr)-+ +-expression-+
+-OFF--+-ANY--------ommmmmm o o +
| +-ERROR--------------- + |
| +-FAILURE------------- + |
| +-HALT---------mmm - - + |
| +-NOTREADY------------ + |
| +-USER- -usercondition-+
+-0ON--+-ANY-------mmoe oo Feomtmmm e e m s +-+
+-ERROR- == =< =---c-ocioc + +-NAME--trapname-+
+-FAILURE------------- +
+-HALT--------- oo - - +
+-NOTREADY------------ +

+-USER--usercondition-+

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

44

CALL

To call a routine, specify name, which must be a literal string or symbol that is taken as a constant.
The usercondition is a single symbol that is taken as a constant. The trapname is a symbol or string
taken as a constant. The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine
A function that is defined as part of the Rexx language.

An external routine
A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Section 7.2.1, “Search Order” for details on the different types
of external routines.

If name is a literal string (that is, specified in in quotation marks), the search for internal routines

is bypassed, and only a built-in function or an external routine is called. Note that built-in function
names are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase
characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is
evaluated before any of the argument expressions, and the value is the target of the CALL instruction.
The language processor does not translate the expression value into uppercase, so the evaluated
name must exactly match any label name or built-in function name. (See Section 1.12.3, “Labels” for a
description of label names.)

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

>>-result=name(----+------------ D R ><
+-expression-+

You can use any number of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or USE
ARG instruction or ARG built-in function in the called routine accesses these objects while the called
routine is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Chapter 7, Functions. The search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting at the label that matches
name in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution
of an internal routine.

Built-in routines
These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. (See Section 7.4.4, “ARG (Argument)”.)

45

Chapter 2. Keyword Instructions

You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments:

Example 2.7. Instructions - CALL

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

External routines
Users can write or use routines that are external to the language processor and the calling
program. You can code an external routine in Rexx or in any language that supports the system-
dependent interfaces. If the CALL instruction calls an external routine written in Rexx as a
subroutine, you can retrieve any argument strings with the ARG, PARSE ARG, or USE ARG
instructions or the ARG built-in function.

For more information on the search order, see Section 7.2.1, “Search Order”.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can
expose selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values, for example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from
the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in
the variable SIGL (in the caller's variable environment). This can be used as a debug aid because
it is possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example 2.8. Instructions - CALL

/* Recursive subroutine execution... */
arg z

call factorial z

say z"! =" result

exit

46

DO

factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */
if n=0 then return 1
call factorial n-1
return result * n

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

» The status of loops and other structures: Executing a SIGNAL within a subroutine is safe
because loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

« Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

* NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in Section 2.16,
“NUMERIC”) are saved and then restored on return. A subroutine can, therefore, set the precision,
for example, that it needs to use without affecting the caller.

» ADDRESS settings: The current and previous destinations for commands (see Section 2.1,
“ADDRESS") are saved and then restored on return.

» Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means
that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

» Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information. See Section 7.4.18,
“CONDITION".

* .RS value: The value of the .RS environment symbol. (See Section 6.16, “The Return Status
(.RS)”)

» Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see
Section 7.4.65, “TIME”), but because the time clock is saved across routine calls, a subroutine or
internal function can independently restart and use the clock without affecting its caller. For the
same reason, a clock started within an internal routine is not available to the caller.

2.4.DO

ScDl)ccodrccoccoosoosasn dboodbocoocooocoosooo dboodbocoococoococoosooas +--;-->
+-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

+---instruction--;--+-+

47

Chapter 2. Keyword Instructions

repetitor:
| --+-controll=expri--+----------- L R R R TR +-t-- |
| +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |
+-control2--0VER--collection----------mommmmm oo +
= () R B R T L LT e L +
=) (s g e +
conditional:

| = -+-WHILE--@XPrW-d----mo oo oo o oo oo oo

+-UNTIL--expru-+

DO groups instructions and optionally processes them repetitively. During repetitive execution, a
control variable (controll or control2) can be stepped through some range of values.

Notes:

1.

2.

The LABEL phrase, if used, must precede any repetitor or conditional.

The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of conditional expression supported by IF and WHEN, which is a list of
expressions separated by ",". Each subexpression must evaluate to either 0 or 1. The list of
expressions is evaluated left-to-right. Evaluation will stop with the first @ result and 0 will be
returned as the condition result. If all of the subexpressions evaluate to 1, then the condition result
is also 1.

The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the DO instruction itself).

The subkeywords WHILE, UNTIL, and OVER are reserved within a DO instruction in that they
act as expression terminators for other keywords. Thus they cannot be used as symbols in any
of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or exprf.
FOREVER is also reserved, but only if it immediately follows the keyword DO and is not followed
by an equal sign. However, parentheses around or within an expression can prevent these
keywords from terminating an expression. For example,

Example 2.9. Instructions - DO variable without parenthesis

48

DROP

do i = 1 while i < until
say 1
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.10. Instructions - DO variable with parenthesis

do i = 1 while (i < until)
say i
end

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

For more information, refer to Appendix A, Using DO and LOOP.

2.5. DROP
frococooooooooo +
v I
>>-DROP- - - -+-=NaME===+=F == === === === ><

+-(name) -+

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character
strings separated by whitespace, except that no parentheses are allowed. The list need not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to
drop a variable that is not known. If an exposed variable is named (see Section 2.7, "EXPOSE” and
Section 2.19, "PROCEDURE"), then the original variable is dropped.

Example 2.11. Instructions - DROP

49

Chapter 2. Keyword Instructions

Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example 2.12. Instructions - DROP

mylist="c d e"

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the
stem variable to a new, empty stem object.

Example:

Drop z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

SS>-EXIT--4+-----cccen-- B e ><
+-expression-+

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN (see Section 2.25, “RETURN”) and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to
the caller when the program stops.

Example 2.13. Instructions - EXIT

j=3
Exit j*4
/* Would exit with the string "12" */

If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

50

EXPOSE

You can also use EXIT within a method. The method is stopped immediately, and the result object,
if specified, is returned to the sender. If the method has previously issued a REPLY instruction (see
Section 2.24, “REPLY"), the EXIT instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. The returned string
must be a whole number whose value fits in a 16-bit signed integer (within the range -(2**15) to
(2**15-1)). If the conversion fails, no error is raised, and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned.

3. On Unix/Linux systems the returned value is limited to a numerical value between 0 and 255 (an
unsigned byte).

2.7. EXPOSE

>>-EXPOSE----+-NaMe---4-tF--;----ommmm oo ><
+-(name) -+

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object's variable
pool. (An object variable pool is a collection of variables that is associated with an object rather

than with any individual method.) Therefore, the values of existing variables are accessible, and any
changes are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the
method and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the
first instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than
once, or to specify a name that has not been used as a variable.

Example 2.14. Instructions - EXPOSE

/* Example of exposing object variables */

myobj = .myclass~new
myobj~c
myobj~d /* Would display "Z is: 120" */

51

Chapter 2. Keyword Instructions

::class myclass /* The ::CLASS directive */
/* (see Section 3.2, “::CLASS”) */
::method c /* The ::METHOD directive */
/* (see Section 3.4, “::METHOD”) */
expose z
z = 100 /* Would assign 100 to the object variable z */
return
::method d
expose z
z=z+20 /* Would add 20 to the same object variable z */
say "Z is:" z
return

You can expose an entire collection of compound variables (see Section 1.13.5, “Compound
Symbols”) by specifying their stem in the variable list or a subsidiary list. The variables are exposed for
all operations.

Example 2.15. Instructions - EXPOSE

expose j k c. d.

/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
/* variable pool, even if it did not */
/* previously exist. */

2.8. FORWARD

>>-FORWARD - =+ === === === = o b BB BB BB ooooao000e e .
+-CONTINUE-+ +-ARGUMENTS--expra------- +
| dho, ooooe + [
| v | |
+-ARRAY--(----expri-+--)-+

R B R R ><
+-MESSAGE - -exprm-+ +-CLASS--exprs-+ +-TO--exprt-+

You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwvarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object
for the forwarded message. The exprt is a literal string, constant symbol, or expression enclosed in

52

FORWARD

parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,
constant symbol, or expression enclosed in parentheses. The ARGUMENTS value must evaluate to a
Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce a set of arguments for
the forwarded message. It is an error to use both the ARRAY and the ARGUMENTS options on the
same FORWARD instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its value. The uppercase character string value of the
MESSAGE option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded
message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are raised in the calling
program (without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result,
the language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method.
For example, the FORWARD instruction can forward a message to a different target object, using the
same message name and arguments.

Example 2.16. Instructions - FORWARD

::method substr
forward to (self~string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

53

Chapter 2. Keyword Instructions

Example 2.17. Instructions - FORWARD

::method unknown
use arg msg, args
/* Forward to the string value */
/* passing along the arguments */
forward to (self~string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass's methods, passing the
same arguments. This is very common usage in object INIT methods.

Example 2.18. Instructions - FORWARD

::class savings subclass account

::method init
expose type penalty
forward class (super) continue /* Send to the superclass */
type = "Savings" /* Now complete initialization */
penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with
the next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD
>>-GUARD--+-0ON--#-----como e em oo - B T ><
| +-WHEN- -expression-+ |
o5 Ecodbccoccocococococoosooo +-+

+-WHEN- -expression-+

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents
other methods that also require exclusive use of the same variable pool from running on the same
object. If another method has already acquired exclusive access, the GUARD instruction causes the
issuing method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive
use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to 1 (true). If the
expression evaluates to 0 (false), GUARD waits until another method assigns or drops an object
variable (that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When

an object variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates to

true, the method resumes running. If the expression evaluates to false, GUARD resumes waiting.

54

Example 2.19. Instructions - GUARD

::method c
expose y
if y>0 then
return 1
else
return 0
::method d
expose z
guard on when z>0
self~c /* Reevaluated when Z changes */
say "Method D"

If you specify WHEN and the method has exclusive access to the object's variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive
access is reacquired before the WHEN expression is evaluated. Once the WHEN expression
evaluates to 1 (true), exclusive access is either retained (for GUARD ON WHEN) or released (for
GUARD OFF WHEN), and the method resumes running.

If the condition expression cannot be met, GUARD ON WHEN puts the program in a continuous
wait condition. This can occur in particular when several activities run concurrently. See
Section 12.4.3, “Guarded Methods” for more information.

>>-IF--expression--+---+--THEN--+---+--instruction-------------- >
+-; -+ +-; -+
B Fom e e ><
+-ELSE--+---+--instruction-+
+- -+

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in @ or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer="YES" then say "OK!"

55

Chapter 2. Keyword Instructions

else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

Example 2.20. Instructions - IF

If answer = "YES" Then
If name = "FRED" Then
say "OK, Fred."
Else
nop
Else
say "Why not?"

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate
to either @ or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first @
result and @ will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

Example 2.21. Instructions - IF

If answer~datatype('w'), answer//2 = 0 Then
say answer "is even"

Else
say answer "is odd"

The example above is not the same as using the following

Example 2.22. Instructions - IF

If answer~datatype('w') & answer//2 = 0 Then
say answer "is even"

Else
say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1. The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction

56

INTERPRET

itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is
provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be
ended by THEN, without a semicolon (;) being required.

2.11. INTERPRET

>>-INTERPRET - -€XPreSSion--; --------mmmm oo e oo oo ><

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such

as DO...END and SELECT...END must be complete. For example, a string of instructions being
interpreted cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless
it also contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example 2.23. Instructions - INTERPRET

/* INTERPRET example */

data="FRED"

interpret data "= 4"

/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"

interpret data /* Displays: */
/* Hello there! */
/* Hello there! */
/* Hello there! */
Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the
results you get.

57

Chapter 2. Keyword Instructions

Example 2.24. Instructions - INTERPRET

/* Here is a small Rexx program. */
Trace Int

name="Kitty"

indirect="name"

interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

3 *-* name="Kitty"
>L> "Kitty"
>>> "Kitty"
4 *-* indirect="name"
>L> "name"
>>> "name"
5 *-* interpret 'say "Hello"' indirect'"!"'
>L> "say "Hello""
>V> INDIRECT => "name"

>0> " " => "say "Hello" name"
Sl 000

>0> "" => "say "Hello" name"!""
>>> "Say IlHelloll namell | nn

5 *-* say "Hello" name"!"
>L> "Hello"
>V> NAME => "Kitty"

>0> " " => "Hello Kitty"
>L> n I n
>0> "" => "Hello Kitty!"

>>> "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and
another literal string. The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Because it is a new clause, it is traced as such (the
second * - * trace flag under line 5) and is then processed. Again a literal string is concatenated
to the value of a variable (NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function (see Section 7.4.71, “VALUE”) instead of the
INTERPRET instruction. The following line could, therefore, have replaced line 5 in the previous
example:

Example 2.25. Instructions - INTERPRET

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are
to be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive (see Chapter 3, Directives) within an INTERPRET instruction.

58

ITERATE

2.12. ITERATE

>>-ITERATE--+------ $osfosssssccsssascssosssaascssoossasassoooas ><
+-name-+

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just
as though the END clause had been encountered. The control variable, if any, is incremented and
tested, as usual, and the group of instructions is processed again, unless the DO or LOOP instruction
ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the
current repetitive loop. If name is specified, it must be the name of the control variable or the LABEL
name of a currently active loop, which can be the innermost, and this is the loop that is stepped. Any
active loops inside the one selected for iteration are ended (as though by a LEAVE instruction).

Example 2.26. Instructions - ITERATE

loop label MyLabelName i=1 to 4 /* label set to 'MYLABELNAME' */
if i=2 then iterate
say i
end myLabelName
/* Displays the numbers:
1
3
4
*/

Notes:

1. |If specified, name must match the symbol naming the control variable or LABEL name in the DO
or LOOP clause in all respects except the case. No substitution for compound variables is carried
out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used
to continue with an inactive loop.

3. If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

59

Chapter 2. Keyword Instructions

>>-LEAVE--+------ T T L T I ><
+-name-+

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.

Example 2.27. Instructions - LEAVE

max=5
do label myDoBlock /* define a label 'MYDOBLOCK' */
loop i=1 to max /* label defaults to control variable 'I' */

if i = 2 then iterate i
if 1 = 4 the leave myDoBlock
say 1

end i

say 'after looping' max 'times'
end myDoBlock
/* Displays the following

1

3

after looping 4 times
*/

Notes:

1. |If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables
is carried out when the comparison is made.

2. Aloop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

60

LOOP

>>-LO0P--+----cmmmmm o foofhocconooooooanoo e +o-p-->

+-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

+---instruction--; -+-+

repetitor:
| --+-controll=expri--+----------- B R B R +-t+-- |
| +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |
+-control2--0VER--collection---------cmommmm oo +
o[FIREYER=ocoocooc00000000000000000a0000000000000000000000a00050 +
o) (o) R e LT T T +
conditional:

| == =WHILE- - @XPIrW=d- - oo m oo o e e oo e e oo oo
+-UNTIL--expru-+

LOOP groups instructions and processes them repetitively. During repetitive execution, a control
variable (controll or control2) can be stepped through some range of values.

Notes:
1. The LABEL phrase, if used, must precede any repetitor or conditional.

2. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

3. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of conditional expression supported by IF and WHEN, which is a list of
expressions separated by ",". Each subexpression must evaluate to either @ or 1. The list of
expressions is evaluated left-to-right. Evaluation will stop with the first @ result and @ will be
returned as the condition result. If all of the subexpressions evaluate to 1, then the condition result

is also 1.

4. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

5. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the LOOP instruction itself).

6. The subkeywords WHILE, UNTIL, and OVER are reserved within a DO instruction in that they
act as expression terminators for other keywords. Thus they cannot be used as symbols in any

61

Chapter 2. Keyword Instructions

of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or exprf.
FOREVER is also reserved, but only if it immediately follows the keyword DO and is not followed
by an equal sign. However, parentheses around or within an expression can prevent these
keywords from terminating an expression. For example,

Example 2.28. Instructions - LOOP variable without parenthesis

loop i = 1 while i < until
say i
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.29. Instructions - LOOP variable with parenthesis

loop i = 1 while (i < until)
say i
end

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

For more information, refer to Appendix A, Using DO and LOOP.

2.15. NOP

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE
clause.

Example 2.30. Instructions - NOP

Select
when a=c then nop /* Do nothing */
when a>c then say "A > C"
otherwise say "A < C"

end

62

NUMERIC

@oe

Putting an extra semicolon instead of the NOP would merely insert a null clause, which would

be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and
is, therefore, a valid target for the THEN clause.

2.16. NUMERIC

>>-NUMERIC--+-DIGITS--+------------- Fooeoo---- T T ><
| +-expressionl-+ |
| +-SCIENTIFIC------------- + |
4+-FORM- 4= - - - e e e e - +-+
| +-ENGINEERING------------ + |
| e +--expression2-+ |
| +-VALUE-+ |
+-FUZZ--4==== === oicioi= - - S +

+-expression3-+

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 10, Numbers and Arithmetic.

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expressionl, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the ::OPTIONS directive (Section 3.5, “::OPTIONS”. Otherwise, the character string value
result of expression1 must evaluate to a positive whole number and must be larger than the
current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See
Section 7.4.27, “DIGITS”".

NUMERIC FORM
controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before
the decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly,
or it is taken from the character string result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See
Section 7.4.32, “FORM”.

63

Chapter 2. Keyword Instructions

NUMERIC FUZz
controls how many digits, at full precision, are ignored during a numeric comparison operation.
(See Section 10.4, “Numeric Comparisons”.) If you omit expression3, the default is 0 digits.
Otherwise, the character string value result of expression3 must evaluate to 0 or a positive whole
number rounded, if necessary, according to the current NUMERIC DIGITS setting, and must be
smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See
Section 7.4.34, “FUZZ".

@

The three numeric settings are automatically saved across internal subroutine and function calls.
See the CALL instruction (Section 2.3, “CALL") for more details.

2.17. OPTIONS

>>-OPTIONS--+------------ fecfeccccccccccccccccccccoososssoosooooes ><
+-expression-+
The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Options might control how the interpreter optimizes code, enforces
standards, enables implementation-dependent features, etc. Unrecognized words in the result are
ignored, since they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

>>-PARSE--+------- R B e >
+-UPPER-+ +-CASELESS-+
+-LOWER-+
S+ -ARG---=----=------ oo B R ><
+-LINEIN--------mmmmmmmm e oo + +-template_list-+
Feflllecccccccccccccccccccccee it
+-SOURCE---------------------- it
+-VALUE--+------------ +--WITH-+

| +-expression-+

64

PARSE

e

You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

PARSE assigns data from various sources to one or more variables according to the rules of parsing.
(See Chapter 9, Parsing.)

If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you
specify LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See Section 9.8.1,
“Parsing Several Strings” for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not
have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG

parses the strings passed to a program, routine, or method as input arguments. (See the ARG
instruction in Section 2.2, "ARG” for details and examples.)

@

Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to
a Rexx program, routine, or method with the ARG built-in function (see Section 7.4.4, “ARG
(Argument)”).

PARSE LINEIN

parses the next line of the default input stream. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

65

Chapter 2. Keyword Instructions

>>-PARSE VALUE LINEIN() WITH--#--------------- oo ><
+-template_list-+

If no line is available, program execution usually pauses until a line is complete. Use PARSE

LINEIN only when direct access to the character input stream is necessary. Use the PULL or

PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the built-in function LINES. See
Section 7.4.41, “LINES (Lines Remaining)” and Section 7.4.39, “LINEIN (Line Input)”.

PARSE PULL
parses the next string of the external data queue. If the external data queue is empty, PARSE
PULL reads a line of the default input stream (the user's terminal), and the program pauses, if
necessary, until a line is complete. You can add data to the head or tail of the queue by using the
PUSH and QUEUE instructions, respectively. You can find the number of lines currently in the
queue with the QUEUED built-in function. (See Section 7.4.48, “QUEUED”.) The queue remains
active as long as the language processor is active. Other programs in the system can alter the
queue and use it to communicate with programs written in Rexx. See also the PULL instruction in
Section 2.20, “PULL".

e

PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a
string that does not change while the program is running.

The source string contains operating system name, followed by either COMMAND, FUNCTION,
SUBROUTINE, or METHOD, depending on whether the program was called as a host command or
from a function call in an expression or using the CALL instruction or as a method of an object.
These two tokens are followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:

WindowsNT COMMAND C:\MYDIR\RexXTRY.CMD

or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

PARSE VALUE
parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

66

PROCEDURE

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a symbol that is valid
as a variable name, which means it cannot start with a period or a digit. Note that the variable
name is not changed unless it appears in the template, so that, for example:

PARSE VAR string wordl string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string.

PARSE UPPER VAR string wordl string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
» The string REXX-00Rexx_4.2.0(MT)_32-bit, if using the ooRexx interpreter at version 4,
release 2, modification 0, and compiled for 32-bit addressing mode.

» The language level description, for example 6.03.

» Three tokens that describe the language processor release date in the same format as the
default for the DATE built-in function (see Section 7.4.24, “DATE”), for example, "27 Sep 2007".

2.19. PROCEDURE

>>-PROCEDURE - -

+

I

| v [

+-EXPOSE- - - -+-name- - -+-+-+
+-(name) -+

PROCEDURE, within an internal routine (subroutine or function), protects the caller's variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller's) copy
of the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case
the variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it

67

Chapter 2. Keyword Instructions

must be the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the
values of existing variables are accessible, and any changes are persistent even on RETURN from
the routine. If the name is not enclosed in parentheses, it identifies a variable you want to expose
and must be a symbol that is a valid variable name, separated from any other name with one or more
whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to
specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the
caller's variables can be made accessible and can be changed, or new variables can be created. All
these changes are visible to the caller upon RETURN from the routine.

Example 2.31. Instructions - PROCEDURE

/* This is the main Rexx program */

j=1,; z.1="a"

call toft

say j km /* Displays "1 7 M" */

exit

/* This is a subroutine */

toft: procedure expose j k z.j
say j k z.j /* Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */
return

Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is not visible, so Z.1 is
not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example 2.32. Instructions - PROCEDURE

/* This is the main Rexx program */
j=1,;k=6;m=9

a :llj k mll

call test

exit

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */

68

PROCEDURE

say a j km
return

/* Displays "j k m

Example 2.33. Instructions - PROCEDURE

/* This is the main Rexx program */
c=11; d=12; e=13
Showlist="c d"
call Playvars
say cd e f

exit

/* but not E */

/* Displays "11 New 13 9" */

/* This is a subroutine */
Playvars: procedure expose (showlist) f

16 9" */

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),"New") /* Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
=9 /* F was explicitly exposed */
return

Example 2.34. Instructions - PROCEDURE

/* This is the main Rexx program */
a.=11; i=13; j=15

i=1i+1

C.5 = "FRED"

call lucky7

say a. a.1 1 j c. c.5

say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.
/* This exposes I, J, and all variables whose
/* names start with A. or C.

A.1="7" /* This sets A.1 in the caller-'s
/* environment, even if it did not
/* previously exist.

return

Specifying a stem as name exposes this stem and all possible compound variables whose names
begin with that stem. (See .)

*/
*/
*/
*/
*/

Variables can be exposed through several generations of routines if they are included in all

intermediate PROCEDURE instructions.

69

Chapter 2. Keyword Instructions

See the CALL instruction and function descriptions in Section 2.3, “CALL” and Chapter 7, Functions
for details and examples of how routines are called.

2.20. PULL

>>-PULL--4-----emcommmmn- L T P ><
+-template_list-+

PULL reads a string from the head of the external data queue or, if the external data queue is empty,
from the standard input stream (typically the keyboard). (See Chapter 14, Input and Output Streams
for a discussion of Rexx input and output.) It is a short form of the following instruction:

>>-PARSE UPPER PULL--#--------------- ooy ><
+-template_list-+

The current head of the queue is read as one string. Without a template_list specified, no further
action is taken and the string is thus effectively discarded. The template_list can be a single template
or list of templates separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-Z)
and then parsed into variables according to the rules described in Chapter 9, Parsing. Use the PARSE
PULL instruction if you do not desire uppercase translation.

@

If the current data queue is empty, PULL reads from the standard input (typically, the keyboard).
If there is a PULL from the standard input, the program waits for keyboard input with no prompt.

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user
enters.

If the external data queue is empty, a line is read from the default input stream and the program
pauses, if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been
processed. See ??7? .)

70

PUSH

The QUEUED built-in function (see Section 7.4.48, “QUEUED”) returns the number of lines currently in
the external data queue.

2.21. PUSH

>>-PUSH--+------o----- T T T ><
+-expression-+

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Chapter 14, Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is stacked.

Example 2.35. Instructions - PUSH

a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in Section 7.4.48, “QUEUED”) returns the number of lines
currently in the external data queue.

2.22. QUEUE

>>-QUEUE--+------------ L T ><
+-expression-+

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Chapter 14, Input and Output Streams for a discussion of Rexx
input and output.)

If you do not specify expression, a null string is queued.

Example 2.36. Instructions - QUEUE

a="Toft"
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

71

Chapter 2. Keyword Instructions

The QUEUED built-in function (described in Section 7.4.48, “QUEUED”) returns the number of lines
currently in the external data queue.

2.23. RAISE

>>-RAISE--+-condition------------ L e B ><
+-ERROR- -errorcode----- + +-| options |-+
+-FAILURE--failurecode-+
+-SYNTAX- -number------- +
+-USER--usercondition- -+
+-PROPAGATE------------ +
options:
[B Fommmmeaaa - >
+-ADDITIONAL--expra------ + +-DESCRIPTION--exprd-+
| +-, - +
| v |

|
|
+-ARRAY--(----expri-+--)-+

+-| EXIT |---------- +
Soodhoccooooooooooooooos S S Sy SR Sy
+-RETURN- - ---- +ot
+-exprr-+
EXIT:
| o BT otbeosoass $occooooccoonocoonocno0ocso0000000000000000000 S
+-expre-+

e

You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in any
order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Chapter 11, Conditions and Condition Traps for details of
the actions taken when conditions are raised. The RAISE instruction can raise all conditions that can
be trapped.

If you specify condition, it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated return code as
errorcode or failurecode, respectively. These can be literal strings, constant symbols, or expressions

72

RAISE

enclosed in parentheses. If you specify an expression enclosed in parentheses, a subexpression, the
language processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn.
The number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor evaluates the expression
to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition.
This can be a literal string or a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal
string, constant symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimension
Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce an array object that
supplies additional object information associated with the condition. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information as an array of values. It is an error to use both the ARRAY option and the ADDITIONAL
option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or

an expression enclosed in parentheses. If you specify an expression enclosed in parentheses,

the language processor evaluates the expression to obtain its character string value. This is the
description associated with the condition. The "D" option of the CONDITION built-in function and the
DESCRIPTION entry of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive
string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr

or expre, respectively, to produce a result object that is passed back to the caller or sender as if it
were a RETURN or EXIT result. The expre or exprr is a literal string, constant symbol, or expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its character string value. If you do not specify exprr or
expre, no result is passed back to the caller or sender. In either case, the effect is the same as that

of the RETURN or EXIT instruction (see Section 2.25, “/RETURN"). Following the return or exit, the
appropriate action is taken in the caller or sender (see Section 11.1, “Action Taken when a Condition
Is Not Trapped”). If specified, the result value can be obtained from the RESULT entry of the condition
object.

Example 2.37. Instructions - RAISE

73

Chapter 2. Keyword Instructions

raise syntax 40 /* Raises syntax error 40 */
raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */
/* Passing two substitution values */
raise syntax (errnum) /* Uses the value of the variable ERRNUM */
/* as the syntax error number */
raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again
in the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example 2.38. Instructions - RAISE

signal on syntax

a = n XyZ n
c = a+2 /* Raises the SYNTAX condition */
exit
syntax:
raise propagate /* Propagates SYNTAX information to caller */

2.24. REPLY

>>-REPLY--+-------=----- B R R E R T T ><
+-expression-+

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control,
and possibly a result, to its caller to the point from which the message was sent; meanwhile, the
method issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If
you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues
an EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example 2.39. Instructions - REPLY

reply 42 /* Returns control and a result */
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.

74

RETURN

2. A method can execute only one REPLY instruction.

3. When the method issuing the REPLY instruction is the only active method on the current thread
with exclusive access to the object's variable pool, the method retains exclusive access on the
new thread. When other methods on the thread also have access, the method issuing the REPLY
releases its access and reacquires the access on the new thread. This might force the method to
wait until the original activity has released its access.

See Chapter 12, Concurrency for a complete description of concurrency.

2.25. RETURN

>>-RETURN--+------------ e ><
+-expression-+

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point
of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run. (See Section 2.6, “EXIT".)

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the
Rexx special variable RESULT is set to the value of expression. If you omit expression, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at the time of the
CALL (for example, tracing and addresses) are also restored. (See Section 2.3, “CALL".)

If a function call is active, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point
where the function was called. See the description of functions in Chapter 7, Functions for more
details.

If a method is processed, the language processor evaluates expression (if any) and returns control to
the point from which the method's activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable RESULT if a return expression is specified. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed)
after expression is evaluated and before the result is used or assigned to RESULT.

@

If the RETURN statement causes the program to return to the operating system on a Unix/Linux
system the value returned is limited to a numerical value between 0 and 255 (an unsigned byte).
If no expression is supplied then the default value returned to the operating system is zero.

75

Chapter 2. Keyword Instructions

2.26. SAY

SN/ cotbaoccnacocoon B L ><
+-expression-+

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output. The string value of the expression result is written to the default
character output stream. The resulting string can be of any length. If you omit expression, the null
string is written.

The SAY instruction is a shorter form of the following instruction:

>>-CALL LINEOUT, --+------------ L ><
+-expression-+

except that:
« SAY does not affect the special variable RESULT.
 If you use SAY and omit expression, a null string is used.

¢ CALL LINEOUT can raise NOTREADY; SAY will not.

See Section 7.4.40, “LINEOUT (Line Output)” for details of the LINEOUT function.

Example 2.40. Instructions - SAY

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream (.OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. SELECT

76

SELECT

>>-SELECT--#------------- o e >
+-LABEL - -name -+

B T T T T +
v I
>----WHEN--expression--+---+--THEN--+---+--instruction--;-+------ >
+-; -+ +-; -+
D e +-END-+--------+-;-><
+-OMHERWISE - —-h- - —-h-—ch— - - - - -+ +--name--+
e R T + |
| v [

+---instruction--;-+-+

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in @ or 1. If the result is 1, the
instruction following the associated THEN (which can be a complex instruction such as IF, DO, LOOP,
or SELECT) is processed and control is then passed to the END. If the result is 0, control is passed to
the next WHEN clause.

If none of the WHEN expressions evaluates to 1, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example 2.41. Instructions - SELECT

balance=100
check=50
balance = balance - check
Select
when balance > 0 then
say "Congratulations! You still have" balance "dollars left."
when balance = 0 then do
say "Warning, Balance is now zero! STOP all spending."
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end
Otherwise do
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end
end /* Select */

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate
to either @ or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first @
result and @ will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

77

Chapter 2. Keyword Instructions

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0 (.false).

a

Example 2.42. Instructions - SELECT

select
when answer~datatype('w'), answer//2 = 0 Then
say answer "is even"
when answer~datatype('w'), answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

The example above is not the same as using the following

select
when answer~datatype('w') & answer//2 = 0 Then
say answer "is even"
when answer~datatype('w') & answer//2 = 1 Then
say answer "is odd"
otherwise
say answer "is not a number"
end

Notes:

1.

The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction

itself.

A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be

ended by the THEN without a semicolon (;).

2.28. SIGNAL

>3- ST GNAL - = = == = == == o e e e oo
>--+-labelname--------------------oe - e ><
B +--expression------------- oo +
| +-VALUE-+ |
+-0FF--4-ANY---------ommmooo R R +
| +-ERROR--------------- b |
| +-FAILURE------------- + |
| +-HALT----------om--- + |
I +-LOSTDIGITS---------- +
| +-NOMETHOD------------ + |
| +-NOSTRING------------ + |

78

TRACE

| +-NOTREADY - ---=------- i I
[+-NOVALUE- - = -=-----=- + |
[+-SYNTAX=-------mmmm- ¥ I
[+-USER- -usercondition-+
+-ON-=+-ANY- === - mmmmmmmmo - R et
+-ERROR--------------- + +-NAME--trapname-+
+-FAILURE - ---- ===~ +
FUNTYNIS S "
+-LOSTDIGITS---------- +
+-NOMETHOD -~ === = = === == o
+-NOSTRING- - - - - == === "
+-NOTREADY - - = <<= <= =~ +
+-NOVALUE - <= <= <= <= == +
+SYNTAX- - - mmmmmmmmme - "

+-USER--usercondition-+

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character
string result of evaluating the expression after VALUE. The labelname you specify must be a literal
string or symbol that is taken as a constant. If you specify a symbol for labelname, the search looks
for a label with uppercase characters. If you specify a literal string, the search uses the literal string
directly. You can locate label names with lowercase letters only if you specify the label as a literal
string with the same case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match
exactly. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character or parenthesis. All
active pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended
and cannot be resumed. Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as constants. The trapname is
a string or symbol taken as a constant.

Example 2.43. Instructions - SIGNAL
Signal fred; /* Transfer control to label FRED below */
Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of
a transfer of control to a label.

2.29. TRACE

79

Chapter 2. Keyword Instructions

>>-TRACE--+-+-------- o mm e e e emaaaa L ><
| +-number -+ |
| +-Normal-------- + |
Fotmmme e e aa Feombmmm e e e o +-+
| +------- + | +-All----------- +
| Vv | | +-Commands------ +
+----- ?---+-+ +-Error--------- +
+-Failure------- +
+-Intermediates-+
+-Labels-------- +
+-0ff----------- +
+-Results------- +
Or, alternatively:
>>-TRACE--+------cmmmm e mmmeee o am B R T T ><
+-string---------------- +
+-symbol---------------- +
S +--expression-+

+-VALUE-+

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing
of a Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions
of clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise
than that of other Rexx instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the language processor while
the program is running.)

TRACE cannot be used in the Rexx macrospace. See Section B.8, “Trace in Macrospace”.

If specified, the number must be a whole number.
The string or expression evaluates to:

e A numeric option

» One of the valid prefix or alphabetic character (word) options described in Section 2.29.1, “Trace
Alphabetic Character (Word) Options”

* Null

The symbol is taken as a constant and is therefore:

* A numeric option

» One of the valid prefix or alphabetic character (word) options described in Section 2.29.1, “Trace
Alphabetic Character (Word) Options”

80

Trace Alphabetic Character (Word) Options

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin
with a symbol or a literal string, that is, if it starts with a special character, such as an operator or
parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.
Commands
Traces all commands before execution. If the command results in an error or failure (see
Section 1.15.2, “Commands”), tracing also displays the return code from the command.
Error
Traces any command resulting in an error or failure after execution (see Section 1.15.2,
“Commands”), together with the return code from the command.
Failure

Traces any command resulting in a failure after execution (see Section 1.15.2, “Commands”),
together with the return code from the command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine
calls and transfers of control because of the SIGNAL instruction.

Normal
Traces any failing command after execution, together with the return code from the command.
This is the default setting.

For the default Windows command processor, an attempt to enter an unknown command raises

a FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

Off
Traces nothing and resets the special prefix option (described later) to OFF.

Results
Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

81

Chapter 2. Keyword Instructions

2.29.2. Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix
of ? causes interactive debugging to be switched on. (See Chapter 15, Debugging Aids for full details
of this facility.) When interactive debugging is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error, that is, a nonzero return code or explicit setting of the
error condition by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out
of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:
« Entering TRACE O turns off all tracing.

« Entering TRACE with no options restores the defaults—it turns off interactive debugging but
continues tracing with TRACE Normal (which traces any failing command after execution).

» Entering TRACE ? turns off interactive debugging and continues tracing with the current option.

« Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.

Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Chapter 15, Debugging Aids for further information.) However, if the option is a negative
whole number (or an expression that evaluates to a negative whole number), all tracing, including
debug pauses, is temporarily inhibited for the specified number of clauses. For example, TRACE -100
means that the next 100 clauses that would usually be traced are not displayed. After that, tracing
resumes as before.

2.29.4. Tracing Tips

* When a loop is traced, the DO clause itself is traced on every iteration of the loop.

* You can retrieve the trace actions currently in effect by using the TRACE built-in function (see
Section 7.4.66, “TRACE").

« The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

« Trace actions are automatically saved across subroutine, function, and method calls. See
Section 2.3, “CALL” for more details.

82

The Format of Trace Output

One of the most common traces you will use is:

Example 2.44. Instructions - TRACE

TRACE 7R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

2.29.5. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth
of nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing whitespace characters are apparent. Any control
codes in the data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to
avoid screen interference. Results other than strings appear in the string representation obtained by
sending them a STRING message. The resulting string is enclosed in parentheses. The line number
in the program precedes the first clause traced on any line. All lines displayed during tracing have a
three-character prefix to identify the type of data being traced. These can be:

*_ %

Identifies the source of a single clause, that is, the data actually in the program.

+++
Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>I>
Identifies an entry to a routine or method. This trace entry will only appear if tracing is enabled
using the ::OPTIONS directive using TRACE A, TRACE R, or TRACE I.

>>>
Identifies the result of an expression (for TRACE R) or the value returned from a subroutine call, or
a value evaluated by execution of a DO loop.

>=>
Identifies a variable assignment or a message assignment result. The trace message includes
both the name of the assignment target and the assigned value. Assignment trace lines are
displayed by assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as
well as control variable updates for DO and LOOP instructions.

>.>
Identifies the value assigned to a placeholder during parsing (see Section 9.1.2, “The Period as a
Placeholder”).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>
Identifies a value used as a function, subroutine, or message argument.

83

Chapter 2. Keyword Instructions

>C>
The data traced is the original name of the compound variable and the name of a compound
variable, after the name has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the variable in uppercase
characters.

SE>
The data traced is the name and value of an environment symbol.

SF>
The data traced is the name and result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

SM>
The data traced is the name and result of an object message.

>0>
The data traced is the name and result of an operation on two terms.

>p>
The data traced is the name and result of a prefix operation.

SV
The data traced is the name and contents of a variable.

e

The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the
assignment topic. The data to the right of the marker is the assigned value.

The character ? could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. USE
ey e +
\Y
>>-USE--H+------cmmm- B Y = Podhococooonooosoo0000o0000 ><
+-- STRICT--+ +-name-+---------- oot

+-=--expr--+

84

USE

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables or message term assignments.

Each name must be a valid variable name. The names are assigned from left to right. For each name
you specify, the language processor assigns it a corresponding argument from the program, routine,
function, or method call. If there is no corresponding argument, name is assigned the value of expr. If
expr is not specified for the given argument, the variable name is dropped. If the assignment target is
a messaging term, no action is taken for omitted arguments.

A USE ARG instruction can be processed repeatedly and it always accesses the same current
argument data.

If expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string, a
constant expression, or an expression enclosed in parentheses.

The names may be any valid symbol or message term which can appear on the left side of an
assignment statement (See Section 1.13, “Assignments and Symbols”).

The STRICT options imposes additional constraints on argument processing. The number of
arguments must match the number of names, otherwise an error is raised. An argument may be
considered optional if expr has been specified for the argument.

The ellipsis ("...") can be given in place of the last variable in the USE STRICT ARG statement and
indicates that more arguments may follow. It allows defining a minimum amount of arguments that
must be supplied or for which there are default values defined and that may be followed optionally by
any additional arguments.

Example 2.45. Instructions - USE

/* USE Example */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, numl, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */

stem.1 = "Value"

array = .array~of("Item")

say "Before subroutine:" stem.l1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array

say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
Use Arg substem., subarray

substem.1 = "Newvalue"
subarray[1] = "NewItem"
Return

85

Chapter 2. Keyword Instructions

/* USE STRICT Example */
/* FRED("Ogof X",1) calls function */
Fred: use strict arg string, numl, num2=4

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "4" */

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example 2.46. Instructions - USE

call test "one"

call test "one", "two"

call test "one", "two", "three"

call test "one", , "three", "four", "five"
exit

test: procedure /* a minimum of one argument must be supplied */
use strict arg vi, v2="zwei",
say "There are ["arg()"] argument(s); vi,v2=["v1",6 "v2"]"
do i=3 to arg()
Say n arg #Il i":["arg(i)"]"
end
say n__mn
return

Output:

There are [1] argument(s); vi1,v2=[one,zwei]

There are [2] argument(s); vil,v2=[one, two]

There are [3] argument(s); vi1,v2=[one, two]
arg # 3=[three]

There are [5] argument(s); vi1,v2=[one,zwei]
arg # 3=[three]
arg # 4=[four]
arg # 5=[five]

The assignment targets may be any term that can be on the left side of an assignment statement.

Example 2.47. Instructions - USE
expose myArray myDirectory

use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)

86

USE

myDirectory~name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function (see Section 7.4.4, "ARG
(Argument)”). The ARG and PARSE ARG instructions are alternative ways of retrieving arguments.
ARG and PARSE ARG access the string values of arguments. USE ARG performs a direct, one-to-
one assignment of arguments. This is preferable when you need direct access to an argument, without
translation or parsing. USE ARG also allows access to both string and non-string argument objects;
ARG and PARSE ARG convert the arguments to values before parsing.

87

88

Chapter 3.

Directives

A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first
directive instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program's classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

3.1. ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

>>-::ATTRIBUTE--name--+----- Pocooooo TOOO0000 Rl i POOOO000000 =
+-GET-+ +-CLASS-+ +-ABSTRACT-+
+-SET-+

+-PUBLIC--+ +-GUARDED---+ +-UNPROTECTED-+
Socdbocccccaas Pocdbocccccccaas Hocdboccccccccaaas foccccccccccccccsaas >

+-PRIVATE-+ +-UNGUARDED-+ +-PROTECTED---+

Socdbocccccccccccaas T ><
+-EXTERNAL -spec-+

The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor
method allows an object instance variable to be retrieved or assigned a value. ::ATTRIBUTE can
create an attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid
Rexx variable name. The ::ATTRIBUTE directive creates methods in the class specified in the most
recent ::CLASS directive. If no ::CLASS directive precedes an ::ATTRIBUTE directive, the attribute
methods are not associated with a class but are accessible to the main (executable) part of a program
through the .METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method
name not associated with a class. See Section 6.14, “The METHODS Directory (METHODS)” for
more details.

If you do not specify either SET or GET, ::ATTRIBUTE will create two attribute methods with the

names name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

Example 3.1. ATTRIBUTE directive equivalent code

::method "NAME=" /* attribute set method