
ooRexx Documentation 4.2

Open Object Rexx™
Reference

W. David Ashley

Rony G. Flatscher

Mark Hessling

Rick McGuire

Lee Peedin

Oliver Sims

Jon Wolfers

Open Object Rexx™

ooRexx Documentation 4.2 Open Object Rexx™
Reference
Edition 1

Author W. David Ashley
Author Rony G. Flatscher
Author Mark Hessling
Author Rick McGuire
Author Lee Peedin
Author Oliver Sims
Author Jon Wolfers

Copyright © 2005-2014 Rexx Language Association. All rights reserved.

Portions Copyright © 1995, 2004 IBM Corporation and others. All rights reserved.

This documentation and accompanying materials are made available under the terms of the Common
Public License v1.0 which accompanies this distribution. A copy is also available as an appendix to
this document and at the following address: http://www.oorexx.org/license.html.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

Neither the name of Rexx Language Association nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

http://www.oorexx.org/license.html

iii

Preface xv
1. Document Conventions .. xv

1.1. Typographic Conventions ... xv
1.2. Pull-quote Conventions ... xvi
1.3. Notes and Warnings .. xvii

2. How to Read the Syntax Diagrams ... xviii
3. Getting Help and Submitting Feedback ... xix

3.1. The Open Object Rexx SourceForge Site ... xx
3.2. The Rexx Language Association Mailing List .. xxi
3.3. comp.lang.rexx Newsgroup ... xxi

4. Related Information ... xxi

1. Open Object Rexx General Concepts 1
1.1. What Is Object-Oriented Programming? ... 1
1.2. Modularizing Data ... 1
1.3. Modeling Objects .. 3
1.4. How Objects Interact ... 4
1.5. Methods ... 4
1.6. Polymorphism ... 5
1.7. Classes and Instances .. 5
1.8. Data Abstraction ... 7
1.9. Subclasses, Superclasses, and Inheritance .. 7
1.10. Structure and General Syntax .. 8

1.10.1. Characters ... 8
1.10.2. Whitespace .. 9
1.10.3. Comments ... 9
1.10.4. Tokens ... 11
1.10.5. Implied Semicolons .. 16
1.10.6. Continuations ... 17

1.11. Terms, Expressions, and Operators ... 17
1.11.1. Terms and Expressions .. 17
1.11.2. Operators ... 18
1.11.3. Parentheses and Operator Precedence ... 21
1.11.4. Message Terms ... 23
1.11.5. Message Sequences .. 25

1.12. Clauses and Instructions ... 25
1.12.1. Null Clauses ... 26
1.12.2. Directives ... 26
1.12.3. Labels .. 26
1.12.4. Instructions ... 26
1.12.5. Assignments ... 27
1.12.6. Commands ... 27

1.13. Assignments and Symbols ... 27
1.13.1. Extended Assignments ... 28
1.13.2. Constant Symbols .. 29
1.13.3. Simple Symbols ... 29
1.13.4. Stems .. 29
1.13.5. Compound Symbols ... 32
1.13.6. Environment Symbols ... 34

1.14. Message Instructions ... 35
1.15. Commands to External Environments ... 36

1.15.1. Environment ... 36
1.15.2. Commands ... 36

1.16. Using Rexx on Windows and Unix ... 38

Open Object Rexx™

iv

2. Keyword Instructions 41
2.1. ADDRESS .. 41
2.2. ARG ... 43
2.3. CALL .. 44
2.4. DO ... 47
2.5. DROP ... 49
2.6. EXIT ... 50
2.7. EXPOSE ... 51
2.8. FORWARD ... 52
2.9. GUARD .. 54
2.10. IF ... 55
2.11. INTERPRET .. 57
2.12. ITERATE .. 59
2.13. LEAVE .. 59
2.14. LOOP ... 60
2.15. NOP ... 62
2.16. NUMERIC ... 63
2.17. OPTIONS ... 64
2.18. PARSE ... 64
2.19. PROCEDURE ... 67
2.20. PULL .. 70
2.21. PUSH ... 71
2.22. QUEUE ... 71
2.23. RAISE .. 72
2.24. REPLY ... 74
2.25. RETURN ... 75
2.26. SAY .. 76
2.27. SELECT ... 76
2.28. SIGNAL .. 78
2.29. TRACE ... 79

2.29.1. Trace Alphabetic Character (Word) Options ... 81
2.29.2. Prefix Option .. 82
2.29.3. Numeric Options ... 82
2.29.4. Tracing Tips ... 82
2.29.5. The Format of Trace Output ... 83

2.30. USE .. 84

3. Directives 89
3.1. ::ATTRIBUTE .. 89
3.2. ::CLASS .. 91
3.3. ::CONSTANT .. 93
3.4. ::METHOD .. 94
3.5. ::OPTIONS .. 96
3.6. ::REQUIRES ... 98
3.7. ::ROUTINE .. 99

4. Objects and Classes 103
4.1. Types of Classes .. 103

4.1.1. Object Classes ... 103
4.1.2. Mixin Classes ... 104
4.1.3. Abstract Classes .. 104
4.1.4. Metaclasses ... 104

4.2. Creating and Using Classes and Methods .. 107
4.2.1. Using Classes .. 108
4.2.2. Scope .. 109

v

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED 109
4.2.4. Method Names ... 109
4.2.5. Default Search Order for Method Selection .. 110
4.2.6. Defining an UNKNOWN Method .. 110
4.2.7. Changing the Search Order for Methods .. 111
4.2.8. Public and Private Methods .. 111
4.2.9. Initialization .. 112
4.2.10. Object Destruction and Uninitialization ... 113
4.2.11. Required String Values ... 113
4.2.12. Concurrency ... 115

4.3. Overview of Classes Provided by Rexx .. 115
4.3.1. The Class Hierarchy ... 115
4.3.2. Class Library Notes .. 117

5. The Builtin Classes 119
5.1. The Fundamental Classes ... 119

5.1.1. The Object Class ... 119
5.1.2. The Class Class ... 131
5.1.3. The String Class .. 141
5.1.4. The Method Class .. 187
5.1.5. The Routine Class .. 191
5.1.6. The Package Class .. 194
5.1.7. The Message Class .. 201

5.2. The Stream Classes .. 206
5.2.1. The InputStream Class ... 206
5.2.2. The OutputStream Class ... 208
5.2.3. The InputOutputStream Class ... 210
5.2.4. The Stream Class .. 211

5.3. The Collection Classes .. 231
5.3.1. Organization of the Collection Classes .. 232
5.3.2. The Collection Class ... 233
5.3.3. The MapCollection Class .. 238
5.3.4. The OrderedCollection Class .. 239
5.3.5. The SetCollection Class .. 244
5.3.6. The Array Class ... 245
5.3.7. The Bag Class ... 263
5.3.8. The CircularQueue Class .. 266
5.3.9. The Directory Class .. 274
5.3.10. The List Class .. 281
5.3.11. The Properties Class .. 289
5.3.12. The Queue Class ... 293
5.3.13. The Relation Class ... 302
5.3.14. The Set Class .. 310
5.3.15. The Stem Class ... 313
5.3.16. The Table Class ... 319
5.3.17. The IdentityTable Class .. 324
5.3.18. Sorting Ordered Collections .. 328
5.3.19. The Concept of Set Operations ... 331

5.4. The Utility Classes .. 336
5.4.1. The DateTime Class ... 336
5.4.2. The Alarm Class .. 354
5.4.3. The TimeSpan Class .. 356
5.4.4. The Comparable Class ... 365
5.4.5. The Orderable Class .. 366

Open Object Rexx™

vi

5.4.6. The Comparator Class .. 368
5.4.7. The CaselessComparator Class .. 369
5.4.8. The ColumnComparator Class .. 370
5.4.9. The CaselessColumnComparator Class ... 371
5.4.10. The DescendingComparator Class .. 372
5.4.11. The CaselessDescendingComparator Class ... 373
5.4.12. The InvertingComparator Class ... 375
5.4.13. The NumericComparator Class .. 376
5.4.14. The Monitor Class .. 377
5.4.15. The MutableBuffer Class ... 379
5.4.16. The RegularExpression Class ... 392
5.4.17. The RexxQueue Class .. 398
5.4.18. The Supplier Class ... 403
5.4.19. The StreamSupplier Class .. 406
5.4.20. The RexxContext Class .. 408
5.4.21. The StackFrame Class ... 411
5.4.22. The WeakReference Class .. 414
5.4.23. The Pointer Class ... 415
5.4.24. The Buffer Class .. 417
5.4.25. The File Class .. 418

6. Rexx Runtime Objects 431
6.1. The Environment Directory (.ENVIRONMENT) .. 431

6.1.1. The ENDOFLINE Constant (.ENDOFLINE) .. 431
6.1.2. The FALSE Constant (.FALSE) ... 431
6.1.3. The NIL Object (.NIL) ... 431
6.1.4. The TRUE Constant (.TRUE) .. 431

6.2. The Local Directory (.LOCAL) .. 432
6.3. The Debug Input Monitor (.DEBUGINPUT) ... 433
6.4. The Error Monitor (.ERROR) ... 433
6.5. The Input Monitor (.INPUT) ... 433
6.6. The Output Monitor (.OUTPUT) ... 433
6.7. The Trace Output Monitor (.TRACEOUTPUT) ... 433
6.8. The STDERR Stream (.STDERR) .. 433
6.9. The STDIN Stream (.STDIN) ... 434
6.10. The STDOUT Stream (.STDOUT) .. 434
6.11. The STDQUE Queue (.STDQUE) ... 434
6.12. The Rexx Context (.CONTEXT) ... 434
6.13. The Line Number (.LINE) ... 434
6.14. The METHODS Directory (.METHODS) .. 434
6.15. The ROUTINES Directory (.ROUTINES) ... 435
6.16. The Return Status (.RS) .. 435

7. Functions 437
7.1. Syntax .. 437
7.2. Functions and Subroutines .. 437

7.2.1. Search Order ... 438
7.2.2. Errors during Execution .. 442

7.3. Return Values ... 442
7.4. Built-in Functions ... 443

7.4.1. ABBREV (Abbreviation) .. 444
7.4.2. ABS (Absolute Value) ... 445
7.4.3. ADDRESS .. 445
7.4.4. ARG (Argument) ... 446
7.4.5. B2X (Binary to Hexadecimal) .. 447

vii

7.4.6. BEEP ... 448
7.4.7. BITAND (Bit by Bit AND) .. 449
7.4.8. BITOR (Bit by Bit OR) .. 449
7.4.9. BITXOR (Bit by Bit Exclusive OR) ... 450
7.4.10. C2D (Character to Decimal) .. 450
7.4.11. C2X (Character to Hexadecimal) ... 451
7.4.12. CENTER (or CENTRE) ... 452
7.4.13. CHANGESTR ... 452
7.4.14. CHARIN (Character Input) .. 453
7.4.15. CHAROUT (Character Output) .. 454
7.4.16. CHARS (Characters Remaining) ... 455
7.4.17. COMPARE ... 456
7.4.18. CONDITION ... 456
7.4.19. COPIES ... 458
7.4.20. COUNTSTR ... 458
7.4.21. D2C (Decimal to Character) .. 459
7.4.22. D2X (Decimal to Hexadecimal) .. 459
7.4.23. DATATYPE .. 460
7.4.24. DATE ... 461
7.4.25. DELSTR (Delete String) .. 466
7.4.26. DELWORD (Delete Word) ... 467
7.4.27. DIGITS ... 467
7.4.28. DIRECTORY .. 467
7.4.29. ENDLOCAL (Linux only) ... 468
7.4.30. ERRORTEXT ... 469
7.4.31. FILESPEC .. 469
7.4.32. FORM .. 470
7.4.33. FORMAT .. 470
7.4.34. FUZZ ... 472
7.4.35. INSERT .. 472
7.4.36. LASTPOS (Last Position) .. 473
7.4.37. LEFT .. 473
7.4.38. LENGTH .. 474
7.4.39. LINEIN (Line Input) ... 474
7.4.40. LINEOUT (Line Output) ... 475
7.4.41. LINES (Lines Remaining) .. 477
7.4.42. LOWER .. 478
7.4.43. MAX (Maximum) ... 478
7.4.44. MIN (Minimum) ... 479
7.4.45. OVERLAY .. 479
7.4.46. POS (Position) ... 480
7.4.47. QUALIFY .. 480
7.4.48. QUEUED .. 481
7.4.49. RANDOM ... 481
7.4.50. REVERSE .. 482
7.4.51. RIGHT ... 482
7.4.52. RXFUNCADD ... 483
7.4.53. RXFUNCDROP .. 483
7.4.54. RXFUNCQUERY .. 484
7.4.55. RXQUEUE ... 484
7.4.56. SETLOCAL (Linux only) .. 485
7.4.57. SIGN .. 486
7.4.58. SOURCELINE .. 486
7.4.59. SPACE ... 487

Open Object Rexx™

viii

7.4.60. STREAM .. 487
7.4.61. STRIP .. 495
7.4.62. SUBSTR (Substring) ... 496
7.4.63. SUBWORD .. 496
7.4.64. SYMBOL .. 497
7.4.65. TIME .. 497
7.4.66. TRACE ... 502
7.4.67. TRANSLATE .. 502
7.4.68. TRUNC (Truncate) .. 503
7.4.69. UPPER .. 504
7.4.70. USERID ... 504
7.4.71. VALUE ... 504
7.4.72. VAR ... 507
7.4.73. VERIFY .. 508
7.4.74. WORD ... 509
7.4.75. WORDINDEX ... 509
7.4.76. WORDLENGTH .. 509
7.4.77. WORDPOS (Word Position) .. 510
7.4.78. WORDS ... 510
7.4.79. X2B (Hexadecimal to Binary) .. 511
7.4.80. X2C (Hexadecimal to Character) ... 512
7.4.81. X2D (Hexadecimal to Decimal) .. 512
7.4.82. XRANGE (Hexadecimal Range) .. 513

8. Rexx Utilities (RexxUtil) 515
8.1. A Note on Error Codes .. 515
8.2. List of Rexx Utility Functions .. 515
8.3. RxMessageBox (Windows only) ... 520
8.4. RxWinExec (Windows only) ... 522
8.5. SysAddRexxMacro .. 523
8.6. SysBootDrive (Windows only) .. 523
8.7. SysClearRexxMacroSpace ... 524
8.8. SysCloseEventSem ... 524
8.9. SysCloseMutexSem .. 524
8.10. SysCls .. 525
8.11. SysCreateEventSem .. 525
8.12. SysCreateMutexSem ... 526
8.13. SysCreatePipe (Unix only) ... 526
8.14. SysCurPos (Windows only) .. 526
8.15. SysCurState (Windows only) .. 527
8.16. SysDriveInfo (Windows only) .. 528
8.17. SysDriveMap (Windows only) ... 528
8.18. SysDropFuncs ... 529
8.19. SysDropRexxMacro ... 529
8.20. SysDumpVariables .. 530
8.21. SysFileCopy .. 530
8.22. SysFileDelete .. 531
8.23. SysFileExists ... 532
8.24. SysFileMove (Windows only) ... 533
8.25. SysFileSearch ... 533
8.26. SysFileSystemType (Windows only) ... 535
8.27. SysFileTree ... 535
8.28. SysFork (Unix only) ... 538
8.29. SysFromUnicode (Windows only) ... 540

ix

8.30. SysGetErrortext ... 542
8.31. SysGetFileDateTime .. 542
8.32. SysGetKey .. 543
8.33. SysGetMessage (Unix only) ... 543
8.34. SysGetMessageX (Unix only) ... 544
8.35. SysIni (Windows only) ... 545
8.36. SysIsFile ... 547
8.37. SysIsFileCompressed (Windows only) .. 548
8.38. SysIsFileDirectory .. 549
8.39. SysIsFileEncrypted (Windows only) .. 549
8.40. SysIsFileLink ... 550
8.41. SysIsFileNotContentIndexed (Windows only) .. 550
8.42. SysIsFileOffline (Windows only) ... 551
8.43. SysIsFileSparse (Windows only) .. 551
8.44. SysIsFileTemporary (Windows only) ... 552
8.45. SysLinVer (Linux Only) .. 552
8.46. SysLoadFuncs ... 553
8.47. SysLoadRexxMacroSpace ... 553
8.48. SysMkDir .. 553
8.49. SysOpenEventSem .. 554
8.50. SysOpenMutexSem ... 554
8.51. SysPostEventSem ... 555
8.52. SysPulseEventSem (Windows only) ... 555
8.53. SysQueryProcess .. 556
8.54. SysQueryRexxMacro ... 557
8.55. SysReleaseMutexSem ... 557
8.56. SysReorderRexxMacro .. 558
8.57. SysRequestMutexSem ... 558
8.58. SysResetEventSem ... 559
8.59. SysRmDir .. 559
8.60. SysSaveRexxMacroSpace ... 561
8.61. SysSearchPath .. 561
8.62. SysSetFileDateTime .. 562
8.63. SysSetPriority .. 562
8.64. SysShutdownSystem (Windows only) ... 563
8.65. SysSleep .. 565
8.66. SysStemCopy ... 565
8.67. SysStemDelete .. 567
8.68. SysStemInsert ... 567
8.69. SysStemSort ... 568
8.70. SysSwitchSession (Windows only) ... 569
8.71. SysSystemDirectory (Windows only) ... 570
8.72. SysTempFileName .. 570
8.73. SysTextScreenRead (Windows only) .. 571
8.74. SysTextScreenSize (Windows only) ... 572
8.75. SysToUnicode (Windows only) ... 572
8.76. SysUtilVersion ... 574
8.77. SysVersion .. 575
8.78. SysVolumeLabel (Windows only) ... 575
8.79. SysWait (Unix only) ... 576
8.80. SysWaitEventSem ... 576
8.81. SysWaitNamedPipe (Windows only) ... 577
8.82. SysWinDecryptFile (Windows only) .. 577
8.83. SysWinEncryptFile (Windows only) ... 578

Open Object Rexx™

x

8.84. SysWinGetDefaultPrinter (Windows only) .. 579
8.85. SysWinGetPrinters (Windows only) .. 579
8.86. SysWinSetDefaultPrinter (Windows only) .. 579
8.87. SysWinVer (Windows only) .. 581

9. Parsing 583
9.1. Simple Templates for Parsing into Words ... 583

9.1.1. Message Term Assignments ... 585
9.1.2. The Period as a Placeholder ... 585

9.2. Templates Containing String Patterns .. 586
9.3. Templates Containing Positional (Numeric) Patterns ... 587

9.3.1. Combining Patterns and Parsing into Words .. 591
9.4. Parsing with Variable Patterns ... 592
9.5. Using UPPER, LOWER, and CASELESS ... 593
9.6. Parsing Instructions Summary .. 594
9.7. Parsing Instructions Examples ... 594
9.8. Advanced Topics in Parsing .. 596

9.8.1. Parsing Several Strings .. 596
9.8.2. Combining String and Positional Patterns .. 597
9.8.3. Conceptual Overview of Parsing ... 597

10. Numbers and Arithmetic 601
10.1. Precision ... 602
10.2. Arithmetic Operators .. 602

10.2.1. Power .. 603
10.2.2. Integer Division ... 603
10.2.3. Remainder .. 603
10.2.4. Operator Examples ... 603

10.3. Exponential Notation .. 604
10.4. Numeric Comparisons ... 605
10.5. Limits and Errors when Rexx Uses Numbers Directly .. 606

11. Conditions and Condition Traps 609
11.1. Action Taken when a Condition Is Not Trapped .. 612
11.2. Action Taken when a Condition Is Trapped ... 612
11.3. Condition Information ... 613

11.3.1. Descriptive Strings .. 614
11.3.2. Additional Object Information ... 615
11.3.3. The Special Variable RC ... 615
11.3.4. The Special Variable SIGL .. 615
11.3.5. Condition Objects ... 616

12. Concurrency 619
12.1. Early Reply ... 619
12.2. Message Objects ... 621
12.3. Default Concurrency .. 621

12.3.1. Sending Messages within an Activity ... 623
12.4. Using Additional Concurrency Mechanisms ... 624

12.4.1. SETUNGUARDED Method and UNGUARDED Option 625
12.4.2. GUARD ON and GUARD OFF .. 625
12.4.3. Guarded Methods ... 625
12.4.4. Additional Examples ... 626

13. The Security Manager 633
13.1. Calls to the Security Manager .. 633

13.1.1. Example ... 635

xi

14. Input and Output Streams 639
14.1. The Input and Output Model .. 639

14.1.1. Input Streams ... 640
14.1.2. Output Streams .. 640
14.1.3. External Data Queue .. 641
14.1.4. Default Stream Names .. 643
14.1.5. Line versus Character Positioning ... 644

14.2. Implementation .. 645
14.3. Operating System Specifics ... 645
14.4. Examples of Input and Output .. 645
14.5. Errors during Input and Output ... 647
14.6. Summary of Rexx I/O Instructions and Methods .. 647

15. Debugging Aids 649
15.1. Interactive Debugging of Programs .. 649
15.2. Debugging Aids ... 649
15.3. RXTRACE Variable ... 650

16. Reserved Keywords 651

17. Special Variables 653

18. Useful Services 655
18.1. Windows Commands ... 655
18.2. Linux Commands .. 655
18.3. Subcommand Handler Services ... 656

18.3.1. The RXSUBCOM Command ... 656
18.3.2. The RXQUEUE Filter .. 658

18.4. Distributing Programs without Source ... 660

A. Using DO and LOOP 663
A.1. Simple DO Group ... 663
A.2. Repetitive Loops ... 663

A.2.1. Simple Repetitive Loops ... 663
A.2.2. Controlled Repetitive Loops .. 663

A.3. Repetitive Loops over Collections .. 665
A.4. Conditional Phrases (WHILE and UNTIL) ... 666
A.5. LABEL Phrase .. 667
A.6. Conceptual Model of Loops ... 668

B. Migration 671
B.1. Error Codes and Return Codes ... 671
B.2. Error Detection and Reporting ... 671
B.3. Environment Variables .. 671
B.4. Stems versus Collections .. 671
B.5. Input and Output Using Functions and Methods ... 671
B.6. .Environment ... 672
B.7. Deleting Environment Variables ... 672
B.8. Trace in Macrospace .. 672

C. Error Numbers and Messages 673
C.1. Error List .. 673

C.1.1. Error 3 - Failure during initialization .. 673
C.1.2. Error 4 - Program interrupted ... 673
C.1.3. Error 5 - System resources exhausted .. 674
C.1.4. Error 6 - Unmatched "/*" or quote ... 674
C.1.5. Error 7 - WHEN or OTHERWISE expected ... 674

Open Object Rexx™

xii

C.1.6. Error 8 - Unexpected THEN or ELSE .. 675
C.1.7. Error 9 - Unexpected WHEN or OTHERWISE ... 675
C.1.8. Error 10 - Unexpected or unmatched END .. 676
C.1.9. Error 11 - Control stack full .. 676
C.1.10. Error 13 - Invalid character in program .. 677
C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF .. 677
C.1.12. Error 15 - Invalid hexadecimal or binary string ... 677
C.1.13. Error 16 - Label not found .. 678
C.1.14. Error 17 - Unexpected PROCEDURE .. 678
C.1.15. Error 18 - THEN expected .. 679
C.1.16. Error 19 - String or symbol expected ... 679
C.1.17. Error 20 - Symbol expected .. 681
C.1.18. Error 21 - Invalid data on end of clause .. 682
C.1.19. Error 22 - Invalid character string .. 683
C.1.20. Error 23 - Invalid data string ... 683
C.1.21. Error 24 - Invalid TRACE request ... 683
C.1.22. Error 25 - Invalid subkeyword found .. 683
C.1.23. Error 26 - Invalid whole number .. 686
C.1.24. Error 27 - Invalid DO syntax ... 687
C.1.25. Error 28 - Invalid LEAVE or ITERATE ... 687
C.1.26. Error 29 - Environment name too long .. 687
C.1.27. Error 30 - Name or string too long .. 688
C.1.28. Error 31 - Name starts with number or "." .. 688
C.1.29. Error 33 - Invalid expression result .. 689
C.1.30. Error 34 - Logical value not 0 or 1 .. 689
C.1.31. Error 35 - Invalid expression ... 690
C.1.32. Error 36 - Unmatched "(" or "[" in expression ... 692
C.1.33. Error 37 - Unexpected ",", ")", or "]" ... 692
C.1.34. Error 38 - Invalid template or pattern ... 693
C.1.35. Error 39 - Evaluation stack overflow .. 693
C.1.36. Error 40 - Incorrect call to routine ... 693
C.1.37. Error 41 - Bad arithmetic conversion ... 696
C.1.38. Error 42 - Arithmetic overflow/underflow .. 696
C.1.39. Error 43 - Routine not found ... 697
C.1.40. Error 44 - Function or message did not return data .. 697
C.1.41. Error 45 - No data specified on function RETURN .. 698
C.1.42. Error 46 - Invalid variable reference .. 698
C.1.43. Error 47 - Unexpected label .. 698
C.1.44. Error 48 - Failure in system service .. 698
C.1.45. Error 49 - Interpretation error .. 699
C.1.46. Error 88 - Invalid argument ... 699
C.1.47. Error 89 - Variable or message term expected ... 700
C.1.48. Error 90 - External name not found ... 700
C.1.49. Error 91 - No result object .. 701
C.1.50. Error 92 - OLE error .. 701
C.1.51. Error 93 - Incorrect call to method .. 702
C.1.52. Error 97 - Object method not found ... 706
C.1.53. Error 98 - Execution error ... 706
C.1.54. Error 99 - Translation error ... 708

C.2. RXSUBCOM Utility Program ... 710
C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect. 710
C.2.2. Error 117 - The RXSUBCOM parameter DROP is incorrect. 711
C.2.3. Error 118 - The RXSUBCOM parameter LOAD is incorrect. 711
C.2.4. Error 125 - The RXSUBCOM parameter QUERY is incorrect. 711

xiii

C.3. RXQUEUE Utility Program .. 711
C.3.1. Error 119 - The REXX queuing system is not initialized. 711
C.3.2. Error 120 - The size of the data is incorrect. .. 711
C.3.3. Error 121 - Storage for data queues is exhausted. ... 712
C.3.4. Error 122 - The name %1 is not a valid queue name. 712
C.3.5. Error 123 - The queue access mode is not correct. .. 712
C.3.6. Error 124 - The queue %1 does not exist. ... 712
C.3.7. Error 131 - The syntax of the command is incorrect ... 712
C.3.8. Error 132 - System error occurred while processing the command 712

C.4. RexxC Utility Program ... 712
C.4.1. Error 127 - The REXXC command parameters are incorrect. 712
C.4.2. Error 128 - Output file name must be different from input file name. 713
C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S] 713
C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check 713
C.4.5. Error 133 - SYNTAX: REXXC InProgramName [OutProgramName] [-s] 713

D. Notices 715
D.1. Trademarks .. 715
D.2. Source Code For This Document .. 716

E. Common Public License Version 1.0 717
E.1. Definitions .. 717
E.2. Grant of Rights ... 717
E.3. Requirements ... 718
E.4. Commercial Distribution .. 718
E.5. No Warranty ... 719
E.6. Disclaimer of Liability .. 719
E.7. General .. 719

F. Revision History 721

Index 723

xiv

xv

Preface
This book describes the Open Object Rexx Interpreter, called the interpreter or language processor in
the following, and the object-oriented Rexx language.

This book is intended for people who plan to develop applications using Rexx. Its users range from the
novice, who might have experience in some programming language but no Rexx experience, to the
experienced application developer, who might have had some experience with Object Rexx.

This book is a reference rather than a tutorial. It assumes you are already familiar with object-oriented
programming concepts.

Descriptions include the use and syntax of the language and explain how the language processor
"interprets" the language as a program is running.

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

xvi

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Notes and Warnings

xvii

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

Preface

xviii

2. How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The >>--- symbol indicates the beginning of a statement.

The ---> symbol indicates that the statement syntax is continued on the next line.

The >--- symbol indicates that a statement is continued from the previous line.

The --->< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the >--- symbol and end
with the ---> symbol.

• Required items appear on the horizontal line (the main path).

>>-STATEMENT--required_item------------------------------------><

• Optional items appear below the main path.

>>-STATEMENT--+---------------+--------------------------------><
 +-optional_item-+

• If you can choose from two or more items, they appear vertically, in a stack. If you must choose one
of the items, one item of the stack appears on the main path.

>>-STATEMENT--+-required_choice1-+-----------------------------><
 +-required_choice2-+

• If choosing one of the items is optional, the entire stack appears below the main path.

>>-STATEMENT--+------------------+-----------------------------><
 +-optional_choice1-+
 +-optional_choice2-+

• If one of the items is the default, it appears above the main path and the remaining choices are
shown below.

 +-default_choice--+
>>-STATEMENT--+-----------------+------------------------------><
 +-optional_choice-+

Getting Help and Submitting Feedback

xix

 +-optional_choice-+

• An arrow returning to the left above the main line indicates an item that can be repeated.

 +-----------------+
 V |
>>-STATEMENT----repeatable_item-+------------------------------><

A repeat arrow above a stack indicates that you can repeat the items in the stack.

• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax
diagram that appears in greater detail below the main diagram.

>>-STATEMENT--| fragment |-------------------------------------><

fragment:

|--expansion_provides_greater_detail----------------------------|

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but
you can type them in upper, lower, or mixed case. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

 +-,------+
 V |
>>-MAX(----number-+--)---><

3. Getting Help and Submitting Feedback
The Open Object Rexx Project has a number of methods to obtain help and submit feedback for
ooRexx and the extension packages that are part of ooRexx. These methods, in no particular order of
preference, are listed below.

Preface

xx

3.1. The Open Object Rexx SourceForge Site
The Open Object Rexx Project2 utilizes SourceForge3 to house the ooRexx Project4 source
repositories, mailing lists and other project features. Over time it has become apparent that the
Developer and User mailing lists are better tools for carrying on discussions concerning ooRexx and
that the Forums provided by SourceForge are cumbersome to use. The ooRexx user is most likely to
get timely replies from one of the mailing lists.

Here is a list of some of the most useful facilities provided by SourceForge.

The Developer Mailing List
You can subscribe to the oorexx-devel mailing list at ooRexx Mailing List Subscriptions5

page. This list is for discussing ooRexx project development activities and future interpreter
enhancements. It also supports a historical archive of past messages.

The Users Mailing List
You can subscribe to the oorexx-users mailing list at ooRexx Mailing List Subscriptions6 page.
This list is for discussing using ooRexx. It also supports a historical archive of past messages.

The Announcements Mailing List
You can subscribe to the oorexx-announce mailing list at ooRexx Mailing List Subscriptions7 page.
This list is only used to announce significant ooRexx project events.

The Bug Mailing List
You can subscribe to the oorexx-bugs mailing list at ooRexx Mailing List Subscriptions8 page. This
list is only used for monitoring changes to the ooRexx bug tracking system.

Bug Reports
You can create a bug report at ooRexx Bug Report9 page. Please try to provide as much
information in the bug report as possible so that the developers can determine the problem as
quickly as possible. Sample programs that can reproduce your problem will make it easier to
debug reported problems.

Documentation Feedback
You can submit feedback for, or report errors in, the documentation at ooRexx Documentation
Report10 page. Please try to provide as much information in a documentation report as possible.
In addition to listing the document and section the report concerns, direct quotes of the text
will help the developers locate the text in the source code for the document. (Section numbers
are generated when the document is produced and are not available in the source code itself.)
Suggestions as to how to reword or fix the existing text should also be included.

Request For Enhancement
You can suggest ooRexx features at the ooRexx Feature Requests11 page.

2 http://www.oorexx.org/
3 http://sourceforge.net/
4 http://sourceforge.net/projects/oorexx
5 http://sourceforge.net/mail/?group_id=119701
6 http://sourceforge.net/mail/?group_id=119701
7 http://sourceforge.net/mail/?group_id=119701
8 http://sourceforge.net/mail/?group_id=119701
9 http://sourceforge.net/tracker/?group_id=119701&atid=684730
10 http://sourceforge.net/tracker/?group_id=119701&atid=1001880
11 http://sourceforge.net/tracker/?group_id=119701&atid=684733

http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733
http://www.oorexx.org/
http://sourceforge.net/
http://sourceforge.net/projects/oorexx
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/mail/?group_id=119701
http://sourceforge.net/tracker/?group_id=119701&atid=684730
http://sourceforge.net/tracker/?group_id=119701&atid=1001880
http://sourceforge.net/tracker/?group_id=119701&atid=684733

The Rexx Language Association Mailing List

xxi

Patch Reports
If you create an enhancement patch for ooRexx please post the patch using the ooRexx Patch
Report12 page. Please provide as much information in the patch report as possible so that the
developers can evaluate the enhancement as quickly as possible.

Please do not post bug fix patches here, instead you should open a bug report and attach the
patch to it.

The ooRexx Forums
The ooRexx project maintains a set of forums that anyone may contribute to or monitor. They
are located on the ooRexx Forums13 page. There are currently three forums available: Help,
Developers and Open Discussion. In addition, you can monitor the forums via email.

3.2. The Rexx Language Association Mailing List
The Rexx Language Association14 maintains a mailing list for its members. This mailing list is only
available to RexxLA members thus you will need to join RexxLA in order to get on the list. The dues
for RexxLA membership are small and are charged on a yearly basis. For details on joining RexxLA
please refer to the RexxLA Home Page15 or the RexxLA Membership Application16 page.

3.3. comp.lang.rexx Newsgroup
The comp.lang.rexx17 newsgroup is a good place to obtain help from many individuals within the Rexx
community. You can obtain help on Open Object Rexx or on any number of other Rexx interpreters
and tools.

4. Related Information
See also: Open Object Rexx: Reference

12 http://sourceforge.net/tracker/?group_id=119701&atid=684732
13 http://sourceforge.net/forum/?group_id=119701
14 http://www.rexxla.org/
15 http://rexxla.org/
16 http://www.rexxla.org/rexxla/join.html
17 http://groups.google.com/group/comp.lang.rexx/topics?hl=en

http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en
http://sourceforge.net/tracker/?group_id=119701&atid=684732
http://sourceforge.net/forum/?group_id=119701
http://www.rexxla.org/
http://rexxla.org/
http://www.rexxla.org/rexxla/join.html
http://groups.google.com/group/comp.lang.rexx/topics?hl=en

xxii

Chapter 1.

1

Open Object Rexx General Concepts
The Rexx language is particularly suitable for:
• Application scripting

• Command procedures

• Application front ends

• User-defined macros (such as editor subcommands)

• Prototyping

• Personal computing

As an object-oriented language, Rexx provides data encapsulation, polymorphism, an object class
hierarchy, class-based inheritance of methods, and concurrency. It includes a number of useful base
classes and allows you create new object classes of your own.

Open Object Rexx is compatible with earlier Rexx versions, both non-object based Rexx and IBM's
Object Rexx. It has the usual structured-programming instructions, for example IF, SELECT, DO
WHILE, and LEAVE, and a number of useful built-in functions.

The language imposes few restrictions on the program format. There can be more than one clause on
a line, or a single clause can occupy more than one line. Any indentation scheme is allowed. You can,
therefore, code programs in a format that emphasizes their structure, making them easier to read.

There is no limit to the size of variable values, as long as all values fit into the storage available. There
are no restrictions on the types of data that variables can contain.

A language processor (interpreter) runs Rexx programs. That is, the program runs line by line and
word by word, without first being translated to machine language (compiled.) One of the advantages of
this is that you can fix the error and rerun the program faster than when using a compiler.

Note: Open Object Rexx also supplies the rexxc program that can be used to tokenize Rexx
programs. Tokenizing a program is not the same as compiling a program to machine language. See
Appendix A. Distributing Programs without Source of the Open Object Rexx Programming Guide for
details on rexxc and tokenizing.

1.1. What Is Object-Oriented Programming?

Object-oriented programming is a way to write computer programs by focusing not on the instructions
and operations a program uses to manipulate data, but on the data itself. First, the program simulates,
or models, objects in the physical world as closely as possible. Then the objects interact with each
other to produce the desired result.

Real-world objects, such as a company's employees, money in a bank account, or a report, are stored
as data so the computer can act upon it. For example, when you print a report, print is the action and
report is the object acted upon. Essentially, the objects are the "nouns", while the actions are the
"verbs".

1.2. Modularizing Data

Chapter 1. Open Object Rexx General Concepts

2

In conventional, structured programming, actions like print are often isolated from the data by placing
them in subroutines or modules. A module typically contains an operation for implementing one
simple action. You might have a PRINT module, a SEND module, an ERASE module. The data these
modules operate on must be constructed by the programmer and passed to the modules to perform an
action.

But with object-oriented programming, it is the data that is modularized. And each data module
includes its own operations for performing actions directly related to its data. The programmer that
uses the objects need only be aware of the operations an object performs and not how the data is
organized internally.

Figure 1.1. Modular Data—a Report Object

In the case of report, the report object would contain its own built-in PRINT, SEND, ERASE, and FILE
operations.

Object-oriented programming lets you model real-world objects—even very complex ones—precisely
and elegantly. As a result, object manipulation becomes easier and computer instructions become
simpler and can be modified later with minimal effort.

Modeling Objects

3

Object-oriented programming hides any information that is not important for acting on an object,
thereby concealing the object's complexities. Complex tasks can then be initiated simply, at a very
high level.

1.3. Modeling Objects
In object-oriented programming, objects are modeled to real-world objects. A real-world object has
actions related to it and characteristics of its own.

Take a ball, for example. A ball can be acted on—rolled, tossed, thrown, bounced, caught. But it also
has its own physical characteristics—size, shape, composition, weight, color, speed, position. An
accurate data model of a real ball would define not only the physical characteristics but all related
actions and characteristics in one package:

Figure 1.2. A Ball Object

In object-oriented programming, objects are the basic building blocks—the fundamental units of data.

There are many kinds of objects; for example, character strings, collections, and input and output
streams. An object—such as a character string—always consists of two parts: the possible actions or
operations related to it, and its characteristics or variables. A variable has a name, and an associated
data value that can change over time. The variables represent the internal state of the object, and can
be directly accessed only by the code that implements the object's actions.

Figure 1.3. Ball Object with Variable Names and Values

To access an object's data, you must always specify an action. For example, suppose the object is the
number 5. Its actions might include addition, subtraction, multiplication, and division. Each of these

Chapter 1. Open Object Rexx General Concepts

4

actions is an interface to the object's data. The data is said to be encapsulated because the only way
to access it is through one of these surrounding actions. The encapsulated internal characteristics of
an object are its variables. The variables are associated with an object and exist for the lifetime of that
object:

Figure 1.4. Encapsulated 5 Object

1.4. How Objects Interact

The actions defined by an object are its only interface to other objects. Actions form a kind of "wall"
that encapsulates the object, and shields its internal information from outside objects. This shielding
is called information hiding. Information hiding protects an object's data from corruption by outside
objects, and also protects outside objects from relying on another object's private data, which can
change without warning.

One object can act upon another (or cause it to act) only by calling that object's actions, namely by
sending messages. Objects respond to these messages by performing an action, returning data, or
both. A message to an object must specify:
• A receiving object

• The "message send" symbol, ~, which is called the twiddle

• The action and, optionally in parentheses, any parameters required by the action

So the message format looks like this:

object~action(parameters)

Assume that the object is the string !iH. Sending it a message to use its REVERSE action:

"!iH"~reverse

returns the string object Hi!.

1.5. Methods

Sending a message to an object results in performing some action; that is, it executes some
underlying code. The action-generating code is called a method. When you send a message to an

Polymorphism

5

object, the message is the name of the target method. Method names are character strings like
REVERSE. In the preceding example, sending the reverse message to the !iH object causes it to
run the REVERSE method. Most objects are capable of more than one action, and so have a number
of available methods.

The classes Rexx provides include their own predefined methods. The Message class, for example,
has the COMPLETED, INIT, NOTIFY, RESULT, SEND, and START methods. When you create your
own classes, you can write new methods for them in Rexx code. Much of the object programming in
Rexx is writing the code for the methods you create.

1.6. Polymorphism

Rexx lets you send the same message to objects that are different:

Example 1.1. Polymorphism

"!iH"~reverse /* Reverses the characters "!iH" to form "Hi!" */
pen~reverse /* Reverses the direction of a plotter pen */
ball~reverse /* Reverses the direction of a moving ball */

As long as each object has its own REVERSE method, REVERSE runs even if the programming
implementation is different for each object. This ability to hide different functions behind a common
interface is called polymorphism. As a result of information hiding, each object in the previous example
knows only its own version of REVERSE. And even though the objects are different, each reverses
itself as dictated by its own code.

Although the !iH object's REVERSE code is different from the plotter pen's, the method name can
be the same because Rexx keeps track of the methods each object owns. The ability to reuse the
same method name so that one message can initiate more than one function is another feature
of polymorphism. You do not need to have several message names like REVERSE_STRING,
REVERSE_PEN, REVERSE_BALL. This keeps method-naming schemes simple and makes complex
programs easy to follow and modify.

The ability to hide the various implementations of a method while leaving the interface the same
illustrates polymorphism at its lowest level. On a higher level, polymorphism permits extensive code
reuse.

1.7. Classes and Instances

In Rexx, objects are organized into classes. Classes are like templates; they define the methods and
variables that a group of similar objects have in common and store them in one place.

If you write a program to manipulate some screen icons, for example, you might create an Icon class.
In that Icon class you can include all the icon objects with similar actions and characteristics:

Chapter 1. Open Object Rexx General Concepts

6

Figure 1.5. A Simple Class

All the icon objects might use common methods like DRAW or ERASE. They might contain common
variables like position, color, or size. What makes each icon object different from one another is the
data assigned to its variables. For the Windows system icon, it might be position="20,20", while for the
shredder it is "20,30" and for information it is "20,40":

Figure 1.6. Icon Class

Objects that belong to a class are called instances of that class. As instances of the Icon class, the
Windows system icon, shredder icon, and information icon acquire the methods and variables of that
class. Instances behave as if they each had their own methods and variables of the same name.
All instances, however, have their own unique properties—the data associated with the variables.
Everything else can be stored at the class level.

Data Abstraction

7

Figure 1.7. Instances of the Icon Class

If you must update or change a particular method, you only have to change it at one place, at the class
level. This single update is then acquired by every new instance that uses the method.

A class that can create instances of an object is called an object class. The Icon class is an object
class you can use to create other objects with similar properties, such as an application icon or a
drives icon.

An object class is like a factory for producing instances of the objects.

1.8. Data Abstraction

The ability to create new, high-level data types and organize them into a meaningful class structure
is called data abstraction. Data abstraction is at the core of object-oriented programming. Once
you model objects with real-world properties from the basic data types, you can continue creating,
assembling, and combining them into increasingly complex objects. Then you can use these objects
as if they were part of the original programming language.

1.9. Subclasses, Superclasses, and Inheritance

When you write your first object-oriented program, you do not have to begin your real-world modeling
from scratch. Rexx provides predefined classes and methods. From there you can create additional
classes and methods of your own, according to your needs.

Rexx classes are hierarchical. Any subclass (a class below another class in the hierarchy) inherits the
methods and variables of one or more superclasses (classes above a class in the hierarchy):

Figure 1.8. Superclass and Subclasses

You can add a class to an existing superclass. For example, you might add the Icon class to the
Screen-Object superclass:

Chapter 1. Open Object Rexx General Concepts

8

Figure 1.9. The Screen-Object Superclass

In this way, the subclass inherits additional methods from the superclass. A class can have more
than one superclass, for example, subclass Bitmap might have the superclasses Screen-Object and
Art-Object. Acquiring methods and variables from more than one superclass is known as multiple
inheritance:

Figure 1.10. Multiple Inheritance

1.10. Structure and General Syntax

A Rexx program is built from a series of clauses that are composed of:

• Zero or more whitespace characters (blank or horizontal tabs) (which are ignored)

• A sequence of tokens (see Section 1.10.4, “Tokens”)

• Zero or more whitespace characters (again ignored)

• A semicolon (;) delimiter that the line end, certain keywords, or the colon (:) implies.

Conceptually, each clause is scanned from left to right before processing, and the tokens composing
it are identified. Instruction keywords are recognized at this stage, comments are removed, and
sequences of whitespace characters (except within literal strings) are converted to single blanks.
Whitespace characters adjacent to operator characters and special characters are also removed.

1.10.1. Characters

A character is a member of a defined set of elements that is used for the control or representation
of data. You can usually enter a character with a single keystroke. The coded representation of
a character is its representation in digital form. A character, the letter A, for example, differs from
its coded representation or encoding. Various coded character sets (such as ASCII and EBCDIC)
use different encodings for the letter A (decimal values 65 and 193, respectively). This book uses
characters to convey meanings and not to imply a specific character code, except where otherwise
stated. The exceptions are certain built-in functions that convert between characters and their
representations. The functions C2D, C2X, D2C, X2C, and XRANGE depend on the character set
used.

A code page specifies the encodings for each character in a set. Be aware that:
• Some code pages do not contain all characters that Rexx defines as valid (for example, the logical

NOT character).

Whitespace

9

• Some characters that Rexx defines as valid have different encodings in different code pages, for
example the exclamation mark (!).

1.10.2. Whitespace

A whitespace character is one that the interpreter recognizes as a "blank" or "space" character. There
are two characters used by Rexx as whitespace that can be used interchangeably:

(blank)
A "blank" or "space" character. This is represented by '20'X in ASCII implementations.

(horizontal tab)
A "tab". This is represented by '09'X in ASCII implementations.

Horizontal tabs encountered in Rexx program source are converted into blanks, allowing tab
characters and blanks to be use interchangeably in source. Additionally, Rexx operations such as the
PARSE instruction or the SUBWORD() built-in function will also accept either blank or tab characters
as word delimiters.

1.10.3. Comments

A comment is a sequence of characters delimited by specific characters. It is ignored by the program
but acts as a separator. For example, a token containing one comment is treated as two tokens.

The interpreter recognizes the following types of comments:

• A line comment, where the comment is limited to one line

• The standard Rexx comment, where the comment can cover several lines

A line comment is started by two subsequent minus signs (--) and ends at the end of a line. Example:

"Fred"
"Don't Panic!"
'You shouldn''t' -- Same as "You shouldn't"
""

In this example, the language processor processes the statements from 'Fred' to 'You
shouldn''t', ignores the words following the line comment, and continues to process the statement
"".

A standard comment is a sequence of characters (on one or more lines) delimited by /* and */.
Within these delimiters any characters are allowed. Standard comments can contain other standard
comments, as long as each begins and ends with the necessary delimiters. They are called nested
comments. Standard comments can be anywhere and of any length.

/* This is an example of a valid Rexx comment */

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

Chapter 1. Open Object Rexx General Concepts

10

Example 1.2. Comments

01 parse pull input
02 if substr(input,1,5) = "/*123"
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input
02 /* if substr(input,1,5) = "/*123"
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal
string /*123 as the start of a nested standard comment. It would not process the rest of the program
because it would be looking for a matching standard comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = "/" || "*123"

You could comment out lines 2 and 3 correctly as follows:

Example 1.3. Comments

01 parse pull input
02 /* if substr(input,1,5) = "/" || "*123"
03 then call process
04 */ dept = substr(input,32,5)

Both types of comments can be mixed and nested. However, when you nest the two types, the type of
comment that comes first takes precedence over the one nested. Here is an example:

Example 1.4. Comments

"Fred"
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't"
"" -- The null string */

In this example, the language processor ignores everything after 'You shouldn''t' up to the end
of the last line. In this case, the standard comment has precedence over the line comment.

When nesting the two comment types, make sure that the start delimiter of the standard comment /*
is not in the line commented out with the line comment signs.

Tokens

11

Example 1.5. Comments

"Fred"
"Don't Panic!"
'You shouldn''t' -- Same as /* "You shouldn't"
"" The null string */

This example produces an error because the language processor ignores the start delimiter of the
standard comment, which is commented out using the line comment.

1.10.4. Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in Rexx are
composed of tokens. Tokens can be of any length, up to an implementation-restricted maximum. They
are separated by whitespace or comments, or by the nature of the tokens themselves. The classes of
tokens are:

• Literal strings

• Hexadecimal strings

• Binary strings

• Symbols

• Numbers

• Operator characters

• Special characters

1.10.4.1. Literal Strings

A literal string is a sequence including any characters except line feed (X"10") and delimited by a
single quotation mark (') or a double quotation mark ("). You use two consecutive double quotation
marks ("") to represent one double quotation mark (") within a string delimited by double quotation
marks. Similarly, you use two consecutive single quotation marks ('') to represent one single
quotation mark (') within a string delimited by single quotation marks. A literal string is a constant and
its contents are never modified when it is processed. Literal strings must be complete on a single line.
This means that unmatched quotation marks can be detected on the line where they occur.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

Example 1.6. Valid strings

"Fred"
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */
"" /* The null string */

Chapter 1. Open Object Rexx General Concepts

12

 A literal string has no upper bound on the number of characters, limited only by available memory.

Note that a string immediately followed by a left parenthesis is considered to be the name of a
function. If immediately followed by the symbol X or x, it is considered to be a hexadecimal string. If
followed immediately by the symbol B or b, it is considered to be a binary string.

1.10.4.2. Hexadecimal Strings

A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a-f, A-F), grouped in pairs. A single leading
0 is assumed, if necessary, at the beginning of the string to make an even number of hexadecimal
digits. The groups of digits are optionally separated by one or more whitespace characters, and the
whole sequence is delimited by single or double quotation marks and immediately followed by the
symbol X or x. Neither x nor X can be part of a longer symbol. The whitespace characters, which can
only be byte boundaries (and not at the beginning or end of the string), are to improve readability. The
language processor ignores them.

A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing
the hexadecimal digits removes whitespace and converts each pair of hexadecimal digits into its
equivalent character, for example, "41"X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

Example 1.7. Valid hexadecimal strings

"ABCD"x
"1d ec f8"X
"1 d8"x

Note

A hexadecimal string is not a representation of a number. It is an escape mechanism that lets
a user describe a character in terms of its encoding (and, therefore, is machine-dependent). In
ASCII, "20"X is the encoding for a blank. In every case, a string of the form "....."x is an alternative
to a straightforward string. In ASCII "41"x and "A" are identical, as are "20"x and a blank, and
must be treated identically.

 The packed length of a hexadecimal string (the string with whitespace removed) is unlimited.

1.10.4.3. Binary Strings

A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
can have less than four digits; in this case, up to three 0 digits are assumed to the left of the first digit,
making a total of four digits. The groups of digits are optionally separated by one or more whitespace
characters, and the whole sequence is delimited by matching single or double quotation marks and
immediately followed by the symbol b or B. Neither b nor B can be part of a longer symbol. The

Tokens

13

whitespace characters, which can only be byte or nibble boundaries (and not at the beginning or end
of the string), are to improve readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of 8, leading zeros are added on the left to make a multiple of 8 before packing.
Binary strings allow you to specify characters explicitly, bit by bit. These are valid binary strings:

Example 1.8. Valid binary strings

"11110000"b /* == "f0"x */
"101 1101"b /* == "5d"x */
"1"b /* == "00000001"b and "01"x */
"10000 10101010"b /* == "0001 0000 1010 1010"b */
""b /* == "" */

 The packed length of a binary-literal string is unlimited.

1.10.4.4. Symbols

Symbols are groups of characters, selected from the:

• English alphabetic characters (A-Z and a-z).

• Numeric characters (0-9)

• Characters . ! ? and underscore (_).

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a-z to
uppercase A-Z) before use.

These are valid symbols:

Example 1.9. Valid symbols

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned a value to it, its value is the characters of the symbol itself, translated
to uppercase (that is, lowercase a-z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot directly be assigned a value. (See Section 1.13.6, “Environment
Symbols”.)

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0-9) or a period, and it can end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The character sequence to the left of the "E" or "e" must be
a valid simple number, consisting only of digits or '.'. There must be at least one digit and at most one
'.'. The sign in this context is part of the symbol and is not an operator.

These are valid numbers in exponential notation:

Chapter 1. Open Object Rexx General Concepts

14

Example 1.10. Valid exponential numbers

17.3E-12
.03e+9

These are not valid numbers in exponential notation, but rather multiple tokens with an operator
between:

Example 1.11. Invalid exponential numbers

.E-12 -- no digits
3ae+6 -- non-digit character
3..0e+9 -- more than one '.'

1.10.4.5. Numbers

Numbers are character strings consisting of one or more decimal digits, with an optional prefix of a
plus (+) or minus (-) sign, and optionally including a single period (.) that represents a decimal point.
A number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase
or lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding can occur to a
precision specified by the NUMERIC DIGITS instruction (the default is nine digits). See Chapter 10,
Numbers and Arithmetic for a full definition of numbers.

Numbers can have leading whitespace (before and after the sign) and trailing whitespace.
Whitespace characters cannot be embedded among the digits of a number or in the exponential part.
Note that a symbol or a literal string can be a number. A number cannot be the name of a variable.

These are valid numbers:

Example 1.12. Valid numbers

12
"-17.9"
127.0650
73e+128
" + 7.9E5 "

You can specify numbers with or without quotation marks around them. Note that the sequence -17.9
(without quotation marks) in an expression is not simply a number. It is a minus operator (which can
be prefix minus if no term is to the left of it) followed by a positive number. The result of the operation
is a number, which might be rounded or reformatted into exponential form depending on the size of the
number and the current NUMERIC DIGITS setting.

A whole number is a number that has a no decimal part and that the language processor would not
usually express in exponential notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS.

Tokens

15

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

1.10.4.6. Operator Characters

The characters + - \ / % * | & = ¬ > < and the sequences >= <= \> \< \= >< <> ==
\== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= indicate operations
(see Section 1.11.2, “Operators”). A few of these are also used in parsing templates, and the equal
sign and the sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= are also used to
indicate assignment. Whitespace characters adjacent to operator characters are removed. Therefore,
the following are identical in meaning:

Example 1.13. White space and numbers

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters (and some special characters—see the next section) might not be available
in all character sets. In this case, appropriate translations can be used. In particular, the vertical bar (|)
is often shown as a split vertical bar (¦).

Note

The Rexx interpreter uses ASCII character 124 in the concatenation operator and as the logical
OR operator. Depending on the code page or keyboard for your particular country, ASCII 124 can
be shown as a solid vertical bar (|) or a split vertical bar (¦). The character on the screen might
not match the character engraved on the key. If you receive error 13, Invalid character in
program, on an instruction including a vertical bar character, make sure this character is ASCII
124.

Throughout the language, the NOT (¬) character is synonymous with the backslash (\). You can use
the two characters interchangeably according to availability and personal preference.

The Rexx interpreter recognizes both ASCII character 170 ('AA'X) and ASCII character 172 ('AC'X) for
the logical NOT operator. Depending on your country, the ¬ might not appear on your keyboard. If the
character is not available, you can use the backslash (\) in place of ¬.

1.10.4.7. Special Characters

The following characters, together with the operator characters, have special significance when found
outside of literal strings:

, ; : () [] ~

Chapter 1. Open Object Rexx General Concepts

16

These characters constitute the set of special characters. They all act as token delimiters, and
whitespace characters (blank or horizontal tab) adjacent to any of these are removed. There is an
exception: a whitespace character adjacent to the outside of a parenthesis or bracket is deleted only
if it is also adjacent to another special character (unless the character is a parenthesis or bracket and
the whitespace character is outside it, too). For example, the language processor does not remove the
blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The language
processor removes the blanks in (A) + (Z) because this is equivalent to (A)+(Z).

1.10.4.8. Example
The following example shows how a clause is composed of tokens:

Example 1.14. Special characters

"REPEAT" A + 3;

This example is composed of six tokens—a literal string ("REPEAT"), a blank operator, a symbol (A,
which can have an assigned value), an operator (+), a second symbol (3, which is a number and a
symbol), and the clause delimiter (;). The blanks between the A and the + and between the + and the
3 are removed. However, one of the blanks between the "REPEAT" and the A remains as an operator.
Thus, this clause is treated as though written:

"REPEAT" A+3;

1.10.5. Implied Semicolons

The last element in a clause is the semicolon (;) delimiter. The language processor implies the
semicolon at a line end, after certain keywords, and after a colon if it follows a single symbol. This
means that you need to include semicolons only when there is more than one clause on a line or to
end an instruction whose last character is a comma.

A line end usually marks the end of a clause and, thus, Rexx implies a semicolon at most end of lines.
However, there are the following exceptions:
• The line ends in the middle of a comment. The clause continues on to the next line.

• The last token was the continuation character (a comma or a minus sign) and the line does not end
in the middle of a comment. (Note that a comment is not a token.)

Rexx automatically implies semicolons after colons (when following a single symbol or literal string,
a label) and after certain keywords when they are in the correct context. The keywords that have
this effect are ELSE, OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Continuations

17

Note

The two characters forming the comment delimiters, /* and */, must not be split by a line end
(that is, / and * should not appear on different lines) because they could not then be recognized
correctly; an implied semicolon would be added.

1.10.6. Continuations

One way to continue a clause on the next line is to use the comma or the minus sign (-), which is
referred to as the continuation character. The continuation character is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the continuation
character before the end of the line.

The following example shows how to use the continuation character to continue a clause:

Example 1.15. Continuations

say "You can use a comma", -- this line is continued
"to continue this clause."

or

say "You can use a minus"- -- this line is continued
"to continue this clause."

1.11. Terms, Expressions, and Operators

Expressions in Rexx are a general mechanism for combining one or more pieces of data in various
ways to produce a result, usually different from the original data. All expressions evaluate to objects.

Everything in Rexx is an object. Rexx provides some objects, which are described in later sections.
You can also define and create objects that are useful in particular applications—for example, a menu
object for user interaction. See Section 1.3, “Modeling Objects” for more information.

1.11.1. Terms and Expressions

Terms are literal strings, symbols, message terms, function calls, or subexpressions interspersed with
zero or more operators that denote operations to be carried out on terms.

Literal strings, which are delimited by quotation marks, are constants.

Symbols (no quotation marks) are translated to uppercase. A symbol that does not begin with a digit
or a period can be the name of a variable; in this case the value of that variable is used. A symbol

Chapter 1. Open Object Rexx General Concepts

18

that begins with a period can identify an object that the current environment provides; in this case, that
object is used. Otherwise a symbol is treated as a constant string. A symbol can also be compound.

Message terms are described in Section 1.11.4, “Message Terms”.

Function calls (see Chapter 7, Functions), which are of the following form:

 +-,--------------+
 V |
>>-symbolorstring(----+------------+-+--)----------------------><
 +-expression-+

The symbolorstring is a symbol or literal string.

An expression consists of one or more terms. A subexpression is a term in an expression surrounded
with a left and a right parenthesis.

Evaluation of an expression is left to right, modified by parentheses and operator precedence in the
usual algebraic manner (see Section 1.11.3, “Parentheses and Operator Precedence”). Expressions
are wholly evaluated, unless an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate. The result is an object.
Consequently, the result of evaluating any expression is itself an object (such as a character string).

1.11.2. Operators

An operator is a representation of an operation, such as an addition, to be carried out on one or two
terms. Each operator, except for the prefix operators, acts on two terms, which can be symbols,
strings, function calls, message terms, intermediate results, or subexpressions. Each prefix operator
acts on the term or subexpression that follows it. Whitespace characters (and comments) adjacent
to operator characters have no effect on the operator; thus, operators constructed from more than
one character can have embedded whitespace and comments. In addition, one or more whitespace
characters, if they occur in expressions but are not adjacent to another operator, also act as an
operator. The language processor functionally translates operators into message terms. For dyadic
operators, which operate on two terms, the language processor sends the operator as a message to
the term on the left, passing the term on the right as an argument. For example, the sequence

say 1+2

is functionally equivalent to:

say 1~"+"(2)

The blank concatenation operator sends the message " " (a single blank), and the abuttal
concatenation operator sends the "" message (a null string). When the ¬ character is used in an
operator, it is changed to a \. That is, the operators ¬= and \= both send the message \= to the target
object.

Operators

19

For an operator that works on a single term (for example, the prefix - and prefix + operators), Rexx
sends a message to the term, with no arguments. This means -z has the same effect as z~"-".

See Section 5.1.1.2, “Operator Methods” for operator methods of the Object class and Section 5.1.3.7,
“Arithmetic Methods” for operator methods of the String class.

There are four types of operators:
• Concatenation

• Arithmetic

• Comparison

• Logical

1.11.2.1. String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank) Concatenate terms with one blank in between

|| Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This
can occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they
are only separated by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred"%" evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

The two adjoining strings, one hexadecimal and one literal, "4a 4b"x"LMN" evaluate to JKLMN.

In the case of

Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

1.11.2.2. Arithmetic

Chapter 1. Open Object Rexx General Concepts

20

You can combine character strings that are valid numbers (see Section 1.10.4.5, “Numbers”) using the
following arithmetic operators:

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because the result
can be negative)

** Power (raise a number to a whole-number power)

Prefix - Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it is
likely that rounding has occurred.

1.11.2.3. Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The
==, \==, and ¬== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison,
with no padding of either of the strings being compared. The comparison of the two strings is from left
to right. If one string is shorter than the other and is a leading substring of another, then it is smaller
than (less than) the other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all other comparison operators, if both terms involved are numeric, a numeric comparison (see
Section 10.4, “Numeric Comparisons”) is effected. Otherwise, both terms are treated as character
strings, leading and trailing whitespace characters are ignored, and the shorter string is padded with
blanks on the right.

Character comparison and strict comparison operations are both case-sensitive, and the exact
collating order might depend on the character set used for the implementation. In an ASCII
environment, such as Windows and *nix, the ASCII character value of digits is lower than that of the
alphabetic characters, and that of lowercase alphabetic characters is higher than that of uppercase
alphabetic characters.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded)

\=, ¬= True if the terms are not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as not equal)

Parentheses and Operator Precedence

21

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, ¬< Not less than

<= Less than or equal to

\>, ¬> Not greater than

== True if terms are strictly equal (identical)

\==, ¬== True if the terms are not strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<<, ¬<< Strictly not less than

<<= Strictly less than or equal to

\>>, ¬>> Strictly not greater than

Note

Throughout the language, the NOT (¬) character is synonymous with the backslash(\). You can
use the two characters interchangeably, according to availability and personal preference. The
backslash can appear in the following operators: \ (prefix not),\=, \==, \<, \>, \<<, and \>>.

1.11.2.4. Logical (Boolean)

A character string has the value false if it is 0, and true if it is 1. The logical operators take one or two
such values and return 0 or 1 as appropriate. Values other than 0 or 1 are not permitted.

& AND — returns 1 if both terms are true.

| Inclusive OR — returns 1 if either term or both terms are true.

&& Exclusive OR — returns 1 if either term, but not both terms, is true.

Prefix \, ¬ Logical NOT— negates; 1 becomes 0, and 0 becomes 1.

1.11.3. Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:
• When parentheses are encountered—other than those that identify the arguments on messages

(see Section 1.11.4, “Message Terms”) and function calls—the entire subexpression between the
parentheses is evaluated immediately when the term is required.

• When the sequence

term1 operator1 term2 operator2 term3

is encountered, and operator2 has precedence over operator1, the subexpression (term2
operator2 term3) is evaluated first.

Chapter 1. Open Object Rexx General Concepts

22

Note, however, that individual terms are evaluated from left to right in the expression (that is, as
soon as they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if a strict left-to-right evaluation occurred). To force the addition to occur before
the multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the
first three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9)
because the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

~ ~~\ (message send)

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

+ - (add and subtract)

(blank) || (abuttal) (concatenation with or without blank)

= > < (comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

& (and)

| && (or, exclusive or)

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and
other variables are uninitialized. Then:

Example 1.16. Arithmetic

A+5 -> "8"
A-4*2 -> "-5"
A/2 -> "1.5"
0.5**2 -> "0.25"
(A+1)>7 -> "0" /* that is, False */
" "="" -> "1" /* that is, True */
" "=="" -> "0" /* that is, False */
" "\=="" -> "1"
/* that is, True */
(A+1)*3=12 -> "1" /* that is, True */
"077">"11" -> "1" /* that is, True */

Message Terms

23

"077" >> "11" -> "0" /* that is, False */
"abc" >> "ab" -> "1" /* that is, True */
"abc" << "abd" -> "1" /* that is, True */
"ab " << "abd" -> "1" /* that is, True */
Today is Day -> "TODAY IS Monday"
"If it is" day -> "If it is Monday"
Substr(Day,2,3) -> "ond" /* Substr is a function */
"!"xxx"!" -> "!XXX!"

Note

The Rexx order of precedence usually causes no difficulty because it is the same as in
conventional algebra and other computer languages. There are two differences from common
notations:
• The prefix minus operator always has a higher priority than the power operator.

• Power operators (like other operators) are evaluated from left to right.

For example:

Example 1.17. Arithmetic

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

1.11.4. Message Terms
You can include messages to objects in an expression wherever a term, such as a literal string, is
valid. A message can be sent to an object to perform an action, obtain a result, or both.

A message term can have one of the following forms:

>>-receiver-+- ~ --+-messagename--+---------+------------------->
 +- ~~ -+ +-:symbol-+

>--+--------------------------+--------------------------------><
 +-(--+----------------+--)-+
 | +-,----------+ |
 | V | |
 +---expression-+-+

>>-receiver[--+----------------+--]----------------------------><
 | +-,----------+ |
 | V | |
 +---expression-+-+

Chapter 1. Open Object Rexx General Concepts

24

The receiver is a term (see Section 1.11.1, “Terms and Expressions” for a definition of term). It
receives the message. The ~ or ~~ indicates sending a message. The messagename is a literal
string or a symbol that is taken as a constant. The expressions (separated by commas) between
the parentheses or brackets are the arguments for the message. The receiver and the argument
expressions can themselves include message terms. If the message has no arguments, you can omit
the parentheses.

The left parenthesis, if present, must immediately follow a token (messagename or symbol) with no
blank in between them. Otherwise, only the first part of the construct is recognized as a message term.
(A blank operator would be assumed at that point.) Only a comment (which has no effect) can appear
between a token and the left parenthesis.

You can use any number of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during the execution of the called method. Any ARG, PARSE
ARG, or USE ARG instruction or ARG() built-in function in the called method accesses these objects
while the called method is running. You can omit expressions, if appropriate, by including extra
commas.

The receiver object is evaluated, followed by one or more expression arguments. The message
name (in uppercase) and the resulting argument objects are then sent to the receiver object. The
receiver object selects a method to be run based on the message name (see Figure 4.1, “Classes
and Inheritance (part 1 of 9)”), and runs the selected method with the specified argument objects. The
receiver eventually returns, allowing processing to continue.

If the message term uses ~, the receiver method must return a result object. This object is included
in the original expression as if the entire message term had been replaced by the name of a variable
whose value is the returned object.

For example, the message POS is valid for strings, and you could code:

c="escape"
a="Position of 'e' is:" c~pos("e",3)
/* would set A to "Position of 'e' is: 6" */

If the message term uses ~~, the receiver method need not return a result object. Any result object is
discarded, and the receiver object is included in the original expression in place of the message term.

For example, the messages INHERIT and SUBCLASS are valid for classes (see Section 5.1.2, “The
Class Class”) and, assuming the existence of the Persistent class, you could code:

account = .object~subclass("Account")~~inherit(.persistent)
/* would set ACCOUNT to the object returned by SUBCLASS, */
/* after sending that object the message INHERIT */

If the message term uses brackets, the message [] is sent to the receiver object. (The expressions
within the brackets are available to the receiver object as arguments.) The effect is the same as for the
corresponding ~ form of the message term. Thus, a[b] is the same as a~"[]"(b).

For example, the message [] is valid for arrays (see Section 5.3.6, “The Array Class”) and you could
code:

Example 1.18. Arrays

Message Sequences

25

a = .array~of(10,20)
say "Second item is" a[2] /* Same as: a~at(2) */
/* or a~"[]"(2) */
/* Produces: "Second item is 20" */

A message can have a variable number of arguments. You need to specify only those required. For
example, "ESCAPE"~POS("E") returns 1.

A colon (:) and symbol can follow the message name. In this case, the symbol must be the name of
a variable (usually the special variable SUPER--see page SUPER) or an environment symbol (see
Section 1.13.6, “Environment Symbols”). The resulting value changes the usual method selection. For
more information, see Section 4.2.7, “Changing the Search Order for Methods”.

1.11.5. Message Sequences

The ~ and ~~ forms of message terms differ only in their treatment of the result object. Using ~
returns the result of the method. Using ~~ returns the object that received the message. Here is an
example:

Example 1.19. Messages

/* Two ways to use the INSERT method to add items to a list */
/* Using only ~ */
team = .list~of("Bob","Mary")
team~insert("Jane")
team~insert("Joe")
team~insert("Steve")
say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */
/* Do the same thing using ~~ */
team=.list~of("Bob","Mary")
/* Because ~~ returns the receiver of the message */
/* each INSERT message following returns the list */
/* object (after inserting the argument value). */
team~~insert("Jane")~~insert("Joe")~~insert("Steve")
say "First on the team is:" team~firstitem /* Bob */
say "Last on the team is:" team~lastitem /* Steve */

Thus, you would use ~ when you want the returned result to be the receiver of the next message in the
sequence.

1.12. Clauses and Instructions
Clauses can be subdivided into the following types:
• Null clauses

• Directives

• Labels

• Instructions

• Assignments

Chapter 1. Open Object Rexx General Concepts

26

• Message instructions

• Keyword instructions

• Commands

1.12.1. Null Clauses

A clause consisting only of whitespace characters, comments, or both is a null clause . It is completely
ignored.

Note

A null clause is not an instruction; for example, putting an extra semicolon after the THEN or
ELSE in an IF instruction is not equivalent to using a dummy instruction (as it would be in the C
language). The NOP instruction is provided for this purpose.

1.12.2. Directives

A clause that begins with two colons is a directive. Directives are nonexecutable code and can start
in any column. They divide a program into separate executable units (methods and routines) and
supply information about the program or its executable units. Directives perform various functions,
such as creating new Rexx classes (::CLASS directive) or defining a method (::METHOD directive).
See Chapter 3, Directives for more information about directives.

1.12.3. Labels

A clause that consists of a single symbol or string followed by a colon is a label. The colon in this
context implies a semicolon (clause separator), so no semicolon is required.

The label's name is taken from the string or symbol part of the label. If the label uses a symbol for the
name, the label's name is in uppercase. If a label uses a string, the name can contain mixed-case
characters.

Labels identify the targets of CALL instructions, SIGNAL instructions, and internal function calls. Label
searches for CALL, SIGNAL, and internal function calls are case-sensitive. Label-search targets
specified as symbols cannot match labels with lowercase characters. Literal-string or computed-label
searches can locate labels with lowercase characters.

Labels can be any number of successive clauses. Several labels can precede other clauses. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Duplicate labels are permitted, but control is only passed to the first of any duplicates in a program.
The duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL,
or function invocation.

1.12.4. Instructions

Assignments

27

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be assignments, message instructions, keyword instructions, or
commands.

1.12.5. Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An
assignment gives a (new) value to a variable. See Section 1.13, “Assignments and Symbols”.

1.12.5.1. Extended Assignments
The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= can be used
to create extended assignments. These sequences combine an operation with the assignment. See
Section 1.13.1, “Extended Assignments” for more details.

1.12.5.2. Message Instructions

A message instruction is a single clause in the form of a message term (see Section 1.11.4, “Message
Terms”) or in the form messageterm=expression. A message is sent to an object, which responds by
performing some action. See Section 1.14, “Message Instructions”.

1.12.5.3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control, for example, the external interfaces and the flow of control.
Some keyword instructions can include nested instructions. In the following example, the DO construct
(DO, the group of instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
 instruction
 instruction
 instruction
END

A subkeyword is a keyword that is reserved within the context of a particular instruction, for example,
the symbols TO and WHILE in the DO instruction.

1.12.6. Commands

A command is a clause consisting of an expression only. The expression is evaluated and the result is
passed as a command string to an external environment.

1.13. Assignments and Symbols

A variable is an object whose value can change during the running of a Rexx program. The process
of changing the value of a variable is called assigning a new value to it. The value of a variable is a
single object. Note that an object can be composed of other objects, such as an array or directory
object.

Chapter 1. Open Object Rexx General Concepts

28

You can assign a new value to a variable with the ARG, PARSE, PULL, or USE instructions, the
VALUE built-in function, or the but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause in the form

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named
by the symbol to the left of the equal sign.

Example:

/* Next line gives FRED the value "Frederic" */
Fred="Frederic"

The symbol naming the variable cannot begin with a digit (0-9) or a period.

You can use a symbol in an expression even if you have not assigned a value to it, because a symbol
has a defined value at all times. A variable to which you have not assigned a value is uninitialized.
Its value is the characters of the symbol itself, translated to uppercase (that is, lowercase a-z to
uppercase A-Z). However, if it is a compound symbol (described in Section 1.13.5, “Compound
Symbols”), its value is the derived name of the symbol.

Example 1.20. Derived symbol names

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in Rexx varies according to its context. As a term in an expression, a symbol
belongs to one of the following groups: constant symbols, simple symbols, compound symbols,
environment symbols, and stems. Constant symbols cannot be assigned new values. You can use
simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables although the collection classes might be
preferable in many cases. See Section 5.3.2, “The Collection Class”.

1.13.1. Extended Assignments

The character sequences +=, -=, *= /=, %=, //=, ||=, &=, |=, and &&= can be used
to create extended assignment instructions. An extended assignment combines a non-prefix operator
with an assignment where the term on the left side of the assignment is also used as the left term of
the operator. For example,

 a += 1

is exactly equivalent to the instruction

 a = a + 1

Constant Symbols

29

Extended assignments are processed identically to the longer form of the instruction.

1.13.2. Constant Symbols

A constant symbol starts with a digit (0-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters
of the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

Example 1.21. Constants

77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Symbols, where the first character is a period and the second character is alphabetic, are environment
symbols (Section 1.13.6, “Environment Symbols”) and may have a value other other than the symbol
name.

1.13.3. Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

Example 1.22. Simple symbols

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

1.13.4. Stems

A stem is a symbol that contains a single period as the last character of the name. It cannot start with
a digit.

These are stems:

Example 1.23. Stems

FRED.

Chapter 1. Open Object Rexx General Concepts

30

A.

The value of a stem is always a Stem object. (See Section 5.3.15, “The Stem Class”.) The stem
variable's Stem object is automatically created the first time you use the stem variable or a compound
variable (Section 1.13.5, “Compound Symbols”) containing the stem variable name. The Stem object's
assigned name is the name of the stem variable (with the characters translated to uppercase). If
the stem variable has been assigned a value, or the Stem object has been given a default value,
the assigned name overrides the default stem name. A reference to a stem variable will return the
associate Stem object.

When a stem is the target of an assignment, the action taken depends on the value being assigned.
If the new value is a Stem object, the new Stem object will replace the Stem object that is currently
associated with the stem variable. This can result in multiple stem variables referring to the same
Stem object, effectively creating a variable alias.

Example 1.24. Stems

hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* Says "empty empty full" */

hole2. = hole. /* copies reference to hole. stem to hole2. */

say hole2.1 hole2.mouse hole2.19

/* Also says "empty empty full" */

If the new value is not a Stem object, a new Stem object is created and assigned to the stem variable,
replacing the Stem object currently associated with the stem variable.

The new value assigned to the stem variable is given to the new Stem object as a default value.
Following the assignment, a reference to any compound symbol with that stem variable returns the
new value until another value is assigned to the stem, the Stem object, or the individual compound
variable.

Example 1.25. Stems

hole. = "empty"
hole.19 = "full"
say hole.1 hole.mouse hole.19
/* says "empty empty full" */

Thus, you can initialize an entire collection of compound variables to the same value.

You can pass stem collections as function, subroutine, or method arguments.

Example 1.26. Stems

Stems

31

/* CALL RANDOMIZE count, stem. calls routine */
Randomize: Use Arg count, stem.
do i = 1 to count
 stem.i = random(1,100)
end
return

The USE ARG instruction functions as an assignment instruction. The variable STEM. in the example
above is functionally equivalent to:

stem. = arg(2)

Note

USE ARG must be used to access the stem variable as a collection. PARSE and PARSE ARG
will force the stem to be a string value.

Stems can also be returned as function, subroutine, or method results. The resulting return value is
the Stem object associated with the stem variable.

Example 1.27. Stems

/* RANDOMIZE(count) calls routine */
Randomize: Use Arg count
do i = 1 to count
 stem.i = random(1,100)
end
return stem.

When a stem. variable is used in an expression context, the stem variable reference returns the
associated Stem object. The Stem object will forward many object messages to it's default value. For
example, the STRING method will return the Stem object's default value's string representation:

Example 1.28. Stems

total. = 0
say total. /* says "0" */

The [] method with no arguments will return the currently associated default value. variables can
always be obtained by using the stem. However, this is not the same as using a compound variable
whose derived name is the null string.

Example 1.29. Stems

total. = 0
null = ""

Chapter 1. Open Object Rexx General Concepts

32

total.null = total.null + 5
say total.[] total.null /* says "0 5" */

You can use the DROP, EXPOSE, and PROCEDURE instructions to manipulate collections of
variables, referred to by their stems. DROP FRED. assigns a new Stem object to the specified stem.
(See Section 2.5, “DROP”.) EXPOSE FRED. and PROCEDURE EXPOSE FRED. expose all possible
variables with that stem (see Section 2.7, “EXPOSE” and Section 2.19, “PROCEDURE”).

The DO instruction can also iterate over all of the values assigned to a stem variable. See Section 2.4,
“DO” for more details.

Notes:

1. When the ARG, PARSE, PULL, or USE instruction, the VALUE built-in function, or the variable
pool interface changes a variable, the effect is identical with an assignment.

2. Any clause that starts with a symbol and whose second token is (or starts with) an equal sign (=)
is an assignment, rather than an expression (or a keyword instruction). This is not a restriction,
because you can ensure that the clause is processed as a command, such as by putting a null
string before the first name, or by enclosing the expression in parentheses.

If you unintentionally use a Rexx keyword as the variable name in an assignment, this should
not cause confusion. For example, the following clause is an assignment, not an ADDRESS
instruction:

Address="10 Downing Street";

3. You can use the VAR function (see Section 7.4.72, “VAR”) to test whether a symbol has been
assigned a value. In addition, you can set SIGNAL ON NOVALUE (NOVALUE) to trap the use of
any uninitialized variables (except when they are tails in compound variables or stem variables,
which are always initialized with a Stem object when first used.)

1.13.5. Compound Symbols

A compound symbol contains at least one period and two other characters. It cannot start with a digit
or a period, and if there is only one period it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period) and is
followed by a tail, which are parts of the name (delimited by periods) that are constant symbols,
simple symbols, or null. Note that you cannot use constant symbols with embedded signs (for
example, 12.3E+5) after a stem; in this case the whole symbol would not be valid.

These are compound symbols:

Example 1.30. Compound symbols

FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used, that is, at the time of reference, the language processor substitutes in the
compound symbol the character string values of any simple symbols in the tail (I, J, and One in the

Compound Symbols

33

examples), thus generating a new, derived tail. The value of a compound symbol is, by default, its the
name of the Stem object associated with the stem variable concatenated to the derived tail or, if it has
been used as the target of an assignment, the value of Stem element named by the derived tail.

The substitution in the symbol permits arbitrary indexing (subscripting) of collections of variables that
have a common stem. Note that the values substituted can contain any characters (including periods
and blanks). Substitution is done only once.

More formally, the derived name of a compound variable that is referenced by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

where d0 is the name of the Stem object associated with the stem variable s0 and v1 to vn are the
values of the constant or simple symbols s1 through sn. Any of the symbols s1 to sn can be null.
The values v1 to vn can also be null and can contain any characters (including periods). Lowercase
characters are not translated to uppercase, blanks are not removed, and periods have no special
significance. There is no limit on the length of the evaluated name.

Some examples of simple and compound symbols follow in the form of a small extract from a Rexx
program:

Example 1.31. Compound symbols

a=3 /* assigns "3" to the variable A */
z=4 /* "4" to Z */
c="Fred" /* "Fred" to C */
a.z="Fred" /* "Fred" to A.4 */
a.fred=5 /* "5" to A.FRED */
a.c="Bill" /* "Bill" to A.Fred */
c.c=a.fred /* "5" to C.Fred */
y.a.z="Annie" /* "Annie" to Y.3.4 */
say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering a great scope for the creative programmer. A useful application is to
set up an array in which the subscripts are taken from the value of one or more variables, producing a
form of associative memory (content-addressable).

1.13.5.1. Evaluated Compound Variables
The value of a stem variable is always a Stem object (see Section 5.3.15, “The Stem Class” for
details). A Stem object is a type of collection that supports the [] and []= methods used by other
collection classes. The [] method provides an alternate means of accessing compound variables that
also allows embedded subexpressions.

Tails for compound variables are normally specified by symbols separated by periods. An alternative
is to specify the tail as a bracketed list of expressions separated by commas. The expressions are

Chapter 1. Open Object Rexx General Concepts

34

evaluated to character strings. These are concatenated with intervening periods and the resulting
string is used as tail. This notation can be used in assignments to compound variables as well as
when referencing them. Examples:

Example 1.32. Evaluated compound variables

a.[1+2,3+4]=17 -- assigns A.3.7
Say a.3.7 -- => 17
v1='1+2'
v2='3+4'
a.v1.v2=18 -- tail used: '1+2.3+4'
Say a.['1+2','3+4'] -- => 18
Parse Value '1 2 3' With . a.[1,1+1] .
Say a.1.2 -- => 2

1.13.6. Environment Symbols

An environment symbol starts with a period and has at least one other character. The symbol may
not be a valid Rexx number. By default the value of an environment symbol is the string consisting of
the characters of the symbol (translated to uppercase). If the symbol identifies an object in the current
environment, its value is the mapped object.

These are environment symbols:

Example 1.33. Environment symbols

.method // A reference to the Rexx Method class

.true // The Rexx "true" object. Has the value "1"

.xyz // Normally the value .XYZ

.3DGlasses // Normally the value .3DGLASSES

When you use an environment symbol, the language processor performs a series of searches to see if
the environment symbol has an assigned value. The search locations and their ordering are:
1. The directory of classes declared on ::CLASS directives (see Section 3.2, “::CLASS”) within

the current program package or added to the current package using the addClass() method
(Section 5.1.6.3, “addClass”.

2. The directory of PUBLIC classes declared on ::CLASS directives of other files included with
a ::REQUIRES directive or added to the current Package instance using the addPackage()
method (Section 5.1.6.3, “addClass”).

3. The local environment directory specific to the current interpreter instance. The local environment
includes process-specific objects such as the .INPUT and .OUTPUT objects. You can directly
access the local environment directory by using the .LOCAL environment symbol. (See
Section 6.2, “The Local Directory (.LOCAL)”.)

4. The global environment directory. The global environment includes all permanent Rexx
objects such as the Rexx supplied classes (.ARRAY and so on) and constants such as .TRUE
and .FALSE. You can directly access the global environment by using the .ENVIRONMENT
environment symbol (see Section 6.1, “The Environment Directory (.ENVIRONMENT)”). Entries

Message Instructions

35

in the global environment directory can also be accessed via the VALUE built-in function (see
Section 7.4.71, “VALUE”) by using a null string for the selector argument.

5. Rexx defined symbols. Other simple environment symbols are reserved for use by Rexx built-in
environment objects (Chapter 6, Rexx Runtime Objects). The currently defined built-in objects
are .RS, .LINE, .METHODS, .ROUTINES, and .CONTEXT.

If an entry is not found for an environment symbol, then the default character string value is used.

Note

You can place entries in both the .LOCAL and the .ENVIRONMENT directories for programs to
use. To avoid conflicts with future Rexx defined entries, it is recommended that the entries that
you place in either directory include at least one period in the entry name.

Example:

/* establish settings directory */
.local~setentry("MyProgram.settings", .directory~new)

1.14. Message Instructions

You can send a message to an object to perform an action, obtain a result, or both. You use a
message instruction if the main purpose of the message is to perform an action. You use a message
term (see Section 1.11.4, “Message Terms”) if the main purpose of the message is to obtain a result.

A message instruction is a clause of the form:

>>-messageterm--+-------------+--;-----------------------------><
 +-=expression-+

If there is only a messageterm, the message is sent in exactly the same way as for a message term
(see Section 1.11.4, “Message Terms”). If the message yields a result object, it is assigned to the
sender's special variable RESULT. If you use the ~~ form of message term, the receiver object is used
as the result. If there is no result object, the variable RESULT is dropped (becomes uninitialized). A
message term using ~~ is sometimes referred to as a cascading message.

Example 1.34. Message instructions

mytable~add("John",123)

This sends the message ADD to the object MYTABLE. The ADD method need not return a result. If
ADD returns a result, the result is assigned to the variable RESULT.

Chapter 1. Open Object Rexx General Concepts

36

The equal sign (=) sets a value. If =expression follows the message term, a message is sent to the
receiver object with an = concatenated to the end of the message name. The result of evaluating the
expression is passed as the first argument of the message.

Example 1.35. Message instructions

person~age = 39 /* Same as person~"AGE="(39) */
table[i] = 5 /* Same as table~"[]="(5,i) */

The expressions are evaluated in the order in which the arguments are passed to the method.
That is, the language processor evaluates the =expression first. Then it evaluates the argument
expressions within any [] pairs from left to right.

The extended assignment form may also be used with messaging terms.

Example 1.36. Message instructions

 table[i] += 1 -- Same as table[i] = table[i] + 1

See Section 1.13.1, “Extended Assignments” for more details

1.15. Commands to External Environments
Issuing commands to the surrounding environment is an integral part of Rexx.

1.15.1. Environment

The base system for the language processor is assumed to include at least one environment for
processing commands. An environment is selected by default on entry to a Rexx program. You
can change the environment by using the ADDRESS instruction. You can find out the name of the
current environment by using the ADDRESS built-in function. The underlying operating system
defines environments external to the Rexx program. The environments selected depend on the caller.
Normally the default environment is the used shell, mostly "CMD" on Windows systems and "bash" on
Linux systems. If called from an editor that accepts subcommands from the language processor, the
default environment can be that editor.

A Rexx program can issue commands—called subcommands—to other application programs. For
example, a Rexx program written for a text editor can inspect a file being edited, issue subcommands
to make changes, test return codes to check that the subcommands have been processed as
expected, and display messages to the user when appropriate.

An application that uses Rexx as a macro language must register its environment with the Rexx
language processor. See the Open Object Rexx: Programming Guide for a discussion of this
mechanism.

1.15.2. Commands

To send a command to the currently addressed environment, use a clause of the form:

Commands

37

expression;

The expression (which must not be an expression that forms a valid message instruction— see
Section 1.14, “Message Instructions”) is evaluated, resulting in a character string value (which can be
the null string), which is then prepared as appropriate and submitted to the environment specified by
the current ADDRESS setting.

The environment then processes the command and returns control to the language processor after
setting a return code. A return code is a string, typically a number, that returns some information
about the command processed. A return code usually indicates if a command was successful but can
also represent other information. The language processor places this return code in the Rexx special
variable RC. See Chapter 17, Special Variables.

In addition to setting a return code, the underlying system can also indicate to the language processor
if an error or failure occurred. An error is a condition raised by a command to which a program that
uses that command can respond. For example, a locate command to an editing system might report
requested string not found as an error. A failure is a condition raised by a command to which
a program that uses that command cannot respond, for example, a command that is not executable or
cannot be found.

Errors and failures in commands can affect Rexx processing if a condition trap for ERROR or
FAILURE is ON (see Chapter 11, Conditions and Condition Traps). They can also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is
the default— see Section 2.29, “TRACE”.

The .RS environment symbol can also be used to detect command failures and errors. When the
command environment indicates that a command failure has occurred, the Rexx environment
symbol .RS has the value -1. When a command error occurs, .RS has a value of 1. If the command
did not have a FAILURE or ERROR condition, .RS is 0.

Here is an example of submitting a command. Where the default environment is Windows, the
sequence:

Example 1.37. Commands

fname = "CHESHIRE"
exten = "CAT"
"TYPE" fname"."exten

would result in passing the string TYPE CHESHIRE.CAT to the command processor, CMD.EXE. The
simpler expression:

Example 1.38. Commands

"TYPE CHESHIRE.CAT"

has the same effect.

On return, the return code placed in RC will have the value 0 if the file CHESHIRE.CAT were typed, or
a nonzero value if the file could not be found in the current directory.

Chapter 1. Open Object Rexx General Concepts

38

Note

Remember that the expression is evaluated before it is passed to the environment. Constant
portions of the command should be specified as literal strings.

Example 1.39. Commands - Windows

delete "*".lst /* not "multiplied by" */
var.003 = anyvalue
type "var.003" /* not a compound symbol */

w = any
dir"/w" /* not "divided by ANY" */

Example 1.40. Commands - Linux

rm "*".lst /* not "multiplied by" */
var.003 = anyvalue
cat "var.003" /* not a compound symbol */

w = any
ls "/w" /* not "divided by ANY" */

Enclosing an entire message instruction in parentheses causes the message result to be used as a
command. Any clause that is a message instruction is not treated as a command. Thus, for example,
the clause

myfile~linein

causes the returned line to be assigned to the variable RESULT, not to be used as a command to an
external environment, while

(myfile~linein)

would submit the return value from the linein method as a command to the external environment.

1.16. Using Rexx on Windows and Unix

Rexx programs can call other Rexx programs as external functions or subroutines with the CALL
(Section 2.3, “CALL”) instruction.

If a program is called with the CALL (Section 2.3, “CALL”) instruction, the program runs in the same
process as the calling program. If you call another program by a Rexx command, the program is
executed in a new process and therefore does not share .environment, .local, or the Windows/Unix
shell environment.

Using Rexx on Windows and Unix

39

Example 1.41. Calling other Rexx scripts

call "other.REX" /* runs in the same process */
"rexx other.REX" /* runs in a new child process */
"start rexx other.REX" /* runs in a new detached process */

When Rexx programs call other Rexx programs as commands, the return code of the command is
the exit value of the called program provided that this value is a whole number in the range -32768 to
32767. Otherwise, the exit value is ignored and the called program is given a return code of 0.

40

Chapter 2.

41

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords. Other words, such as expression, denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case-dependent. The symbols if, If,
and iF all have the same effect. Note also that you can usually omit most of the clause delimiters (;)
shown because the end of a line implies them.

A keyword instruction is recognized only if its keyword is the first token in a clause and if the second
token does not start with an equal (=) character (implying an assignment) or a colon (implying a label).
The keywords ELSE, END, OTHERWISE, THEN, and WHEN are treated in the same way. Note that
any clause that starts with a keyword defined by Rexx cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function.
A syntax error results if the keywords are not in their correct positions in a DO, IF, or SELECT
instruction. The keyword THEN is also recognized in the body of an IF or WHEN clause. In other
contexts, keywords are not reserved and can be used as labels or as the names of variables (though
this is generally not recommended).

Subkeywords are reserved within the clauses of individual instructions. For example, the symbols
VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions, respectively. For
details, see the description of each instruction.

Whitespace characters (blanks or horizontal tabs) adjacent to keywords separate the keyword from
the subsequent token. One or more whitespace characters following VALUE are required to separate
the expression from the subkeyword in the example following:

 ADDRESS VALUE expression

However, no whitespace character is required after the VALUE subkeyword in the following example,
although it would improve readability:

ADDRESS VALUE"ENVIR"||number

2.1. ADDRESS

>>-ADDRESS--+-----------------------------+--;-----------------><
 +-environment--+------------+-+
 | +-expression-+ |
 +-+-------+--expression1------+
 +-VALUE-+

Chapter 2. Keyword Instructions

42

ADDRESS temporarily or permanently changes the destination of commands. Commands are strings
sent to an external environment. You can send commands by specifying clauses consisting of only
an expression or by using the ADDRESS instruction. (See Section 1.15, “Commands to External
Environments”.)

To send a single command to a specified environment, code an environment, a literal string or a
single symbol, which is taken to be a constant, followed by an expression. The environment name
is the name of an external procedure or process that can process commands. The expression is
evaluated to produce a character string value, and this string is routed to the environment to be
processed as a command. After execution of the command, environment is set back to its original
state, thus temporarily changing the destination for a single command. The special variable RC and
the environment symbol .RS are set and errors and failures in commands processed in this way are
trapped or traced.

Example 2.1. Instructions - ADDRESS (Windows)

ADDRESS CMD "DIR C:\CONFIG.SYS"

Example 2.2. Instructions - ADDRESS (Linux)

ADDRESS "bash" "ls /usr/lib"

If you specify only environment, a lasting change of destination occurs: all commands (see
Section 1.15.2, “Commands”) that follow are routed to the specified command environment, until the
next ADDRESS instruction is processed. The previously selected environment is saved.

Assume that the environment for a Windows text editor is registered by the name EDIT:

Example 2.3. Instructions - ADDRESS environments

address CMD
"DIR C:\AUTOEXEC.BAT"
if rc=0 then "COPY C:\AUTOEXEC.BAT C:*.TMP"
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the environment. Here
expression1, which can be a variable name, is evaluated, and the resulting character string value
forms the name of the environment. You can omit the subkeyword VALUE if expression1 does not
begin with a literal string or symbol, that is, if it starts with a special character such as an operator
character or parenthesis.

Example 2.4. Instructions - ADDRESS environments

ARG

43

ADDRESS ("ENVIR"||number) /* Same as ADDRESS VALUE "ENVIR"||number */

With no arguments, commands are routed back to the environment that was selected before the
previous change of the environment, and the current environment name is saved. After changing the
environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments. Using a null string for the environment name ("") is the same as using the
default environment.

The two environment names are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (Section 2.3, “CALL”) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function. (See Section 7.4.3, “ADDRESS”.) The Open Object
Rexx: Programming Guide describes the creation of alternative subcommand environments.

2.2. ARG

>>-ARG--+---------------+--;-----------------------------------><
 +-template_list-+

ARG retrieves the argument strings provided to a program, internal routine, or method and assigns
them to variables. It is a short form of the instruction:

>>-PARSE UPPER ARG--+---------------+--;-----------------------><
 +-template_list-+

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace characters, patterns, or both.

The objects passed to the program, routine, or method are converted to string values and parsed into
variables according to the rules described in Chapter 9, Parsing.

The language processor converts the objects to strings and translates the strings to uppercase (that is,
lowercase a-z to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do
not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source objects (typically
with different templates). The source objects do not change.

Example 2.5. Instructions - ARG

/* String passed is "Easy Rider" */
Arg adjective noun .

Chapter 2. Keyword Instructions

44

/* Now: ADJECTIVE contains "EASY" */
/* NOUN contains "RIDER" */

If you expect more than one object to be available to the program or routine, you can use a comma in
the parsing template_list so each template is selected in turn.

Example 2.6. Instructions - ARG

/* Function is called by FRED("data X",1,5) */
Fred: Arg string, num1, num2

/* Now: STRING contains "DATA X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

Notes:

1. The ARG built-in function can also retrieve or check the arguments. See Section 7.4.4, “ARG
(Argument)”.

2. The USE ARG instruction (see Section 2.30, “USE”) is an alternative way of retrieving arguments.
USE ARG performs a direct, one-to-one assignment of argument objects to Rexx variables. You
should use this when your program needs a direct reference to the argument object, without string
conversion or parsing. ARG and PARSE ARG produce string values from the argument objects,
and the language processor then parses the string values.

2.3. CALL

 +-,--------------+
 V |
>>-CALL--+-+-name---+----+------------+-+------------------+--;--><
 | +-(expr)-+ +-expression-+ |
 +-OFF--+-ANY-----------------+--------------------+
 | +-ERROR---------------+ |
 | +-FAILURE-------------+ |
 | +-HALT----------------+ |
 | +-NOTREADY------------+ |
 | +-USER--usercondition-+ |
 +-ON--+-ANY-----------------+--+----------------+-+
 +-ERROR---------------+ +-NAME--trapname-+
 +-FAILURE-------------+
 +-HALT----------------+
 +-NOTREADY------------+
 +-USER--usercondition-+

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

CALL

45

To call a routine, specify name, which must be a literal string or symbol that is taken as a constant.
The usercondition is a single symbol that is taken as a constant. The trapname is a symbol or string
taken as a constant. The routine called can be:

An internal routine
A subroutine that is in the same program as the CALL instruction or function call that calls it.
Internal routines are located using label instructions.

A built-in routine
A function that is defined as part of the Rexx language.

An external routine
A subroutine that is neither built-in nor a label within the same same program as the CALL
instruction call that invokes it. See Section 7.2.1, “Search Order” for details on the different types
of external routines.

If name is a literal string (that is, specified in in quotation marks), the search for internal routines
is bypassed, and only a built-in function or an external routine is called. Note that built-in function
names are in uppercase. Therefore, a literal string call to a built-in function must also use uppercase
characters.

You can also specify (expr), any valid expression enclosed in parentheses. The expression is
evaluated before any of the argument expressions, and the value is the target of the CALL instruction.
The language processor does not translate the expression value into uppercase, so the evaluated
name must exactly match any label name or built-in function name. (See Section 1.12.3, “Labels” for a
description of label names.)

The called routine can optionally return a result. In this case, the CALL instruction is functionally
identical with the clause:

 +-,--------------+
 V |
>>-result=name(----+------------+-+--)--;----------------------><
 +-expression-+

You can use any number of expressions, separated by commas. The expressions are evaluated from
left to right and form the arguments during execution of the routine. Any ARG, PARSE ARG, or USE
ARG instruction or ARG built-in function in the called routine accesses these objects while the called
routine is running. You can omit expressions, if appropriate, by including extra commas.

The CALL then branches to the routine called name, using exactly the same mechanism as function
calls. See Chapter 7, Functions. The search order is as follows:

Internal routines
These are sequences of instructions inside the same program, starting at the label that matches
name in the CALL instruction. If you specify the routine name in quotation marks, then an internal
routine is not considered for that search order. The RETURN instruction completes the execution
of an internal routine.

Built-in routines
These are routines built into the language processor for providing various functions. They always
return an object that is the result of the routine. (See Section 7.4.4, “ARG (Argument)”.)

Chapter 2. Keyword Instructions

46

Note

You can call any built-in function as a subroutine. Any result is stored in RESULT. Simply
specify CALL, the function name (with no parenthesis) and any arguments:

Example 2.7. Instructions - CALL

call length "string" /* Same as length("string") */
say result /* Produces: 6 */

External routines
Users can write or use routines that are external to the language processor and the calling
program. You can code an external routine in Rexx or in any language that supports the system-
dependent interfaces. If the CALL instruction calls an external routine written in Rexx as a
subroutine, you can retrieve any argument strings with the ARG, PARSE ARG, or USE ARG
instructions or the ARG built-in function.

For more information on the search order, see Section 7.2.1, “Search Order”.

During execution of an internal routine, all variables previously known are generally accessible.
However, the PROCEDURE instruction can set up a local variables environment to protect the
subroutine and caller from each other. The EXPOSE option on the PROCEDURE instruction can
expose selected variables to a routine.

Calling an external program or routine defined with a ::ROUTINE directive is similar to calling an
internal routine. The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values, for example NUMERIC settings, start with
their defaults (rather than inheriting those of the caller). In addition, you can use EXIT to return from
the routine.

When control reaches an internal routine, the line number of the CALL instruction is available in
the variable SIGL (in the caller's variable environment). This can be used as a debug aid because
it is possible to find out how control reached a routine. Note that if the internal routine uses the
PROCEDURE instruction, it needs to EXPOSE SIGL to get access to the line number of the CALL.

After the subroutine processed the RETURN instruction, control returns to the clause following the
original CALL. If the RETURN instruction specified an expression, the variable RESULT is set to the
value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example 2.8. Instructions - CALL

/* Recursive subroutine execution... */
arg z
call factorial z
say z"! =" result
exit

DO

47

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 call factorial n-1
 return result * n

During internal subroutine (and function) execution, all important pieces of information are
automatically saved and then restored upon return from the routine. These are:

• The status of loops and other structures: Executing a SIGNAL within a subroutine is safe
because loops and other structures that were active when the subroutine was called are not ended.
However, those currently active within the subroutine are ended.

• Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it
without affecting the tracing of the caller. If you want to debug a subroutine, you can insert a TRACE
Results at the start and tracing is automatically restored to the conditions at entry (for example, Off)
upon return. Similarly, ? (interactive debug) is saved across routines.

• NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in Section 2.16,
“NUMERIC”) are saved and then restored on return. A subroutine can, therefore, set the precision,
for example, that it needs to use without affecting the caller.

• ADDRESS settings: The current and previous destinations for commands (see Section 2.1,
“ADDRESS”) are saved and then restored on return.

• Condition traps: CALL ON and SIGNAL ON are saved and then restored on return. This means
that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without
affecting the conditions the caller set up.

• Condition information: This information describes the state and origin of the current trapped
condition. The CONDITION built-in function returns this information. See Section 7.4.18,
“CONDITION”.

• .RS value: The value of the .RS environment symbol. (See Section 6.16, “The Return Status
(.RS)”.)

• Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see
Section 7.4.65, “TIME”), but because the time clock is saved across routine calls, a subroutine or
internal function can independently restart and use the clock without affecting its caller. For the
same reason, a clock started within an internal routine is not available to the caller.

2.4. DO

>>-DO---+-------------+--+---------------+--+-----------------+--;-->
 +-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

>--+---------------------+--END--+--------+--;---------------------><
 | +-----------------+ | +--name--+
 | V | |
 +---instruction--;--+-+

Chapter 2. Keyword Instructions

48

repetitor:

|--+-control1=expri--+-----------+--+-----------+--+------------+-+--|
 | +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |
 +-control2--OVER--collection-----------------------------------+
 +-FOREVER--+
 +-exprr--+

conditional:

|--+-WHILE--exprw-+---|
 +-UNTIL--expru-+

DO groups instructions and optionally processes them repetitively. During repetitive execution, a
control variable (control1 or control2) can be stepped through some range of values.

Notes:

1. The LABEL phrase, if used, must precede any repetitor or conditional.

2. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

3. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of conditional expression supported by IF and WHEN, which is a list of
expressions separated by ",". Each subexpression must evaluate to either 0 or 1. The list of
expressions is evaluated left-to-right. Evaluation will stop with the first 0 result and 0 will be
returned as the condition result. If all of the subexpressions evaluate to 1, then the condition result
is also 1.

4. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

5. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the DO instruction itself).

6. The subkeywords WHILE, UNTIL, and OVER are reserved within a DO instruction in that they
act as expression terminators for other keywords. Thus they cannot be used as symbols in any
of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or exprf.
FOREVER is also reserved, but only if it immediately follows the keyword DO and is not followed
by an equal sign. However, parentheses around or within an expression can prevent these
keywords from terminating an expression. For example,

Example 2.9. Instructions - DO variable without parenthesis

DROP

49

do i = 1 while i < until
 say i
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.10. Instructions - DO variable with parenthesis

do i = 1 while (i < until)
 say i
end

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

For more information, refer to Appendix A, Using DO and LOOP.

2.5. DROP

 +------------+
 V |
>>-DROP----+-name---+-+--;-------------------------------------><
 +-(name)-+

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more whitespace characters or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
desired. This subsidiary list must follow the same rules as the original list, that is, be valid character
strings separated by whitespace, except that no parentheses are allowed. The list need not contain
any names—that is, it can be empty.

Variables are dropped from left to right. It is not an error to specify a name more than once or to
drop a variable that is not known. If an exposed variable is named (see Section 2.7, “EXPOSE” and
Section 2.19, “PROCEDURE”), then the original variable is dropped.

Example 2.11. Instructions - DROP

j=4

Chapter 2. Keyword Instructions

50

Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example 2.12. Instructions - DROP

mylist="c d e"
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period as the last character) assigns the
stem variable to a new, empty stem object.

Example:

Drop z.
/* Assigns stem variable z. to a new empty stem object */

2.6. EXIT

>>-EXIT--+------------+--;-------------------------------------><
 +-expression-+

EXIT leaves a program unconditionally. Optionally, EXIT returns a result object to the caller. The
program is stopped immediately, even if an internal routine is being run. If no internal routine is active,
RETURN (see Section 2.25, “RETURN”) and EXIT are identical in their effect on the program running.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back to
the caller when the program stops.

Example 2.13. Instructions - EXIT

j=3
Exit j*4
/* Would exit with the string "12" */

If you do not specify expression, no data is passed back to the caller. If the program was called as a
function, this is detected as an error.

EXPOSE

51

You can also use EXIT within a method. The method is stopped immediately, and the result object,
if specified, is returned to the sender. If the method has previously issued a REPLY instruction (see
Section 2.24, “REPLY”), the EXIT instruction must not include a result expression.

Notes:

1. If the program was called through a command interface, an attempt is made to convert the
returned value to a return code acceptable by the underlying operating system. The returned string
must be a whole number whose value fits in a 16-bit signed integer (within the range -(2**15) to
(2**15-1)). If the conversion fails, no error is raised, and a return code of 0 is returned.

2. If you do not specify EXIT, EXIT is implied at the end of the program, but no result value is
returned.

3. On Unix/Linux systems the returned value is limited to a numerical value between 0 and 255 (an
unsigned byte).

2.7. EXPOSE

 +------------+
 V |
>>-EXPOSE----+-name---+-+--;-----------------------------------><
 +-(name)-+

EXPOSE causes the object variables identified in name to be exposed to a method. References to
exposed variables, including assigning and dropping, access variables in the current object's variable
pool. (An object variable pool is a collection of variables that is associated with an object rather
than with any individual method.) Therefore, the values of existing variables are accessible, and any
changes are persistent even after RETURN or EXIT from the method.

Any changes a method makes to an object variable pool are immediately visible to any other methods
that share the same object variable scope. All other variables that a method uses are local to the
method and are dropped on RETURN or EXIT. If an EXPOSE instruction is included, it must be the
first instruction of the method.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than
once, or to specify a name that has not been used as a variable.

Example 2.14. Instructions - EXPOSE

/* Example of exposing object variables */
myobj = .myclass~new
myobj~c
myobj~d /* Would display "Z is: 120" */

Chapter 2. Keyword Instructions

52

::class myclass /* The ::CLASS directive */
 /* (see Section 3.2, “::CLASS”) */
::method c /* The ::METHOD directive */
 /* (see Section 3.4, “::METHOD”) */
 expose z
 z = 100 /* Would assign 100 to the object variable z */
 return

::method d
 expose z
 z=z+20 /* Would add 20 to the same object variable z */
 say "Z is:" z
 return

You can expose an entire collection of compound variables (see Section 1.13.5, “Compound
Symbols”) by specifying their stem in the variable list or a subsidiary list. The variables are exposed for
all operations.

Example 2.15. Instructions - EXPOSE

expose j k c. d.
/* This exposes "J", "K", and all variables whose */
/* name starts with "C." or "D." */
c.1="7." /* This sets "C.1" in the object */
 /* variable pool, even if it did not */
 /* previously exist. */

2.8. FORWARD

>>-FORWARD--+----------+--+------------------------+------------>
 +-CONTINUE-+ +-ARGUMENTS--expra-------+
 | +-,-----+ |
 | V | |
 +-ARRAY--(----expri-+--)-+

>--+----------------+--+--------------+--+-----------+---------><
 +-MESSAGE--exprm-+ +-CLASS--exprs-+ +-TO--exprt-+

Note

You can specify the options in any order.

FORWARD forwards the message that caused the currently active method to begin running. The
FORWARD instruction can change parts of the forwarded message, such as the target object, the
message name, the arguments, and the superclass override.

If you specify the TO option, the language processor evaluates exprt to produce a new target object
for the forwarded message. The exprt is a literal string, constant symbol, or expression enclosed in

FORWARD

53

parentheses. If you do not specify the TO option, the initial value of the Rexx special variable SELF is
used.

If you specify the ARGUMENTS option, the language processor evaluates expra to produce an array
object that supplies the set of arguments for the forwarded message. The expra can be a literal string,
constant symbol, or expression enclosed in parentheses. The ARGUMENTS value must evaluate to a
Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce a set of arguments for
the forwarded message. It is an error to use both the ARRAY and the ARGUMENTS options on the
same FORWARD instruction.

If you specify neither ARGUMENTS nor ARRAY, the language processor uses the same arguments
specified on the original method call.

If you specify the MESSAGE option, the exprm is a literal string, a constant symbol, or an expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its value. The uppercase character string value of the
MESSAGE option is the name of the message that the FORWARD instruction issues.

If you do not specify MESSAGE, FORWARD uses the message name used to call the currently active
method.

If you specify the CLASS option, the exprs is a literal string, a constant symbol, or an expression
enclosed in parentheses. This is the class object used as a superclass specifier on the forwarded
message.

If you do not specify CLASS, the message is forwarded without a superclass override.

If you do not specify the CONTINUE option, the language processor immediately exits the current
method before forwarding the message. Results returned from the forwarded message are the return
value from the original message that called the active method (the caller of the method that issued
the FORWARD instruction). Any conditions the forwarded message raises are raised in the calling
program (without raising a condition in the method issuing the FORWARD instruction).

If you specify the CONTINUE option, the current method does not exit and continues with the next
instruction when the forwarded message completes. If the forwarded message returns a result, the
language processor assigns it to the special variable RESULT. If the message does not return a result,
the language processor drops (uninitializes) the variable RESULT.

The FORWARD instruction passes all or part of an existing message invocation to another method.
For example, the FORWARD instruction can forward a message to a different target object, using the
same message name and arguments.

Example 2.16. Instructions - FORWARD

::method substr
 forward to (self~string) /* Forward to the string value */

You can use FORWARD in an UNKNOWN method to reissue to another object the message that the
UNKNOWN method traps.

Chapter 2. Keyword Instructions

54

Example 2.17. Instructions - FORWARD

::method unknown
 use arg msg, args
 /* Forward to the string value */
 /* passing along the arguments */
 forward to (self~string) message (msg) arguments (args)

You can use FORWARD in a method to forward a message to a superclass's methods, passing the
same arguments. This is very common usage in object INIT methods.

Example 2.18. Instructions - FORWARD

::class savings subclass account
::method init
 expose type penalty
 forward class (super) continue /* Send to the superclass */
 type = "Savings" /* Now complete initialization */
 penalty = "1% for balance under 500"

In the preceding example, the CONTINUE option causes the FORWARD message to continue with
the next instruction, rather than exiting the Savings class INIT method.

2.9. GUARD

>>-GUARD--+-ON--+------------------+--+--;---------------------><
 | +-WHEN--expression-+ |
 +-OFF--+------------------+-+
 +-WHEN--expression-+

GUARD controls a method's exclusive access to an object.

GUARD ON acquires for an active method exclusive use of its object variable pool. This prevents
other methods that also require exclusive use of the same variable pool from running on the same
object. If another method has already acquired exclusive access, the GUARD instruction causes the
issuing method to wait until the variable pool is available.

GUARD OFF releases exclusive use of the object variable pool. Other methods that require exclusive
use of the same variable pool can begin running.

If you specify WHEN, the method delays running until the expression evaluates to 1 (true). If the
expression evaluates to 0 (false), GUARD waits until another method assigns or drops an object
variable (that is, a variable named on an EXPOSE instruction) used in the WHEN expression. When
an object variable changes, GUARD reevaluates the WHEN expression. If the expression evaluates to
true, the method resumes running. If the expression evaluates to false, GUARD resumes waiting.

IF

55

Example 2.19. Instructions - GUARD

::method c
 expose y
 if y>0 then
 return 1
 else
 return 0
::method d
 expose z
 guard on when z>0
 self~c /* Reevaluated when Z changes */
 say "Method D"

If you specify WHEN and the method has exclusive access to the object's variable pool, then the
exclusive access is released while GUARD is waiting for an object variable to change. Exclusive
access is reacquired before the WHEN expression is evaluated. Once the WHEN expression
evaluates to 1 (true), exclusive access is either retained (for GUARD ON WHEN) or released (for
GUARD OFF WHEN), and the method resumes running.

Note

If the condition expression cannot be met, GUARD ON WHEN puts the program in a continuous
wait condition. This can occur in particular when several activities run concurrently. See
Section 12.4.3, “Guarded Methods” for more information.

2.10. IF

>>-IF--expression--+---+--THEN--+---+--instruction-------------->
 +-;-+ +-;-+

>--+--------------------------+--------------------------------><
 +-ELSE--+---+--instruction-+
 +-;-+

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer="YES" then say "OK!"

Chapter 2. Keyword Instructions

56

else say "Why not?"

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before ELSE.

Example:

if answer="YES" then say "OK!"; else say "Why not?"

ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

Example 2.20. Instructions - IF

If answer = "YES" Then
 If name = "FRED" Then
 say "OK, Fred."
 Else
 nop
Else
 say "Why not?"

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate
to either 0 or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first 0
result and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

Example 2.21. Instructions - IF

If answer~datatype('w'), answer//2 = 0 Then
 say answer "is even"
Else
 say answer "is odd"

The example above is not the same as using the following

Example 2.22. Instructions - IF

If answer~datatype('w') & answer//2 = 0 Then
 say answer "is even"
Else
 say answer "is odd"

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0.

Notes:

1. The instruction can be any assignment, message instruction, command, or keyword instruction,
including any of the more complex constructs such as DO, LOOP, SELECT, or the IF instruction

INTERPRET

57

itself. A null clause is not an instruction, so putting an extra semicolon (or label) after THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in C). The NOP instruction is
provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the IF clause to be
ended by THEN, without a semicolon (;) being required.

2.11. INTERPRET

>>-INTERPRET--expression--;------------------------------------><

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated to produce a character string, and is then processed (interpreted) just as
though the resulting string were a line inserted into the program and bracketed by a DO; and an END;.

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such
as DO...END and SELECT...END must be complete. For example, a string of instructions being
interpreted cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive loop) unless
it also contains the whole repetitive DO...END or LOOP...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example 2.23. Instructions - INTERPRET

/* INTERPRET example */
data="FRED"
interpret data "= 4"
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

/* Another INTERPRET example */
data="do 3; say "Hello there!"; end"
interpret data /* Displays: */
 /* Hello there! */
 /* Hello there! */
 /* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are, therefore, an error.

2. Executing the INTERPRET instruction with TRACE R or TRACE I can be helpful in interpreting the
results you get.

Chapter 2. Keyword Instructions

58

Example 2.24. Instructions - INTERPRET

/* Here is a small Rexx program. */
Trace Int
name="Kitty"
indirect="name"
interpret 'say "Hello"' indirect'"!"'

When this is run, you get the following trace:

 3 *-* name="Kitty"
 >L> "Kitty"
 >>> "Kitty"
 4 *-* indirect="name"
 >L> "name"
 >>> "name"
 5 *-* interpret 'say "Hello"' indirect'"!"'
 >L> "say "Hello""
 >V> INDIRECT => "name"
 >O> " " => "say "Hello" name"
 >L> ""!""
 >O> "" => "say "Hello" name"!""
 >>> "say "Hello" name"!""
 5 *-* say "Hello" name"!"
 >L> "Hello"
 >V> NAME => "Kitty"
 >O> " " => "Hello Kitty"
 >L> "!"
 >O> "" => "Hello Kitty!"
 >>> "Hello Kitty!"
Hello Kitty!

Lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and
another literal string. The resulting pure character string is then interpreted, just as though it
were actually part of the original program. Because it is a new clause, it is traced as such (the
second *-* trace flag under line 5) and is then processed. Again a literal string is concatenated
to the value of a variable (NAME) and another literal, and the final result (Hello Kitty!) is then
displayed.

3. For many purposes, you can use the VALUE function (see Section 7.4.71, “VALUE”) instead of the
INTERPRET instruction. The following line could, therefore, have replaced line 5 in the previous
example:

Example 2.25. Instructions - INTERPRET

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are
to be interpreted together, or when an expression is to be evaluated dynamically.

4. You cannot use a directive (see Chapter 3, Directives) within an INTERPRET instruction.

ITERATE

59

2.12. ITERATE

>>-ITERATE--+------+--;--><
 +-name-+

ITERATE alters the flow within a repetitive loop (that is, any DO construct other than that with a simple
DO or a LOOP instruction).

Execution of the group of instructions stops, and control is passed to the DO or LOOP instruction just
as though the END clause had been encountered. The control variable, if any, is incremented and
tested, as usual, and the group of instructions is processed again, unless the DO or LOOP instruction
ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE continues with the
current repetitive loop. If name is specified, it must be the name of the control variable or the LABEL
name of a currently active loop, which can be the innermost, and this is the loop that is stepped. Any
active loops inside the one selected for iteration are ended (as though by a LEAVE instruction).

Example 2.26. Instructions - ITERATE

loop label MyLabelName i=1 to 4 /* label set to 'MYLABELNAME' */
 if i=2 then iterate
 say i
end myLabelName
/* Displays the numbers:
 1
 3
 4
*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO
or LOOP clause in all respects except the case. No substitution for compound variables is carried
out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during the execution of a loop, the loop becomes inactive until the
subroutine has returned or the INTERPRET instruction has completed. ITERATE cannot be used
to continue with an inactive loop.

3. If more than one active loop uses the same name, ITERATE selects the innermost loop.

2.13. LEAVE

Chapter 2. Keyword Instructions

60

>>-LEAVE--+------+--;--><
 +-name-+

LEAVE causes an immediate exit from one or more repetitive loops or block instruction (simple DO or
SELECT).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause, just as though the END clause had been encountered and the termination condition had
been met. However, on exit, the control variable, if any, contains the value it had when the LEAVE
instruction was processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable or LABEL name of a
currently active LOOP, DO, or SELECT, which can be the innermost, and that block, and any active
block inside it, are then ended. Control then passes to the clause following the END that matches the
instruction of the selected block.

Example 2.27. Instructions - LEAVE

max=5
do label myDoBlock /* define a label 'MYDOBLOCK' */
 loop i=1 to max /* label defaults to control variable 'I' */
 if i = 2 then iterate i
 if i = 4 the leave myDoBlock
 say i
 end i
 say 'after looping' max 'times'
end myDoBlock
/* Displays the following
 1
 3
 after looping 4 times
*/

Notes:

1. If specified, name must match the symbol naming the control variable or LABEL name in the DO,
LOOP, or SELECT clause in all respects except the case. No substitution for compound variables
is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called, or an INTERPRET
instruction is processed, during execution of a loop, the loop becomes inactive until the subroutine
has returned or the INTERPRET instruction has completed. LEAVE cannot be used to end an
inactive block.

3. If more than one active block uses the same control variable, LEAVE selects the innermost block.

2.14. LOOP

LOOP

61

>>-LOOP--+-------------+--+---------------+--+-----------------+--;-->
 +-LABEL--name-+ +-| repetitor |-+ +-| conditional |-+

>--+--------------------+--END--+--------+--;-----------------------><
 | +----------------+ | +--name--+
 | V | |
 +---instruction--;-+-+

repetitor:

|--+-control1=expri--+-----------+--+-----------+--+------------+-+--|
 | +-TO--exprt-+ +-BY--exprb-+ +-FOR--exprf-+ |
 +-control2--OVER--collection-----------------------------------+
 +-FOREVER--+
 +-exprr--+

conditional:

|--+-WHILE--exprw-+---|
 +-UNTIL--expru-+

LOOP groups instructions and processes them repetitively. During repetitive execution, a control
variable (control1 or control2) can be stepped through some range of values.

Notes:

1. The LABEL phrase, if used, must precede any repetitor or conditional.

2. The exprr, expri, exprb, exprt, and exprf options, if present, are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or
zero. If necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

3. The exprw or expru options, if present, can be any expression that evaluates to 1 or 0. This
includes the list form of conditional expression supported by IF and WHEN, which is a list of
expressions separated by ",". Each subexpression must evaluate to either 0 or 1. The list of
expressions is evaluated left-to-right. Evaluation will stop with the first 0 result and 0 will be
returned as the condition result. If all of the subexpressions evaluate to 1, then the condition result
is also 1.

4. The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in
which they are written.

5. The instruction can be any instruction, including assignments, commands, message instructions,
and keyword instructions (including any of the more complex constructs such as IF, SELECT, and
the LOOP instruction itself).

6. The subkeywords WHILE, UNTIL, and OVER are reserved within a DO instruction in that they
act as expression terminators for other keywords. Thus they cannot be used as symbols in any

Chapter 2. Keyword Instructions

62

of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or exprf.
FOREVER is also reserved, but only if it immediately follows the keyword DO and is not followed
by an equal sign. However, parentheses around or within an expression can prevent these
keywords from terminating an expression. For example,

Example 2.28. Instructions - LOOP variable without parenthesis

loop i = 1 while i < until
 say i
end

is considered a syntax error because of the variable named UNTIL. Using parentheses around the
expression allows the variable UNTIL to be used:

Example 2.29. Instructions - LOOP variable with parenthesis

loop i = 1 while (i < until)
 say i
end

7. The exprb option defaults to 1, if relevant.

8. The collection can be any expression that evaluates to an object that supports a MAKEARRAY
method. Array and List items return an array with the items in the appropriate order, as do
Streams. Tables, Stems, Directories, etc. are not ordered so the items get placed in the array in no
particular order.

For more information, refer to Appendix A, Using DO and LOOP.

2.15. NOP

>>-NOP;--><

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE
clause.

Example 2.30. Instructions - NOP

Select
 when a=c then nop /* Do nothing */
 when a>c then say "A > C"
 otherwise say "A < C"
end

NUMERIC

63

Note

Putting an extra semicolon instead of the NOP would merely insert a null clause, which would
be ignored. The second WHEN clause would be seen as the first instruction expected after the
THEN, and would, therefore, be treated as a syntax error. NOP is a true instruction, however, and
is, therefore, a valid target for the THEN clause.

2.16. NUMERIC

>>-NUMERIC--+-DIGITS--+-------------+----------+--;------------><
 | +-expression1-+ |
 | +-SCIENTIFIC-------------+ |
 +-FORM--+------------------------+-+
 | +-ENGINEERING------------+ |
 | +-+-------+--expression2-+ |
 | +-VALUE-+ |
 +-FUZZ--+-------------+------------+
 +-expression3-+

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail in Chapter 10, Numbers and Arithmetic.

NUMERIC DIGITS
controls the precision to which arithmetic operations and built-in functions are evaluated. If you
omit expression1, the precision defaults to 9 digits, but can be overridden on a source-file basis
using the ::OPTIONS directive (Section 3.5, “::OPTIONS”. Otherwise, the character string value
result of expression1 must evaluate to a positive whole number and must be larger than the
current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but high
precisions are likely to require a great amount of processing time. It is recommended that you use
the default value whenever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See
Section 7.4.27, “DIGITS”.

NUMERIC FORM
controls the form of exponential notation for the result of arithmetic operations and built-in
functions. This can be either SCIENTIFIC (in which case only one, nonzero digit appears before
the decimal point) or ENGINEERING (in which case the power of 10 is always a multiple of 3). The
default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the FORM directly,
or it is taken from the character string result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string, that is, if it
starts with a special character, such as an operator character or parenthesis.

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See
Section 7.4.32, “FORM”.

Chapter 2. Keyword Instructions

64

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric comparison operation.
(See Section 10.4, “Numeric Comparisons”.) If you omit expression3, the default is 0 digits.
Otherwise, the character string value result of expression3 must evaluate to 0 or a positive whole
number rounded, if necessary, according to the current NUMERIC DIGITS setting, and must be
smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ
value during every numeric comparison. The numbers are subtracted under a precision of DIGITS
minus FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See
Section 7.4.34, “FUZZ”.

Note

The three numeric settings are automatically saved across internal subroutine and function calls.
See the CALL instruction (Section 2.3, “CALL”) for more details.

2.17. OPTIONS

>>-OPTIONS--+------------+--;-------------------------------------><
 +-expression-+

The OPTIONS instruction is used to pass special requests to the language processor.

The expression is evaluated, and individual words in the result that are meaningful to the language
processor will be obeyed. Options might control how the interpreter optimizes code, enforces
standards, enables implementation-dependent features, etc. Unrecognized words in the result are
ignored, since they are assumed to be instructions for a different language processor.

Open Object Rexx does not recognize any option keywords.

2.18. PARSE

>>-PARSE--+-------+--+----------+------------------------------->
 +-UPPER-+ +-CASELESS-+
 +-LOWER-+

>--+-ARG-------------------------+--+---------------+--;-------><
 +-LINEIN----------------------+ +-template_list-+
 +-PULL------------------------+
 +-SOURCE----------------------+
 +-VALUE--+------------+--WITH-+
 | +-expression-+ |

PARSE

65

 +-VAR--name-------------------+
 +-VERSION---------------------+

Note

You can specify UPPER and CASELESS or LOWER and CASELESS in either order.

PARSE assigns data from various sources to one or more variables according to the rules of parsing.
(See Chapter 9, Parsing.)

 If you specify UPPER, the strings to be parsed are translated to uppercase before parsing. If you
specify LOWER, the strings are translated to lowercase. Otherwise no translation takes place.

If you specify CASELESS, character string matches during parsing are made independent of the case.
This means a letter in uppercase is equal to the same letter in lowercase.

The template_list can be a single template or list of templates separated by commas. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

Each template is applied to a single source string. Specifying several templates is not a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See Section 9.8.1,
“Parsing Several Strings” for information on parsing several source strings.

If you do not specify a template, no variables are set but the data is prepared for parsing, if necessary.
Thus for PARSE PULL, a data string is removed from the current data queue, for PARSE LINEIN (and
PARSE PULL if the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not
have a value, the NOVALUE condition is raised, if it is enabled.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the strings passed to a program, routine, or method as input arguments. (See the ARG
instruction in Section 2.2, “ARG” for details and examples.)

Note

Parsing uses the string values of the argument objects. The USE ARG instruction provides
direct access to argument objects. You can also retrieve or check the argument objects to
a Rexx program, routine, or method with the ARG built-in function (see Section 7.4.4, “ARG
(Argument)”).

PARSE LINEIN
parses the next line of the default input stream. (See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output.) PARSE LINEIN is a shorter form of the following instruction:

Chapter 2. Keyword Instructions

66

>>-PARSE VALUE LINEIN() WITH--+---------------+--;--------------><
 +-template_list-+

If no line is available, program execution usually pauses until a line is complete. Use PARSE
LINEIN only when direct access to the character input stream is necessary. Use the PULL or
PARSE PULL instructions for the usual line-by-line dialog with the user to maintain generality.
PARSE LINEIN will not pull lines from the external data queue.

To check if any lines are available in the default input stream, use the built-in function LINES. See
Section 7.4.41, “LINES (Lines Remaining)” and Section 7.4.39, “LINEIN (Line Input)”.

PARSE PULL
parses the next string of the external data queue. If the external data queue is empty, PARSE
PULL reads a line of the default input stream (the user's terminal), and the program pauses, if
necessary, until a line is complete. You can add data to the head or tail of the queue by using the
PUSH and QUEUE instructions, respectively. You can find the number of lines currently in the
queue with the QUEUED built-in function. (See Section 7.4.48, “QUEUED”.) The queue remains
active as long as the language processor is active. Other programs in the system can alter the
queue and use it to communicate with programs written in Rexx. See also the PULL instruction in
Section 2.20, “PULL”.

Note

PULL and PARSE PULL read the current data queue. If the queue is empty, they read the
default input stream, .INPUT (typically, the keyboard).

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a
string that does not change while the program is running.

The source string contains operating system name, followed by either COMMAND, FUNCTION,
SUBROUTINE, or METHOD, depending on whether the program was called as a host command or
from a function call in an expression or using the CALL instruction or as a method of an object.
These two tokens are followed by the complete path specification of the program file.

The string parsed might, therefore, look like this:

WindowsNT COMMAND C:\MYDIR\RexxTRY.CMD

or

LINUX COMMAND /opt/orexx/bin/rexxtry.cmd

PARSE VALUE
parses the data, a character string, that is the result of evaluating expression. If you specify no
expression, the null string is used. Note that WITH is a subkeyword in this context and cannot be
used as a symbol within expression.

PROCEDURE

67

Thus, for example:

PARSE VALUE time() WITH hours ":" mins ":" secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the character string value of the variable name. The name must be a symbol that is valid
as a variable name, which means it cannot start with a period or a digit. Note that the variable
name is not changed unless it appears in the template, so that, for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string.

PARSE UPPER VAR string word1 string

also translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
• The string REXX-ooRexx_4.2.0(MT)_32-bit, if using the ooRexx interpreter at version 4,

release 2, modification 0, and compiled for 32-bit addressing mode.

• The language level description, for example 6.03.

• Three tokens that describe the language processor release date in the same format as the
default for the DATE built-in function (see Section 7.4.24, “DATE”), for example, "27 Sep 2007".

2.19. PROCEDURE

>>-PROCEDURE--+------------------------+--;--------------------><
 | +------------+ |
 | V | |
 +-EXPOSE----+-name---+-+-+
 +-(name)-+

PROCEDURE, within an internal routine (subroutine or function), protects the caller's variables by
making them unknown to the instructions that follow it. After a RETURN instruction is processed, the
original variable environment is restored and any variables used in the routine (that were not exposed)
are dropped. (An exposed variable is one belonging the caller of a routine that the PROCEDURE
instruction has exposed. When the routine refers to, or alters, the variable, the original (caller's) copy
of the variable is used.) An internal routine need not include a PROCEDURE instruction. In this case
the variables it is manipulating are those the caller owns. If the PROCEDURE instruction is used, it

Chapter 2. Keyword Instructions

68

must be the first instruction processed after the CALL or function invocation; that is, it must be the first
instruction following the label.

If you use the EXPOSE option, any variable specified by the name is exposed. Any reference to it
(including setting and dropping) is made to the variables environment the caller owns. Hence, the
values of existing variables are accessible, and any changes are persistent even on RETURN from
the routine. If the name is not enclosed in parentheses, it identifies a variable you want to expose
and must be a symbol that is a valid variable name, separated from any other name with one or more
whitespace characters.

If parentheses enclose a single name, then, after the variable name is exposed, the character string
value of name is immediately used as a subsidiary list of variables. Whitespace characters are not
necessary inside or outside the parentheses, but you can add them if desired. This subsidiary list
must follow the same rules as the original list, that is, valid variable names separated by whitespace
characters, except that no parentheses are allowed.

Variables are exposed from left to right. It is not an error to specify a name more than once, or to
specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some of the
caller's variables can be made accessible and can be changed, or new variables can be created. All
these changes are visible to the caller upon RETURN from the routine.

Example 2.31. Instructions - PROCEDURE

/* This is the main Rexx program */
j=1; z.1="a"
call toft
say j k m /* Displays "1 7 M" */
exit

/* This is a subroutine */
toft: procedure expose j k z.j
 say j k z.j /* Displays "1 K a" */
 k=7; m=3 /* Note: M is not exposed */
 return

Note that if Z.J in the EXPOSE list is placed before J, the caller's value of J is not visible, so Z.1 is
not exposed.

The variables in a subsidiary list are also exposed from left to right.

Example 2.32. Instructions - PROCEDURE

/* This is the main Rexx program */
j=1;k=6;m=9
a ="j k m"
call test
exit

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */

PROCEDURE

69

 say a j k m /* Displays "j k m 1 6 9" */
 return

You can use subsidiary lists to more easily expose a number of variables at a time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example 2.33. Instructions - PROCEDURE

/* This is the main Rexx program */
c=11; d=12; e=13
Showlist="c d" /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f
 say word(showlist,2) /* Displays "d" */
 say value(word(showlist,2),"New") /* Displays "12" and sets new value */
 say value(word(showlist,2)) /* Displays "New" */
 e=8 /* E is not exposed */
 f=9 /* F was explicitly exposed */
 return

Specifying a stem as name exposes this stem and all possible compound variables whose names
begin with that stem. (See .)

Example 2.34. Instructions - PROCEDURE

/* This is the main Rexx program */
a.=11; i=13; j=15
i = i + 1
C.5 = "FRED"
call lucky7
say a. a.1 i j c. c.5
say "You should see 11 7 14 15 C. FRED"
exit

lucky7:Procedure Expose i j a. c.
 /* This exposes I, J, and all variables whose */
 /* names start with A. or C. */
 A.1="7" /* This sets A.1 in the caller-'s */
 /* environment, even if it did not */
 /* previously exist. */
 return

Note

Variables can be exposed through several generations of routines if they are included in all
intermediate PROCEDURE instructions.

Chapter 2. Keyword Instructions

70

See the CALL instruction and function descriptions in Section 2.3, “CALL” and Chapter 7, Functions
for details and examples of how routines are called.

2.20. PULL

>>-PULL--+---------------+--;----------------------------------><
 +-template_list-+

PULL reads a string from the head of the external data queue or, if the external data queue is empty,
from the standard input stream (typically the keyboard). (See Chapter 14, Input and Output Streams
for a discussion of Rexx input and output.) It is a short form of the following instruction:

>>-PARSE UPPER PULL--+---------------+--;----------------------><
 +-template_list-+

The current head of the queue is read as one string. Without a template_list specified, no further
action is taken and the string is thus effectively discarded. The template_list can be a single template
or list of templates separated by commas, but PULL parses only one source string. Each template
consists of one or more symbols separated by whitespace, patterns, or both.

If you specify several comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z to uppercase A-Z)
and then parsed into variables according to the rules described in Chapter 9, Parsing. Use the PARSE
PULL instruction if you do not desire uppercase translation.

Note

If the current data queue is empty, PULL reads from the standard input (typically, the keyboard).
If there is a PULL from the standard input, the program waits for keyboard input with no prompt.

Example:

Say "Do you want to erase the file? Answer Yes or No:"
Pull answer .
if answer="NO" then say "The file will not be erased."

Here the dummy placeholder, a period (.), is used in the template to isolate the first word the user
enters.

If the external data queue is empty, a line is read from the default input stream and the program
pauses, if necessary, until a line is complete. (This is as though PARSE UPPER LINEIN had been
processed. See ??? .)

PUSH

71

The QUEUED built-in function (see Section 7.4.48, “QUEUED”) returns the number of lines currently in
the external data queue.

2.21. PUSH

>>-PUSH--+------------+--;-------------------------------------><
 +-expression-+

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) into the
external data queue. (See Chapter 14, Input and Output Streams for a discussion of Rexx input and
output.)

If you do not specify expression, a null string is stacked.

Example 2.35. Instructions - PUSH

a="Fred"
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described in Section 7.4.48, “QUEUED”) returns the number of lines
currently in the external data queue.

2.22. QUEUE

>>-QUEUE--+------------+--;------------------------------------><
 +-expression-+

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out). (See Chapter 14, Input and Output Streams for a discussion of Rexx
input and output.)

If you do not specify expression, a null string is queued.

Example 2.36. Instructions - QUEUE

a="Toft"
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

Chapter 2. Keyword Instructions

72

The QUEUED built-in function (described in Section 7.4.48, “QUEUED”) returns the number of lines
currently in the external data queue.

2.23. RAISE

>>-RAISE--+-condition------------+--+-------------+--;---------><
 +-ERROR--errorcode-----+ +-| options |-+
 +-FAILURE--failurecode-+
 +-SYNTAX--number-------+
 +-USER--usercondition--+
 +-PROPAGATE------------+

options:

|--+------------------------+--+--------------------+----------->
 +-ADDITIONAL--expra------+ +-DESCRIPTION--exprd-+
 | +-,-----+ |
 | V | |
 +-ARRAY--(----expri-+--)-+

 +-| EXIT |----------+
>--+-------------------+--|
 +-RETURN--+-------+-+
 +-exprr-+

EXIT:

|--EXIT--+-------+--|
 +-expre-+

Note

You can specify the options ADDITIONAL, ARRAY, DESCRIPTION, RETURN, and EXIT in any
order. However, if you specify EXIT without expre or RETURN without exprr, it must appear last.

RAISE returns or exits from the currently running routine or method and raises a condition in the caller
(for a routine) or sender (for a method). See Chapter 11, Conditions and Condition Traps for details of
the actions taken when conditions are raised. The RAISE instruction can raise all conditions that can
be trapped.

If you specify condition, it is a single symbol that is taken as a constant.

If the ERROR or FAILURE condition is raised, you must supply the associated return code as
errorcode or failurecode, respectively. These can be literal strings, constant symbols, or expressions

RAISE

73

enclosed in parentheses. If you specify an expression enclosed in parentheses, a subexpression, the
language processor evaluates the expression to obtain its character string value.

If the SYNTAX condition is raised, you must supply the associated Rexx error number as number. This
error number can be either a Rexx major error code or a Rexx detailed error code in the form nn.nnn.
The number can be a literal string, a constant symbol, or an expression enclosed in parentheses. If
you specify an expression enclosed in parentheses, the language processor evaluates the expression
to obtain its character string value.

If a USER condition is raised, you must supply the associated user condition name as usercondition.
This can be a literal string or a symbol that is taken as a constant.

If you specify the ADDITIONAL option, the language processor evaluates expra to produce an object
that supplies additional object information associated with the condition. The expra can be a literal
string, constant symbol, or expression enclosed in parentheses. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information. For SYNTAX conditions, the ADDITIONAL value must evaluate to a single-dimension
Rexx array object.

If you specify the ARRAY option, each expri is an expression (use commas to separate the
expressions). The language processor evaluates the expression list to produce an array object that
supplies additional object information associated with the condition. The ADDITIONAL entry of the
condition object and the "A" option of the CONDITION built-in function return this additional object
information as an array of values. It is an error to use both the ARRAY option and the ADDITIONAL
option on the same RAISE instruction.

The content of expra or expri is used as the contents of the secondary error message produced for a
condition.

If you specify neither ADDITIONAL nor ARRAY, there is no additional object information associated
with the condition.

If you specify the DESCRIPTION option, the exprd can be a literal string, a constant symbol, or
an expression enclosed in parentheses. If you specify an expression enclosed in parentheses,
the language processor evaluates the expression to obtain its character string value. This is the
description associated with the condition. The "D" option of the CONDITION built-in function and the
DESCRIPTION entry of the condition object return this string.

If you do not specify DESCRIPTION, the language processor uses a null string as the descriptive
string.

If you specify the RETURN or EXIT option, the language processor evaluates the expression exprr
or expre, respectively, to produce a result object that is passed back to the caller or sender as if it
were a RETURN or EXIT result. The expre or exprr is a literal string, constant symbol, or expression
enclosed in parentheses. If you specify an expression enclosed in parentheses, the language
processor evaluates the expression to obtain its character string value. If you do not specify exprr or
expre, no result is passed back to the caller or sender. In either case, the effect is the same as that
of the RETURN or EXIT instruction (see Section 2.25, “RETURN”). Following the return or exit, the
appropriate action is taken in the caller or sender (see Section 11.1, “Action Taken when a Condition
Is Not Trapped”). If specified, the result value can be obtained from the RESULT entry of the condition
object.

Example 2.37. Instructions - RAISE

Chapter 2. Keyword Instructions

74

raise syntax 40 /* Raises syntax error 40 */
raise syntax 40.12 array (1, number) /* Raises syntax error 40, subcode 12 */
 /* Passing two substitution values */
raise syntax (errnum) /* Uses the value of the variable ERRNUM */
 /* as the syntax error number */
raise user badvalue /* Raises user condition BADVALUE */

If you specify PROPAGATE, and there is a currently trapped condition, this condition is raised again
in the caller (for a routine) or sender (for a method). Any ADDITIONAL, DESCRIPTION, ARRAY,
RETURN, or EXIT information specified on the RAISE instruction replaces the corresponding values
for the currently trapped condition. A SYNTAX error occurs if no condition is currently trapped.

Example 2.38. Instructions - RAISE

signal on syntax
a = "xyz"
c = a+2 /* Raises the SYNTAX condition */
.
.
.
exit
syntax:
 raise propagate /* Propagates SYNTAX information to caller */

2.24. REPLY

>>-REPLY--+------------+--;------------------------------------><
 +-expression-+

REPLY sends an early reply from a method to its caller. The method issuing REPLY returns control,
and possibly a result, to its caller to the point from which the message was sent; meanwhile, the
method issuing REPLY continues running on a newly created thread.

If you specify expression, it is evaluated and the object resulting from the evaluation is passed back. If
you omit expression, no object is passed back.

Unlike RETURN or EXIT, the method issuing REPLY continues to run after the REPLY until it issues
an EXIT or RETURN instruction. The EXIT or RETURN must not specify a result expression.

Example 2.39. Instructions - REPLY

reply 42 /* Returns control and a result */
call tidyup /* Can run in parallel with sender */
return

Notes:

1. You can use REPLY only in a method.

RETURN

75

2. A method can execute only one REPLY instruction.

3. When the method issuing the REPLY instruction is the only active method on the current thread
with exclusive access to the object's variable pool, the method retains exclusive access on the
new thread. When other methods on the thread also have access, the method issuing the REPLY
releases its access and reacquires the access on the new thread. This might force the method to
wait until the original activity has released its access.

See Chapter 12, Concurrency for a complete description of concurrency.

2.25. RETURN

>>-RETURN--+------------+--;-----------------------------------><
 +-expression-+

RETURN returns control, and possibly a result, from a Rexx program, method, or routine to the point
of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect
on the program that is run. (See Section 2.6, “EXIT”.)

If called as a routine, expression (if any) is evaluated, control is passed back to the caller, and the
Rexx special variable RESULT is set to the value of expression. If you omit expression, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at the time of the
CALL (for example, tracing and addresses) are also restored. (See Section 2.3, “CALL”.)

If a function call is active, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point
where the function was called. See the description of functions in Chapter 7, Functions for more
details.

If a method is processed, the language processor evaluates expression (if any) and returns control to
the point from which the method's activating message was sent. If called as a term of an expression,
expression is required. If called as a message instruction, expression is optional and is assigned to the
Rexx special variable RESULT if a return expression is specified. If the method has previously issued
a REPLY instruction, the RETURN instruction must not include a result expression.

If a PROCEDURE instruction was processed within an internal subroutine or internal function, all
variables of the current generation are dropped (and those of the previous generation are exposed)
after expression is evaluated and before the result is used or assigned to RESULT.

Note

If the RETURN statement causes the program to return to the operating system on a Unix/Linux
system the value returned is limited to a numerical value between 0 and 255 (an unsigned byte).
If no expression is supplied then the default value returned to the operating system is zero.

Chapter 2. Keyword Instructions

76

2.26. SAY

>>-SAY--+------------+--;--------------------------------------><
 +-expression-+

SAY writes a line to the default output stream, which displays it to the user. However, the output
destination can depend on the implementation. See Chapter 14, Input and Output Streams for a
discussion of Rexx input and output. The string value of the expression result is written to the default
character output stream. The resulting string can be of any length. If you omit expression, the null
string is written.

The SAY instruction is a shorter form of the following instruction:

>>-CALL LINEOUT,--+------------+--;----------------------------><
 +-expression-+

except that:

• SAY does not affect the special variable RESULT.

• If you use SAY and omit expression, a null string is used.

• CALL LINEOUT can raise NOTREADY; SAY will not.

See Section 7.4.40, “LINEOUT (Line Output)” for details of the LINEOUT function.

Example 2.40. Instructions - SAY

data=100
Say data "divided by 4 =>" data/4
/* Displays: "100 divided by 4 => 25" */

Notes:

1. Data from the SAY instruction is sent to the default output stream (.OUTPUT). However, the
standard rules for redirecting output apply to the SAY output.

2. The SAY instruction does not format data; the operating system and the hardware handle line
wrapping. However, formatting is accomplished, the output data remains a single logical line.

2.27. SELECT

SELECT

77

>>-SELECT--+-------------+-;------------------------------------->
 +-LABEL--name-+

 +--+
 V |
>----WHEN--expression--+---+--THEN--+---+--instruction--;-+------>
 +-;-+ +-;-+

>-+--+-END-+--------+-;-><
 +-OTHERWISE--+---+--+--------------------+-+ +--name--+
 +-;-+ | +----------------+ |
 | V | |
 +---instruction--;-+-+

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the result is 1, the
instruction following the associated THEN (which can be a complex instruction such as IF, DO, LOOP,
or SELECT) is processed and control is then passed to the END. If the result is 0, control is passed to
the next WHEN clause.

If none of the WHEN expressions evaluates to 1, control is passed to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE produces an error, however, you can
omit the instruction list that follows OTHERWISE.

Example 2.41. Instructions - SELECT

balance=100
check=50
balance = balance - check
Select
 when balance > 0 then
 say "Congratulations! You still have" balance "dollars left."
 when balance = 0 then do
 say "Warning, Balance is now zero! STOP all spending."
 say "You cut it close this month! Hope you do not have any"
 say "checks left outstanding."
 end
 Otherwise do
 say "You have just overdrawn your account."
 say "Your balance now shows" balance "dollars."
 say "Oops! Hope the bank does not close your account."
 end
end /* Select */

/

The expression may also be a list of expressions separated by ",". Each subexpression must evaluate
to either 0 or 1. The list of expressions is evaluated left-to-right. Evaluation will stop with the first 0
result and 0 will be returned as the condition result. If all of the subexpressions evaluate to 1, then the
condition result is also 1.

Chapter 2. Keyword Instructions

78

Example 2.42. Instructions - SELECT

select
 when answer~datatype('w'), answer//2 = 0 Then
 say answer "is even"
 when answer~datatype('w'), answer//2 = 1 Then
 say answer "is odd"
 otherwise
 say answer "is not a number"
end

The example above is not the same as using the following

select
 when answer~datatype('w') & answer//2 = 0 Then
 say answer "is even"
 when answer~datatype('w') & answer//2 = 1 Then
 say answer "is odd"
 otherwise
 say answer "is not a number"
end

The logical & operator will evaluate both terms of the operation, so the term "answer//2" will result in
a syntax error if answer is a non-numeric value. With the list conditional form, evaluation will stop with
the first false result, so the "answer//2" term will not be evaluated if the datatype test returns 0 (.false).

Notes:

1. The instruction can be any assignment, command, message instruction, or keyword instruction,
including any of the more complex constructs, such as DO, LOOP, IF, or the SELECT instruction
itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is
not equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated
differently in that it need not start a clause. This allows the expression on the WHEN clause to be
ended by the THEN without a semicolon (;).

2.28. SIGNAL

>>-SIGNAL--->

>--+-labelname---------------------------------------+--;------><
 +-+-------+--expression---------------------------+
 | +-VALUE-+ |
 +-OFF--+-ANY-----------------+--------------------+
 | +-ERROR---------------+ |
 | +-FAILURE-------------+ |
 | +-HALT----------------+ |
 | +-LOSTDIGITS----------+ |
 | +-NOMETHOD------------+ |
 | +-NOSTRING------------+ |

TRACE

79

 | +-NOTREADY------------+ |
 | +-NOVALUE-------------+ |
 | +-SYNTAX--------------+ |
 | +-USER--usercondition-+ |
 +-ON--+-ANY-----------------+--+----------------+-+
 +-ERROR---------------+ +-NAME--trapname-+
 +-FAILURE-------------+
 +-HALT----------------+
 +-LOSTDIGITS----------+
 +-NOMETHOD------------+
 +-NOSTRING------------+
 +-NOTREADY------------+
 +-NOVALUE-------------+
 +-SYNTAX--------------+
 +-USER--usercondition-+

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE
expression), or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the
specified condition trap. ON turns on the specified condition trap. All information on condition traps is
contained in Chapter 11, Conditions and Condition Traps.

To change the flow of control, a label name is derived from labelname or taken from the character
string result of evaluating the expression after VALUE. The labelname you specify must be a literal
string or symbol that is taken as a constant. If you specify a symbol for labelname, the search looks
for a label with uppercase characters. If you specify a literal string, the search uses the literal string
directly. You can locate label names with lowercase letters only if you specify the label as a literal
string with the same case. Similarly, for SIGNAL VALUE, the lettercase of labelname must match
exactly. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal
string, that is, if it starts with a special character, such as an operator character or parenthesis. All
active pending DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended
and cannot be resumed. Control is then passed to the first label in the program that matches the given
name, as though the search had started at the beginning of the program.

The labelname and usercondition are single symbols, which are taken as constants. The trapname is
a string or symbol taken as a constant.

Example 2.43. Instructions - SIGNAL

Signal fred; /* Transfer control to label FRED below */
....
....
Fred: say "Hi!"

If there are duplicates, control is always passed to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of
a transfer of control to a label.

2.29. TRACE

Chapter 2. Keyword Instructions

80

>>-TRACE--+-+--------+-----------------------+--;--------------><
 | +-number-+ |
 | +-Normal--------+ |
 +-+-----------+--+---------------+-+
 | +-------+ | +-All-----------+
 | V | | +-Commands------+
 +-----?---+-+ +-Error---------+
 +-Failure-------+
 +-Intermediates-+
 +-Labels--------+
 +-Off-----------+
 +-Results-------+

Or, alternatively:

>>-TRACE--+-----------------------+--;-------------------------><
 +-string----------------+
 +-symbol----------------+
 +-+-------+--expression-+
 +-VALUE-+

TRACE controls the tracing action (that is, how much is displayed to the user) during the processing
of a Rexx program. Tracing describes some or all of the clauses in a program, producing descriptions
of clauses as they are processed. TRACE is mainly used for debugging. Its syntax is more concise
than that of other Rexx instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the language processor while
the program is running.)

Note

TRACE cannot be used in the Rexx macrospace. See Section B.8, “Trace in Macrospace”.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option

• One of the valid prefix or alphabetic character (word) options described in Section 2.29.1, “Trace
Alphabetic Character (Word) Options”

• Null

The symbol is taken as a constant and is therefore:

• A numeric option

• One of the valid prefix or alphabetic character (word) options described in Section 2.29.1, “Trace
Alphabetic Character (Word) Options”

Trace Alphabetic Character (Word) Options

81

The option that follows TRACE or the character string that is the result of evaluating expression
determines the tracing action. You can omit the subkeyword VALUE if expression does not begin
with a symbol or a literal string, that is, if it starts with a special character, such as an operator or
parenthesis.

2.29.1. Trace Alphabetic Character (Word) Options

Although you can enter the word in full, only the first capitalized letter is needed; all following
characters are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure (see
Section 1.15.2, “Commands”), tracing also displays the return code from the command.

Error
Traces any command resulting in an error or failure after execution (see Section 1.15.2,
“Commands”), together with the return code from the command.

Failure
Traces any command resulting in a failure after execution (see Section 1.15.2, “Commands”),
together with the return code from the command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during the evaluation of
expressions and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine
calls and transfers of control because of the SIGNAL instruction.

Normal
Traces any failing command after execution, together with the return code from the command.
This is the default setting.

For the default Windows command processor, an attempt to enter an unknown command raises
a FAILURE condition. The CMD return code for an unknown command is 1. An attempt to enter a
command in an unknown command environment also raises a FAILURE condition; in such a case,
the variable RC is set to 30.

Off
Traces nothing and resets the special prefix option (described later) to OFF.

Results
Traces all clauses before execution. Displays the final results (in contrast with Intermediates
option) of the expression evaluation. Also displays values assigned during PULL, ARG, PARSE,
and USE instructions. This setting is recommended for general debugging.

Chapter 2. Keyword Instructions

82

2.29.2. Prefix Option

The prefix ? is valid alone or with one of the alphabetic character options. You can specify the prefix
more than once, if desired. Each occurrence of a prefix on an instruction reverses the action of the
previous prefix. The prefix must immediately precede the option (no intervening whitespace).

The prefix ? controls interactive debugging. During normal execution, a TRACE option with a prefix
of ? causes interactive debugging to be switched on. (See Chapter 15, Debugging Aids for full details
of this facility.) When interactive debugging is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor pause for input after
executing any command that returns an error, that is, a nonzero return code or explicit setting of the
error condition by the command handler.

Any TRACE instructions in the program being traced are ignored to ensure that you are not taken out
of interactive debugging unexpectedly.

You can switch off interactive debugging in several ways:

• Entering TRACE O turns off all tracing.

• Entering TRACE with no options restores the defaults—it turns off interactive debugging but
continues tracing with TRACE Normal (which traces any failing command after execution).

• Entering TRACE ? turns off interactive debugging and continues tracing with the current option.

• Entering a TRACE instruction with a ? prefix before the option turns off interactive debugging and
continues tracing with the new option.

Using the ? prefix, therefore, switches you in or out of interactive debugging. Because the language
processor ignores any further TRACE statements in your program after you are in interactive debug
mode, use CALL TRACE "?" to turn off interactive debugging.

2.29.3. Numeric Options

If interactive debugging is active and the option specified is a positive whole number (or an expression
that evaluates to a positive whole number), that number indicates the number of debug pauses to be
skipped. (See Chapter 15, Debugging Aids for further information.) However, if the option is a negative
whole number (or an expression that evaluates to a negative whole number), all tracing, including
debug pauses, is temporarily inhibited for the specified number of clauses. For example, TRACE -100
means that the next 100 clauses that would usually be traced are not displayed. After that, tracing
resumes as before.

2.29.4. Tracing Tips

• When a loop is traced, the DO clause itself is traced on every iteration of the loop.

• You can retrieve the trace actions currently in effect by using the TRACE built-in function (see
Section 7.4.66, “TRACE”).

• The trace output of commands traced before execution always contains the final value of the
command, that is, the string passed to the environment, and the clause generating it.

• Trace actions are automatically saved across subroutine, function, and method calls. See
Section 2.3, “CALL” for more details.

The Format of Trace Output

83

One of the most common traces you will use is:

Example 2.44. Instructions - TRACE

TRACE ?R
/* Interactive debugging is switched on if it was off, */
/* and tracing results of expressions begins. */

2.29.5. The Format of Trace Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth
of nesting, for example. Results, if requested, are indented by two extra spaces and are enclosed in
double quotation marks so that leading and trailing whitespace characters are apparent. Any control
codes in the data encoding (ASCII values less than "20"x) are replaced by a question mark (?) to
avoid screen interference. Results other than strings appear in the string representation obtained by
sending them a STRING message. The resulting string is enclosed in parentheses. The line number
in the program precedes the first clause traced on any line. All lines displayed during tracing have a
three-character prefix to identify the type of data being traced. These can be:

-
Identifies the source of a single clause, that is, the data actually in the program.

+++
Identifies a trace message. This can be the nonzero return code from a command, the prompt
message when interactive debugging is entered, an indication of a syntax error when in interactive
debugging.

>I>
Identifies an entry to a routine or method. This trace entry will only appear if tracing is enabled
using the ::OPTIONS directive using TRACE A, TRACE R, or TRACE I.

>>>
Identifies the result of an expression (for TRACE R) or the value returned from a subroutine call, or
a value evaluated by execution of a DO loop.

>=>
Identifies a variable assignment or a message assignment result. The trace message includes
both the name of the assignment target and the assigned value. Assignment trace lines are
displayed by assignment instructions, variable assigned via PARSE, ARG, PULL, or USE ARG, as
well as control variable updates for DO and LOOP instructions.

>.>
Identifies the value assigned to a placeholder during parsing (see Section 9.1.2, “The Period as a
Placeholder”).

The following prefixes are used only if TRACE Intermediates is in effect:

>A>
Identifies a value used as a function, subroutine, or message argument.

Chapter 2. Keyword Instructions

84

>C>
The data traced is the original name of the compound variable and the name of a compound
variable, after the name has been replaced by the value of the variable but before the variable
is used. If no value was assigned to the variable, the trace shows the variable in uppercase
characters.

>E>
The data traced is the name and value of an environment symbol.

>F>
The data traced is the name and result of a function call.

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>M>
The data traced is the name and result of an object message.

>O>
The data traced is the name and result of an operation on two terms.

>P>
The data traced is the name and result of a prefix operation.

>V>
The data traced is the name and contents of a variable.

Note

The characters => indicate the value of a variable or the result of an operation.

The characters <= indicate a value assignment. The name to the left of the marker is the
assignment topic. The data to the right of the marker is the assigned value.

The character ? could indicate a non-printable character in the output.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null, the
default tracing actions are restored. The defaults are TRACE N and interactive debugging (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced.

2.30. USE

 +-,----------------------+
 V |
>>-USE--+-----------+--ARG----+--------------------+-+-----------------------><
 +-- STRICT--+ +-name-+----------+--+
 +-=--expr--+

USE

85

USE ARG retrieves the argument objects provided in a program, routine, function, or method and
assigns them to variables or message term assignments.

Each name must be a valid variable name. The names are assigned from left to right. For each name
you specify, the language processor assigns it a corresponding argument from the program, routine,
function, or method call. If there is no corresponding argument, name is assigned the value of expr. If
expr is not specified for the given argument, the variable name is dropped. If the assignment target is
a messaging term, no action is taken for omitted arguments.

A USE ARG instruction can be processed repeatedly and it always accesses the same current
argument data.

If expr is specified for an argument, the expression is evaluated to provide a default value for an
argument when the corresponding argument does not exist. The default expr must be a literal string, a
constant expression, or an expression enclosed in parentheses.

The names may be any valid symbol or message term which can appear on the left side of an
assignment statement (See Section 1.13, “Assignments and Symbols”).

The STRICT options imposes additional constraints on argument processing. The number of
arguments must match the number of names, otherwise an error is raised. An argument may be
considered optional if expr has been specified for the argument.

The ellipsis ("...") can be given in place of the last variable in the USE STRICT ARG statement and
indicates that more arguments may follow. It allows defining a minimum amount of arguments that
must be supplied or for which there are default values defined and that may be followed optionally by
any additional arguments.

Example 2.45. Instructions - USE

/* USE Example */
/* FRED("Ogof X",1,5) calls function */
Fred: use arg string, num1, num2

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "5" */

/* Another example, shows how to pass non-string arguments with USE ARG */
/* Pass a stem and an array to a routine to modify one element of each */
stem.1 = "Value"
array = .array~of("Item")
say "Before subroutine:" stem.1 array[1] /* Shows "Value Item" */
Call Change_First stem. , array
say "After subroutine:" stem.1 array[1] /* Shows "NewValue NewItem" */
Exit

Change_First: Procedure
 Use Arg substem., subarray
 substem.1 = "NewValue"
 subarray[1] = "NewItem"
 Return

Chapter 2. Keyword Instructions

86

/* USE STRICT Example */
/* FRED("Ogof X",1) calls function */
Fred: use strict arg string, num1, num2=4

/* Now: STRING contains "Ogof X" */
/* NUM1 contains "1" */
/* NUM2 contains "4" */

In the above example, a call to the function FRED may have either 2 or 3 arguments. The STRICT
keyword on the USE instruction will raise a syntax error for any other combination of arguments.

Example 2.46. Instructions - USE

call test "one"
call test "one", "two"
call test "one", "two", "three"
call test "one", , "three", "four", "five"
exit

test: procedure /* a minimum of one argument must be supplied */
 use strict arg v1, v2="zwei", ...
 say "There are ["arg()"] argument(s); v1,v2=["v1","v2"]"
 do i=3 to arg()
 say " arg #" i"=["arg(i)"]"
 end
 say "--"
 return

Output:

There are [1] argument(s); v1,v2=[one,zwei]
--
There are [2] argument(s); v1,v2=[one,two]
--
There are [3] argument(s); v1,v2=[one,two]
 arg # 3=[three]
--
There are [5] argument(s); v1,v2=[one,zwei]
 arg # 3=[three]
 arg # 4=[four]
 arg # 5=[five]
--

The assignment targets may be any term that can be on the left side of an assignment statement.

Example 2.47. Instructions - USE

expose myArray myDirectory
use arg myArray[1], myDirectory~name

would be equivalent to

myArray[1] = arg(1)

USE

87

myDirectory~name = arg(2)

You can retrieve or check the arguments by using the ARG built-in function (see Section 7.4.4, “ARG
(Argument)”). The ARG and PARSE ARG instructions are alternative ways of retrieving arguments.
ARG and PARSE ARG access the string values of arguments. USE ARG performs a direct, one-to-
one assignment of arguments. This is preferable when you need direct access to an argument, without
translation or parsing. USE ARG also allows access to both string and non-string argument objects;
ARG and PARSE ARG convert the arguments to values before parsing.

88

Chapter 3.

89

Directives
A Rexx program contains one or more executable code units. Directive instructions separate these
executable units. A directive begins with a double colon (::) and is a nonexecutable instruction. For
example, it cannot appear in a string for the INTERPRET instruction to be interpreted. The first
directive instruction in a program marks the end of the main executable section of the program.

For a program containing directives, all directives are processed first to set up the program's classes,
methods, and routines. Then any program code in the main code unit (preceding the first directive) is
processed. This code can use any classes, methods, and routines that the directives established.

3.1. ::ATTRIBUTE

The ::ATTRIBUTE directive creates attribute methods and defines the method properties.

>>-::ATTRIBUTE--name--+-----+-------+-------+---+----------+---------->
 +-GET-+ +-CLASS-+ +-ABSTRACT-+
 +-SET-+

 +-PUBLIC--+ +-GUARDED---+ +-UNPROTECTED-+
 >--+---------+--+-----------+--+-------------+------------------->
 +-PRIVATE-+ +-UNGUARDED-+ +-PROTECTED---+

 >--+---------------+---;---><
 +-EXTERNAL-spec-+

The ::ATTRIBUTE directive creates accessor methods for object instance variables. An accessor
method allows an object instance variable to be retrieved or assigned a value. ::ATTRIBUTE can
create an attribute getter method, a setter method, or the getter/setter pair.

The name is a literal string or a symbol that is taken as a constant. The name must also be a valid
Rexx variable name. The ::ATTRIBUTE directive creates methods in the class specified in the most
recent ::CLASS directive. If no ::CLASS directive precedes an ::ATTRIBUTE directive, the attribute
methods are not associated with a class but are accessible to the main (executable) part of a program
through the .METHODS built-in object. Only one ::ATTRIBUTE directive can appear for any method
name not associated with a class. See Section 6.14, “The METHODS Directory (.METHODS)” for
more details.

If you do not specify either SET or GET, ::ATTRIBUTE will create two attribute methods with the
names name and name=. These are the methods for getting and setting an attribute. These generated
methods are equivalent to the following code sequences:

Example 3.1. ATTRIBUTE directive equivalent code

::method "NAME=" /* attribute set method */
 expose name /* establish direct access to object variable (attribute) */
 use arg name /* retrieve argument and assign it to the object variable */

::method name /* attribute get method */
 expose name /* establish direct access to object variable (attribute) */
 return name /* return object's current value */

Chapter 3. Directives

90

Both methods will be created with the same method properties (for example, PRIVATE, GUARDED,
etc.). If GET or SET are not specified, the pair of methods will be automatically generated. In that
case, there is no method code body following the directive, so another directive (or the end of the
program) must follow the ::ATTRIBUTE directive.

If GET or SET is specified, only the single get or set attribute method is generated. Specifying
separate GET or SET ::ATTRIBUTE directives allows the methods to be created with different
properties. For example, the sequence:

::attribute name get
::attribute name set private

will create a NAME method with PUBLIC access and a NAME= method with PRIVATE access.

The GET and SET options may also be used to override the default method body generated for the
attribute. This is frequently used so the SET attribute method can perform new value validation.

Example 3.2. ATTRIBUTE directive - get and set methods

::attribute size get
::attribute size set
 expose size /* establish direct access to object variable (attribute) */
 use arg value /* retrieve argument */
 if datatype(value, "Whole") = .false | value < 0 then
 raise syntax 93.906 array ("size", value)
 size=value

If you specify the CLASS option, the created methods are class methods. See Chapter 4, Objects and
Classes. The attribute methods are associated with the class specified on the most recent ::CLASS
directive. The ::ATTRIBUTE must be preceded by a ::CLASS directive if CLASS is specified.

If ABSTRACT is specified, then all created methods will be marked as ABSTRACT and will raise
an error if directly invoked. For ABSTRACT methods there is no method code body following the
directive, so another directive (or the end of the program) must follow the ::ATTRIBUTE directive.

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace
delimited tokens defining the external method. The first token must be the word LIBRARY, which
indicates the method resides in a native library of the type allowed on a ::REQUIRES directive. The
second token must identify the name of the external library. The external library is located using
platform-specific mechanisms for loading libraries. For Unix-based systems, the library name is case-
sensitive. The third token is optional and specifies the name of the method within the library package.
If not specified, the ::METHOD name is used. The target package method name is case insensitive.

If the SET or GET option is not specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".
If GET or SET is specified and the method name is not specified within spec, then the target library
method name is generated by concatenating name with "GET" or "SET" as appropriate. If the method
name is specified in spec and GET or SET is specified, the spec name will be used unchanged.

::CLASS

91

Example 3.3. ATTRIBUTE directive - naming the get and set methods

-- maps "NAME" method to "GETNAME and
-- "NAME=" to "SETNAME"
::ATTRIBUTE name EXTERNAL "LIBRARY mylib"
-- maps "ADDRESS" method to "GETADDRESS"
::ATTRIBUTE address GET EXTERNAL "LIBRARY mylib"
-- maps "ADDRESS=" method to "setHomeAddress"
::ATTRIBUTE address SET EXTERNAL "LIBRARY mylib setHomeAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PRIVATE option, the created methods are private methods. Private methods
have restricted access rules on how they can be invoked. See Section 4.2.8, “Public and Private
Methods” for details of how private methods can be used. If you omit the PRIVATE option or
specify PUBLIC, the method is a public method that any sender can activate.

3. If you specify the UNGUARDED option, the methods can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method methods are protected methods. (See
Chapter 13, The Security Manager for more information.) If you omit the PROTECTED option or
specify UNPROTECTED, the methods are not protected.

5. It is an error to specify ::ATTRIBUTE more than once within a class definition that creates a
duplicate get or set method.

3.2. ::CLASS

The ::CLASS directive causes the interpreter to create a Rexx class.

>>-::CLASS--classname--+----------------------+------------------->
 +-METACLASS--metaclass-+

 .-SUBCLASS--Object---. +-PRIVATE-+
>--+--------------------+--+---------+--+-------------------+--;--><
 +-MIXINCLASS--mclass-+ +-PUBLIC--+ +-INHERIT--iclasses-+
 +-SUBCLASS--sclass---+

The ::CLASS directive creates a Rexx class named classname. The classname is a literal
string or symbol that is taken as a constant. The created class is available to programs through
the Rexx environment symbol .classname. The classname acquires all methods defined by
subsequent ::METHOD directives until the end of the program or another ::CLASS directive is found.
Only null clauses (comments or blank lines) can appear between a ::CLASS directive and any
following directive instruction or the end of the program. Only one ::CLASS directive can appear for
classname in a program.

Chapter 3. Directives

92

If you specify the METACLASS option, the instance methods of the metaclass class become class
methods of the classname class. (See Chapter 4, Objects and Classes .) The metaclass and
classname are literal strings or symbols that are taken as constants. In the search order for methods,
the metaclass methods precede inherited class methods and follow any class methods defined
by ::METHOD directives with the CLASS option.

If you specify the PUBLIC option, the class is visible beyond its containing Rexx program to any other
program that references this program with a ::REQUIRES directive. (See Section 3.6, “::REQUIRES”.)
If you do not specify the PUBLIC option, the class is visible only within its containing Rexx program. All
public classes defined within a program are used before PUBLIC classes created with the same name.

If you specify the SUBCLASS option, the class becomes a subclass of the class sclass for inheritance
of instance and class methods. The sclass is a literal string or symbol that is taken as a constant.

If you specify the MIXINCLASS option, the class becomes a subclass of the class mclass for
inheritance of instance and class methods. You can add the new class instance and class methods
to existing classes by using the INHERIT option on a ::CLASS directive or by sending an INHERIT
message to an existing class. If you specify neither the SUBCLASS nor the MIXINCLASS option, the
class becomes a non-mixin subclass of the Object class.

If you specify the INHERIT option, the class inherits instance methods and class methods from the
classes iclasses in their order of appearance (leftmost first). This is equivalent to sending a series
of INHERIT messages to the class object, with each INHERIT message (except the first) specifying
the preceding class in iclasses as the classpos argument. (See Section 5.1.2.9, “inherit” .) As with
the INHERIT message, each of the classes in iclasses must be a mixin class. The iclasses is a
whitespace-separated list of literal strings or symbols that are taken as constants. If you omit the
INHERIT option, the class inherits only from sclass.

Example:

Example 3.4. CLASS directive

::class rectangle
::method area /* defined for the RECTANGLE class */
 expose width height
 return width*height

::class triangle
::method area /* defined for the TRIANGLE class */
 expose width height
 return width*height/2

The ::CLASS directives in a program are processed in the order in which they appear. If a ::CLASS
directive has a dependency on ::CLASS directives that appear later in the program, processing of the
directive is deferred until all of the class's dependencies have been processed.

Example 3.5. CLASS directive deferred processing

::class savings subclass account /* requires the ACCOUNT class */
::method type
 return "a Savings Account"

::class account
::method type

::CONSTANT

93

 return "an Account"

The Savings class in the preceding example is not created until the Account class that appears later in
the program has been created.

Notes:

1. You can specify the options METACLASS, MIXINCLASS, SUBCLASS, and PUBLIC in any order.

2. If you specify INHERIT, it must be the last option.

3.3. ::CONSTANT

The ::CONSTANT directive creates methods that return constant values for a class and its instances.

>>-::CONSTANT--name--value---><

A ::CONSTANT directive defines a method that returns a constant value. This is useful for creating
named constants associated with a class.

The name is a literal string or a symbol that is taken as a constant. A method of the given name
is created as both an instance method and a class method of the most recent ::CLASS directive.
A ::CLASS directive is not required before a ::CONSTANT directive. If no ::CLASS directive
precedes ::CONSTANT, a single constant method method is created that is not associated with a
class but is accessible to the main (executable) part of a program through the .METHODS built-in
object. Only one ::CONSTANT directive can appear for any method name not associated with a class.
See Section 6.14, “The METHODS Directory (.METHODS)” for more details.

The methods created by a ::CONSTANT directive are UNGUARDED and will have a return result that
is specified by value. The constant value must be a single literal string or symbol that is taken as a
constant. Also permitted is the single character "-" or "+" followed by a literal string or symbol that is a
valid number. Here are some examples of valid constants:

Example 3.6. CONSTANT examples

::class MathConstants public
::constant pi 3.1415926
::constant author "Isaac Asimov"
::constant absolute_zero -273.15

A ::CONSTANT directive is a shorthand syntax for creating constants associated with a class. The
created name constant can be accessed using either the class object or an instance of the class itself.

Example 3.7. CONSTANT access examples

say "Pi is" .MathConstants~pi -- displays "Pi is 3.1415926"
instance = .MathConstants~new
say "Pi is" instance~pi -- also displays "Pi is 3.1415926"

::class MathConstants public

Chapter 3. Directives

94

::constant pi 3.1415926

3.4. ::METHOD

The ::METHOD directive creates a method object and defines the method attributes.

>>-::METHOD--methodname--+-------+--+-----------+--+----------+--->
 +-CLASS-+ +-ATTRIBUTE-+ +-ABSTRACT-+

 +-PUBLIC--+ +-GUARDED---+ +-UNPROTECTED-+
 >--+---------+--+-----------+--+-------------+------------------->
 +-PRIVATE-+ +-UNGUARDED-+ +-PROTECTED---+

 >--+---------------+---;---><
 +-EXTERNAL-spec-+

A ::METHOD directive creates method objects that may be associated with a class instance.
The created method may be from Rexx code, mapped to method in an external native library, or
automatically generated. The type of method is determined by the combination of options specified.

The methodname is a literal string or a symbol that is taken as a constant. The method is defined
as methodname in the class specified in the most recent ::CLASS directive. Only one ::METHOD
directive can appear for any methodname in a class.

A ::CLASS directive is not required before a ::METHOD directive. If no ::CLASS directive
precedes ::METHOD, the method is not associated with a class but is accessible to the main
(executable) part of a program through the .METHODS built-in object. Only one ::METHOD directive
can appear for any method name not associated with a class. See Section 6.14, “The METHODS
Directory (.METHODS)” for more details.

If you specify the CLASS option, the method is a class method. See Chapter 4, Objects and
Classes. The method is associated with the class specified on the most recent ::CLASS directive.
The ::METHOD directive must follow a ::CLASS directive when the CLASS option is used.

If ABSTRACT, ATTRIBUTE, or EXTERNAL is not specified, the ::METHOD directive starts a section
of method code which is ended by another directive or the end of the program. The ::METHOD is not
included in the source of the created METHOD object.

Example 3.8. METHOD examples

r = .rectangle~new(20,10)
say "Area is" r~area /* Produces "Area is 200" */

::class rectangle

::method area /* defined for the RECTANGLE class */
 expose width height
 return width*height

::method init
 expose width height
 use arg width, height

::method perimeter
 expose width height

::METHOD

95

 return (width+height)*2

If you specify the ATTRIBUTE option, method variable accessor methods are created. In addition to
generating a method named methodname, another method named methodname= is created. The
first method returns the value of object instance variable that matches the method name. The second
method assigns a new value to the object instance variable.

For example, the directive

Example 3.9. METHOD ATTRIBUTE examples

::method name attribute

creates two methods, NAME and NAME=. The NAME and NAME= methods are equivalent to the
following code sequences:

Example 3.10. METHOD ATTRIBUTE code expansion

::method "NAME="
 expose name
 use arg name

::method name
 expose name
 return name

If you specify the ABSTRACT option, the method creates an ABSTRACT method placeholder.
ABSTRACT methods define a method that an implementing subclass is expected to provide a
concrete implementation for. Any attempt to invoke an ABSTRACT method directly will raise a
SYNTAX condition.

If the EXTERNAL option is specified, then spec identifies a method in an external native library that
will be invoked as the named method. The spec is a literal string containing a series of whitespace
delimited tokens defining the external method. The first token must be the word LIBRARY, which
indicates the method resides in a native library of the type allowed on a ::REQUIRES directive. The
second token must identify the name of the external library. The external library is located using
platform-specific mechanisms for loading libraries. For Unix-based systems, the library name is case-
sensitive. The third token is optional and specifies the name of the method within the library package.
If not specified, the ::METHOD name is used. The target package method name is case insensitive.

Example 3.11. METHOD EXTERNAL examples

-- creates method INIT from method RegExp_Init
-- in library rxregexp
::METHOD INIT EXTERNAL "LIBRARY rxregexp RegExp_Init"

-- creates method INIT from method POS

Chapter 3. Directives

96

-- in library rxregexp
::METHOD POS EXTERNAL "LIBRARY rxregexp"

If the ATTRIBUTE option is specified with the EXTERNAL option, then two method objects need to
be created. The target method name is appended to the string "GET" to derive the name of the getter
attribute method. To generate the setter attribute method, the name is appended to the string "SET".

Example 3.12. METHOD EXTERNAL examples

-- maps "NAME" method to "GETNAME and
-- "NAME=" to "SETNAME"
::METHOD name ATTRIBUTE EXTERNAL "LIBRARY mylib"

-- maps "ADDRESS" method to "GETMyAddress and
-- "ADDRESS=" to "SETMyAddress"
::METHOD address ATTRIBUTE EXTERNAL "LIBRARY mylib MyAddress"

Notes:

1. You can specify all options in any order.

2. If you specify the PRIVATE option, the created methods are private methods. Private methods
have restricted access rules on how they can be invoked. See Section 4.2.8, “Public and Private
Methods” for details of how private methods can be used. If you omit the PRIVATE option or
specify PUBLIC, the method is a public method that any sender can activate.

3. If you specify the UNGUARDED option, the method can be called while other methods are active
on the same object. If you do not specify UNGUARDED, the method requires exclusive use of the
object variable pool; it can run only if no other method that requires exclusive use of the object
variable pool is active on the same object.

4. If you specify the PROTECTED option, the method is a protected method. (See Chapter 13,
The Security Manager for more information.) If you omit the PROTECTED option or specify
UNPROTECTED, the method is not protected.

5. If you specify ATTRIBUTE, ABSTRACT, or EXTERNAL, another directive (or the end of the
program) must follow the ::METHOD directive.

6. It is an error to specify ::METHOD more than once within the same class and use the same
methodname.

3.5. ::OPTIONS

The ::OPTIONS directive defines default values for numeric and trace settings for all Rexx code
contained within a package.

>>-::OPTIONS--+---------------+--+-----------+--+-----------+---->
 +-DIGITS-digits-+ +-FORM-form-+ +-FUZZ-fuzz-+

 >------------+-------------+------------------------------------><
 +-TRACE-trace-+

::OPTIONS

97

Any of the options may be specified on a single ::OPTIONS directive in any order. If an option is
specified more than once, the last specified value will the be one used. If more than one ::OPTIONS
directive appears in a source file, the options are processed in the order they appear and the effect is
accumulative. If a given option type is specified on more than directive, the last specified will be the
value used.

The specified options will override the normal default settings for all Rexx code contained in the source
file. For example,

::OPTIONS DIGITS 20

would direct that all method and routine code defined in this source package execute with an initial
NUMERIC DIGITS (Section 2.16, “NUMERIC”) setting of 20 digits. The ::OPTIONS directive controls
only the initial setting. A method or routine may change the current setting with the NUMERIC DIGITS
instruction as normal. The values specified with ::OPTIONS only apply to code that appears in the
same source file. It does not apply to code in other source files that may reference or use this code.
For example, a subclass of a class defined in this source package will not inherit the ::OPTIONS
settings if the subclass code is located in a different source package.

The following options may be specified on an ::OPTIONS directive:

DIGITS controls the precision to which arithmetic operations and built-in functions are
evaluated. The value digits must be a symbol or string that is a valid positive whole
number value and must be larger than the current FUZZ ::OPTIONS setting. The
package value can be retrieved using the Package class digits (Section 5.1.6.10,
“digits” method.

There is no limit to the value for DIGITS (except the amount of storage available),
but high precisions are likely to require a great amount of processing time. It is
recommended that you use the default value whenever possible.

FORM controls the form of exponential notation for the result of arithmetic operations and
built-in functions. This can be either SCIENTIFIC (in which case only one, nonzero
digit appears before the decimal point) or ENGINEERING (in which case the power
of 10 is always a multiple of 3). The default is SCIENTIFIC. The subkeywords
SCIENTIFIC or ENGINEERING must be specified as symbols. The package value
can be retrieved using the Package class form (Section 5.1.6.10, “digits”) method.

FUZZ controls how many digits, at full precision, are ignored during a numeric
comparison operation. (See Section 10.4, “Numeric Comparisons”.) The value fuzz
must be a symbol or string that is a valid positive whole number value and must
be smaller than the current DIGIT ::OPTIONS setting. The package value can be
retrieved using the Package class fuzz (Section 5.1.6.10, “digits”) method.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the comparison
and are then compared with 0.

TRACE controls the tracing action (that is, how much is displayed to the user) during the
processing of all Rexx code contained in the package. Tracing describes some
or all of the clauses in a program, producing descriptions of clauses as they are
processed. TRACE is mainly used for debugging. The value trace must be one
of the Trace Alphabetic (Section 2.29.1, “Trace Alphabetic Character (Word)
Options”) valid for the Trace instruction (Section 2.29, “TRACE”). The package

Chapter 3. Directives

98

value can be retrieved using the Package class trace (Section 5.1.6.10, “digits”)
method.

3.6. ::REQUIRES

The ::REQUIRES directive specifies that the program requires access to the classes and objects of
the Rexx program programname.

>>-::REQUIRES--"programname"--+---------+-;--------------------><
 +-LIBRARY-+

If the LIBRARY option is not specified, all public classes and routines defined in the named program
are made available to the executing program. The programname is a literal string or a symbol that
is taken as a constant. The string or symbol programname can be any string or symbol that is valid
as the target of a CALL instruction. The program programname is called as an external routine
with no arguments. The program is searched for using normal external program search order. See
Section 7.2.1, “Search Order” for details. The main program code, which precedes the first directive
instruction, is run.

If any Rexx code preceeds the first directive in programname then that code is executed at the time
the ::REQUIRES is processed by the interpreter. This will be executed prior to executing the main
Rexx program in the file that specifies the ::REQUIRES statement.

If the LIBRARY option is specified, programname is the name of an external native library that is
required by this program. The library will be loaded using platform-specific mechanisms, which
generally means the library name is case sensitive. Any routines defined in the library will be made
available to all programs running in the process. If the native library cannot be loaded, the program will
not be permitted to run. All LIBRARY ::REQUIRES directives will be processed before ::REQUIRES
for Rexx programs, which will ensure that the native libraries are available to the initialization code of
the Rexx packages.

::REQUIRES directives can be placed anywhere after the main section of code in the package. The
order of ::REQUIRES directives determines the search order for classes and routines defined in
the named programs and also the load order of the referenced files. Once a program is loaded by
a ::REQUIRES statement in a program, other references to that same program by ::REQUIRES
statements in other programs will resolve to the previously loaded program. The initialization code for
the ::REQUIRES file will only be executed on the first reference.

The following example illustrates that two programs, ProgramA and ProgramB, can both access
classes and routines that another program, ProgramC, contains. (The code at the beginning of
ProgramC runs prior to the start of the main Rexx program.)

::ROUTINE

99

The language processor uses local routine definitions within a program in preference to routines of
the same name accessed through ::REQUIRES directives. Local class definitions within a program
override classes of the same name in other programs accessed through ::REQUIRES directives.

Another directive, or the end of the program, must follow a ::REQUIRES directive. Only null clauses
can appear between them.

3.7. ::ROUTINE

The ::ROUTINE directive creates named routines within a program.

 +-PRIVATE-+
>>-::ROUTINE--routinename--+---------+--+---------------+-------><
 +-PUBLIC--+ +-EXTERNAL-spec-+

The routinename is a literal string or a symbol that is taken as a constant. Only one ::ROUTINE
directive can appear for any routinename in a program.

If the EXTERNAL option is not specified, the ::ROUTINE directive starts a routine, which is ended by
another directive or the end of the program.

If you specify the PUBLIC option, the routine is visible beyond its containing Rexx program to any
other program that references this program with a ::REQUIRES directive. If you do not specify the
PUBLIC option, the routine is visible only within its containing Rexx program.

Routines you define with the ::ROUTINE directive behave like external routines. In the search order for
routines, they follow internal routines and built-in functions but precede all other external routines.

Example 3.13. ROUTINE examples

::class c

Chapter 3. Directives

100

::method a
call r "A" /* displays "In method A" */

::method b
call r "B" /* displays "In method B" */

::routine r
use arg name
say "In method" name

If the EXTERNAL option is specified, then spec identifies a routine in an external native library that
will be defined as the named routine for this program. The spec is a literal string containing a series of
whitespace delimited tokens defining the external function. The first token identifies the type of native
routine to locate:

LIBRARY
Identifies a routine in an external native library of the type supported by the ::REQUIRES directive.
The second token must identify the name of the external library. The external library is located
using platform-specific mechanisms for loading libraries. For Unix-based systems, the library
name is case-sensitive. The third token is optional and specifies the name of the routine within
the library package. If not specified, the ::ROUTINE name is used. The routine name is not case
sensitive.

REGISTERED
Identifies a routine in an older-style Rexx function package. The second token must identify the
name of the external library. The external library is located using platform-specific mechanisms
for loading libraries. For Unix-based systems, the library name is case-sensitive. The third token
is optional and specifies the name of the function within the library package. If not specified,
the ::ROUTINE name is used. Loading of the function will be attempted using the name as given
and as all uppercase. Using REGISTERED is the equivalent of loading an external function using
the RXFUNCADD() built-in function. See Section 7.4.52, “RXFUNCADD” for more details.

Example 3.14. ROUTINE REGISTERED examples

-- load a function from rxmath library
::routine RxCalcPi EXTERNAL "LIBRARY rxmath"
-- same function, but a different internal name
::routine Pi EXTERNAL "LIBRARY rxmath RxCalcPi"
-- same as call rxfuncadd "SQLLoadFuncs", "rexxsql", "SQLLoadFuncs"
::routine SQLLoadFuncs "REGISTERED rexxsql SQLLoadFuncs"

Notes:

1. It is an error to specify ::ROUTINE with the same routine name more than once in the same
program. It is not an error to have a local ::ROUTINE with the same name as another ::ROUTINE
in another program that the ::REQUIRES directive accesses. The language processor uses the
local ::ROUTINE definition in this case.

2. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden and the internal values (NUMERIC
settings, for example) start with their defaults.

::ROUTINE

101

Note

If you specify the same ::ROUTINE routinename more than once in different programs, the last
one is used. Using more than one ::ROUTINE routinename in the same program produces an
error.

102

Chapter 4.

103

Objects and Classes
This chapter provides an overview of the Rexx class structure.

A Rexx object consists of object methods and object variables ("attributes"). Sending a message to
an object causes the object to perform some action; a method whose name matches the message
name defines the action that is performed. Only an object's methods can access the object variables
belonging to an object. EXPOSE instructions within an object's methods specify which object variables
the methods will use. Any variables not exposed are local to the method and are dropped on return
from a method.

You can create an object by sending a message to a class object—typically a "new" method. An object
created from a class is an instance of that class. The methods a class defines for its instances are
called the instance methods of that class. These are the object methods that are available for every
instance of the class. Classes can also define class methods, which are a class's own object methods.

Note

When referring to instance methods (for objects other than classes) or class methods (for
classes), this book uses the term methods when the meaning is clear from the context. When
referring to instance methods and class methods of classes, this book uses the qualified terms to
avoid possible confusion.

4.1. Types of Classes
There are four kinds of classes:

• Object classes

• Mixin classes

• Abstract classes

• Metaclasses

The following sections explain these.

4.1.1. Object Classes

An object class is a factory for producing objects. An object class creates objects (instances) and
provides methods that these objects can use. An object acquires the instance methods of the class to
which it belongs at the time of its creation. If a class gains additional methods, objects created before
the definition of these methods do not acquire the new or changed methods.

The instance variables within an object are created on demand whenever a method EXPOSEs an
object variable. The class creates the object instance, defines the methods the object has, and the
object instance completes the job of constructing the object.

The String class (Section 5.1.3, “The String Class”) and the Array class (Section 5.3.6, “The Array
Class” are examples of object classes.

Chapter 4. Objects and Classes

104

4.1.2. Mixin Classes

Classes can inherit from more than the single superclass from which they were created. This is called
multiple inheritance. Classes designed to add a set of instance and class methods to other classes are
called mixin classes, or simply mixins.

You can add mixin methods to an existing class by sending an INHERIT message or using the
INHERIT option on the ::CLASS directive (Section 3.2, “::CLASS”. In either case, the class to be
inherited must be a mixin. During both class creation and multiple inheritance, subclasses inherit both
class and instance methods from their superclasses.

Mixins are always associated with a base class, which is the mixin's first non-mixin superclass. Any
subclass of the mixin's base class can (directly or indirectly) inherit a mixin; other classes cannot. For
example, a mixin class created as a subclass of the Array class can only be inherited by other Array
subclasses. Mixins that use the Object class as a base class can be inherited by any class.

To create a new mixin class, you send a MIXINCLASS message to an existing class or use
the ::CLASS directive with the MIXINCLASS option. A mixin class is also an object class and can
create instances of the class.

4.1.3. Abstract Classes

Abstract classes provide definitions for instance methods and class methods but are not intended
to create instances. Abstract classes often define the message interfaces that subclasses should
implement.

You create an abstract class like object or mixin classes. No extra messages or keywords on
the ::CLASS directive are necessary. Rexx does not prevent users from creating instances of abstract
classes. It is possible to create abstract methods on a class. An abstract method is a placeholder that
subclasses are expected to override. Failing to provide a real method implementation will result in an
error when the abstract version is called.

4.1.4. Metaclasses

A metaclass is a class you can use to create another class. The only metaclass that Rexx provides
is .Class, the Class class. The Class class is the metaclass of all the classes Rexx provides. This
means that instances of .Class are themselves classes. The Class class is like a factory for producing
the factories that produce objects.

To change the behavior of an object that is an instance, you generally use subclassing. For example,
you can create Statarray, a subclass of the Array class (Section 5.3.6, “The Array Class”). The
statArray class can include a method for computing a total of all the numeric elements of an array.

Example 4.1. Creating an array subclass

/* Creating an array subclass for statistics */

::class statArray subclass array public

::method init /* Initialize running total and forward to superclass */
 expose total
 total = 0
 /* Section 5.1.7.2, “new (Class Method)” describes the init method. */

Metaclasses

105

 forward class (super)

::method put /* Modify to increment running total */
 expose total
 use arg value
 total = total + value /* Should verify that value is numeric!!! */
 forward class (super)

::method "[]=" /* Modify to increment running total */
 forward message "PUT"

::method remove /* Modify to decrement running total */
 expose total
 use arg index
 forward message "AT" continue
 total = total - result
 forward class (super)

::method average /* Return the average of the array elements */
 expose total
 return total / self~items

::method total /* Return the running total of the array elements */
 expose total
 return total

You can use this method on the individual array instances, so it is an instance method.

However, if you want to change the behavior of the factory producing the arrays, you need a new class
method. One way to do this is to use the ::METHOD directive with the CLASS option. Another way to
add a class method is to create a new metaclass that changes the behavior of the Statarray class. A
new metaclass is a subclass of .class.

You can use a metaclass by specifying it in a SUBCLASS or MIXINCLASS message or on a ::CLASS
directive with the METACLASS option.

If you are adding a highly specialized class method useful only for a particular class, use
the ::METHOD directive with the CLASS option. However, if you are adding a class method that would
be useful for many classes, such as an instance counter that counts how many instances a class
creates, you use a metaclass.

The following examples add a class method that keeps a running total of instances created. The first
version uses the ::METHOD directive with the CLASS option. The second version uses a metaclass.

Version 1

Example 4.2. Adding a CLASS method

/* Adding a class method using ::METHOD */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2) /* create another point instance */
say "Created point instance" b
c = .point~new(3,3) /* create another point instance */
say "Created point instance" c
 /* ask the point class how many */
 /* instances it has created */

Chapter 4. Objects and Classes

106

say "The point class has created" .point~instances "instances."

::class point public /* create Point class */

::method init class
 expose instanceCount
 instanceCount = 0 /* Initialize instanceCount */
 forward class (super) /* Forward INIT to superclass */

::method new class
 expose instanceCount /* Creating a new instance */
 instanceCount = instanceCount + 1 /* Bump the count */
 forward class (super) /* Forward NEW to superclass */

::method instances class
 expose instanceCount /* Return the instance count */
 return instanceCount

::method init
 expose xVal yVal /* Set object variables */
 use arg xVal, yVal /* as passed on NEW */

::method string
 expose xVal yVal /* Use object variables */
 return "("xVal","yVal")" /* to return string value */

Version 2

/* Adding a class method using a metaclass */

a = .point~new(1,1) /* Create some point instances */
say "Created point instance" a
b = .point~new(2,2)
say "Created point instance" b
c = .point~new(3,3)
say "Created point instance" c
 /* ask the point class how many */
 /* instances it has created */
say "The point class has created" .point~instances "instances."

::class InstanceCounter subclass class /* Create a new metaclass that */
 /* will count its instances */
::method init
 expose instanceCount
 instanceCount = 0 /* Initialize instanceCount */
 forward class (super) /* Forward INIT to superclass */

::method new
 expose instanceCount /* Creating a new instance */
 instanceCount = instanceCount + 1 /* Bump the count */
 forward class (super) /* Forward NEW to superclass */

::method instances
expose instanceCount /* Return the instance count */
return instanceCount

::class point public metaclass InstanceCounter /* Create Point class */
 /* using InstanceCounter metaclass */
::method init
 expose xVal yVal /* Set object variables */
 use arg xVal, yVal /* as passed on NEW */

Creating and Using Classes and Methods

107

::method string
 expose xVal yVal /* Use object variables */
 return "("xVal","yVal")" /* to return string value */

4.2. Creating and Using Classes and Methods
You can define a class using either directives or messages.

To define a class using directives, you place a ::CLASS directive after the main part of your source
program:

::class "Account"

This creates an Account class that is a subclass of the Object class. Object is the default superclass
if one is not specified. (See Section 5.1.1, “The Object Class” for a description of the Object class.)
The string "Account" is a string identifier for the new class. The string identifier is both the internal
class name and the name of the environment symbol (Section 1.13.6, “Environment Symbols”) used to
locate your new class instance.

Now you can use ::METHOD directive (Section 3.4, “::METHOD”) to add methods to your new class.
The ::METHOD directives must immediately follow the ::CLASS directive that creates the class.

Example 4.3. Adding a method

::method type
 return "an account"

::method "name="
 expose name
 use arg name

::method name
 expose name
 return name

This adds the methods TYPE, NAME, and NAME= to the Account class.

You can create a subclass of the Account class and define a method for it:

Example 4.4. Adding a method

::class "Savings" subclass account
::method type
return "a savings account"

Now you can create an instance of the Savings class with the NEW method (see Section 5.1.2.15,
“new”) and send TYPE, NAME, and NAME= messages to that instance:

Example 4.5. Invoking a method

Chapter 4. Objects and Classes

108

asav = .savings~new
say asav~type
asav~name = "John Smith"

The Account class methods NAME and NAME= create a pair of access methods to the account object
variable NAME. The following directive sequence creates the NAME and NAME= methods:

Example 4.6. Defining SET and GET methods

::method "name="
 expose name
 use arg name

::method name
 expose name
 return name

You can replace this with a single ::ATTRIBUTE directive (Section 3.1, “::ATTRIBUTE”. For example,
the directive

::attribute name

adds two methods, NAME and NAME= to a class. These methods perform the same function as the
NAME and NAME= methods in the original example. The NAME method returns the current value of
the object variable NAME; the NAME= method assigns a new value to the object variable NAME.

In addition to defining operational methods and attribute methods, you can add "constant" methods to
a class using the ::CONSTANT directive (Section 3.3, “::CONSTANT”. The ::CONSTANT directive will
create both a class method and an instance method to the class definition. The constant method will
always return the same constant value, and can be invoked by sending a message to either the class
or an instance method. For example, you might add the following constant to your Account class:

::constant checkingMinimum 200

This value can be retrieved using either of the following methods

Example 4.7. Retieving method values

 say .Account~checkingMinimum -- displays "200"
 asave = .savings~new
 say asave~checkingMinimum -- also displays "200"

4.2.1. Using Classes
When you create a new class, it is always a subclass of an existing class. You can create new classes
with the ::CLASS directive or by sending the SUBCLASS or MIXINCLASS message to an existing
class. If you specify neither the SUBCLASS nor the MIXINCLASS option on the ::CLASS directive, the
superclass for the new class is the Object class, and it is not a mixin class.

Example of creating a new class using a message:

Scope

109

persistence = .object~mixinclass("Persistence")
myarray=.array~subclass("myarray")~~inherit(persistence)

Example of creating a new class using the directive:

::class persistence mixinclass object
::class myarray subclass array inherit persistence

4.2.2. Scope

A scope refers to the methods and object variables defined for a single class (not including the
superclasses). Only methods defined in a particular scope can access the object variables within that
scope. This means that object variables in a subclass can have the same names as object variables
used by a superclass, because the variables are created at different scopes.

4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED
In Rexx, methods are usually associated with instances using classes, but it is also possible to add
methods directly to an instance using the SETMETHOD (see Section 5.1.1.21, “setMethod”) or
ENHANCED (see Section 5.1.2.7, “enhanced”) method.

All subclasses of the Object class inherit SETMETHOD. You can use SETMETHOD to create one-
off objects, objects that must be absolutely unique so that a class that is capable of creating other
instances is not necessary. The Class class also provides an ENHANCED method that lets you create
new instances of a class with additional methods. The methods and the object variables defined on an
object with SETMETHOD or ENHANCED form a separate scope, like the scopes the class hierarchy
defines.

4.2.4. Method Names
A method name can be any string. When an object receives a message, the language processor
searches for a method whose name matches the message name in uppercase.

Note

The language processor also translates the specified name of all methods added to objects into
uppercase characters.

You must surround a method name with quotation marks when it contains characters that are not
allowed in a symbol (for example, the operator characters). The following example creates a new class
(the Cost class), defines a new method (%), creates an instance of the Cost class (mycost), and sends
a % message to mycost:

Example 4.8. Accessing a method

cost=.object~subclass("A cost")
cost~define("%", 'expose p; say "Enter a price."; pull p; say p*1.07;')

Chapter 4. Objects and Classes

110

mycost=cost~new
mycost~"%" /* Produces: Enter a price. */
 /* If the user specifies a price of 100, */
 /* produces: 107.00 */

4.2.5. Default Search Order for Method Selection

The search order for a method name matching the message is for:

1. A method the object itself defines with SETMETHOD or ENHANCED. (See Section 5.1.1.21,
“setMethod” .)

2. A method the object's class defines. (Note that an object acquires the instance methods of the
class to which it belongs at the time of its creation. If a class gains additional methods, objects
created before the definition of these methods do not acquire these methods.)

3. A method that a superclass of the object's class defines. This is also limited to methods that
were available when the object was created. The order of the INHERIT (see Section 5.1.2.9,
“inherit”) messages sent to an object's class determines the search order of the superclass
method definitions.

This search order places methods of a class before methods of its superclasses so that a class can
supplement or override inherited methods.

If the language processor does not find a match for the message name, the language processor
checks the object for a method name UNKNOWN. If it exists, the language processor calls the
UNKNOWN method and returns as the message result any result the UNKNOWN method returns.
The UNKNOWN method arguments are the original message name and a Rexx array containing the
original message arguments.

If the object does not have an UNKNOWN method, the language processor raises a NOMETHOD
condition. If there are no active traps for the NOMETHOD condition, a syntax error is raised.

4.2.6. Defining an UNKNOWN Method
When an object that receives a message does not have a matching message name, the language
processor checks if the object has a method named UNKNOWN. If the object has an UNKNOWN
method, the language processor calls UNKNOWN, passing two arguments. The first argument is the
name of the method that was not located. The second argument is an array containing the arguments
passed with the original message.

For example, the following UNKNOWN method will print out the name of the invoked method and then
invoke the same method on another object. This can be used track the messages that are sent to an
object:

Example 4.9. Defining an UNKNOWN method

::method unknown
expose target -- will receive all of the messages
use arg name, arguments
say name "invoked with" arguments~toString
-- send along the message with the original args
forward to(target) message(name) arguments(arguments)

Changing the Search Order for Methods

111

4.2.7. Changing the Search Order for Methods

You can change the usual search order for methods by:

1. Ensuring that the receiver object is the sender object. (You usually do this by specifying the
special variable SELF, see SELF).

2. Specifying a colon and a class symbol after the message name. The class symbol can be a
variable name or an environment symbol. It identifies the class object to be used as the starting
point for the method search.

The class object must be a superclass of the class defining the active method, or, if you used
SETMETHOD to define the active method, the object's own class. The class symbol is usually the
special variable SUPER (see SUPER) but it can be any environment symbol or variable name
whose value is a valid class.

Suppose you create an Account class that is a subclass of the Object class, define a TYPE method
for the Account class, and create the Savings class that is a subclass of Account. You could define a
TYPE method for the Savings class as follows:

savings~define("TYPE", 'return "a savings account"')

You could change the search order by using the following line:

savings~define("TYPE", 'return self~type:super "(savings)"')

This changes the search order so that the language processor searches for the TYPE method first
in the Account superclass (rather than in the Savings subclass). When you create an instance of the
Savings class (asav) and send a TYPE message to asav:

say asav~type

an account (savings) is displayed. The TYPE method of the Savings class calls the TYPE
method of the Account class, and adds the string (savings) to the results.

4.2.8. Public and Private Methods

A method can be public or private. Any object can send a message that runs a public method. A
private method can only be invoked from specific calling contexts. These contexts are:

1. From within a method owned by the same class as the target. This is frequently the same object,
accessed via the special variable SELF. Private methods of an object can also be accessed from
other instances of the same class (or subclass instances).

2. From within a method defined at the same class scope as the method. For example:

Example 4.10. Referencing methods

::class Savings

Chapter 4. Objects and Classes

112

::method newCheckingAccount CLASS
 instance = self~new
 instance~makeChecking
 return instance

::method makeChecking private
 expose checking
 checking = .true

The newCheckingAccount CLASS method is able to invoke the makeChecking method because
the scope of the makeChecking method is .Savings.

3. From within an instance (or subclass instance) of a class to a private class method of its class. For
example:

Example 4.11. Referencing methods

::class Savings
::method init class
 expose counter
 counter = 0

::method allocateAccountNumber private class
 expose counter
 counter = counter + 1
 return counter

::method init
 expose accountNumber
 accountNumber = self~class~allocateAccountNumber

The instance init method of the Savings class is able to invoke the allocateAccountNumber private
method of the .Savings class object because it is owned by an instance of the .Savings class.

Private methods include methods at different scopes within the same object. This allows superclasses
to make methods available to their subclasses while hiding those methods from other objects.
A private method is like an internal subroutine. It shields the internal information of an object to
outsiders, but allowing objects to share information with each other and their defining classes.

4.2.9. Initialization
Any object requiring initialization at creation time must define an INIT method. If this method is
defined, the class object runs the INIT method after the object is created. If an object has more than
one INIT method (for example, it is defined in several classes), each INIT method must forward the
INIT message up the hierarchy to complete the object's initialization.

Example 4.12. Instance initialization

asav = .savings~new(1000.00, 6.25)
say asav~type
asav~name = "John Smith"

::class Account

Object Destruction and Uninitialization

113

::method INIT
 expose balance
 use arg balance

::method TYPE
 return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
 expose interest_rate
 use arg balance, interest_rate
 self~init:super(balance)

::method type
 return "a savings account"

The NEW method of the Savings class object creates a new Savings object and calls the INIT method
of the new object. The INIT method arguments are the arguments specified on the NEW method. In
the Savings INIT method, the line:

Example 4.13. Instance initialization

self~init:super(balance)

calls the INIT method of the Account class, using just the balance argument specified on the NEW
message.

4.2.10. Object Destruction and Uninitialization
Object destruction is implicit. When an object is no longer in use, Rexx automatically reclaims its
storage. If the object has allocated other system resources, you must release them at this time. (Rexx
cannot release these resources, because it is unaware that the object has allocated them.)

Similarly, other uninitialization processing may be needed, for example, by a message object holding
an unreported error. An object requiring uninitialization should define an UNINIT method. If this
method is defined, Rexx runs it before reclaiming the object's storage. If an object has more than
one UNINIT method (defined in several classes), each UNINIT method is responsible for sending the
UNINIT method up the object hierarchy.

4.2.11. Required String Values
Rexx requires a string value in a number of contexts within instructions and built-in function calls.

• DO statements containing exprr or exprf

• Substituted values in compound variable names

• Commands to external environments

• Commands and environment names on ADDRESS instructions

• Strings for ARG, PARSE, and PULL instructions to be parsed

Chapter 4. Objects and Classes

114

• Parenthesized targets on CALL instructions

• Subsidiary variable lists on DROP, EXPOSE, and PROCEDURE instructions

• Instruction strings on INTERPRET instructions

• DIGITS, FORM, and FUZZ values on NUMERIC instructions

• Options strings on OPTIONS instructions

• Data queue strings on PUSH and QUEUE instructions

• Label names on SIGNAL VALUE instructions

• Trace settings on TRACE VALUE instructions

• Arguments to built-in functions

• Variable references in parsing templates

• Data for PUSH and QUEUE instructions to be processed

• Data for the SAY instruction to be displayed

• Rexx dyadic operators when the receiving object (the object to the left of the operator) is a string

If you supply an object other than a string in these contexts, by default the language processor
converts it to some string representation and uses this. However, the programmer can cause the
language processor to raise the NOSTRING condition when the supplied object does not have an
equivalent string value.

To obtain a string value, the language processor sends a REQUEST("STRING") message to the
object. Strings and other objects that have string values return the appropriate string value for Rexx to
use. (This happens automatically for strings and for subclasses of the String class because they inherit
a suitable MAKESTRING method from the String class.) For this mechanism to work correctly, you
must provide a MAKESTRING method for any other objects with string values.

For other objects without string values (that is, without a MAKESTRING method), the action taken
depends on the setting of the NOSTRING condition trap. If the NOSTRING condition is being trapped
(see Chapter 11, Conditions and Condition Traps), the language processor raises the NOSTRING
condition. If the NOSTRING condition is not being trapped, the language processor sends a STRING
message to the object to obtain its readable string representation (see the STRING method of the
Object class STRING Section 5.1.1.24, “string”) and uses this string.

When comparing a string object with the Nil object, if the NOSTRING condition is being trapped, then

if string = .nil

will raise the NOSTRING condition, whereas

if .nil = string

will not as the Nil object's "=" method does not expect a string as an argument.

Concurrency

115

Example 4.14. Comparing to the .NIL object

d = .directory~new
say substr(d,5,7) /* Produces "rectory" from "a Directory" */
signal on nostring
say substr(d,5,7) /* Raises the NOSTRING condition */
say substr(d~string,3,6) /* Displays "Direct" */

For arguments to Rexx object methods, different rules apply. When a method expects a string as an
argument, the argument object is sent the REQUEST("STRING") message. If REQUEST returns the
Nil object, then the method raises an error.

4.2.12. Concurrency
Rexx supports concurrency, multiple methods running simultaneously on a single object. See
Chapter 12, Concurrency for a full description of concurrency.

4.3. Overview of Classes Provided by Rexx
This section gives a brief overview of the classes and methods Rexx defines.

4.3.1. The Class Hierarchy
Rexx provides the following classes belonging to the object class:

• Alarm class

• Array class

• Class class

• Collection class

• MapCollection class

• OrderedCollection class

• SetCollection class

• Comparable class

• Orderable class

• Comparator class

• CaselessColumnComparator class

• CaselessComparator class

• CaselessDescendingComparator class

• ColumnComparator class

• DescendingComparator class

• InvertingComparator class

Chapter 4. Objects and Classes

116

• NumericComparator class

• DateTime class

• Directory class

• Properties class

• File class

• InputOutputStream class

• Stream class

• InputStream class

• List class

• Message class

• Method class

• Monitor class

• Routine class

• MutableBuffer class

• OutputStream class

• Package class

• Queue class

• CircularQueue class

• RegularExpression class

• Relation class

• Bag class

• RexxQueue class

• Stem class

• String class

• Supplier class

• StreamSupplier class

• Table class

• Set class

• IdentityTable class

• TimeSpan class

Class Library Notes

117

• WeakReference class

• RexxContext class

• Buffer class

• Pointer class

• StackFrame class

(The classes are in a class hierarchy with subclasses indented below their superclasses.)

Note that there might also be other classes in the system, depending on the operating system.
Additional classes may be accessed by using an appropriate ::requires directive to load the class
definitions.

The following figures show Rexx built-in classes.

4.3.2. Class Library Notes
The chapters that follow describe the classes and other objects that Rexx provides and their available
methods. Rexx provides the objects listed in these sections and they are generally available to all
methods through environment symbols (see Section 1.13.6, “Environment Symbols”).

Notes:

1. In the method descriptions in the chapters that follow, methods that return a result begin with the
word "returns".

2. For [] and []= methods, the syntax diagrams include the index or indexes within the brackets.
These diagrams are intended to show how you can use these methods. For example, to retrieve
the first element of a one-dimensional array named Array1, you would typically use the syntax:

Array1[1]

rather than:

Array1~"[]"(1)

even though the latter is valid and equivalent. For more information, see Section 1.11.4, “Message
Terms” and Section 1.12.5.2, “Message Instructions”.

3. When the argument of a method must be a specific kind of object (such as array, class, method,
or string) the variable you specify must be of the same class as the required object or be able
to produce an object of the required kind in response to a conversion message. In particular,
subclasses are acceptable in place of superclasses (unless overridden in a way that changes
superclass behavior), because they inherit a suitable conversion method from their Rexx
superclass.

The isA method (Section 5.1.1.13, “isA”) of the Object class can perform this validation.

118

Chapter 5.

119

The Builtin Classes
This chapter describes all of the Rexx built-in classes.

 Fundamental Classes (Section 5.1, “The Fundamental Classes”)
This set of classes are the fundamental building blocks for all other classes. It includes the Object
class (Section 5.1.1, “The Object Class”), the Class class (Section 5.1.2, “The Class Class”), the
String class (Section 5.1.3, “The String Class”), the Method class (Section 5.1.4, “The Method
Class”), the Routine class (Section 5.1.5, “The Routine Class”), the Package class (Section 5.1.6,
“The Package Class”), and the Message class (Section 5.1.7, “The Message Class”.

 Stream Classes (Section 5.2, “The Stream Classes”)
This set of classes implement the classic Rexx streams. It includes the Stream class
(Section 5.2.4, “The Stream Class”), the InputStream class (Section 5.2.1, “The InputStream
Class”), the OutputStream class (Section 5.2.2, “The OutputStream Class”), and the
InputOutputStream class (Section 5.2.3, “The InputOutputStream Class”).

 Collection Classes (Section 5.3, “The Collection Classes”)
This set of classes implement object collections. It includes the Directory class (Section 5.3.9,
“The Directory Class”), the Properties class (Section 5.3.11, “The Properties Class”), the Relation
class (Section 5.3.13, “The Relation Class”), the Stem class (Section 5.3.15, “The Stem Class”),
the Table Class (Section 5.3.16, “The Table Class”), the IdentityTable class (Section 5.3.17,
“The IdentityTable Class”), the Array class (Section 5.3.6, “The Array Class”), the List class
(Section 5.3.10, “The List Class”), the Queue class (Section 5.3.12, “The Queue Class”), the
CircularQueue class (Section 5.3.8, “The CircularQueue Class”), the Bag class (Section 5.3.7,
“The Bag Class”), and the Set class (Section 5.3.14, “The Set Class”).

 Utility Classes (Section 5.4, “The Utility Classes”)
This set of classes are utility in nature and hard to classify. It includes the Alarm class
(Section 5.4.2, “The Alarm Class”), the Comparable class (Section 5.4.4, “The Comparable
Class”, the Comparator class (Section 5.4.6, “The Comparator Class”), the Orderable class
(Section 5.4.5, “The Orderable Class”), the DateTime class (Section 5.4.1, “The DateTime Class”),
the File class (Section 5.4.25, “The File Class”), the MutableBuffer class (Section 5.4.15, “The
MutableBuffer Class”), the RegularExpression class (Section 5.4.16, “The RegularExpression
Class”), the RexxContext class (Section 5.4.20, “The RexxContext Class”), the RexxQueue
class (Section 5.4.17, “The RexxQueue Class”), the StackFrame class (Section 5.4.21, “The
StackFrame Class”), the StreamSupplier class (Section 5.4.19, “The StreamSupplier Class”), the
Supplier class (Section 5.4.18, “The Supplier Class”), the TimeSpan class (Section 5.4.3, “The
TimeSpan Class”), and the WeakReference class (Section 5.4.22, “The WeakReference Class”).

5.1. The Fundamental Classes
This section describes the Rexx fundamental classes.

5.1.1. The Object Class

The Object class is the root of the class hierarchy. The instance methods of the Object class are,
therefore, available on all objects.

Table 5.1. ooRexx Object Class

Object

new

Chapter 5. The Builtin Classes

120

= \= == \== <> <> ||
'' (abuttal)
' ' (blank)
class
copy
defaultName
hashCode
hasMethod
identityHash
init
instanceMethod
instanceMethods
isA

isinstanceOf
objectName
objectName=
request
run
send
sendWith
setMethod
start
startWith
string
unsetMethod

Note

The Object class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.1.1.1. new (Class Method)

>>-new---><

Returns a new instance of the receiver class.

5.1.1.2. Operator Methods

>>-comparison_operator(argument)-------------------------------><

Returns 1 (true) or 0 (false), the result of performing a specified comparison operation.

For the Object class, if argument is the same object as the receiver object, the result is 1 (true),
otherwise 0 (false) is returned. Subclasses may override this method to define equality using different
criteria. For example, the String class determines equality based on the value of the string data.

The Object Class

121

Note

The MapCollection classes such as Table and Relation use the == operator combined with the
hashCode method (Section 5.1.1.7, “hashCode”) to determine index and item equivalence. It
is generally necessary for a class to override both the hashCode method and the == operator
method to maintain the contract specified for the hashCode method. See Section 5.1.1.7,
“hashCode” for details on the contract.

The comparison operators you can use in a message are:

=, ==
True if the terms are the same object.

\=, ><, <>, \==
True if the terms are not the same object (inverse of =).

5.1.1.3. Concatenation Methods

>>-concatenation_operator(argument)----------------------------><

Returns a new string that is the concatenation the of receiver object's string value with argument. (See
Section 1.11.2.1, “String Concatenation”.) The concatenation_operator can be:

""
concatenates without an intervening blank. The abuttal operator "" is the null string. The language
processor uses the abuttal operator to concatenate two terms that another operator does not
separate.

||
concatenates without an intervening blank.

" "
concatenates with one blank between the receiver object and the argument. (The operator " " is a
blank.)

5.1.1.4. class

>>-class---><

Returns the class object that created the object instance.

Chapter 5. The Builtin Classes

122

5.1.1.5. copy

>>-copy--><

Returns a copy of the receiver object. The copied object has the same methods as the receiver object
and an equivalent set of object variables, with the same values.

Example 5.1. Object class - copy method

myarray=.array~of("N","S","E","W")
/* Copies array myarray to array directions */
directions=myarray~copy

Note

The copy method is a "shallow copy". Only the target object is copied. Additional objects
referenced by the target object are not copied. For example, copying an Array object instance
only copies the array, it does not copy any of the objects stored in the array.

5.1.1.6. defaultName

>>-defaultName---><

Returns a short human-readable string representation of the object. The exact form of this
representation depends on the object and might not alone be sufficient to reconstruct the object.
All objects must be able to produce a short string representation of themselves in this way, even
if the object does not have a string value. See Section 4.2.11, “Required String Values” for more
information. The defaultName method of the Object class returns a string that identifies the class
of the object, for example, an Array or a Directory. See also Section 5.1.1.15, “objectName” and
Section 5.1.1.24, “string”. See Section 5.1.1.16, “objectName=” for an example using defaultName.

5.1.1.7. hashCode

>>-hashCode---><

The Object Class

123

Returns a string value that is used as a hash value for MapCollections such as Table, Relation, Set,
Bag, and Directory. MapCollections use this string value to hash an object for hash table-based
searches.

Object implementations are expected to abide by a general contract for hash code usage:

• Whenever hashCode is invoked on the same object more than once, hashCode must return the
same hashcode value, provided than none of the internal information the object uses for an "=="
comparison has changed.

• If two object instances compare equal using the "==" operator, the hashCode methods for both
object instances must return the same value.

• It is not required that two object instances that compare unequal using "==" return different hash
code values.

• Returning a wide range of hash values will produce better performance when an object is used as
an index for a MapCollection. A return value of 4 string characters is recommended. The characters
in the hash value may be any characters from '00'x to 'ff'x, inclusive.

5.1.1.8. hasMethod

>>-hasMethod(methodname)---------------------------------------><

Returns 1 (true) if the receiver object has a method named methodname (translated to uppercase).
Otherwise, it returns 0 (false).

Note

The hasMethod object will return true even if the target method is defined as private. A private
method has restricted access rules, so its possible to receive an unknown method error (error 97)
when invoking methodname even if hasMethod indicates the method exists. See Section 4.2.8,
“Public and Private Methods” for private method restrictions.

5.1.1.9. identityHash

>>-identityHash--><

Returns a unique identity number for the object. This number is guaranteed to be unique for the
receiver object until the object is garbage collected.

5.1.1.10. init

Chapter 5. The Builtin Classes

124

>>-init--><

Performs any required object initialization. Subclasses of the Object class can override this method to
provide more specific initialization.

5.1.1.11. instanceMethod

>>-instanceMethod(methodname)----------------------------------><

Returns the corresponding Method class instance if the methodname is a valid method of the class.
Otherwise it returns the Nil object.

5.1.1.12. instanceMethods

>>-instanceMethods(class)----------------------------------><

Returns a Supplier instance containing the names and corresponding method objects defined by
class. If the receiver object is not an instance of class, the Nil object is returned.

5.1.1.13. isA

>>-isA(class)--><

Note

This method is an alias of the isInstance (Section 5.1.1.14, “isInstanceOf”) method.

5.1.1.14. isInstanceOf

>>-isInstanceOf(class)---><

The Object Class

125

Returns .true ("1") if the object is an instance of the specified class, otherwise it returns .false ("0"), An
object is an instance of a class if the object is directly an instance of the specified class or if class is in
the object's direct or mixin class inheritance chain. For example:

Example 5.2. Object class - isInstanceOf method

"abc"~isInstanceOf(.string) -> 1
"abc"~isInstanceOf(.object) -> 1
"abc"~isInstanceOf(.mutablebuffer) -> 0

5.1.1.15. objectName

>>-objectName--><

Returns any name set on the receiver object using the objectName= method. If the receiver object
does not have a name, this method returns the result of the defaultName method. See Section 4.2.11,
“Required String Values” for more information. See the objectName= method for an example using
objectName.

5.1.1.16. objectName=

>>-objectName=(newname)--><

Sets the receiver object's name to the string newname.

Example 5.3. Object class - objectName= method

points=.array~of("N","S","E","W")
say points~objectName /* (no change yet) Says: "an Array" */
points~objectName=("compass") /* Changes obj name POINTS to "compass"*/
say points~objectName /* Shows new obj name. Says: "compass" */
say points~defaultName /* Default is still available. */
 /* Says "an Array" */
say points /* Says string representation of */
 /* points "compass" */
say points[3] /* Says: "E" Points is still an array */
 /* of 4 items */

5.1.1.17. request

Chapter 5. The Builtin Classes

126

>>-request(classid)--><

Returns an object of the classid class, or the Nil object if the request cannot be satisfied.

This method first compares the identity of the object's class (see the id method of the Class class
in Section 5.1.2.8, “id”) to classid. If they are the same, the receiver object is returned as the result.
Otherwise, request tries to obtain and return an object satisfying classid by sending the receiver
object the conversion message make with the string classid appended (converted to uppercase). For
example, a request("string") message causes a makeString message to be sent. If the object
does not have the required conversion method, request returns the Nil object.

The conversion methods cause objects to produce different representations of themselves.
The presence or absence of a conversion method defines an object's capability to produce the
corresponding representations. For example, lists can represent themselves as arrays, because they
have a makeArray method, but they cannot represent themselves as directories, because they do not
have a makeDirectory method. Any conversion method must return an object of the requested class.
For example, makeArray must return an array. The language processor uses the makeString method
to obtain string values in certain contexts; see Section 4.2.11, “Required String Values”.

5.1.1.18. run

>>-run(method-+-------------------------------+-)--------------><
 | +---------------+ |
 | V | |
 +-,Individual---+-----------+-+-+
 | +-,argument-+ |
 +-,Array,argument---------------+

Runs the method object method (see Section 5.1.4, “The Method Class”). The method has access to
the object variables of the receiver object, as if the receiver object had defined the method by using
setMethod.

If you specify the Individual or Array option, any remaining arguments are arguments for the method.
(You need to specify only the first letter; all characters following the first character are ignored.)

Individual
Passes any remaining arguments to the method as arguments in the order you specify them.

Array
Requires argument, which is an array object. (See Section 5.3.6, “The Array Class”.) The member
items of the array are passed to the method as arguments. The first argument is at index 1, the
second argument at index 2, and so on. If you omitted any indexes when creating the array, the
corresponding arguments are omitted when passing the arguments.

If you specify neither Individual nor Array, the method runs without arguments.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. In either case, run
creates an equivalent method object.

The Object Class

127

Notes:

1. The run method is a private method. See Section 4.2.8, “Public and Private Methods” for
information private method restrictions.

2. The RUN method is a protected method.

5.1.1.19. send

 +---------------+
 V |
>>-send(messagename---+-----------+-+-)-----------------------><
 +-,argument-+

Returns a result of invoking a method on the target object using the specified message name and
arguments. The send() method allows methods to be invoked using dynamically constructed method
names.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search. For more information, see Figure 4.1, “Classes and Inheritance (part 1 of 9)”.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

Example 5.4. Object class - send method

world=.WorldObject~new
-- the following 3 calls are equivalent
msg1=world~hello("Fred")
msg2=world~send("HELLO", "Fred")
msg3=.message~new(world,"HELLO", "i", "Fred")~~send

say msg1 /* Produces Hello Fred 21:04:25.065000 */
 /* for example */
say msg2 /* Produces Hello Fred 21:04:25.081000 */
 /* for example */
say msg3~result /* Produces Hello Fred 21:04:25.101000 */
 /* for example */

::class 'WorldObject' public
::method hello
 use arg name
 return "Hello" name time('L')

5.1.1.20. sendWith

>>-sendWith(messagename,arguments)--------------------------------><

Chapter 5. The Builtin Classes

128

Returns a result of invoking a method on the target object using the specified message name and
arguments. The send() method allows methods to be invoked using dynamically constructed method
names and arguments.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search. For more information, see Figure 4.1, “Classes and Inheritance (part 1 of 9)”.

The arguments argument must be a single-dimension array instance. The values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

Example 5.5. Object class - sendWith method

world=.WorldObject~new
// the following 3 calls are equivalent
msg1=world~hello("Fred")
msg2=world~sendWith("HELLO", .array~of("Fred"))
msg3=.message~new(world,"HELLO", "A", .array~of("Fred"))~~send

say msg1~result /* Produces Hello Fred 21:04:25.065000 */
 /* for example */
say msg2~result /* Produces Hello Fred 21:04:25.081000 */
 /* for example */
say msg3~result /* Produces Hello Fred 21:04:25.101000 */
 /* for example */

::class 'WorldObject' public
::method hello
 use arg name
 return "Hello" name time('L')

5.1.1.21. setMethod

>>-setMethod(methodname-+----------------------+--)-----------------><
 | +-,"FLOAT"-+ |
 +-,method-+----------+-+
 +--,scope--+

Adds a method to the receiver object's collection of object methods. The methodname is the name
of the new method. This name is translated to uppercase. If you previously defined a method with
the same name using setMethod, the new method replaces the earlier one. If you omit method,
setMethod makes the method name methodname unavailable for the receiver object. In this case,
sending a message of that name to the receiver object runs the unknown method (if any).

The method can be a string containing a method source line instead of a method object. Or it can be
an array of strings containing individual method lines. In either case, setMethod creates an equivalent
method object.

The third parameter describes if the method that is attached to an object should have object or float
scope. "Float" scope means that it shares the same scope with methods that were defined outside of
a class. "Object" scope means it shares the scope with other, potentially statically defined, methods of
the object it is attached to.

The Object Class

129

Notes:

1. The setMethod method is a private method. See the setPrivate method in Section 5.1.4.10,
“setPrivate” for details.

2. The setMethod method is a protected method.

5.1.1.22. start

 +---------------+
 V |
>>-start(messagename---+-----------+-+-)-----------------------><
 +-,argument-+

Returns a message object (see Section 5.1.7, “The Message Class”) and sends it a start message
to start concurrent processing. The object receiving the message messagename processes this
message concurrently with the sender's continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search. For more information, see Figure 4.1, “Classes and Inheritance (part 1 of 9)”.

Any arguments are passed to the receiver as arguments for messagename in the order you specify
them.

When the receiver object has finished processing the message, the message object retains its
result and holds it until the sender requests it by sending a result message. For further details, see
Section 5.1.7.11, “start”.

Example 5.6. Object class - start method

world=.WorldObject~new
msg1=world~start("HELLO") /* same as next line */
msg2=.message~new(world,"HELLO")~~start /* same as previous line */

say msg1~result /* Produces Hello world 21:04:25.065000 */
 /* for example */
say msg2~result /* Produces Hello world 21:04:25.081000 */
 /* for example */

::class 'WorldObject' public
::method hello
 return "Hello world" time('L')

5.1.1.23. startWith

>>-startWith(messagename,arguments)--------------------------------><

Chapter 5. The Builtin Classes

130

Returns a message object (see Section 5.1.7, “The Message Class”) and sends it a start message
to start concurrent processing. The object receiving the message messagename processes this
message concurrently with the sender's continued processing.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search. For more information, see Figure 4.1, “Classes and Inheritance (part 1 of 9)”.

The arguments argument must be a single-dimension array instance. Any values contained in
arguments are passed to the receiver as arguments for messagename in the order you specify them.

When the receiver object has finished processing the message, the message object retains its
result and holds it until the sender requests it by sending a result message. For further details, see
Section 5.1.7.11, “start”.

Example 5.7. Object class - startWith method

world=.WorldObject~new
msg1=world~startWith("HELLO", .array~of("Fred") /* same as next line */
msg2=.message~new(world,"HELLO", 'i', .array~of("Fred"))~~start /* same as previous line
 */

say msg1~result /* Produces Hello Fred 21:04:25.065000 */
 /* for example */
say msg2~result /* Produces Hello Fred 21:04:25.081000 */
 /* for example */

::class 'WorldObject' public
::method hello
 use arg name
 return "Hello" name time('L')

5.1.1.24. string

>>-string--><

Returns a human-readable string representation of the object. The exact form of this representation
depends on the object and might not alone be sufficient to reconstruct the object. All objects must be
able to produce a string representation of themselves in this way.

The object's string representation is obtained from the objectName method (which can in turn use the
defaultName method). See also the objectName method (Section 5.1.1.15, “objectName”) and the
defaultName method (Section 5.1.1.6, “defaultName”).

The distinction between this method, the makeString method (which obtains string values—see
Section 5.1.3.54, “makeString”) and the request method (see Section 5.1.1.17, “request”) is important.
All objects have a string method, which returns a string representation (human-readable form) of the
object. This form is useful in tracing and debugging. Only those objects that have information with a
meaningful string form have a makeString method to return this value. For example, directory objects
have a readable string representation (a Directory), but no string value, and, therefore, no makeString
method.

The Class Class

131

Of the classes that Rexx provides, only the String class has a makeString method. Any subclasses of
the String class inherit this method by default, so these subclasses also have string values. Any other
class can also provide a string value by defining a makeString method.

5.1.1.25. unsetMethod

>>-unsetMethod(methodname)-------------------------------------><

Cancels the effect of all previous setMethods for method methodname. It also removes any method
methodname introduced with enhanced when the object was created. If the object has received no
setMethod method, no action is taken.

Notes:

1. The unsetMethod method is a private method. See the setPrivate method in Section 5.1.4.10,
“setPrivate” for details.

2. The unsetMethod method is a protected method.

5.1.2. The Class Class

The Class class is like a factory that produces the factories that produce objects. It is a subclass of the
Object class (Section 5.1.1, “The Object Class”). The instance methods of the Class class are also the
class methods of all classes.

Table 5.2. ooRexx Class Class

Object

↓

Class

= \= == \== <> ><
activate
baseClass
defaultName
define
delete
enhanced
id
inherit
isSubclassOf
metaClass

method
methods
mixinClass
new
queryMixinClass
subClass
subClasses
superClass
superClasses
inInherit

5.1.2.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send

Chapter 5. The Builtin Classes

132

= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.1.2.2. activate

>>-activate--><

Completes initialization of a class object created from a ::CLASS directive. The activate method is
called after all classes in a package have been created and made available, but before execution of
the main portion of the program starts to execute. Activate is called for each class in the package in
their construction order. The class object is fully constructed and capable of creating new instances of
the class. All other classes in the same package are also available, although other classes might not
have been activated yet. Because the INIT method is called early in the class construction process,
only limited class initialization is possible at that time. The activate method is the prefered method for
initializing a class object.

5.1.2.3. baseClass

>>-baseClass---><

Returns the base class associated with the class. If the class is a mixin class, the base class is the first
superclass that is not also a mixin class. If the class is not a mixin class, the base class is the class
receiving the baseClass message.

5.1.2.4. defaultName

>>-defaultName---><

Returns a short human-readable string representation of the class. The string returned is of the form

The id class

where id is the identifier assigned to the class when it was created.

The Class Class

133

Example 5.8. Class class - defaultName method

say .array~defaultName /* Displays "The Array class" */
say .account~defaultName /* Displays "The ACCOUNT class" */
say .savings~defaultName /* Displays "The Savings class" */

::class account /* Name is all upper case */
::class "Savings" /* String name is mixed case */

5.1.2.5. define

>>-define(methodname-+---------+-)-----------------------------><
 +-,method-+

Incorporates the method object method in the receiver class's collection of instance methods. The
method name methodname is translated to to uppercase. Using the define method replaces any
existing definition for methodname in the receiver class.

If you omit method, the method name methodname is made unavailable for the receiver class.
Sending a message of that name to an instance of the class causes the unknown method (if any) to
be run.

The method argument can be a string containing a method source line instead of a method object.
Alternatively, you can pass an array of strings containing individual method lines. Either way, define
creates an equivalent method object.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. The define method is a protected method.

Example 5.9. Class class - define method

bank_account=.object~subclass("Account")
bank_account~define("TYPE",'return "a bank account"')

5.1.2.6. delete

>>-delete(methodname)--><

Chapter 5. The Builtin Classes

134

Removes the receiver class's definition for the method name methodname. If the receiver class
defined methodname as unavailable with the define method, this definition is nullified. If the receiver
class had no definition for methodname, no action is taken.

Notes:

1. The classes Rexx provides do not permit changes or additions to their method definitions.

2. delete deletes only methods the target class defines. You cannot delete inherited methods the
target's superclasses define.

3. The delete method is a protected method.

Example 5.10. Class class - delete method

myclass=.object~subclass("Myclass") /* After creating a class */
myclass~define("TYPE",'return "my class"') /* and defining a method */
myclass~delete("TYPE") /* this deletes the method */

5.1.2.7. enhanced

>>-enhanced(methods-+---------------+-)------------------------><
 | +-----------+ |
 | V | |
 +---,argument-+-+

Returns an enhanced new instance of the receiver class, with object methods that are the instance
methods of the class, enhanced by the methods in the collection methods. The collection indexes are
the names of the enhancing methods, and the items are the method objects (or strings or arrays of
strings containing method code). (See the description of define (Section 5.1.2.5, “define”.) You can
use any collection that supports a supplier method.

enhanced sends an init message to the created object, passing the arguments specified on the
enhanced method.

Example 5.11. Class class - enhanced method

/* Set up rclass with class method or methods you want in your */
/* remote class */
rclassmeths = .directory~new

rclassmeths["DISPATCH"]=d_source /* d_source must have code for a */
 /* DISPATCH method. */
/* The following sends init("Remote Class") to a new instance */
rclass=.class~enhanced(rclassmeths,"Remote Class")

The Class Class

135

5.1.2.8. id

>>-id--><

Returns the class identity (instance) string. (This is the string that is an argument on the subClass
and mixinClass methods.) The string representations of the class and its instances contain the class
identity.

Example 5.12. Class class - id method

myobject=.object~subClass("my object") /* Creates a subclass */
say myobject~id /* Produces: "my object" */

5.1.2.9. inherit

>>-inherit(classobj-+-----------+-)----------------------------><
 +-,classpos-+

Causes the receiver class to inherit the instance and class methods of the class object classobj. The
classpos is a class object that specifies the position of the new superclass in the list of superclasses.
(You can use the superClasses method to return the immediate superclasses.)

The new superclass is inserted in the search order after the specified class. If the classpos class is not
found in the set of superclasses, an error is raised. If you do not specify classpos, the new superclass
is added to the end of the superclasses list.

Inherited methods can take precedence only over methods defined at or above the base class of the
classobj in the class hierarchy. Any subsequent change to the instance methods of classobj takes
immediate effect for all the classes that inherit from it.

The new superclass classobj must be created with the mixinClass option of the ::CLASS directive or
the mixinClass method and the base class of the classobj must be a direct superclass of the receiver
object. The receiver must not already descend from classobj in the class hierarchy and vice versa.

The method search order of the receiver class after inherit is the same as before inherit, with the
addition of classobj and its superclasses (if not already present).

Notes:

1. You cannot change the classes that Rexx provides by sending inherit messages.

2. The inherit method is a protected method.

Chapter 5. The Builtin Classes

136

Example 5.13. Class class - inherit method

room~inherit(.location)

5.1.2.10. isSubClassOf

>>-isSubclassOf(class)-------------------------------------><

Returns .true ("1") if the object is a subclass of the specified class. Returns .false ("0") if the object is
not a subclass of the specified class. A class is a subclass of a class if the target class is the same as
class or if class is in the object's direct or mixin class inheritance chain. For example:

Example 5.14. Class class - isSubclassOf method

.String~isSubclassOf(.object) -> 1

.String~isSubclassOf(.mutablebuffer) -> 0

5.1.2.11. metaClass

>>-metaClass---><

Returns the receiver class's default metaclass. This is the class used to create subclasses of this class
when you send subClass or mixinClass messages (with no metaclass arguments). The instance
methods of the default metaclass are the class methods of the receiver class. For more information
about class methods, see Section 4.1.1, “Object Classes”. See also the description of the subClass
method in Section 5.1.2.17, “subclass”.

5.1.2.12. method

>>-method(methodname)--><

Returns the method object for the receiver class's definition for the method name methodname. If the
receiver class defined methodname as unavailable, this method returns the Nil object. If the receiver
class did not define methodname, an error is raised.

The Class Class

137

Example 5.15. Class class - method method

/* Create and retrieve the method definition of a class */
myclass=.object~subClass("My class") /* Create a class */
mymethod=.method~new(" ","Say arg(1)") /* Create a method object */
myclass~define("ECHO",mymethod) /* Define it in the class */
method_source = myclass~method("ECHO")~source /* Extract it */
say method_source /* Says "an Array" */
say method_source[1] /* Shows the method source code */

5.1.2.13. methods

>>-methods-+----------------+----------------------------------><
 +-(class_object)-+

Returns a Supplier object (Section 5.4.18, “The Supplier Class”) for all the instance methods of the
receiver class and its superclasses, if you specify no argument. If class_object is the Nil object,
methods returns a supplier object for only the instance methods of the receiver class. If you specify
a class_object, this method returns a supplier object containing only the instance methods that
class_object defines. The supplier enumerates all the names and methods existing at the time of the
supplier's creation.

Note

Methods that have been hidden with a setMethod or define method are included with the other
methods that methods returns. The hidden methods have the Nil object for the associated
method.

Example 5.16. Class class - methods method

objsupp=.object~methods
do while objsupp~available
say objsupp~index -- displays all instance method
objsupp~next -- names of the Object class
end

5.1.2.14. mixinClass

>>-mixinClass(classid-+-------------------------+-)------------><

Chapter 5. The Builtin Classes

138

 +-,metaclass-+----------+-+
 +-,methods-+

Returns a new mixin subclass of the receiver class. You can use this method to create a new mixin
class that is a subclass of the superclass to which you send the message. The classid is a string that
identifies the new mixin subclass. You can use the id method to retrieve this string.

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new mixin subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaClass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.17. Class class - mixinClass method

buyable=.object~mixinClass("Buyable") /* New subclass is buyable */
 /* Superclass is Object class */

5.1.2.15. new

>>-new-+---------------+---------------------------------------><
 | +-,---+ |
 | V | |
 +-(----arg-+--)-+

Returns a new instance of the receiver class, whose object methods are the instance methods of
the class. This method initializes a new instance by running its init methods. (See Section 4.2.9,
“Initialization”.) new also sends an init message. If you specify args, new passes these arguments on
the init message.

Example 5.18. Class class - new method

/* new method example */
a = .account~new /* -> Object variable balance=0 */
y = .account~new(340.78) /* -> Object variable balance=340.78 */

The Class Class

139

 /* plus free toaster oven */
::class account subclass object
::method init /* Report time each account created */
 /* plus free toaster when more than $100 */
Expose balance
Arg opening_balance
Say "Creating" self~objectName "at time" time()
If datatype(opening_balance, "N") then balance = opening_balance
else balance = 0
If balance > 100 then Say " You win a free toaster oven"

5.1.2.16. queryMixinClass

>>-queryMixinClass---><

Returns 1 (true) if the class is a mixin class, or 0 (false).

5.1.2.17. subclass

>>-subclass(classid-+-------------------------+-)--------------><
 +-,metaclass-+----------+-+
 +-,methods-+

Returns a new subclass of the receiver class. You can use this method to create a new class that is a
subclass of the superclass to which you send the message. The classid is a string that identifies the
subclass. (You can use the id method to retrieve this string.)

The metaclass is a class object. If you specify metaclass, the new subclass is an instance of
metaclass. (A metaclass is a class that you can use to create a class, that is, a class whose instances
are classes. The Class class and its subclasses are metaclasses.)

If you do not specify a metaclass, the new subclass is an instance of the default metaclass of the
receiver class. For subclasses of the Object class, the default metaclass is the Class class.

The methods is a collection whose indexes are the names of methods and whose items are method
objects (or strings or arrays of strings containing method code). If you specify methods, the new class
is enhanced with class methods from this collection. (The metaclass of the new class is not affected.)

The metaclass method returns the metaclass of a class.

The method search order of the new subclass is the same as that of the receiver class, with the
addition of the new subclass at the start of the order.

Example 5.19. Class class - subclass method

Chapter 5. The Builtin Classes

140

room=.object~subclass("Room") /* Superclass is .object */
 /* Subclass is room */
 /* Subclass identity is Room */

5.1.2.18. subclasses

>>-subclasses--><

Returns the immediate subclasses of the receiver class in the form of a single-index array of the
required size, in an unspecified order. (The program should not rely on any order.)

5.1.2.19. superClass

>>-superClass--><

Returns the immediate superclass of the receiver class. The immediate superclass is the original class
used on a subClass or a mixinClass method. For the Object Class, superClass returns .Nil.

Example 5.20. Class class - superClass method

say .object~superclass -- displays "The NIL object"
say .class~superclass -- displays "The Object class"
say .set~superclass -- displays "The Table class"

5.1.2.20. superClasses

>>-superClasses--><

Returns the immediate superclasses of the receiver class in the form of a single-index array of
the required size. The immediate superclasses are the original class used on a subClass or a
mixinClass method, plus any additional superclasses defined with the inherit method. The array is
in the order in which the class has inherited the classes. The original class used on a subClass or
mixinClass method is the first item of the array.

Example 5.21. Class class - superClasses method

The String Class

141

z=.class~superClasses
/* To obtain the information this returns, you could use: */
do i over z
 say i
end

5.1.2.21. uninherit

>>-uninherit(classobj)---><

Nullifies the effect of any previous inherit message sent to the receiver for the class classobj.

Note

You cannot change the classes that Rexx provides by sending uninherit messages.

Example 5.22. Class class - uninherut method

location=.object~mixinClass("Location")
room=.object~subclass("Room")~~inherit(location) /* Creates subclass */
/* and specifies inheritance */
room~uninherit(location)

5.1.3. The String Class

String objects represent character-string data values. A character string value can have any length
and contain any characters.

Table 5.3. ooRexx String Class

Object

↓

String

+ Comparable

new
cr
nl
null
tab

+ - * ** / // %
\ = \= <> >< == \==
> >= \> < <= \<

center/centre
changeStr
compare

overlay
pos
replaceAt

Chapter 5. The Builtin Classes

142

>> >>= << <<=
\<< \>> & && | ||
'' (abuttal)
' ' (blank)
abbrev
abs
b2x
bitAnd
bitOr
bitXor
c2d
c2x
caselessAbbrev
caselessChangeStr
caselessCompare
caselessCompareTo
caselessCountStr
caselessEquals
caselessLastPos
caselessMatch
caselessMatchChar
caselessPos
caselessWordPos
ceiling

compareTo
copies
countStr
d2c
d2x
dataType
decodeBase64
delStr
delWord
encodeBase64
equals
floor
format
hashCode
insert
lastPos
left
length
lower
makeArray
makeString
match
matchChar
max
min

reverse
right
round
sign
space
strip
subChar
subStr
subWord
subWords
translate
trunc
upper
verify
word
wordIndex
wordLength
wordPos
words
x2b
x2c
x2d

Note

The String class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”, defines.

5.1.3.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”.

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparable class (Section 5.4.4, “The Comparable Class”.

compareTo

5.1.3.2. new (Class Method)

>>-new(stringvalue)--><

The String Class

143

Returns a new string object initialized with the characters in stringvalue.

5.1.3.3. nl (Class Method)

>>-nl--><

Returns the single character string for the new line character, which has the value '0a'x.

5.1.3.4. cr Class Method)

>>-cr--><

Returns the single character string for the carriage return character, which has the value '0d'x.

5.1.3.5. null Class Method)

>>-null--><

Returns the single character string for the null character, which has the value '00'x.

5.1.3.6. tab Class Method)

>>-tab---><

Returns the single character string for the tab character, which has the value '09'x.

5.1.3.7. Arithmetic Methods

>>-arithmetic_operator(argument)-------------------------------><

Chapter 5. The Builtin Classes

144

Note

The syntax diagram above is for the non-prefix operators. The prefix + and argument.

Returns the result of performing the specified arithmetic operation on the receiver object. The
receiver object and the argument must be valid numbers (see Section 1.10.4.5, “Numbers”). The
arithmetic_operator can be:

+ Addition

- Subtraction

* Multiplication

/ Division

% Integer division (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because the result
can be negative)

** Exponentiation (raise a number to a whole-number power)

Prefix - Same as the subtraction: 0 - number

Prefix + Same as the addition: 0 + number

See Chapter 10, Numbers and Arithmetic for details about precision, the format of valid numbers, and
the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential notation, it
might have been rounded.

Example 5.23. String class - arithmetic methods

5+5 -> 10
8-5 -> 3
5*2 -> 10
6/2 -> 3
9//4 -> 1
9%4 -> 2
2**3 -> 8
+5 -> 5 /* Prefix + */
-5 -> -5 /* Prefix - */

5.1.3.8. Comparison Methods

>>-comparison_operator(argument)-------------------------------><

Returns 1 (true) or 0 (false), the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared. Both must be string objects. If argument is not

The String Class

145

a string object, it is converted to its string representation for the comparison. The one exception is
when argument is the Nil object for the ==, \==, =, \=, ><, and <> operators. A string object will never
compare equal to the Nil object, even when the string matches the string value of the Nil object ("The
NIL object"). As a result, == will always return 0 (false) when compared to the Nil object and \==
will always return 1 (true). All of the relational comparisions (for example, <, >, <=, etc.) will always
return .false when compared to the Nil object.

The comparison operators you can use in a message are:

= True if the terms are equal (for example, numerically or when padded). False if
argument is the Nil object.

\=, ><, <> True if the terms are not equal (inverse of =). True if argument is the Nil object.

> Greater than. False if argument is the Nil object.

< Less than. False if argument is the Nil object.

>= Greater than or equal to. False if argument is the Nil object.

\< Not less than. False if argument is the Nil object.

<= Less than or equal to. False if argument is the Nil object.

\> Not greater than. False if argument is the Nil object.

Example 5.24. String class - comparison methods

5=5 -> 1 /* equal */

42\=41 -> 1 /* All of these are */
42><41 -> 1 /* "not equal" */
42<>41 -> 1

13>12 -> 1 /* Variations of */
12<13 -> 1 /* less than and */
13>=12 -> 1 /* greater than */
12\<13 -> 0
12<=13 -> 1
12\>13 -> 1

All strict comparison operations have one of the characters doubled that define the operator. The
== and \== operators check whether two strings match exactly. The two strings must be identical
(character by character) and of the same length to be considered strictly equal.

The strict comparison operators such as >> or << carry out a simple character-by-character
comparison. There is no padding of either of the strings being compared. The comparison of the
two strings is from left to right. If one string is shorter than and a leading substring of another, then
it is smaller than (less than) the other. The strict comparison operators do not attempt to perform a
numeric comparison on the two operands.

For all the other comparison operators, if both terms are numeric, the String class does a numeric
comparison (ignoring, for example, leading zeros— see Section 10.4, “Numeric Comparisons”).
Otherwise, it treats both terms as character strings, ignoring leading and trailing whitespace characters
and padding the shorter string on the right with blanks.

Chapter 5. The Builtin Classes

146

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order can depend on the character set. In an ASCII environment, the digits are lower than
the alphabetic characters, and lowercase alphabetic characters are higher than uppercase alphabetic
characters.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal (identical)

\== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

Example 5.25. String class - comparison methods

"space"=="space" -> 1 /* Strictly equal */

"space"\==" space" -> 1 /* Strictly not equal */

"space">>" space" -> 1 /* Variations of */
" space"<<"space" -> 1 /* strictly greater */
"space">>=" space" -> 1 /* than and less than */
"space"\<<" space" -> 1
" space"<<="space" -> 1
" space"\>>"space" -> 1

5.1.3.9. Logical Methods

>>-logical_operator(argument)----------------------------------><

Note

For NOT (prefix \), omit the parentheses and argument.

Returns 1 (true) or 0 (false), the result of performing the specified logical operation. The receiver
object and the argument are character strings that evaluate to 1 or 0.

The logical_operator can be:

& AND (Returns 1 if both terms are true.)

The String Class

147

| Inclusive OR (Returns 1 if either term or both terms are true.)

&& Exclusive OR (Returns 1 if either term, but not both terms, is true.)

Prefix \ Logical NOT (Negates; 1 becomes 0, and 0 becomes 1.)

Example 5.26. String class - logical methods

1&0 -> 0
1|0 -> 1
1&&0 -> 1
\1 -> 0

5.1.3.10. Concatenation Methods

>>-concatenation_operator(argument)----------------------------><

Concatenates the receiver object with argument. (See Section 1.11.2.1, “String Concatenation”.) The
concatenation_operator can be:

"" concatenates without an intervening blank. The abuttal operator "" is the null
string. The language processor uses the abuttal to concatenate two terms that
another operator does not separate.

|| concatenates without an intervening blank.

" " concatenates with one blank between the receiver object and the argument.
(The operator " " is a blank.)

Example 5.27. String class - concatenation methods

f = "abc"
f"def" -> "abcdef"
f || "def" -> "abcdef"
f "def" -> "abc def"

5.1.3.11. abbrev

Chapter 5. The Builtin Classes

148

>>-abbrev(info-+---------+-)-----------------------------------><
 +-,length-+

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.28. String class - abbrev method

"Print"~abbrev("Pri") -> 1
"PRINT"~abbrev("Pri") -> 0
"PRINT"~abbrev("PRI",4) -> 0
"PRINT"~abbrev("PRY") -> 0
"PRINT"~abbrev("") -> 1
"PRINT"~abbrev("",1) -> 0

Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.29. String class - abbrev method

say "Enter option:"; pull option .
select /* keyword1 is to be the default */
 when "keyword1"~abbrev(option) then ...
 when "keyword2"~abbrev(option) then ...
 ...
 otherwise nop;
end;

5.1.3.12. abs

>>-abs---><

Returns the absolute value of the receiving string. The result has no sign and is formatted according to
the current NUMERIC settings.

The String Class

149

Example 5.30. String class - abs method

12.3~abs -> 12.3
"-0.307"~abs -> 0.307

5.1.3.13. b2x

>>-b2x---><

Returns a string, in character format, that represents the receiving binary string converted to
hexadecimal.

The receiving string is a string of binary (0 or 1) digits. It can be of any length. It can optionally include
whitespace characters (at 4-digit boundaries only, not leading or trailing). These are to improve
readability and are ignored.

The returned string uses uppercase alphabetic characters for the values A-F and does not include
whitespace.

If the receiving binary string is a null string, b2x returns a null string. If the number of binary digits
in the receiving string is not a multiple of four, up to three 0 digits are added on the left before the
conversion to make a total that is a multiple of four.

Example 5.31. String class - b2x method

"11000011"~b2x -> "C3"
"10111"~b2x -> "17"
"101"~b2x -> "5"
"1 1111 0000"~b2x -> "1F0"

You can combine b2x with the methods x2d and x2c to convert a binary number into other forms.

Example 5.32. String class - b2x method with x2d

"10111"~b2x~x2d -> "23" /* decimal 23 */

5.1.3.14. bitAnd

>>-bitAnd-+--------------------+-------------------------------><
 +-(string-+------+-)-+

Chapter 5. The Builtin Classes

150

 +-,pad-+

Returns a string composed of the receiver string and the argument string logically ANDed together,
bit by bit. (The encodings of the strings are used in the logical operation.) The length of the result
is the length of the longer of the two strings. If you omit the pad character, the AND operation stops
when the shorter of the two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If you provide pad, it extends the shorter of the two strings on the right
before the logical operation. The default for string is the zero-length (null) string.

Example 5.33. String class - bitand method

"12"x~bitAnd -> "12"x
"73"x~bitAnd("27"x) -> "23"x
"13"x~bitAnd("5555"x) -> "1155"x
"13"x~bitAnd("5555"x,"74"x) -> "1154"x
"pQrS"~bitAnd(,"DF"x) -> "PQRS" /* ASCII */

5.1.3.15. bitOr

>>-bitOr-+--------------------+--------------------------------><
 +-(string-+------+-)-+
 +-,pad-+

Returns a string composed of the receiver string and the argument string logically inclusive-ORed, bit
by bit. The encodings of the strings are used in the logical operation. The length of the result is the
length of the longer of the two strings. If you omit the pad character, the OR operation stops when the
shorter of the two strings is exhausted, and the unprocessed portion of the longer string is appended
to the partial result. If you provide pad, it extends the shorter of the two strings on the right before the
logical operation. The default for string is the zero-length (null) string.

Example 5.34. String class - bitor method

"12"x~bitOr -> "12"x
"15"x~bitOr("24"x) -> "35"x
"15"x~bitOr("2456"x) -> "3556"x
"15"x~bitOr("2456"x,"F0"x) -> "35F6"x
"1111"x~bitOr(,"4D"x) -> "5D5D"x
"pQrS"~bitOr(,"20"x) -> "pqrs" /* ASCII */

5.1.3.16. bitXor

The String Class

151

>>-bitXor-+--------------------+-------------------------------><
 +-(string-+------+-)-+
 +-,pad-+

Returns a string composed of the receiver string and the argument string logically eXclusive-ORed,
bit by bit. The encodings of the strings are used in the logical operation. The length of the result is
the length of the longer of the two strings. If you omit the pad character, the XOR operation stops
when the shorter of the two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If you provide pad, it extends the shorter of the two strings on the right
before carrying out the logical operation. The default for string is the zero-length (null) string.

Example 5.35. String class - bitxor method

"12"x~bitXor -> "12"x
"12"x~bitXor("22"x) -> "30"x
"1211"x~bitXor("22"x) -> "3011"x
"1111"x~bitXor("444444"x) -> "555544"x
"1111"x~bitXor("444444"x,"40"x) -> "555504"x
"1111"x~bitXor(,"4D"x) -> "5C5C"x
"C711"x~bitXor("222222"x," ") -> "E53302"x /* ASCII */

5.1.3.17. c2d

>>-c2d-+-----+---><
 +-(n)-+

Returns the decimal value of the binary representation of the receiving string. If the result cannot be
expressed as a whole number, an error results. That is, the result must not have more digits than the
current setting of NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do
not specify n, the receiving string is processed as an unsigned binary number. If the receiving string is
null, C2D returns 0.

Example 5.36. String class - c2d method

"09"X~c2d -> 9
"81"X~c2d -> 129
"FF81"X~c2d -> 65409
""~c2d -> 0
"a"~c2d -> 97 /* ASCII */

Chapter 5. The Builtin Classes

152

If you specify n, the receiving string is taken as a signed number expressed in n characters. The
number is positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is
converted to a whole number, which can therefore be negative. The receiving string is padded on the
left with "00"x characters (not "sign-extended"), or truncated on the left to n characters. This padding
or truncation is as though receiving_string~right(n,'00'x) had been processed. If n is 0,
c2d always returns 0.

Example 5.37. String class - c2d method

"81"X~c2d(1) -> -127
"81"X~c2d(2) -> 129
"FF81"X~c2d(2) -> -127
"FF81"X~c2d(1) -> -127
"FF7F"X~c2d(1) -> 127
"F081"X~c2d(2) -> -3967
"F081"X~c2d(1) -> -127
"0031"X~c2d(0) -> 0

5.1.3.18. c2x

>>-c2x---><

Returns a string, in character format, that represents the receiving string converted to hexadecimal.
The returned string contains twice as many bytes as the receiving string. On an ASCII system,
sending a c2x message to the receiving string 1 returns 31 because "31"X is the ASCII representation
of 1.

The returned string has uppercase alphabetic characters for the values A-F and does not include
whitespace. The receiving string can be of any length. If the receiving string is null, c2x returns a null
string.

Example 5.38. String class - c2x method

"0123"X~c2x -> "0123" /* "30313233"X in ASCII */
"ZD8"~c2x -> "5A4438" /* "354134343338"X in ASCII */

5.1.3.19. caselessAbbrev

>>-caselessAbbrev(info-+---------+-)-----------------------------------><
 +-,length-+

The String Class

153

Returns 1 if info is equal to the leading characters of the receiving string and the length of info is not
less than length. Returns 0 if either of these conditions is not met. The characters are tested using a
caseless comparison.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Example 5.39. String class - caselessAbbrev method

"Print"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("Pri") -> 1
"PRINT"~caselessAbbrev("PRI",4) -> 0
"PRINT"~caselessAbbrev("PRY") -> 0
"PRINT"~caselessAbbrev("") -> 1
"PRINT"~caselessAbbrev("",1) -> 0

Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired.

Example 5.40. String class - caselessAbbrev method

say "Enter option:"; parse pull option .
select /* keyword1 is to be the default */
 when "keyword1"~caselessAbbrev(option) then ...
 when "keyword2"~caselessAbbrev(option) then ...
 ...
 otherwise nop;
end;

5.1.3.20. caselessChangeStr

>>-caselessChangeStr(needle,newneedle--+--------+--)---------------------------------><
 +-,count-+

Returns a copy of the receiver object in which newneedle replaces occurrences of needle. If count is
not specified, all occurrences of needle are replaced. If count is specified, it must be a positive, whole
number that gives the maximum number of occurrences to be replaced. The needle searches are
performed using caseless comparisons.

Chapter 5. The Builtin Classes

154

Here are some examples:

Example 5.41. String class - caselessChangeStr method

"AbaAbb"~caselessChangeStr("A","") -> "bbb"
AbaBabAB~changeStr("ab","xy") -> "xyxyxyxy"
AbaBabAB~changeStr("ab","xy",1) -> "xyaBabAB"

5.1.3.21. caselessCompare

>>-caselessCompare(string-+------+-)-----------------------------------><
 +-,pad-+

Returns 0 if the argument string is identical to the receiving string using a caseless comparison.
Otherwise, returns the position of the first character that does not match. The shorter string is padded
on the right with pad if necessary. The default pad character is a blank.

Example 5.42. String class - caselessCompare method

"abc"~caselessCompare("ABC") -> 0
"abc"~caselessCompare("Ak") -> 2
"ab "~caselessCompare("AB") -> 0
"AB "~caselessCompare("ab"," ") -> 0
"ab "~caselessCompare("ab","x") -> 3
"abXX "~caselessCompare("ab","x") -> 5

5.1.3.22. caselessCompareTo

>>-caselessCompareTo(string-+-----------------------+-)----------------------><
 +-,--+---+--+---------+-+
 +-n-+ +-,length-+

Performs a caseless sort comparison of the target string to the string argument. If the two strings are
equal, 0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger
string. The comparison is performed starting at character n for length characters in both strings. n
must be a positive whole number. If n is omitted, the comparison starts at the first character. length
must be a non-negative whole number. If omitted, the comparison will take place to the end of the
target string.

The String Class

155

Example 5.43. String class - caselessCompareTo method

"abc"~caselessCompareTo("abc") -> 0
"b"~caselessCompareTo("a") -> 1
"a"~caselessCompareTo("b") -> -1
"abc"~caselessCompareTo("aBc") -> 0
"aBc"~caselessCompareTo("abc") -> 0
"000abc000"~caselessCompareTo(111abc111", 4, 3) -> 0

5.1.3.23. caselessCountStr

>>-caselessCountStr(needle)--><

Returns a count of the occurrences of needle in the receiving string that do not overlap. All matches
are made using caseless comparisons.

Here are some examples:

Example 5.44. String class - caselessCountStr method

"a0Aa0A"~caselessCountStr("a") -> 4
"J0kKk0"~caselessCountStr("KK") -> 1

5.1.3.24. caselessEquals

>>-caselessEquals(other)---><

Returns .true ("1") if the target string is strictly equal to the other string, using a caseless comparison.
Returns .false ("0") if the two strings are not strictly equal.

Example 5.45. String class - caselessEquals method

"a"~caselessEquals("A") -> 1
"aa"~caselessEquals("A") -> 0

Chapter 5. The Builtin Classes

156

"4"~caselessEquals("3") -> 0

5.1.3.25. caselessLastPos

>>-caselessLastPos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving string. (See also
Section 5.1.3.60, “pos”.) It returns 0 if needle is the null string or not found. By default, the search
starts at the last character of the receiving string and scans backward to the beginning of the
string. You can override this by specifying start, the point at which the backward scan starts and
length, the range of characters to scan. The start must be a positive whole number and defaults to
receiving_string~length if larger than that value or omitted. The length must be a non-negative
whole number and defaults to start. The search is performed using caseless comparisons.

Example 5.46. String class - caselessLastPos method

"abc def ghi"~caselessLastPos(" ") -> 8
"abcdefghi"~caselessLastPos(" ") -> 0
"efgxyz"~caselessLastPos("XY") -> 4
"abc def ghi"~caselessLastPos(" ",7) -> 4
"abc def ghi"~caselessLastPos(" ",7,3) -> 0

5.1.3.26. caselessMatch

>>-caselessMatch(start,other-+----------------------------+-)-------------------><
 +-,--+---+--+---------+------+
 +-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target string beginning at
position start. Return .false ("0") if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number less than or equal to the length of the
target string.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

The String Class

157

Example 5.47. String class - caselessMatch method

"Saturday"~caselessMatch(6, "day") -> 1
"Saturday"~caselessMatch(6, "DAY") -> 1
"Saturday"~caselessMatch(6, "SUNDAY", 4, 3) -> 1
"Saturday"~caselessMatch(6, "daytime", 1, 3) -> 1

5.1.3.27. caselessMatchChar

>>-caselessMatchChar(n,chars)-------------------------><

Returns .true ("1") if the character at position n matches any character of the string chars.
Returns .false ("0") if the character does not match any of the characters in the reference set. The
match is made using caseless comparisons. The argument n must be a positive whole number less
than or equal to the length of the target string.

Example 5.48. String class - caselessMatchChar method

"a+b"~caselessMatchChar(2, "+-*/") -> 1
"a+b"~caselessMatchChar(1, "+-*/") -> 0
"Friday"~caselessMatchChar(3, "aeiou") -> 1
"FRIDAY"~caselessMatchChar(3, "aeiou") -> 1

5.1.3.28. caselessPos

>>-caselessPos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position in the receiving string of another string, needle. (See also Section 5.1.3.49,
“lastPos”.) It returns 0 if needle is the null string or is not found or if start is greater than the length
of the receiving string. The search is performed using caseless comparisons. By default, the search
starts at the first character of the receiving string (that is, the value of start is 1), and continues to the
end of the string. You can override this by specifying start , the point at which the search starts, and
length, the bounding limit for the search. If specified, start must be a positive whole number and length
must be a non-negative whole number.

Chapter 5. The Builtin Classes

158

Example 5.49. String class - caselessPos method

"Saturday"~caselessPos("DAY") -> 6
"abc def ghi"~caselessPos("x") -> 0
"abc def ghi"~caselessPos(" ") -> 4
"abc def ghi"~caselessPos(" ",5) -> 8
"abc def ghi"~caselessPos(" ",5,3) -> 0

5.1.3.29. caselessWordPos

>>-caselessWordPos(phrase-+--------+-)---------------------------------><
 +-,start-+

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Several
whitespace characters between words in either phrase or the receiving string are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

Example 5.50. String class - caselessWordPos method

"now is the time"~caselessWordPos("the") -> 3
"now is the time"~caselessWordPos("The") -> 3
"now is the time"~caselessWordPos("IS THE") -> 2
"now is the time"~caselessWordPos("is the") -> 2
"now is the time"~caselessWordPos("is time ") -> 0
"To be or not to be"~caselessWordPos("BE") -> 2
"To be or not to be"~caselessWordPos("BE",3) -> 6

5.1.3.30. ceiling

>>-ceiling---><

Returns the largest integer not less than the receiving string. The receiving string is first rounded
according to standard Rexx rules, as though the operation receiving_string+0 had been carried
out. The ceiling is then calculated and returned. The result is never in exponential form. If there are no
nonzero digits in the result, any minus sign is removed.

The String Class

159

Example 5.51. String class - ceiling method

2~ceiling -> 2
'-2'~ceiling -> -2
12.3~ceiling -> 13
'-12.3'~ceiling -> -12

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.3.31. center/centre

>>-+-center(-+-length-+--------+-)-----------------------------><
 +-centre(-+ +-,--pad-+

Returns a string of length length with the receiving string centered in it. The pad characters are added
as necessary to make up length. The length must be a positive whole number or zero. The default
pad character is blank. If the receiving string is longer than length, it is truncated at both ends to fit.
If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Note

To avoid errors because of the difference between British and American spellings, this method
can be called either center or centre.

Example 5.52. String class - center method

abc~center(7) -> " ABC "
abc~CENTER(8,"-") -> "--ABC---"
"The blue sky"~centre(8) -> "e blue s"
"The blue sky"~centre(7) -> "e blue "

Chapter 5. The Builtin Classes

160

5.1.3.32. changeStr

>>-changeStr(needle,newneedle--+--------+--)---------------------------------><
 +-,count-+

Returns a copy of the receiver object in which newneedle replaces occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a
positive, whole number that gives the maximum number of occurrences to be replaced.

Here are some examples:

Example 5.53. String class - changeStr method

101100~changeStr("1","") -> "000"
101100~changeStr("1","X") -> "X0XX00"
101100~changeStr("1","X",1) -> "X01100"

5.1.3.33. compare

>>-compare(string-+------+-)-----------------------------------><
 +-,pad-+

Returns 0 if the argument string is identical to the receiving string. Otherwise, returns the position of
the first character that does not match. The shorter string is padded on the right with pad if necessary.
The default pad character is a blank.

Example 5.54. String class - compare method

"abc"~compare("abc") -> 0
"abc"~compare("ak") -> 2
"ab "~compare("ab") -> 0
"ab "~compare("ab"," ") -> 0
"ab "~compare("ab","x") -> 3
"ab-- "~compare("ab","-") -> 5

5.1.3.34. compareTo

The String Class

161

>>-compareTo(string-+-----------------------+-)----------------------><
 +-,--+---+--+---------+-+
 +-n-+ +-,length-+

Performs a sort comparison of the target string to the string argument. If the two strings are equal,
0 is returned. If the target string is larger, 1 is returned. -1 if the string argument is the larger string.
The comparison is performed starting at character n for length characters in both strings. n must be
a positive whole number. If n is omitted, the comparison starts at the first character. length must be a
non-negative whole number. If omitted, the comparison will take place to the end of the target string.

Example 5.55. String class - compareTo method

"abc"~compareTo("abc") -> 0
"b"~compareTo("a") -> 1
"a"~compareTo("b") -> -1
"abc"~compareTo("aBc") -> 1
"aBc"~compareTo("abc") -> -1
"000abc000"~compareTo(111abc111", 4, 3) -> 0

5.1.3.35. copies

>>-copies(n)---><

Returns n concatenated copies of the receiving string. The n must be a positive whole number or zero.

Example 5.56. String class - copies method

"abc"~copies(3) -> "abcabcabc"
"abc"~copies(0) -> ""

5.1.3.36. countStr

>>-countStr(needle)--><

Chapter 5. The Builtin Classes

162

Returns a count of the occurrences of needle in the receiving string that do not overlap.

Here are some examples:

Example 5.57. String class - countStr method

"101101"~countStr("1") -> 4
"J0KKK0"~CountStr("KK") -> 1

5.1.3.37. d2c

>>-d2c-+-----+---><
 +-(n)-+

Returns a string, in character format, that is the ASCII representation of the receiving string, a decimal
number. If you specify n, it is the length of the final result in characters; leading blanks are added to
the returned string. The n must be a positive whole number or zero.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, the receiving string must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Example 5.58. String class - d2c method

"65"~d2c -> "A" /* "41"x is an ASCII "A" */
"65"~d2c(1) -> "A"
"65"~d2c(2) -> " A"
"65"~d2c(5) -> " A"
"109"~d2c -> "m" /* "6D"x is an ASCII "m" */
"-109"~d2c(1) -> "ô" /* "93"x is an ASCII "ô" */
"76"~d2c(2) -> " L" /* "4C"x is an ASCII " L" */
"-180"~d2c(2) -> " L"

5.1.3.38. d2x

>>-d2x-+-----+---><
 +-(n)-+

The String Class

163

Returns a string, in character format, that represents the receiving string, a decimal number converted
to hexadecimal. The returned string uses uppercase alphabetic characters for the values A-F and does
not include whitespace.

The receiving string must not have more digits than the current setting of NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After conversion the returned string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on
the left. If you specify n, it must be a positive whole number or zero.

If you omit n, the receiving string must be a positive whole number or zero, and the returned result has
no leading zeros.

Example 5.59. String class - d2x method

"9"~d2x -> "9"
"129"~d2x -> "81"
"129"~d2x(1) -> "1"
"129"~d2x(2) -> "81"
"129"~d2x(4) -> "0081"
"257"~d2x(2) -> "01"
"-127"~d2x(2) -> "81"
"-127"~d2x(4) -> "FF81"
"12"~d2x(0) -> ""

5.1.3.39. dataType

>>-dataType-+--------+---><
 +-(type)-+

Returns NUM if you specify no argument and the receiving string is a valid Rexx number that can be
added to 0 without error. It returns CHAR if the receiving string is not a valid number.

If you specify type, it returns 1 if the receiving string matches the type. Otherwise, it returns 0. If the
receiving string is null, the method returns 0 (except when the type is X or B, for which dataType
returns 1 for a null string). The following are valid types. You need to specify only the capitalized letter,
or the number of the last type listed. The language processor ignores all characters surrounding it.

Alphanumeric
returns 1 if the receiving string contains only characters from the ranges a-z, A-Z, and 0-9.

Binary
returns 1 if the receiving string contains only the characters 0 or 1, or whitespace. Whitespace
characters can appear only between groups of 4 binary characters. It also returns 1 if string is a
null string, which is a valid binary string.

Lowercase
returns 1 if the receiving string contains only characters from the range a-z.

Mixed case
returns 1 if the receiving string contains only characters from the ranges a-z and A-Z.

Chapter 5. The Builtin Classes

164

Number
returns 1 if receiving_string~dataType returns NUM.

lOgical
returns 1 if the receiving string is exactly "0" or "1". Otherwise it returns 0.

Symbol
returns 1 if the receiving string is a valid symbol, that is, if SYMBOL(string) does not return BAD.
(See Section 1.10.4.4, “Symbols”.) Note that both uppercase and lowercase alphabetic characters
are permitted.

Uppercase
returns 1 if the receiving string contains only characters from the range A-Z.

Variable
returns 1 if the receiving string could appear on the left-hand side of an assignment without
causing a SYNTAX condition.

Whole number
returns 1 if the receiving string is a whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returns 1 if the receiving string contains only characters from the ranges a-f, A-F, 0-9, and
whitespace characters (as long as whitespace characters appear only between pairs of
hexadecimal characters). Also returns 1 if the receiving string is a null string.

9 Digits
returns 1 if receiving_string~dataType("W") returns 1 when NUMERIC DIGITS is set to 9.

Example 5.60. String class - datatype method

" 12 "~dataType -> "NUM"
""~dataType -> "CHAR"
"123*"~dataType -> "CHAR"
"12.3"~dataType("N") -> 1
"12.3"~dataType("W") -> 0
"Fred"~dataType("M") -> 1
""~dataType("M") -> 0
"Fred"~dataType("L") -> 0
"?20K"~dataType("s") -> 1
"BCd3"~dataType("X") -> 1
"BC d3"~dataType("X") -> 1
"1"~dataType("O") -> 1
"11"~dataType("O") -> 0

The String Class

165

Note

The dataType method tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

5.1.3.40. decodeBase64

>>-decodeBase64--><

Returns a new string containing the decoded version of the base64 encoded receiving string. If the
receiving string is not in base64 format then the returned result is undefined.

Example 5.61. String class - decodeBase64 method

"YWJjZGVm"~decodeBase64 -> "abcdef"

5.1.3.41. delStr

>>-delStr(n--+---------+--)------------------------------------><
 +-,length-+

Returns a copy of the receiving string after deleting the substring that begins at the nth character and
is of length characters. If you omit length, or if length is greater than the number of characters from n
to the end of string, the method deletes the rest of string (including the nth character). The length must
be a positive whole number or zero. The n must be a positive whole number. If n is greater than the
length of the receiving string, the method returns the receiving string unchanged.

Example 5.62. String class - delStr method

"abcd"~delStr(3) -> "ab"
"abcde"~delStr(3,2) -> "abe"
"abcde"~delStr(6) -> "abcde"

Chapter 5. The Builtin Classes

166

5.1.3.42. delWord

>>-delWord(n--+---------+--)-----------------------------------><
 +-,length-+

Returns a copy of the receiving string after deleting the substring that starts at the nth word and is
of length blank-delimited words. If you omit length, or if length is greater than the number of words
from n to the end of the receiving string, the method deletes the remaining words in the receiving
string (including the nth word). The length must be a positive whole number or zero. The n must be
a positive whole number. If n is greater than the number of words in the receiving string, the method
returns the receiving string unchanged. The string deleted includes any whitespace characters
following the final word involved but none of the whitespace characters preceding the first word
involved.

Example 5.63. String class - delWord method

"Now is the time"~delWord(2,2) -> "Now time"
"Now is the time "~delWord(3) -> "Now is "
"Now is the time"~delWord(5) -> "Now is the time"
"Now is the time"~delWord(3,1) -> "Now is time"

5.1.3.43. encodeBase64

>>-encodeBase64--><

Returns a new string that is the base64 encoded version of the receiving string.

Example 5.64. String class - encodeBase64 method

"abcdef"~encodeBase64 -> "YWJjZGVm"

5.1.3.44. equals

The String Class

167

>>-equals(other)---><

Returns .true ("1") if the target string is strictly equal to the other string. Returns .false ("0") if the two
strings are not strictly equal. This is the same comparison performed by the "==" comparison method.

Example 5.65. String class - equals method

"3"~equals("3") -> 1
"33"~equals("3") -> 0
"4"~equals("3") -> 0

5.1.3.45. floor

>>-floor---><

Returns the largest integer not greater than the receiving string. The receiving string is first rounded
according to standard Rexx rules, as though the operation receiving_string+0 had been carried
out. The floor is then calculated and returned. The result is never in exponential form. If there are no
nonzero digits in the result, any minus sign is removed.

Example 5.66. String class - floor method

2~floor -> 2
'-2'~floor -> -2
12.3~floor -> 12
'-12.3'~floor -> -13

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.3.46. format

>>-format-+---+-><
 +-(-before-+--+-)-+
 +-,--+-------+--+------------------------+-+

Chapter 5. The Builtin Classes

168

 +-after-+ +-,--+------+--+-------+-+
 +-expp-+ +-,expt-+

Returns a copy of the receiving string, a number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. If you specify no arguments the result of the method
is the same as the result of this operation. If you specify any options, the number is formatted as
described in the following.

The before and after options describe how many characters are to be used for the integer and decimal
parts of the result. If you omit either or both of them, the number of characters for that part is as
needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Example 5.67. String class - format method

"3"~format(4) -> " 3"
"1.73"~format(4,0) -> " 2"
"1.73"~format(4,3) -> " 1.730"
"-.76"~format(4,1) -> " -0.8"
"3.03"~format(4) -> " 3.03"
" - 12.73"~format(,4) -> "-12.7300"
" - 12.73"~format -> "-12.73"
"0.000"~format -> "0"

expp and expt control the exponent part of the result, which, by default, is formatted according to the
current NUMERIC settings of DIGITS and FORM. expp sets the number of places for the exponent
part; the default is to use as many as needed (which can be zero). expt specifies when the exponential
expression is used. The default is the current setting of NUMERIC DIGITS.

If expp is 0, the number is not an exponential expression. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent
would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero
expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent
would be 0 and expp is not specified, the number is not an exponential expression.

Example 5.68. String class - format method

"12345.73"~format(, ,2,2) -> "1.234573E+04"
"12345.73"~format(,3, ,0) -> "1.235E+4"
"1.234573"~format(,3, ,0) -> "1.235"
"12345.73"~format(, ,3,6) -> "12345.73"
"1234567e5"~format(,3,0) -> "123456700000.000"

The String Class

169

5.1.3.47. hashCode

>>-hashCode---><

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory. The String hash code method will return the same hash value for all pairs of string
instances for which the == operator is true. See Section 5.1.1.7, “hashCode” for details.

5.1.3.48. insert

>>-insert(new-+---------------------------------------+-)------><
 +-,--+---+--+-------------------------+-+
 +-n-+ +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Returns a copy of the receiver string with the string new, padded or truncated to length length, inserted
after the nth character. The default value for n is 0, which means insertion at the beginning of the
string. If specified, n and length must be positive whole numbers or zero. If n is greater than the length
of the receiving string, the string new is padded at the beginning. The default value for length is the
length of new. If length is less than the length of the string new, then insert truncates new to length
length. The default pad character is a blank.

Example 5.69. String class - insert method

"abc"~insert("123") -> "123abc"
"abcdef"~insert(" ",3) -> "abc def"
"abc"~insert("123",5,6) -> "abc 123 "
"abc"~insert("123",5,6,"+") -> "abc++123+++"
"abc"~insert("123", ,5,"-") -> "123--abc"

5.1.3.49. lastPos

>>-lastPos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving string. (See also
Section 5.1.3.60, “pos”.) It returns 0 if needle is the null string or not found. By default, the search
starts at the last character of the receiving string and scans backward to the beginning of the

Chapter 5. The Builtin Classes

170

string. You can override this by specifying start, the point at which the backward scan starts and
length, the range of characters to scan. The start must be a positive whole number and defaults to
receiving_string~length if larger than that value or omitted. The length must be a non-negative
whole number and defaults to start.

Example 5.70. String class - lastPos method

"abc def ghi"~lastPos(" ") -> 8
"abcdefghi"~lastPos(" ") -> 0
"efgxyz"~lastPos("xy") -> 4
"abc def ghi"~lastPos(" ",7) -> 4
"abc def ghi"~lastPos(" ",7,3) -> 0

5.1.3.50. left

>>-left(length-+------+-)--------------------------------------><
 +-,pad-+

Returns a string of length length, containing the leftmost length characters of the receiving string. The
string returned is padded with pad characters (or truncated) on the right as needed. The default pad
character is a blank. The length must be a positive whole number or zero. The left method is exactly
equivalent to:

>>-SUBSTR(string,1,length-+------+-)---------------------------><
 +-,pad-+

Example 5.71. String class - left method

"abc d"~left(8) -> "abc d "
"abc d"~left(8,".") -> "abc d..."
"abc def"~left(7) -> "abc de"

5.1.3.51. length

>>-length--><

Returns the length of the receiving string.

The String Class

171

Example 5.72. String class - length method

"abcdefgh"~length -> 8
"abc defg"~length -> 8
""~length -> 0

5.1.3.52. lower

>>-lower(+---+--+---------+---)----------------------><
 +-n-+ +-,length-+

Returns a new string with the characters of the target string beginning with character n for length
characters converted to lowercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.73. String class - lower method

"Albert Einstein"~lower -> "albert einstein"
"ABCDEF"~lower(4) -> "ABCdef"
"ABCDEF"~lower(3,2) -> "ABcdEF"

5.1.3.53. makeArray

>>-makeArray(-+-----------+-)----><
 +-Separator-+

This method returns an array of strings containing the single lines that were separated using the
separator string. The separator may be any string, including the null string. If the null string is
used, an array containing each character of the string is returned. If the target string starts with the
separator, the first array item will be a null string. If the string ends with a separator, no extra null string
item will be added. The default separator is the newline character.

Example 5.74. String class - makeArray method

string = "hello".endofline"world".endofline"this is an array."
array = string~makeArray
say "the second line is:" array[2] /* world */

Chapter 5. The Builtin Classes

172

string = "hello*world*this is an array."
array = string~makeArray("*")
say "the third line is:" array[3] /* this is an array. */

string = "hello*world*this is an array.*"
array = string~makeArray("*") /* contains 3 items */

5.1.3.54. makeString

>>-makeString--><

Returns a string with the same string value as the receiver object. If the receiver is an instance of a
subclass of the String class, this method returns an equivalent string object. If the receiver is a string
object (not an instance of a subclass of the String class), this method returns the receiver object. See
Section 4.2.11, “Required String Values”.

5.1.3.55. match

>>-match(start,other-+----------------------------+-)-------------------><
 +-,--+---+--+---------+------+
 +-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target string beginning
at position start. Return .false ("0") if the characters are not a match. start must be a positive whole
number less than or equal to the length of the target string.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target string.

Example 5.75. String class - match method

"Saturday"~match(6, "day") -> 1
"Saturday"~match(6, "DAY") -> 0
"Saturday"~match(6, "Sunday", 4, 3) -> 1
"Saturday"~match(6, "daytime", 1, 3) -> 1

The String Class

173

5.1.3.56. matchChar

>>-matchChar(n,chars)-------------------------><

Returns .true ("1") if the character at position n matches any character of the string chars.
Returns .false ("0") if the character does not match any of the characters in the reference set. The
argument n must be a positive whole number less than or equal to the length of the target string.

Example 5.76. String class - matchChar method

"a+b"~matchChar(2, "+-*/") -> 1
"a+b"~matchChar(1, "+-*/") -> 0
"Friday"~matchChar(3, "aeiou") -> 1
"FRIDAY"~matchChar(3, "aeiou") -> 0

5.1.3.57. max

>>-max-+------------------+------------------------------------><
 | +-,------+ |
 | V | |
 +-(----number-+--)-+

Returns the largest number from among the receiver and any arguments. The number that max
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.77. String class - max method

12~max(6,7,9) -> 12
17.3~max(19,17.03) -> 19
"-7"~max("-3","-4.3") -> -3
1~max(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

5.1.3.58. min

>>-min-+------------------+------------------------------------><
 | +-,------+ |

Chapter 5. The Builtin Classes

174

 | V | |
 +-(----number-+--)-+

Returns the smallest number from among the receiver and any arguments. The number that min
returns is formatted according to the current NUMERIC settings. You can specify any number of
numbers.

Example 5.78. String class - min method

12~min(6,7,9) -> 6
17.3~min(19,17.03) -> 17.03
"-7"~MIN("-3","-4.3") -> -7
21~min(20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

5.1.3.59. overlay

>>-overlay(new-+---------------------------------------+-)-----><
 +-,--+---+--+-------------------------+-+
 +-n-+ +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Returns a copy of the receiving string, which, starting at the nth character, is overlaid with the string
new, padded or truncated to length length. The overlay can extend beyond the end of the receiving
string. If you specify length, it must be a positive whole number or zero. The default value for length
is the length of new. If n is greater than the length of the receiving string, padding is added before the
new string. The default pad character is a blank, and the default value for n is 1. If you specify n, it
must be a positive whole number.

Example 5.79. String class - overlay method

"abcdef"~overlay(" ",3) -> "ab def"
"abcdef"~overlay(".",3,2) -> "ab. ef"
"abcd"~overlay("qq") -> "qqcd"
"abcd"~overlay("qq",4) -> "abcqq"
"abc"~overlay("123",5,6,"+") -> "abc+123+++"

5.1.3.60. pos

>>-pos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

The String Class

175

Returns the position in the receiving string of another string, needle. (See also Section 5.1.3.49,
“lastPos”.) It returns 0 if needle is the null string or is not found or if start is greater than the length of
the receiving string. By default, the search starts at the first character of the receiving string (that is,
the value of start is 1), and continues to the end of the string. You can override this by specifying start
, the point at which the search starts, and length, the bounding limit for the search. If specified, start
must be a positive whole number and length must be a non-negative whole number.

Example 5.80. String class - pos method

"Saturday"~pos("day") -> 6
"abc def ghi"~pos("x") -> 0
"abc def ghi"~pos(" ") -> 4
"abc def ghi"~pos(" ",5) -> 8
"abc def ghi"~pos(" ",5,3) -> 0

5.1.3.61. replaceAt

>>-replaceAt(new-,-n-,-+----------+-+-------+-)-----><
 +-,-length-+ +-,-pad-+

Returns a copy of the receiving string, with the characters from the nth character for length characters
replaced with new. The replacement position and length can extend beyond the end of the receiving
string. The starting position, n, is required and must be a positive whole number. The length argument
is optional and must be a positive whole number or zero. If omitted, length defaults to the length of
new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

Example 5.81. String class - replaceAt method

"abcdef"~replaceAt(" ",3, 1) -> "ab def"
"abcdef"~replaceAt(" ",3, 3) -> "ab f"
"abc"~replaceAt("123",5,6,"+") -> "abc+123"

5.1.3.62. reverse

>>-reverse---><

Chapter 5. The Builtin Classes

176

Returns a copy of the receiving string reversed.

Example 5.82. String class - reverse method

"ABc."~reverse -> ".cBA"
"XYZ "~reverse -> " ZYX"

5.1.3.63. right

>>-right(length-+------+-)-------------------------------------><
 +-,pad-+

Returns a string of length length containing the rightmost length characters of the receiving string. The
string returned is padded with pad characters, or truncated, on the left as needed. The default pad
character is a blank. The length must be a positive whole number or zero.

Example 5.83. String class - right method

"abc d"~right(8) -> " abc d"
"abc def"~right(5) -> "c def"
"12"~right(5,"0") -> "00012"

5.1.3.64. round

>>-round--><

Returns the nearest to the receiving string. The receiving string is first rounded according to standard
Rexx rules, as though the operation receiving_string+0 had been carried out. The rounded value
is then calculated and returned. The result is never in exponential form. If there are no nonzero digits
in the result, any minus sign is removed.

Example 5.84. String class - round method

2~round -> 2
'-2'~round -> -2
2.4~round -> 2

The String Class

177

'-2.4'~round -> -2
2.5~round -> 3
'-2.5'~round -> -3

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.3.65. sign

>>-sign--><

Returns a number that indicates the sign of the receiving string, which is a number. The receiving
string is first rounded according to standard Rexx rules, as though the operation receiving_string
+0 had been carried out. It returns -1 if the receiving string is less than 0, 0 if it is 0, and 1 if it is
greater than 0.

Example 5.85. String class - sign method

"12.3"~sign -> 1
" -0.307"~sign -> -1
0.0~sign -> 0

5.1.3.66. space

>>-space-+---------------+-------------------------------------><
 +-(n-+------+-)-+
 +-,pad-+

Returns a copy of receiving string, with n pad characters between each whitespace-delimited word.
If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.

Example 5.86. String class - space method

Chapter 5. The Builtin Classes

178

"abc def "~space -> "abc def"
" abc def"~space(3) -> "abc def"
"abc def "~space(1) -> "abc def"
"abc def "~space(0) -> "abcdef"
"abc def "~space(2,"+") -> "abc++def"

5.1.3.67. strip

>>-strip-+----------------------+-------------------------------><
 +-(option-+--------+-)-+
 +-,chars-+

Returns a copy of the receiving string with leading characters, trailing characters, or both, removed,
based on the option you specify. The following are valid options. (You need to specify only the first
capitalized letter; all characters following it are ignored.)

Both
Removes both leading and trailing characters. This is the default.

Leading
Removes leading characters.

Trailing
Removes trailing characters.

The chars specifies the set of characters to be removed, and the default is to remove all whitespace
characters (spaces and horizontal tabs). If chars, is a null string, then no characters are removed.
Otherwise, any occurrences of the characters in chars will be removed.

Example 5.87. String class - strip method

" ab c "~strip -> "ab c"
" ab c "~strip("L") -> "ab c "
" ab c "~strip("t") -> " ab c"
"12.7000"~strip(,0) -> "12.7"
"0012.700"~strip(,0) -> "12.7"
"0012.000"~strip(,".0"") -> "12"

5.1.3.68. subchar

>>-subchar(n)--><

Returns the n'th character of the receiving string. n must be a positive whole number. If n is greater
that the length of the receiving string then a zero-length string is returned.

The String Class

179

5.1.3.69. substr

>>-substr(n-+-------------------------+-)----------------------><
 +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Returns the substring of the receiving string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n is greater than
receiving_string~length, only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Example 5.88. String class - substr method

"abc"~substr(2) -> "bc"
"abc"~substr(2,4) -> "bc "
"abc"~substr(2,6,".") -> "bc...."

Note

In some situations the positional (numeric) patterns of parsing templates are more convenient
for selecting substrings, in particular if you need to extract more than one substring from a string.
See also Section 5.1.3.50, “left” and Section 5.1.3.63, “right”.

5.1.3.70. subWord

>>-subWord(n-+---------+-)-------------------------------------><
 +-,length-+

Returns the substring of the receiving string that starts at the nth word and is up to length blank-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving string. The returned string never has leading or trailing whitespace,
but includes all whitespace characters between the selected words.

Example 5.89. String class - subWord method

"Now is the time"~subWord(2,2) -> "is the"

Chapter 5. The Builtin Classes

180

"Now is the time"~subWord(3) -> "the time"
"Now is the time"~subWord(5) -> ""

5.1.3.71. subWords

>>-subWords(--+---+-+---------+-)-------------------------------------><
 +-n-+ +-,length-+

Returns an array containing all words within the substring of the receiving string that starts at the nth
word and is up to length blank-delimited words. The n must be a positive whole number. If you omit n,
it defaults to 1. If you omit length, it defaults to the number of remaining words in the receiving string.
The strings in the returned array never have leading or trailing whitespace.

Example 5.90. String class - subWords method

"Now is the time"~subWords -> .array~of("Now", "is", "the", "time")
"Now is the time"~subWords(2,2) -> .array~of("is", "the")
"Now is the time"~subWords(3) -> .array~of("the", "time")
"Now is the time"~subWords(5) -> .array~new(0)

The subWords method is useful for iterating over the individual words in a string.

Example 5.91. String class - subWords method

 do word over source~subWords -- extract all of the words to loop over
 say word
 end

5.1.3.72. translate

>>-translate-+--+-><
 +-(--+-------------------------------------+-+-----------------------+-)---+
 +-tableo--+-------------------------+-+ +-,--+---+--+---------+-+
 +-,--+--------+--+------+-+ +-n-+ +-,length-+
 +-tablei-+ +-,pad-+

Returns a copy of the receiving string with each character translated to another character or
unchanged. You can also use this method to reorder the characters in the output table. (See last
example)

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving string. If the character is found, the corresponding character in tableo is

The String Class

181

used in the result string. If there are duplicates in tablei, the first (leftmost) occurrence is used. If the
character is not found, the original character in the receiving string is used. The result string is always
of the same length as the receiving string.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the
entire string is translated to pad characters. tablei defaults to XRANGE("00"x,"FF"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If omitted, length remainder of the string from the starting
position to the end is used.

Example 5.92. String class - translate method

"abcdef"~translate -> "ABCDEF"
"abcdef"~translate(, , , 3, 2) -> "abCDef"
"abcdef"~translate("12", "ec") -> "ab2d1f"
"abcdef"~translate("12", "abcd", ".") -> "12..ef"
"APQRV"~translate(, "PR") -> "A Q V"
"APQRV"~translate(XRANGE("00"X, "Q")) -> "APQ "
"4123"~translate("abcd", "1234", , 2, 2) -> "4ab3"
"4123"~translate("abcd", "1234") -> "dabc"

Note

The last example shows how to use the translate method to reorder the characters in a string. In
the example, the last character of any 4-character string specified as the first argument would be
moved to the beginning of the string.

5.1.3.73. trunc

>>-trunc-+-----+---><
 +-(n)-+

Returns the integer part the receiving string, which is a number, and n decimal places. The default n
is 0 and returns an integer with no decimal point. If you specify n, it must be a positive whole number
or zero. The receiving string is first rounded according to standard Rexx rules, as though the operation
receiving_string+0 had been carried out. This number is then truncated to n decimal places
or trailing zeros are added if needed to reach the specified length. The result is never in exponential
form. If there are no nonzero digits in the result, any minus sign is removed.

Chapter 5. The Builtin Classes

182

Example 5.93. String class - trunc method

12.3~trunc -> 12
127.09782~trunc(3) -> 127.097
127.1~trunc(3) -> 127.100
127~trunc(2) -> 127.00

Note

The number is rounded according to the current setting of NUMERIC DIGITS if necessary, before
the method processes it.

5.1.3.74. upper

>>-upper(+---+--+---------+---)----------------------><
 +-n-+ +-,length-+

Returns a new string with the characters of the target string beginning with character n for length
characters converted to uppercase. If n is specified, it must be a positive whole number. If n is not
specified, the case conversion will start with the first character. If length is specified, it must be a non-
negative whole number. If length is not specified, the default is to convert the remainder of the string.

Example 5.94. String class - upper method

"Albert Einstein"~upper -> "ALBERT EINSTEIN"
"abcdef"~upper(4) -> "abcDEF"
"abcdef"~upper(3,2) -> "abCDef"

5.1.3.75. verify

>>-verify(reference-+--+-)--><
 +-,--+--------+--+---------------------------+-+
 +-option-+ +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns a number that, by default, indicates whether the receiving string is composed only of
characters from reference. It returns 0 if all characters in the receiving string are in reference or
returns the position of the first character in the receiving string not in reference.

The String Class

183

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored)

If you specify Match, the method returns the position of the first character in the receiving string that is
in reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving string. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length,
which must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly,
if start is greater than receiving_string~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

Example 5.95. String class - verify method

"123"~verify("1234567890") -> 0
"1Z3"~verify("1234567890") -> 2
"AB4T"~verify("1234567890") -> 1
"AB4T"~verify("1234567890","M") -> 3
"AB4T"~verify("1234567890","N") -> 1
"1P3Q4"~verify("1234567890", ,3) -> 4
"123"~verify("",N,2) -> 2
"ABCDE"~verify("", ,3) -> 3
"AB3CD5"~verify("1234567890","M",4) -> 6
"ABCDEF"~verify("ABC","N",2,3) -> 4
"ABCDEF"~verify("ADEF","M",2,3) -> 4

5.1.3.76. word

>>-word(n)---><

Returns the nth whitespace-delimited word in the receiving string or the null string if the receiving
string has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to receiving_string~subWord(n,1).

Example 5.96. String class - word method

"Now is the time"~word(3) -> "the"
"Now is the time"~word(5) -> ""

5.1.3.77. wordIndex

Chapter 5. The Builtin Classes

184

>>-wordIndex(n)--><

Returns the position of the first character in the nth whitespace-delimited word in the receiving string. It
returns 0 if the receiving string has fewer than n words. The n must be a positive whole number.

Example 5.97. String class - wordIndex method

"Now is the time"~wordIndex(3) -> 8
"Now is the time"~wordIndex(6) -> 0

5.1.3.78. wordLength

>>-wordLength(n)---><

Returns the length of the nth whitespace-delimited word in the receiving string or 0 if the receiving
string has fewer than n words. The n must be a positive whole number.

Example 5.98. String class - wordLength method

"Now is the time"~wordLength(2) -> 2
"Now comes the time"~wordLength(2) -> 5
"Now is the time"~wordLength(6) -> 0

5.1.3.79. wordPos

>>-wordPos(phrase-+--------+-)---------------------------------><
 +-,start-+

Returns the word number of the first word of phrase found in the receiving string, or 0 if phrase
contains no words or if phrase is not found. Several whitespace characters between words in either
phrase or the receiving string are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

The String Class

185

Example 5.99. String class - wordPos method

"now is the time"~wordPos("the") -> 3
"now is the time"~wordPos("The") -> 0
"now is the time"~wordPos("is the") -> 2
"now is the time"~wordPos("is the") -> 2
"now is the time"~wordPos("is time ") -> 0
"To be or not to be"~wordPos("be") -> 2
"To be or not to be"~wordPos("be",3) -> 6

5.1.3.80. words

>>-words---><

Returns the number of whitespace-delimited words in the receiving string.

Example 5.100. String class - words method

"Now is the time"~words -> 4
" "~words -> 0

5.1.3.81. x2b

>>-x2b---><

Returns a string, in character format, that represents the receiving string, which is a string of
hexadecimal characters converted to binary. The receiving string can be of any length. Each
hexadecimal character is converted to a string of 4 binary digits. The receiving string can optionally
include whitespace characters (at byte boundaries only, not leading or trailing) to improve readability;
they are ignored.

The returned string has a length that is a multiple of four, and does not include any whitespace.

If the receiving string is null, the method returns a null string.

Example 5.101. String class - x2b method

"C3"~x2b -> "11000011"
"7"~x2b -> "0111"

Chapter 5. The Builtin Classes

186

"1 C1"~x2b -> "000111000001"

You can combine x2b with the methods d2x and c2x to convert numbers or character strings into
binary form.

Example 5.102. String class - x2b method with c2x

"C3"x~c2x~x2b -> "11000011"
"129"~d2x~x2b -> "10000001"
"12"~d2x~x2b -> "1100"

5.1.3.82. x2c

>>-x2c---><

Returns a string, in character format, that represents the receiving string, which is a hexadecimal
string converted to character. The returned string is half as many bytes as the receiving string. The
receiving string can be any length. If necessary, it is padded with a leading 0 to make an even number
of hexadecimal digits.

You can optionally include whitespace in the receiving string (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If the receiving string is null, the method returns a null string.

Example 5.103. String class - x2c method

"4865 6c6c 6f"~x2c -> "Hello" /* ASCII */
"3732 73"~x2c -> "72s" /* ASCII */

5.1.3.83. x2d

>>-x2d-+-----+---><
 +-(n)-+

Returns the decimal representation of the receiving string, which is a string of hexadecimal characters.
If the result cannot be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in the receiving string (at byte boundaries only, not
leading or trailing) to improve readability; they are ignored.

The Method Class

187

If the receiving string is null, the method returns 0.

If you do not specify n, the receiving string is processed as an unsigned binary number.

Example 5.104. String class - x2d method

"0E"~x2d -> 14
"81"~x2d -> 129
"F81"~x2d -> 3969
"FF81"~x2d -> 65409
"46 30"X~x2d -> 240 /* ASCII */
"66 30"X~x2d -> 240 /* ASCII */

If you specify n, the receiving string is taken as a signed number expressed in n hexadecimal digits. If
the leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the method returns 0.

If necessary, the receiving string is padded on the left with 0 characters (note, not "sign-extended"), or
truncated on the left to n characters.

Example 5.105. String class - x2d method

"81"~x2d(2) -> -127
"81"~x2d(4) -> 129
"F081"~x2d(4) -> -3967
"F081"~x2d(3) -> 129
"F081"~x2d(2) -> -127
"F081"~x2d(1) -> 1
"0031"~x2d(0) -> 0

5.1.4. The Method Class

The Method class creates method objects from Rexx source code. It is a subclass of the Object class
(Section 5.1.1, “The Object Class”).

Table 5.4. ooRexx Method Class

Object

↓

Method

new
newFile
loadExternalMethod

isGuarded
isPrivate
isProtected
package
setGuarded

setPrivate
setProtected
setSecurityManager
setUnguarded
source

Chapter 5. The Builtin Classes

188

Note

The Method class also has available class methods that its metaclass, the Class class, defines.

5.1.4.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.1.4.2. new (Class Method)

>>-new(name,source--+-------------+---)-------------------><
 +--, context--+

Returns a new instance of method class, which is an executable representation of the code contained
in the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines.

The context allows the created method to inherit class and routine lookup scope from another
source. If specified, context can be a Method object, a Routine object, a Package object, or the string
"PROGRAMSCOPE". PROGRAMSCOPE is the default, and specifies that the newly created method
will inherit the class and routine search scope from the caller of new method.

5.1.4.3. newFile (Class Method)

>>-newFile(filename)---><

Returns a new instance of method class, which is an executable representation of the code contained
in the file filename. The filename is a string.

5.1.4.4. loadExternalMethod (Class Method)

The Method Class

189

>>-loadExternalMethod(name,descriptor)------------------------><

Resolves a native method in an external library package and returns a Method object instance that
can used to call the external method. The descriptor is a string containing blank-delimited tokens that
identify the location of the native method. The first token identifies the type of native function and must
be "LIBRARY". The second token must identify the name of the external library. The external library is
located using platform-specific mechanisms for loading libraries. For Unix-based systems, the library
name is case-sensitive. The third token is optional and specifies the name of the method within the
library package. If not specified, name is used. The method name is not case sensitive. If the target
method cannot be resolved, .nil is returned.

Example 5.106. Method class - loadExternalMethod method

method = .Method~loadExternalMethod("homeAddress=", 'LIBRARY mylib setHomeAddress')

5.1.4.5. isGuarded

>>-isGuarded--><

Returns true ("1") if the method is a Guarded method. Returns false ("0") for Unguarded methods.

5.1.4.6. isPrivate

>>-isPrivate--><

Returns true ("1") if the method is a Private method. Returns false ("0") for Public methods. See
Section 4.2.8, “Public and Private Methods” for details on private method restrictions.

5.1.4.7. isProtected

>>-isProtected--><

Returns true ("1") if the method is a Protected method. Returns false ("0") for unprotected methods.

5.1.4.8. package

Chapter 5. The Builtin Classes

190

>>-package---><

Returns the Package class instance that defined the method instance. The package instance controls
and defines the search order for classes and routines referenced by the method code.

5.1.4.9. setGuarded

>>-setGuarded--><

Specifies that the method is a guarded method that requires exclusive access to its scope variable
pool to run. If the receiver is already guarded, a setGuarded message has no effect. Guarded is the
default state for method objects.

5.1.4.10. setPrivate

>>-setPrivate--><

Specifies that a method is a private method. By default, method objects are created as public
methods. See Section 4.2.8, “Public and Private Methods” for details on private method restrictions.

5.1.4.11. setProtected

>>-setProtected--><

Specifies that a method is a protected method. Method objects are not protected by default. (See
Chapter 13, The Security Manager for details.)

5.1.4.12. setSecurityManager

>>-setSecurityManager--+---------------------------+-----------><
 +-(security_manager_object)-+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

The Routine Class

191

5.1.4.13. setUnguarded

>>-setUnguarded--><

Turns off the guard attribute of the method, allowing this method to run on an object even if another
method has acquired exclusive access to the scope variable pool. Methods are unguarded by default.

A guarded method can be active for an object only when no other method requiring exclusive access
to the object's variable pool is active in the same object. This restriction does not apply if an object
sends itself a message to run a method and it already has exclusive use of the same object variable
pool. In this case, the method runs immediately regardless of its guarded state.

5.1.4.14. source

>>-source--><

Returns the method source code as a single-index array of source lines. If the source code is not
available, source returns an array of zero items.

5.1.5. The Routine Class

The Routine class creates routine objects from Rexx source code. It is a subclass of the Object class
(Section 5.1.1, “The Object Class”).

Table 5.5. ooRexx Routine Class

Object

↓

Routine

new
newFile
loadExternalRoutine

call
callWith
package
setSecurityManager
source

Chapter 5. The Builtin Classes

192

Note

The Routine class also has available class methods that its metaclass, the Class class, defines.

5.1.5.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.1.5.2. new (Class Method)

>>-new(name,source--+-------------+---)-------------------><
 +--, context--+

Returns a new instance of the routine class, which is an executable representation of the code
contained in the source. The name is a string. The source can be a single string or an array of strings
containing individual method lines.

The context allows the created routine to inherit class and routine lookup scope from another source.
If specified, context can be a Method object, a Routine object, or a Package object. If not specified, the
newly created method will inherit the class and routine search scope from the caller of new method.

5.1.5.3. newFile (Class Method)

>>-newFile(filename)---><

Returns a new instance of the routine class, which is an executable representation of the code
contained in the file filename. The filename is a string.

5.1.5.4. loadExternalRoutine (Class method)

The Routine Class

193

>>-loadExternalRoutine(name,descriptor)------------------------><

Resolves a native routine in an external library package and returns a Routine object instance that
can used to call the external routine. The descriptor is a string containing blank-delimited tokens that
identify the location of the native routine. The first token identifies the type of native routine and must
be "LIBRARY". The second token must identify the name of the external library. The external library is
located using platform-specific mechanisms for loading libraries. For Unix-based systems, the library
name is case-sensitive. The third token is optional and specifies the name of the routine within the
library package. If not specified, name is used. The routine name is not case sensitive. If the target
routine cannot be resolved, .nil is returned.

Example 5.107. Routine class - loadExternalRoutine method

routine = .Routine~loadExternalRoutine("Pi", "LIBRARY rxmath RxCalcPi")

5.1.5.5. call

>>-call-+--------------------+------------------------------------><
 | +-,--------+ |
 | V | |
 +-(----argument-+--)-+

Calls the routine object using the provided arguments. The code in the routine object is called as if it
was an external routine call. The return value will be any value returned by the executed routine.

5.1.5.6. callWith

>>-call(array)--><

Calls the routine object using the arguments provided in array. Each element of array will be mapped
to its corresponding call argument. The code in the routine object is called as if it was an external
routine call. The return value will be any value returned by the executed routine.

5.1.5.7. package

>>-package---><

Chapter 5. The Builtin Classes

194

Returns the Package class instance that defined the routine instance. The package instance controls
and defines the search order for classes and routines referenced by the routine code.

5.1.5.8. setSecurityManager

>>-setSecurityManager--+---------------------------+-----------><
 +-(security_manager_object)-+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.5.9. source

>>-source--><

Returns the routine source code as a single-index array of source lines. If the source code is not
available, source returns an array of zero items.

5.1.6. The Package Class

The Package class contains the source code for a package of Rexx code. A package instance holds
all of the routines, classes, and methods created from a source code unit and also manages external
dependencies referenced by ::REQUIRES directives. The files loaded by ::REQUIRES are also
contained in Package class instances. It is a subclass of the Object class (Section 5.1.1, “The Object
Class”.

Table 5.6. ooRexx Package Class

Object

↓

Package

new

addClass
addPackage
addPublicClass
addPublicRoutine
addRoutine
classes
definedMethods
digits
findClass
findRoutine
form
fuzz
importedClasses

loadLibrary
loadPackage
name
publicClasses
publicRoutines
routines
setSecurityManager
source
sourceLine
sourceSize
trace

The Package Class

195

importedPackages
importedRoutines

Note

The Package class also has available class methods that its metaclass, the Class class, defines.

5.1.6.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.1.6.2. new (Class Method)

>>-new(name,source--+------------------+---)-------------------><
 +--, methodobject--+

Returns a new instance of the package class, which is a representation of the code contained in
the source. The name is a string. The source can be a single string or an array of strings containing
individual method lines.

The third parameter influences the scope of the routine. If none is given, the program scope is used. If
another method or routine object is specified, the scope of the provided method or routine is used.

5.1.6.3. addClass

>>-addClass(name,class)--><

Adds the class object class to the available classes under the name name. This is added to the
package as a non-public class.

5.1.6.4. addPackage

Chapter 5. The Builtin Classes

196

>>-addPackage(package)--><

Adds the package object package to the dependent packages under the name name. The added
package is processed as if it had been added using a ::REQUIRES directive in the original package
source.

5.1.6.5. addPublicClass

>>-addPublicClass(name,class)----------------------------------><

Adds the class object class to the available public classes under the name name. This is added to the
package as a public class.

5.1.6.6. addPublicRoutine

>>-addPublicRoutine(name,routine)--><

Adds the routine object routine to the available routines under the name name. This is added to the
package as a public routine.

5.1.6.7. addRoutine

>>-addRoutine(name,routine)--><

Adds the routine object routine to the available routines under the name name. This is added to the
package as a non-public routine.

5.1.6.8. classes

>>-classes--><

Returns a directory containing all classes defined by this package or imported as public classes from
another package.

The Package Class

197

5.1.6.9. definedMethods

>>-definedMethods--><

Returns a directory containing all unattached methods defined by this package. This is the same
directory available to code within the package via the .METHODS environment symbol.

5.1.6.10. digits

>>-digits--><

Returns the initial NUMERIC DIGITS (Section 2.16, “NUMERIC”) setting used for all Rexx code
contained within the package. The default value is 9. The ::OPTIONS (Section 3.5, “::OPTIONS”) can
override the default value.

5.1.6.11. findClass

>>-findClass(name)---><

Performs the standard environment symbol searches given class name. The search is performed
using the same search mechanism used for environment symbols or class names specified
on ::CLASS directives. If the name is not found, .nil will be returned.

5.1.6.12. findRoutine

>>-findRoutine(name)---><

Searches for a routine within the package search order. This includes ::ROUTINE directives within
the package, public routines imported from other packages, or routines added using the addRoutine
method. The argument name must be a string object. If the name is not found, .nil will be returned.

5.1.6.13. form

>>-form--><

Chapter 5. The Builtin Classes

198

Returns the initial NUMERIC FORM (Section 2.16, “NUMERIC”) setting used for all Rexx code
contained within the package. The default value is SCIENTIFIC. The ::OPTIONS directive
(Section 3.5, “::OPTIONS”) can override the default value.

5.1.6.14. fuzz

>>-fuzz--><

Returns the initial NUMERIC FUZZ (Section 2.16, “NUMERIC”) setting used for all Rexx code
contained within the package. The default value is 0. The ::OPTIONS directive (Section 3.5,
“::OPTIONS”) can override the default value.

5.1.6.15. importedClasses

>>-importedClasses--------------------------------------><

Returns a directory containing all public classes imported from other packages.

5.1.6.16. importedPackages

>>-importedPackagess-------------------------------------><

Returns an Array containing all packages imported by the target package.

5.1.6.17. importedRoutines

>>-importedRoutines-------------------------------------><

Returns a directory containing all public routines imported from other packages.

5.1.6.18. loadLibrary

The Package Class

199

>>-loadLibrary(name)---><

Loads a native library package and adds it to the list of libraries loaded by the interpreter. The name
identifies a native external library file that will be located and loaded as if it had been named on
a ::REQUIRES LIBRARY directive. If the library is successfully loaded, loadLibrary will return 1 (true),
otherwise it returns 0 (false).

5.1.6.19. loadPackage

>>-loadPackage(name-+---------+-)----------------------------><
 +-,source-+

Loads a package and adds it to the list of packages loaded by the package manager. If only
name is specified, name identifies a file that will be located and loaded as if it had been named on
a ::REQUIRES directive. If source is given, it must be an array of strings that is the source for the
loaded package. If a package name has already been loaded by the package manager, the previously
loaded version will be use. The resolved package object will be added to the receiving package
object's dependent packages.

5.1.6.20. name

>>-name---><

Returns the string name of the package.

5.1.6.21. publicClasses

>>-publicClasses--------------------------------------><

Returns a directory containing all public classes defined in this package.

5.1.6.22. publicRoutines

>>-publicRoutines-------------------------------------><

Chapter 5. The Builtin Classes

200

Returns a directory containing all public routines defined in this package.

5.1.6.23. routines

>>-routines-------------------------------------><

Returns a directory containing all routines defined in this package.

5.1.6.24. setSecurityManager

>>-setSecurityManager--+---------------------------+-----------><
 +-(security_manager_object)-+

Replaces the existing security manager with the specified security_manager_object. If
security_manager_object is omitted, any existing security manager is removed.

5.1.6.25. source

>>-source--><

Returns the package source code as a single-index array of source lines. If the source code is not
available, source returns an array of zero items.

5.1.6.26. sourceLine

>>-sourceLine(n)--><

Returns the nth source line from the package source. If the source code is not available or the
indicated line does not exist, a null string is returned.

5.1.6.27. sourceSize

>>-sourceSize---><

The Message Class

201

Returns the size of the source code for the package object. If the source code is not available, 0 is
returned.

5.1.6.28. trace

>>-trace---><

Returns the initial TRACE (Section 2.29, “TRACE”) setting used for all Rexx code contained within
the package. The default value is Normal. The ::OPTIONS directive (Section 3.5, “::OPTIONS”) can
override the default value.

5.1.7. The Message Class

A message object provides for the deferred or asynchronous sending of a message. You can create a
message object by using the new method of the Message class or the start (Section 5.1.1.22, “start”)
method of the Object class.

Table 5.7. ooRexx Message Class

Object

↓

Message

new

arguments
completed
errorCondition
hasError
messageName

notify
result
send
start
target

Note

The Message class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.1.7.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod

Chapter 5. The Builtin Classes

202

hasMethod request
identityHash run

5.1.7.2. new (Class Method)

>>-new(target,messagename-+-------------------------------+-)--><
 | +---------------+ |
 | V | |
 +-,Individual---+-----------+-+-+
 | +-,argument-+ |
 +-,Array,argument---------------+

Initializes the message object for sending the message name messagename to object target.

The messagename can be a string or an array. If messagename is an array object, its first item is the
name of the message and its second item is a class object to use as the starting point for the method
search. For more information, see Figure 4.1, “Classes and Inheritance (part 1 of 9)”.

If you specify the Individual or Array option, any remaining arguments are arguments for the message.
(You need to specify only the first letter; all characters following the first are ignored.)

Individual
If you specify this option, specifying argument is optional. Any arguments are passed as message
arguments to target in the order you specify them.

Array
If you specify this option, you must specify an argument, which is an array object. (See
Section 5.3.6, “The Array Class”.) The member items of the array are passed to target as
arguments. The first argument is at index 1, the second argument at index 2, and so on. If you
omitted any indexes when creating the array, the corresponding message arguments are also
omitted.

If you specify neither Individual nor Array, the message sent has no arguments.

Note

This method does not send the message messagename to object target. The SEND or START
method (described later) sends the message.

5.1.7.3. arguments

>>-arguments--><

Returns an array of argument objects used to invoke the message.

The Message Class

203

5.1.7.4. completed

>>-completed---><

Returns 1 if the message object has completed executing its message, or 0. You can use this method
to test for completion as an alternative to calling result and waiting for the message to complete.

5.1.7.5. errorCondition

>>-errorCondition--><

Returns an error condition object from any execution error with the message object's message
invocation. If the message completed normally, or is still executing, errorCondition returns the Nil
object.

5.1.7.6. hasError

>>-hasError--><

Returns 1 if the message object's message was terminated with an error condition. Returns 0 if the
message has not completed or completed without error.

5.1.7.7. messageName

>>-messageName--><

Returns the string message name used to invoke a method.

5.1.7.8. notify

>>-notify(message)---><

Requests notification about the completion of processing of the message send or start. The message
object message is sent as the notification. You can use notify to request any number of notifications.

Chapter 5. The Builtin Classes

204

After the notification message, you can use the result method to obtain any result from the messages
send or start.

Example 5.108. Message class - notify method

/* Event-driven greetings */

.prompter~new~prompt(.nil)

::class prompter

::method prompt
 expose name
 use arg msg

 if msg \= .nil then do
 name = msg~result
 if name = "quit" then return
 say "Hello," name
 end

 say 'Enter your name ("quit" to quit):'

 /* Send the public default object .INPUT a LINEIN message asynchronously */
 msg=.message~new(.input,"LINEIN")~~start

 /* Sends self~prompt(msg) when data available */
 msg~notify(.message~new(self,"PROMPT","I",msg))

 /* Don't leave until user has entered "quit" */
 guard on when name="quit"

5.1.7.9. result

>>-result--><

Returns the result of the message send or start. If message processing is not yet complete, this
method waits until it completes. If the message send or start raises an error condition, this method
also raises an error condition.

Example 5.109. Message class - result method

/* Example using result method */
string="700" /* Create a new string object, string */
bond=string~start("reverse") /* Create a message object, bond, and */
 /* start it. This sends a REVERSE */
 /* message to string, giving bond */
 /* the result. */

/* Ask bond for the result of the message */
say "The result of message was" bond~result /* Result is 007 */

The Message Class

205

5.1.7.10. send

>>-send--+----------+--><
 +-(target)-+

Returns the result (if any) of sending the message. If you specify target, this method sends the
message to target. Otherwise, this method sends the message to the target you specified when the
message object was created. send does not return until message processing is complete.

You can use the notify method to request notification that message processing is complete. You can
use the result method to obtain any result from the message.

5.1.7.11. start

>>-start--+----------+---><
 +-(target)-+

Sends the message to start processing at a specific target whereas the sender continues processing.
If you specify target, this method sends the message to target. Otherwise, this method sends the
message to the target that you specified when the message object was created. This method returns
as soon as possible and does not wait until message processing is complete. When message
processing is complete, the message object retains any result and holds it until requested via the
result method. You can use the notify method to request notification when message processing
completes.

Example 5.110. Message class - start method

/* Using Message class methods */
/* Note: In the following example, ::METHOD directives define class Testclass */
 /* with method SHOWMSG */

ez=.testclass~new /* Creates a new instance of Testclass */
mymsg=ez~start("SHOWMSG","Hello, Ollie!",5) /* Creates and starts */
 /* message mymsg to send */
 /* SHOWMSG to ez */

/* Continue with main processing while SHOWMSG runs concurrently */
do 5
 say "Hello, Stan!"
end

/* Get final result of the SHOWMSG method from the mymsg message object */
say mymsg~result
say "Goodbye, Stan..."
exit

::class testclass public /* Directive defines Testclass */

Chapter 5. The Builtin Classes

206

::method showmsg /* Directive creates new method SHOWMSG */
use arg text,reps /* class Testclass */
do reps
 say text
end
reply "Bye Bye, Ollie..."
return

The following output is possible:

Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Hello, Ollie!
Hello, Stan!
Bye Bye, Ollie...
Goodbye, Stan...

5.1.7.12. target

>>-target---><

Returns the object that is the target of the invoked message.

5.2. The Stream Classes
This section describes the Rexx classes which implement Rexx data streams.

5.2.1. The InputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.8. ooRexx InputStream Class

Object

↓

InputStream

arrayIn
charIn
charOut

lineIn
lineOut
lines

The InputStream Class

207

chars
close

open
position

Note

The InputStream class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.2.1.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.2.1.2. arrayIn

This is a default implementation of the arrayIn method using linein() method calls to fill the array.

5.2.1.3. charIn

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.4. charOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.1.5. chars

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.6. close

This method is a NOP by default.

5.2.1.7. lineIn

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

Chapter 5. The Builtin Classes

208

5.2.1.8. lineOut

This is an unsupported operation for InputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.1.9. lines

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.1.10. open

This method is a NOP method.

5.2.1.11. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.2. The OutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.9. ooRexx OutputStream Class

Object

↓

OutputStream

arrayOut
charIn
charOut
chars
close

lineIn
lineOut
lines
open
position

Note

The OutputStream class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.2.2.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send

The OutputStream Class

209

= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.2.2.2. arrayOut

This method is a default arrayOut implementation that writes all lines to the stream using lineout.

5.2.2.3. charIn

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.4. charOut

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.5. chars

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.6. close

This method is a NOP by default.

5.2.2.7. lineIn

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

5.2.2.8. lineOut

This method is defined as an abstract method. Invoking it will cause syntax error 93.965 to be raised.

5.2.2.9. lines

This is an unsupported operation for OutputStreams. Invoking it will cause syntax error 93.963 to be
raised.

Chapter 5. The Builtin Classes

210

5.2.2.10. open

This method is a NOP by default.

5.2.2.11. position

This method is an optionally supported operation. By default, it will cause syntax error 93.963 to be
raised.

5.2.3. The InputOutputStream Class

This class is defined as an abstract mixin class. It must be implemented by subclassing it or inheriting
from it as a mixin. Many of the methods in this class are abstract and must be overridden or they will
throw a syntax error when invoked.

Table 5.10. ooRexx InoutOutputStream Class

Object

↓

InputOutputStream

+ InputStream

+ OutputStream

Note

The InputOutputStream class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

5.2.3.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the InputStream class (Section 5.2.1, “The InputStream Class”).

The Stream Class

211

Note

This class is searched second for inherited methods.

arrayIn close open
charIn lineIn position
charOut lineOut
chars lines

Methods inherited from the OutputStream class (Section 5.2.2, “The OutputStream Class”).

Note

This class is searched first for inherited methods.

arrayOut close open
charIn lineIn position
charOut lineOut
chars lines

5.2.4. The Stream Class

A stream object allows external communication from Rexx. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.)

The Stream class is a subclass of the InputOutputStream class (Section 5.2.3, “The
InputOutputStream Class”).

Table 5.11. ooRexx Stream Class

Object

↓

InputOutputStream

+ InputStream

+ OutputStream

↓

Stream

arrayIn
arrayOut
charIn
charOut
chars
close
command

lines
makeArray
open
position
qualify
query
say

Chapter 5. The Builtin Classes

212

description
flush
init
lineIn
lineOut

seek
state
string
supplier
unInit

Note

The Stream class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the InputOutputStream
class (Section 5.2.3, “The InputOutputStream Class”).

5.2.4.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the InputOutputStream class (Section 5.2.1, “The InputStream Class”).

arrayIn close open
charIn lineIn position
charOut lineOut
chars lines

Methods inherited from the OutputStream class (Section 5.2.2, “The OutputStream Class”).

arrayOut close open
charIn lineIn position
charOut lineOut
chars lines

5.2.4.2. new (Inherited Class Method)

>>-new(name)---><

Initializes a stream object for stream name, but does not open the stream. Returns the new stream
object.

5.2.4.3. arrayIn

The Stream Class

213

 +-(LINES)-+
>>-arrayIn--+---------+--><
 +-(CHARS)-+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charIn method, the first line can be a partial line.

5.2.4.4. arrayOut

 +-,--LINES-+
>>-arrayOut(array-+----------+-)-------------------------------><
 +-,--CHARS-+

Writes the data in array array to the stream. If LINES is specified, each element of the array is written
using lineout(). If CHARS is specified, each element is written using charout(). The default method is
LINES.

5.2.4.5. charIn

>>-charIn-+----------------------------+-----------------------><
 +-(-+-------+--+---------+-)-+
 +-start-+ +-,length-+

Returns a string of up to length characters from the input stream. The stream advances advances
the read pointer by the number of characters read. If you omit length, it defaults to 1. If you specify
start, this positions the read pointer before reading. The start value must be a positive whole number
within the bounds of the stream. If the value is not a positive whole number, a syntax condition is
raised. When the value is past the end of the stream, the empty string is returned and the NOTREADY
condition is raised. If the stream is not already open, the stream attempts to open for reading and
writing. If that fails, the stream opens for input only.

5.2.4.6. charOut

>>-charOut-+----------------------------+----------------------><
 +-(-+--------+--+--------+-)-+
 +-string-+ +-,start-+

Returns the count of characters remaining after trying to write string to the output stream. The stream
also advances the write pointer.

Chapter 5. The Builtin Classes

214

The string can be the null string. In this case, charOut writes no characters to the stream and returns
0. If you omit string, charOut writes no characters to the stream and returns 0. The stream is also
closed.

If you specify start, this positions the write pointer before writing. If the stream is not already open, the
stream attempts to open for reading and writing. If that fails, the stream opens for for output only.

5.2.4.7. chars

>>-chars---><

Returns the total number of characters remaining in the input stream. The count includes any line
separator characters, if these are defined for the stream. For persistent the count is the count of
characters from the current read position. (See Chapter 14, Input and Output Streams for a discussion
of Rexx input and output.) The total number of characters remaining cannot be determined for some
streams (for example, STDIN). For these streams. the CHARS method returns 1 to indicate that data
is present, or 0 if no data is present. For Windows devices, CHARS always returns 1.

5.2.4.8. close

>>-close---><

Closes the stream. close returns READY: if closing the stream is successful, or an appropriate error
message. If you have tried to close an unopened file, then the close method returns a null string ("").

5.2.4.9. command

>>-command(stream_command)-------------------------------------><

Returns a string after performing the specified stream_command. The returned string depends on the
stream_command performed and can be the null string. The following stream_commands:

• Open a stream for reading, writing, or both

• Close a stream at the end of an operation

• Move the line read or write position within a persistent stream (for example, a file)

• Get information about a stream

If the method is unsuccessful, it returns an error message string in the same form that the description
method uses.

The Stream Class

215

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

5.2.4.9.1. Command Strings
The argument stream_command can be any expression that to one of the following command strings:

 +-BOTH--| Write Options |-+
>>-+-OPEN--+-------------------------+--+-------------+-+------><
 | +-READ--------------------+ +-| Options |-+ |
 | +-WRITE--+---------+------+ |
 | +-APPEND--+ |
 | +-REPLACE-+ |
 +-CLOSE--+
 +-FLUSH--+
 | +- = -+ +-CHAR-+ |
 +-+-SEEK-----+--+-----+-offset--+-------+--+------+--+
 | +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |
 | +- + -+ +-WRITE-+ |
 | +- - -+ |
 +-QUERY--+-DATETIME--------------------------+-------+
 +-EXISTS----------------------------+
 +-HANDLE----------------------------+
 | +-CHAR-+ |
 +-+-SEEK-----+--+-READ--+------+--+-+
 | +-POSITION-+ | +-LINE-+ | |
 | | +-CHAR-+ | |
 | +-WRITE--+------+-+ |
 | | +-LINE-+ | |
 | +-SYS-------------+ |
 +-SIZE------------------------------+
 +-STREAMTYPE------------------------+
 +-TIMESTAMP-------------------------+

Write Options:

|--+---------+--|
 +-APPEND--+
 +-REPLACE-+

Options:

 +-----------------------------------+
 V |
|--+------------+----+-NOBUFFER----------------------+-+--------|
 +-SHARED-----+ +-BINARY--+-------------------+-+
 +-SHAREREAD--+ +-RECLENGTH--length-+
 +-SHAREWRITE-+

OPEN
Opens the stream object and returns READY:. (If unsuccessful, the previous information about
return codes applies.) The default for OPEN is to open the stream for both reading and writing

Chapter 5. The Builtin Classes

216

data, for example: 'OPEN BOTH'. To specify that the stream be only opened for input or output,
add READ or WRITE, to the command string.

The following is a description of the options for OPEN:

READ
Opens the stream only for reading.

WRITE
Opens the stream only for writing.

BOTH
Opens the stream for both reading and writing. (This is the default.) The stream maintains
separate read and write pointers.

APPEND
Positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance.
Use it only when data integrity is a concern, or to force interleaved output to a stream to
appear in the exact order in which it was written.

BINARY
Opens the stream in binary mode. This means that line end characters are ignored; they
are treated like any other byte of data. This is intended to process binary data using the line
operations.

Note

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.

The Stream Class

217

RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.111. Stream command - OPEN option

stream_name~command("open")
stream_name~command("open write")
stream_name~command("open read")
stream_name~command("open read shared")

CLOSE
closes the stream object. The COMMAND method with the CLOSE option returns READY: if the
stream is successfully closed or an appropriate error message otherwise. If an attempt to close
an unopened file occurs, then the COMMAND method with the CLOSE option returns a null string
("").

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset
sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this command, you must first open the stream (with the OPEN stream command described
previously or implicitly with an input or output operation). One of the following characters can
precede the offset number.

=
explicitly specifies the offset from the beginning of the stream. This is the default if you supply
no prefix. For example, an offset of 1 with the LINE option means the beginning of the stream.

<
specifies offset from the end of the stream.

+
specifies offset forward from the current read or write position.

-
specifies offset backward from the current read or write position.

Chapter 5. The Builtin Classes

218

The command method with the SEEK option returns the new position in the stream if the read or
write position is successfully located, or an appropriate error message.

The following is a description of the options for SEEK:

READ
specifies that this command sets the read position.

WRITE
specifies that this command sets the write position.

CHAR
specifies the positioning in terms of characters. This is the default.

LINE
specifies the positioning in terms of lines. For non-binary streams, this is potentially an
operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Note

If you do line positioning in a file open only for writing, you receive an error message.

Example 5.112. Stream command - SEEK option

stream_name~command("seek =2 read")
stream_name~command("seek +15 read")
stream_name~command("seek -7 write line")
fromend = 125
stream_name~command("seek <"fromend read)

POSITION
is a synonym for SEEK.

Used with these stream_commands, the COMMAND method returns specific information about
a stream. Except for QUERY HANDLE and QUERY POSITION, the stream returns the query
information even if the stream is not open. The stream returns the null string for nonexistent
streams.

QUERY DATETIME
Returns the date and time stamps of a stream in US format. For example:

The Stream Class

219

Example 5.113. Stream command - QUERY DATETIME option

stream_name~command("query datetime")

A sample output might be:

11-12-95 03:29:12

QUERY EXISTS
Returns the full path specification of the stream object, if it exists, or a null string. For example:

Example 5.114. Stream command - QUERY EXISTS option

stream_name~command("query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE
Returns the handle associated with the open stream.

Example 5.115. Stream command - QUERY HANDLE option

stream_name~command("query handle")

A sample output might be: 3

QUERY POSITION
Returns the current read or write position for the stream, as qualified by the following options:
READ

Returns the current read position.

WRITE
Returns the current write position.

Chapter 5. The Builtin Classes

220

Note

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the appropriate position by default.

CHAR
Returns the position in terms of characters. This is the default.

LINE
Returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.116. Stream command - QUERY POSITION WRITE option

stream_name~command("query position write")

A sample output might be:

247

SYS
Returns the operating system stream position in terms of characters.

QUERY SEEK
Is a synonym for QUERY POSITION.

QUERY SIZE
Returns the size, in bytes, of a persistent stream.

Example 5.117. Stream command - QUERY SIZE option

stream_name~command("query size")

A sample output might be:

1305

QUERY STREAMTYPE
Returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

The Stream Class

221

QUERY TIMESTAMP
Returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting date and time because it provides the full 4-digit year

Example 5.118. Stream command - QUERY TIMESTAMP option

stream_name~command("query timestamp")

A sample output might be:

1995-11-12 03:29:12

5.2.4.10. description

>>-description---><

Returns any descriptive string associated with the current state of the stream or the Nil object if no
descriptive string is available. The description method is identical with the STATE method except that
the string that description returns is followed by a colon and, if available, additional information about
ERROR or NOTREADY states.

5.2.4.11. flush

>>-flush---><

Returns READY:. It forces the stream to write any buffered data to the output stream.

5.2.4.12. init

>>-init(name)---><

Initializes a stream object defined by name.

5.2.4.13. lineIn

Chapter 5. The Builtin Classes

222

>>-lineIn-+-------------------------+--------------------------><
 +-(-+------+-+--------+-)-+
 +-line-+ +-,count-+

Returns the next count lines. The count must be 0 or 1. The stream advances the read pointer. If
you omit count, it defaults to 1. A line number may be given to set the read position to the start of a
specified line. This line number must be positive and within the bounds of the stream, and must not be
specified for a transient stream. A value of 1 for line refers to the first line in the stream. If the stream is
not already open, then the interpreter tries to open the stream for reading and writing. If that fails, the
stream is opened for input only.

5.2.4.14. lineOut

>>-lineOut-+--------------------------+------------------------><
 +-(-+--------+-+-------+-)-+
 +-string-+ +-,line-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line. The stream advances the write pointer. If you omit string, the stream is closed. If you specify line,
this positions the write pointer before writing. If the stream is not already open, the stream attempts to
open for reading and writing. If that fails, the stream is opened for output only.

5.2.4.15. lines

 +-Count--+
>>-lines(--+--------+---)--------------------------------------><
 +-Normal-+

Returns the number of completed lines that available for input. If the stream has already been read
with charIn this can include an initial partial line. For persistent streams the count starts at the current
read position. In effect, lines reports whether a read action of charIn (see Section 5.2.4.5, “charIn”)
or lineIn (see Section 5.2.4.13, “lineIn”) will succeed. (For an explanation of input and output, see
Chapter 14, Input and Output Streams.)

For a Queue, lines returns the actual number of lines.

The Stream Class

223

Note

The chars method returns the number of characters in a persistent stream or the presence of
data in a transient stream. The lines method determines the actual number of lines by scanning
the stream starting at the current position and counting the lines. For large streams, this can be
a time-consuming operation. Therefore, avoid the use of the LINES method in the condition of
a loop reading a stream. It is recommended that you use the chars method (Section 5.2.4.7,
“chars”).

The ANSI Standard has extended this function to allow an option: "Count". If this option is used, lines
returns the actual number of complete lines remaining in the stream, irrespective of how long this
operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or 0 if no lines
remain.

The default is "Count".

5.2.4.16. makeArray

 +-(LINES)-+
>>-makeArray--+---------+--------------------------------------><
 +-(CHARS)-+

Returns a fixed array that contains the data of the stream in line or character format, starting from the
current read position. The line format is the default.

If you have used the charIn method, the first line can be a partial line.

5.2.4.17. open

 +-(BOTH-| Write Options |--+ +-SHARED-----+
>>-open--+--------------------------+--+------------+----------->
 +-(READ--------------------+ +-SHAREREAD--+
 +-(WRITE-| Write Options |-+ +-SHAREWRITE-+

 +-----------------------------------+
 V |
>----+-------------------------------+-+--+---+----------------><
 +-NOBUFFER----------------------+ +-)-+
 +-BINARY--+-------------------+-+
 +-RECLENGTH--length-+

Write Options:

Chapter 5. The Builtin Classes

224

 +-------------+
 V +-APPEND--+ |
|----+---------+-+--|
 +-REPLACE-+

Opens the stream and returns READY:. If the method is unsuccessful, it returns an error message
string in the same form that the description method uses.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO, which is set whenever one of the file system primitives returns with a -1.

By default, open opens the stream for both reading and writing data, for example: 'open BOTH'. To
specify that the stream be only opened for input or output, specify READ or WRITE.

The options for the open method are:

READ
Opens the stream for input only.

WRITE
Opens the stream for output only.

BOTH
Opens the stream for both input and output. (This is the default.) The stream maintains separate
read and write pointers.

APPEND
Positions the write pointer at the end of the stream. (This is the default.) The write pointer cannot
be moved anywhere within the extent of the file as it existed when the file was opened.

REPLACE
Sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. (This is the default.) This
mode must be compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE)
used by the process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
Turns off buffering of the stream. All data written to the stream is flushed immediately to the
operating system for writing. This option can have a severe impact on output performance. Use
it only when data integrity is a concern, or to force interleaved output to a stream to appear in the
exact order in which it was written.

The Stream Class

225

BINARY
Opens the stream in binary mode. This means that line-end characters are ignored; they are
treated like any other byte of data. This is for processing binary record data using the line
operations.

Note

Specifying the BINARY option for a stream that does not exist but is opened for writing also
requires the RECLENGTH option to be specified. Omitting the RECLENGTH option in this
case raises an error condition.

RECLENGTH length
Allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if you specified the
RECLENGTH option with a length equal to that of the file). The length must be 1 or greater.

Example 5.119. Stream object - OPEN method

stream_name~open
stream_name~open("write")
stream_name~open("read")

5.2.4.18. position

 +- = -+ +-CHAR-+
>>-position(-+-----+-offset-+-READ--+-+------+-)---------------><
 +- < -+ +-WRITE-+ +-LINE-+
 +- + -+
 +- - -+

position is a synonym for seek. (See Section 5.2.4.22, “seek” .)

5.2.4.19. qualify

>>-qualify---><

Returns the stream's fully qualified name. The stream need not be open.

Chapter 5. The Builtin Classes

226

5.2.4.20. query

>>-query(--+-DATETIME--------------------------+--)------------><
 +-EXISTS----------------------------+
 +-HANDLE----------------------------+
 | +-CHAR-+ |
 +-+-SEEK-----+--+-READ--+------+--+-+
 | +-POSITION-+ | +-LINE-+ | |
 | | +-CHAR-+ | |
 | +-WRITE--+------+-+ |
 | | +-LINE-+ | |
 | +-SYS-------------+ |
 +-SIZE------------------------------+
 +-STREAMTYPE------------------------+
 +-TIMESTAMP-------------------------+

Used with these options, the query method returns specific information about a stream. Except for
query HANDLE and query POSITION, the stream returns the query information even if the stream is
not open. A null string is returned for nonexistent streams.

DATETIME
returns the date and time stamps of a persistent stream in US format.

Example 5.120. Stream object - QUERY method

stream_name~query("datetime")

A sample output might be:

11-12-98 03:29:12

EXISTS
returns the full path specification of the stream, if it exists, or a null string. For example:

Example 5.121. Stream object - QUERY method

stream_name~query("exists")

A sample output might be:

c:\data\file.txt

HANDLE
returns the handle associated with the open stream.

The Stream Class

227

Example 5.122. Stream object - QUERY method

stream_name~query("handle")

A sample output might be:

3

POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ

returns the current read position.

WRITE
returns the current write position.

Note

If the stream is open for both reading and writing, this returns the read position by default.
Otherwise, this returns the specified position.

CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete. This is because the language processor starts tracking the current line
number if not already doing so, and, thus, might require a scan of the stream from the top to
count the line-end characters. See Section 14.1.5, “Line versus Character Positioning” for a
detailed discussion of this issue.

Example 5.123. Stream object - QUERY method

stream_name~query("position write")

A sample output might be:

247

SYS
returns the operating system stream position in terms of characters.

SIZE
returns the size, in bytes, of a persistent stream.

Chapter 5. The Builtin Classes

228

Example 5.124. Stream object - QUERY method

stream_name~query("size")

A sample output might be:

1305

STREAMTYPE
returns a string indicating whether the stream object is PERSISTENT, TRANSIENT, or UNKNOWN.

TIMESTAMP
returns the date and time stamps of a persistent stream in an international format. This is the
preferred method of getting the date and time because it provides the full 4-digit year.

Example 5.125. Stream object - QUERY method

stream_name~query("timestamp")

A sample output might be:

1998-11-12 03:29:12

5.2.4.21. say

>>-say--+----------------+-------------------------------------><
 +-(-+--------+-)-+
 +-string-+

Returns 0 if successful in writing string to the output stream or 1 if an error occurs while writing the
line.

5.2.4.22. seek

 +- = -+ +-CHAR-+
>>-seek(-+-----+-offset-+-------+-+------+-)-------------------><
 +- < -+ +-READ--+ +-LINE-+
 +- + -+ +-WRITE-+
 +- - -+

The Stream Class

229

Sets the read or write position to a given number (offset) within a persistent stream. If the stream is
open for both reading and writing and you do not specify READ or WRITE, both the read and write
positions are set.

Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

To use this method, you must first open the stream object (with the OPEN method described
previously or implicitly with an input or output operation). One of the following characters can precede
the offset number:

=
Explicitly specifies the offset from the beginning of the stream. This is the default if you supply no
prefix. For example, an offset of 1 means the beginning of the stream.

<
Specifies offset from the end of the stream.

+
Specifies offset forward from the current read or write position.

-
Specifies offset backward from the current read or write position.

The seek method returns the new position in the stream if the read or write position is successfully
located, or an appropriate error message.

The following is a description of the options for seek:

READ
specifies that the read position be set.

WRITE
specifies that the write position be set.

CHAR
specifies that positioning be done in terms of characters. This is the default.

LINE
specifies that the positioning be done in terms of lines. For non-binary streams, this is potentially
an operation that can take a long time to complete because, in most cases, the file must be
scanned from the top to count the line-end characters. However, for binary streams with a
specified record length, the new resulting line number is simply multiplied by the record length
before character positioning. See Section 14.1.5, “Line versus Character Positioning” for a detailed
discussion of this issue.

Chapter 5. The Builtin Classes

230

Note

If you do line positioning in a file open only for writing, you receive an error message.

Example 5.126. Stream object - SEEK method

stream_name~seek("=2 read")
stream_name~seek("+15 read")
stream_name~seek("-7 write line")
fromend = 125
stream_name~seek("<"fromend read)

5.2.4.23. state

>>-state---><

Returns a string indicating the current stream state.

The returned strings are as follows:

ERROR
The stream has been subject to an erroneous operation (possibly during input, output, or through
the STREAM function). See Section 14.5, “Errors during Input and Output”. You might be able
to obtain additional information about the error with the description method or by calling the
STREAM function with a request for the description.

NOTREADY
The stream is known to be in such a state that the usual input or output operations attempted upon
would raise the NOTREADY condition. (See Section 14.5, “Errors during Input and Output”.) For
example, a simple input stream can have a defined length. An attempt to read that stream (with
CHARIN or LINEIN, perhaps) beyond that limit can make the stream unavailable until the stream
has been closed (for example, with LINEOUT(name)) and then reopened.

READY
The stream is known to be in such a state that the usual input or output operations might be
attempted. This is the usual state for a stream, although it does not guarantee that any particular
operation will succeed.

UNKNOWN
The state of the stream is unknown. This generally means that the stream is closed or has not yet
been opened.

The Collection Classes

231

5.2.4.24. string

>>-string--><

Returns a string that indicates the name of the object the stream represents i.e. the name of the file.

5.2.4.25. supplier

>>-supplier--><

Returns a StreamSupplier object (Section 5.4.19, “The StreamSupplier Class”) for the stream
containing the remaining stream lines and linenumber positions for the stream.

5.2.4.26. uninit

>>-uninit--><

This method cleans up the object when it is garbage collected. It should not be invoked directly except
via an uninit method of a subclass of the Stream class.

If the Stream class is subclassed and the subclass provides an uninit method then that method must
invoke the superclass uninit method.

Example 5.127. Stream object - UNINIT method

::class CustomStream subclass Stream

...

::method uninit
/* the subclass instance cleanup code should be placed here */
super~uninit -- this should be the last action in the method
return

5.3. The Collection Classes

A collection is an object that contains a number of items, which can be any objects. Every item stored
in a Rexx collection has an associated index that you can use to retrieve the item from the collection
with the AT or [] methods.

Chapter 5. The Builtin Classes

232

Each collection defines its own acceptable index types. Rexx provides the following collection classes:

Array (Section 5.3.6, “The Array Class”)
A sequenced collection of objects ordered by whole-number indexes.

Bag (Section 5.3.7, “The Bag Class”)
A collection where the index and the item are the same object. Bag indexes can be any object and
each index can appear more than once.

CircularQueue (Section 5.3.8, “The CircularQueue Class”)
The CircularQueue class allows for storing objects in a circular queue of a predefined size.
Once the end of the queue has been reached, new item objects are inserted from the beginning,
replacing earlier entries. The collected objects can be processed in FIFO (first in, first out) or in a
stack-like LIFO (last in, first out) order.

Directory (Section 5.3.9, “The Directory Class”)
A collection with character string indexes. Index comparisons are performed using the string ==
comparison method.

List (Section 5.3.10, “The List Class”)
A sequenced collection that lets you add new items at any position in the sequence. A list
generates and returns an index value for each item placed in the list. The returned index remains
valid until the item is removed from the list.

Properties (Section 5.3.11, “The Properties Class”
A collection with character string indexes and values. Properties collections include support for
saving and loading from disk files.

Queue (Section 5.3.12, “The Queue Class”)
A sequenced collection with the items ordered as a queue. You can remove items from the head
of the queue and add items at either its tail or its head. Queues index the items with whole-number
indexes, in the order in which the items would be removed. The current head of the queue has
index 1, the item after the head item has index 2, up to the number of items in the queue.

Relation (Section 5.3.13, “The Relation Class”)
A collection with indexes that can be any object. A relation can contain duplicate indexes.

Set (Section 5.3.14, “The Set Class”)
A collection where the index and the item are the same object. Set indexes can be any object and
each index is unique.

Stem (Section 5.3.15, “The Stem Class”)
A collection with character string indexes constructed from one or more string segments. Index
comparisons are performed using the string == comparison method.

Table (Section 5.3.16, “The Table Class”)
A collection with indexes that can be any object. A table contains no duplicate indexes.

IdentityTable (Section 5.3.17, “The IdentityTable Class”)
A collection with indexes that can be any object. The IdentityTable class determines index item
matches by using an object identity comparison. With object identity matches, an index will only
match the same object instance. An identity table contains no duplicate indexes.

5.3.1. Organization of the Collection Classes

The Collection Class

233

The following shows the logical organization of the Collection Classes. This does NOT represent the
order that methods are inherited but rather the organization of the classes.

Collection (Section 5.3.2, “The Collection Class”)
 MapCollection (Section 5.3.3, “The MapCollection Class”)
 Directory (Section 5.3.9, “The Directory Class”)
 Properties (Section 5.3.11, “The Properties Class”)
 Releation (Section 5.3.13, “The Relation Class”)
 Stem (Section 5.3.15, “The Stem Class”)
 Table (Section 5.3.16, “The Table Class”)
 IdentityTable (Section 5.3.17, “The IdentityTable Class”)
 OrderedCollection (Section 5.3.4, “The OrderedCollection Class”)
 Array (Section 5.3.6, “The Array Class”)
 List (Section 5.3.10, “The List Class”)
 Queue (Section 5.3.12, “The Queue Class”)
 CircularQueue (Section 5.3.8, “The CircularQueue Class”)
 SetCollection (Section 5.3.5, “The SetCollection Class”)
 Bag (Section 5.3.7, “The Bag Class”)
 Set (Section 5.3.14, “The Set Class”)

5.3.2. The Collection Class

The Collection class is a MIXIN class that defines the basic set of methods implemented by all
Collections. Many of the Collection class methods are abstract and must be implemented the inheriting
subclasses.

Table 5.12. ooRexx Collection Class

Object

↓

Collection

allIndexes
allItems
at, []
difference
disjoint
equivalent
hasIndex
hasItem
index

intersection
items
makeArray
put, []=
subset
supplier
toString
union
xor

5.3.2.1. []

 +-,-----+
 V |
>>-[---index-+-]---><

Chapter 5. The Builtin Classes

234

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns the Nil object. This is an abstract
method that must be implemented by a subclasses.

5.3.2.2. []=

 +-,-----+
 V |
>>-[---index-+-]=value---><

Add an item to the collection at the specified index. This is an abstract method that must be
implemented by subclasses.

5.3.2.3. allIndexes

>>-allIndexes--><

Return an array of all indexes used by this collection. This is an abstract method that must be
implemented by subclasses.

5.3.2.4. allItems

>>-allItems--><

Return an array containing all items stored in the collection. This is an abstract method that must be
implemented by subclasses.

5.3.2.5. at

 +-,-----+
 V |
>>-at(---index-+-)---><

Returns the item associated with the specified index or indexes. If the collection has no item
associated with the specified index or indexes, this method returns the Nil object. This is an abstract
method that must be implemented by subclasses.

The Collection Class

235

5.3.2.6. difference

>>-difference(argument)--><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes the argument collection does not contain. The argument can be any collection
class object. The argument must also allow all of the index values in the receiver collection.

5.3.2.7. disjoint

>>-disjoint(argument)--><

Returns 1 (true) if the receiver collection and argument collection do not have any items in common. 0
(false) otherwise. The argument can be any collection class object. The argument must also allow all
of the index values in the receiver collection.

5.3.2.8. equivalent

>>-equivalent(argument)--><

Returns 1 (true) if all indexes in the receiver collection are also contained in the argument collection
and both collections contain the same number of items; returns 0 (false) otherwise. The argument can
be any collection class object. The argument must also allow all of the index values in the receiver
collection.

5.3.2.9. hasIndex

 +-,-----+
 V |
>>-hasIndex(---index-+-)---------------------------------------><

Returns 1 (true) if the array contains an item associated with the specified index or indexes. Returns 0
(false) otherwise.

5.3.2.10. hasItem

Chapter 5. The Builtin Classes

236

>>-hasItem(item)---><

Returns 1 (true) if the collection contains the specified item at any index location. Returns 0 (false)
otherwise.

5.3.2.11. index

>>-index(item)---><

Return the index associated with item. If item occurs more than once in the collection, the returned
index value is undetermined. This is an abstract method which must be implemented by a subclass of
this class.

5.3.2.12. intersection

>>-intersection(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be any collection class object. The argument must also allow all of the index values in the receiver
collection.

5.3.2.13. items

>>-items---><

Returns the number of items in the collection.

5.3.2.14. makeArray

>>-makeArray---><

Returns a single-index array with the same number of items as the receiver object. Any index with no
associated item is omitted from the new array. Items in the new array will have the same order as the
source array.

The Collection Class

237

5.3.2.15. put

 +--------+
 V |
>>-put(item---,index-+-)---------------------------------------><

Add an item to the collection at the specified index. This is an abstract method that must be
implemented by a subclass if this class.

5.3.2.16. subset

>>-subset(argument)--><

Returns 1 (true) if all indexes in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object. The argument must also
allow all of the index values in the receiver collection.

5.3.2.17. supplier

>>-supplier--><

Returns a Supplier object (Section 5.4.18, “The Supplier Class”) for the collection. The supplier
allows you to enumerate through the index/item pairs for the collection. The supplier is created from a
snapshot of the collection and is unaffected by subsequent changes to the collection's contents.

5.3.2.18. union

>>-union(argument)---><

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. This method includes an item from
argument in the new collection only if there is no item with the same associated index in the receiver
collection and the method has not already included an item with the same index. The order in which
this method selects items in argument is unspecified (the program should not rely on any order). The
argument can be any collection class object. The argument must also allow all of the index values in
the receiver collection.

Chapter 5. The Builtin Classes

238

5.3.2.19. xor

>>-xor(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all indexes that appear in both collections are removed. The
argument can be any collection class object. The argument must also allow all of the index values in
the receiver collection.

5.3.3. The MapCollection Class

The MapCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that use create a mapping from an index object to a value.

Table 5.13. ooRexx MapCollection Class

Object

↓

Collection

↓

MapCollection

makeArray
putAll

This class is defined as a mixin class.

5.3.3.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union

The OrderedCollection Class

239

at intersection xor
difference items
disjoint makeArray

5.3.3.2. makeArray

>>-makeArray---><

Returns a single-index array of the index values used by the receiver object. The index objects will not
be ordered in any predictable order.

5.3.3.3. putAll

>>-putAll(collection)--><

Adds all items in collection to the target directory. The collection argument can be any object that
supports a supplier method. Items from collection are added using the index values returned by the
supplier. The item indexes from the source collection must be strings. The items are added in the
order provided by the supplier object. If duplicate indexes exist in collection, the last item provided by
the supplier will overwrite previous items with the same index.

5.3.4. The OrderedCollection Class

The OrderedCollection class is a MIXIN class that defines the basic set of methods implemented by all
collections that have an inherent index ordering, such as an array or a list.

Table 5.14. ooRexx OrderedCollection Class

Object

↓

Collection

↓

OrderedCollection

append
appendAll
delete
difference
first
firstItem
insert
intersection
last
lastItem

previous
section
subset
sort
sortWith
stableSort
stableSortWith
subset
union

Chapter 5. The Builtin Classes

240

next xor

This class is defined as a mixin class.

5.3.4.1. append

>>-append(item)--><

Append an item to the end of the collection ordering. This is an abstract method that must be
implemented by a subclass of this class.

5.3.4.2. appendAll

>>-appendAll(collection)---------------------------------------><

Appends all items in collection to the end of the target collection. The collection may be any object that
implements an allItems() method.

5.3.4.3. delete

 +-,-----+
 V |
>>-delete(---index-+-)---><

Returns and deletes the member item with the specified index from the collection. If there is no item
with the specified index, the Nil object is returned and no item is deletes. All elements following the
deleted item will be moved up in the collection ordering and the size of the collection will be reduced
by 1 element. Depending on the nature of the collection, the indexes of the moved items may be
modified by the deletion.

5.3.4.4. difference

>>-difference(argument)--><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are not also contained in the argument collection. The argument can be any collection
class object.

The OrderedCollection Class

241

5.3.4.5. first

>>-first---><

Returns the index of the first item in the collection order. Returns the Nil object if the collection is
empty.

5.3.4.6. firstItem

>>-firstItem---><

Returns the first item in the collection order. Returns the Nil object if the collection is empty.

5.3.4.7. insert

>>-insert(item-+--------+-)------------------------------------><
 +-,index-+

Returns a collection-supplied index for item item, which is added to the collection. The inserted item
follows an existing item with index index in the collection ordering. If index is the Nil object, item
becomes the first item in the ordered collection. If you omit index, the item becomes the last item in the
collection.

Inserting an item in the collection at position index will cause the items in the collection after position
index to have their relative positions shifted by the collection object. Depending on the nature of the
collection, the index values for any items already in the collection may be modified by the insertion.

This is an abstract method that must be implemented by a subclass of this class.

5.3.4.8. intersection

>>-intersection(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can be any
collection class object.

Chapter 5. The Builtin Classes

242

5.3.4.9. last

>>-last--><

Returns the index of the last item in the collection order. Returns the Nil object if the collection is
empty.

5.3.4.10. lastItem

>>-lastItem--><

Returns the first item in the collection order. Returns the Nil object if the collection is empty.

5.3.4.11. next

>>-next(index)---><

Returns the index of the item that follows the collection item having index index or returns the Nil
object if the item having that index is last in the collection.

5.3.4.12. previous

>>-previous(index)---><

Returns the index of the item that precedes the collection item having index index or returns the Nil
object if the item having that index is first in the collection.

5.3.4.13. section

>>-section(start-+--------+-)----------------------------------><
 +-,items-+

Returns a new collection (of the same class as the receiver) containing selected items from the
receiver. The first item in the new collection is the item corresponding to index start in the receiver.

The OrderedCollection Class

243

Subsequent items in the new collection correspond to those in the receiver, in the same sequence.
If you specify the whole number items, the new collection contains only this number of items (or the
number of subsequent items in the receiver, if this is less than items). If you do not specify items, the
new collection contains all subsequent items of the receiver. The receiver remains unchanged.

5.3.4.14. sort

>>-sort--><

Sorts a collection of Comparable items into ascending order using an algorithm that is not guaranteed
to be stable. See Section 5.3.18, “Sorting Ordered Collections” for details.

5.3.4.15. sortWith

>>-sortWith(comparator)--><

Sorts a collection of items into ascending order using an algorithm that is not guaranteed to be stable.
Ordering of elements is determined using the comparator argument. See Section 5.3.18, “Sorting
Ordered Collections” for details.

5.3.4.16. stableSort

>>-stableSort--><

Sorts a collection of Comparable items into ascending order using a stable Mergesort algorithm. See
Section 5.3.18, “Sorting Ordered Collections” for details.

5.3.4.17. stableSortWith

>>-stableSortWith(comparator)----------------------------------><

Sorts a collection of items into ascending order using a stable Mergesort algorithm. Ordering of
elements is determined using the comparator argument. See Section 5.3.18, “Sorting Ordered
Collections” for details.

5.3.4.18. subset

Chapter 5. The Builtin Classes

244

>>-subset(argument)--><

Returns 1 (true) if all items in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object.

5.3.4.19. union

>>-union(argument)---><

Returns a new collection of the same class as the receiver that contains all the items from the
receiver collection and selected items from the argument collection. This method includes an item
from argument in the new collection only if there is no equivalent item in the receiver collection and
the method has not already included. The order in which this method selects items in argument is
unspecified (the program should not rely on any order). The argument can be any collection class
object.

5.3.4.20. xor

>>-xor(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
argument can be any collection class object.

5.3.5. The SetCollection Class

This is a tagging mixin class only and does not define any methods of its own. Collections that
implement SetCollection are MapCollections that constrain the index and item to be be the same
object.

Table 5.15. ooRexx SetCollection Class

Object

↓

Collection

↓

SetCollection

The Array Class

245

This class is defined as a mixin class.

5.3.5.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

5.3.6. The Array Class

An array is a possibly sparse collection with indexes that are positive whole numbers. You can
reference array items by using one or more indexes. The number of indexes is the same as the
number of dimensions of the array. This number is called the dimensionality of the array.

Array items can be any valid Rexx object. If an object has not been assigned to an array index then
that index is considered to contain the NIL object.

Table 5.16. ooRexx Array Class

Object

↓

Array

+ OrderedCollection

new
of

allIndexes
allItems
append
at, []
delete
dimension
dimensions
empty
fill
first

items
last
lastItem
makeArray
makeString
next
previous
put, []=
remove
removeItem
section

Chapter 5. The Builtin Classes

246

firstItem
hasIndex
hasItem
index
insert
isEmpty

size
sort
sortWith
stableSort
stableSortWith
supplier
toString

Note

The Array class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the OrderedCollection
class (Section 5.3.4, “The OrderedCollection Class”).

Array objects are variable-sized. The dimensionality of an array is fixed, but the size of each
dimension is variable. When you create an array, you can specify a hint about how many elements
you expect to put into the array or the array's dimensionality. However, you do not need to specify a
size or dimensionality of an array when you are creating it. You can use any whole-number indexes to
reference items in an array.

For any array method that takes an index, the index may be specified as either individual arguments or
as an array of indexes. For example, the following are equivalent:

Example 5.128. Array class - [] method

 x = myarray[1,2,3] -- retrieves an item from a multi-dimension array
 index = .array~of(1,2,3) -- create an index list
 x = myarray[index] -- also retrieves from "1,2,3"

Methods such as index() (Section 5.3.6.20, “index”) that return index items will return a single numeric
value for single-dimension arrays and an array of indexes for multi-dimension arrays.

5.3.6.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier

The Array Class

247

allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the OrderedCollection class (Section 5.3.4, “The OrderedCollection Class”).

append intersection sortWith
appendAll last stableSort
delete lastItem stableSortWith
difference next subset
first previous union
firstItem section xor
insert sort

5.3.6.2. insert

>>-insert(item-+--------+-)------------------------------------><
 +-,index-+

Returns an Array-supplied index for item item, which is added to the Array. The inserted item follows
an existing item with index index in the Array ordering. If index is the Nil object, item becomes the first
item in the Array. If you omit index, the item becomes the last item in the Array.

Inserting an item in the Array at position index will cause the items in the Array after position index
to have their indexes shifted by the Array object. The index values for any items in the Array are
incremented by the insertion.

Example 5.129. Array class - insert method

musketeers=.Array~of("Porthos","Athos","Aramis") /* Creates Array MUSKETEERS */
 /* consisting of: Porthos */
 /* Athos */
 /* Aramis */
musketeers~insert("D'Artagnan",1) /* Adds D'Artagnan after Porthos */
 /* Array is now: Porthos */
 /* D'Artagnan */
 /* Athos */
 /* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
 /* Array is now: D'Artagnan */
 /* Porthos */
 /* Athos */
 /* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */
 /* Array is now: Porthos */
 /* Athos */
 /* Aramis */
 /* D'Artagnan */

Chapter 5. The Builtin Classes

248

5.3.6.3. new (Class Method)

>>-new-+----------------+--------------------------------------><
 | +-,----+ |
 | V | |
 +-(----size-+--)-+

Returns a new empty array. If you specify any size arguments, the size is taken as a hint about how
big each dimension should be. The Array class uses this only to allocate the initial array object. For
multiple dimension arrays, you can also specify how much space is to be allocated initially for each
dimension of the array.

Each size argument must a non-negative whole number. If it is 0, the corresponding dimension is
initially empty. The dimensions may also be specified with one single-dimension array of sizes.

Example 5.130. Array class - of method

 a = .array~new() -- create a new, empty array
 a = .array~new(3,3) -- create a new 3x3 array
 sizes = .array~of(4,4,4)
 a = .array~new(sizes) -- create new 4x4x4 array

5.3.6.4. of (Class Method)

>>-of-+----------------+---------------------------------------><
 | +-,----+ |
 | V | |
 +-(----item-+--)-+

Returns a newly created single-index array containing the specified item objects. The first item has
index 1, the second has index 2, and so on.

If you use the OF method and omit any argument items, the returned array does not include the
indexes corresponding to the omitted arguments.

Example 5.131. Array class - of method

a = .array~of("Fred", "Mike", "David")

do name over a
 say name -- displays "Fred", "Mike", and "David"
end

The Array Class

249

5.3.6.5. []

 +-,-----+
 V |
>>-[---index-+-]---><

Returns the same value as the at() (Section 5.3.6.10, “at”) method.

Note that the index (Section 5.3.6, “The Array Class” [246]) argument may also be specified as an
array of indexes.

5.3.6.6. []=

 +-,-----+
 V |
>>-[---index-+-]=value---><

This method is the same as the put() (Section 5.3.6.29, “put”) method.

Note that the index argument may also be specified as an array of indexes.

5.3.6.7. allIndexes

>>-allIndexes--><

Returns an array of all index positions in the array containing items. For multi-dimension arrays, each
returned index will be an array of index values.

Example 5.132. Array class - allIndexes method

a = .array~of("Fred", "Mike", "David")

do name over a~allIndexes
 say name -- displays "1", "2", and "3"
end

a~remove(2) -- remove second item

do name over a~allIndexes
 say name -- displays "1" and "3"
end

Chapter 5. The Builtin Classes

250

5.3.6.8. allItems

>>-allItems--><

Returns an array of all items contained in the array.

Example 5.133. Array class - allItems method

a = .array~of("Fred", "Mike", "David")

do name over a~allItems
 say name -- displays "Fred", "Mike", and "David"
end

a~remove(2) -- remove second item

do name over a~allItems
 say name -- displays "Fred" and "David"
end

5.3.6.9. append

>>-append(item)--><

Appends an item to the array after the last item (the item with the highest index). The return value is
the index of newly added item. The append method is only valid with single-dimension arrays.

Example 5.134. Array class - append method

 a = .array~of("Mike", "Rick")
 a~append("Fred") -- a = .array~of("Mike", "Rick", "Fred")

5.3.6.10. at

 +-,-----+
 V |
>>-at(---index-+-)---><

The Array Class

251

Returns the item associated with the specified index or indexes. If the array has no item associated
with the specified index or indexes, this method returns the Nil object.

Note that the index argument may also be specified as an array of indexes.

Example 5.135. Array class - at method

 a = .array~of("Mike", "Rick")
 say a~at(2) -- says: "Rick"

5.3.6.11. delete

 +-,-----+
 V |
>>-delete(---index-+-)---><

Returns and deletes the member item with the specified index from the array. If there is no item with
the specified index, the Nil object is returned and no item is deleted. All elements following the deleted
item will be moved up in the array ordering and the item indexes will adjusted for the deletion. The size
of the collection will be reduced by 1 element.

The delete method is only valid with single-dimension arrays. The index argument may also be
specified as an array of indexes.

Example 5.136. Array class - delete method

 a = .array~of("Fred", "Mike", "Rick", "David")
 a~delete(2) -- removes "Mike", resulting in the array
 -- ("Fred", "Rick", "David")

5.3.6.12. dimension

>>-dimension-+-----+---><
 +-(n)-+

Returns the current size (upper bound) of dimension n (a positive whole number). If you omit n, this
method returns the dimensionality (number of dimensions) of the array. If the number of dimensions
has not been determined, 0 is returned.

Chapter 5. The Builtin Classes

252

Example 5.137. Array class - dimension method

a = .array~of(,"Mike", "Rick")
say a~dimension -- says: 1 (number of dimensions in the array)
say a~dimension(1) -- says: 3 (upper bound of dimension one)

a = .array~new~~put("Mike",1,1)~~put("Rick",1,2)
say a~dimension -- says: 2 (number of dimensions in the array)
say a~dimension(1) -- says: 1 (upper bound of dimension one)
say a~dimension(2) -- says: 2 (upper bound of dimension two)

5.3.6.13. dimensions

>>-dimensions--><

Returns an array containing each of the array dimension sizes. A single-dimension array will return an
array with a single size element.

5.3.6.14. empty

>>-empty---><

Removes all items from the array.

Example 5.138. Array class - empty method

a = .array~of("Mike", "Rick", "Fred", "Rick")
a~empty -- a~items now returns "0"

5.3.6.15. fill

>>-fill(value)---><

Sets all index locations of the array to value.

The Array Class

253

Example 5.139. Array class - fill method

a = .array~new(3,3)
a~fill(0) -- initialize the matrix to all zeroes.

5.3.6.16. first

>>-first---><

Returns the index of the first item in the array or the Nil object if the array is empty. For multi-
dimension arrays, the index is returned as an array of index values.

Example 5.140. Array class - first method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~first -- says: 1
a = .array~of(,"Mike", "Rick")
say a~first -- says: 2

5.3.6.17. firstItem

>>-firstItem---><

Returns the first item in the array or the Nil object if the array is empty.

Example 5.141. Array class - firstItem method

musketeers=.array~of("Porthos","Athos","Aramis"") /* Creates array MUSKETEERS */
item=musketeers~firstItem /* Gives first item in array */
 /* (Assigns "Porthos" to item) */

Returns the index of the first item in the array or the Nil object if the array is empty. For multi-
dimension arrays, the index is returned as an array of index values.

Example 5.142. Array class - firstItem method

Chapter 5. The Builtin Classes

254

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~first -- says: 1
a = .array~of(,"Mike", "Rick")
say a~first -- says: 2

5.3.6.18. hasIndex

 +-,-----+
 V |
>>-hasIndex(---index-+-)---------------------------------------><

Returns 1 (true) if the array contains an item associated with the specified index or indexes. Returns 0
(false) otherwise.

Note that the index argument may also be specified as an array of indexes.

Example 5.143. Array class - hasIndex method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasIndex(2) -- says: 1
say a~hasIndex(5) -- says: 0

5.3.6.19. hasItem

>>-hasItem(item)---><

Returns 1 (true) if the array contains the specified item at any index location. Returns 0 (false)
otherwise. Item equality is determined by using the == method of item.

Example 5.144. Array class - hasItem method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~hasItem("Rick") -- says: 1
say a~hasItem("Mark") -- says: 0

5.3.6.20. index

The Array Class

255

>>-index(item)---><

Returns the index of the specified item within the array. If the target item appears at more than one
index, the first located index will be returned. For multi-dimension arrays, the index is returned as an
array of index values. If the array does not contain the specified item, the Nil object is returned. Item
equality is determined by using the == method of item.

Example 5.145. Array class - index method

a = .array~of("Mike", "Rick", "Fred", "Rick")
say a~index("Rick") -- says: 2

5.3.6.21. isEmpty

>>-isEmpty---><

Returns 1 (true) if the array is empty. Returns 0 (false) otherwise.

Example 5.146. Array class - isEmpty method

a = .array~new
say a~isEmpty -- says: 1
a[1] = "1"
say a~isEmpty -- says: 0

5.3.6.22. items

>>-items---><

Returns the number of items in the collection.

Example 5.147. Array class - items method

a = .array~of("Fred", , "Mike", , "David")
say a~items -- says: 3

Chapter 5. The Builtin Classes

256

5.3.6.23. last

>>-last--><

Returns the index of the last item in the array or the Nil object if the array is empty. For multi-
dimension arrays, index is returned as an array of index items.

Example 5.148. Array class - last method

a = .array~of("Fred", , "Mike", , "David")
say a~last -- says: 5

5.3.6.24. lastItem

>>-lastItem--><

Returns the last item in the array or the Nil object if the array is empty.

Example 5.149. Array class - lastItem method

musketeers=.array~of("Porthos","Athos","Aramis"") /* Creates array MUSKETEERS */
item=musketeers~lastItem /* Gives last item in array */
 /* (Assigns "Aramis" to item) */

5.3.6.25. makeArray

>>-makeArray---><

Returns a single-dimension array with the same number of items as the receiver object. Any index with
no associated item is omitted from the new array. Items in the new array will have the same order as
the source array. Multi-dimension arrays arrays will be converted into a non-sparse single dimension
array.

Example 5.150. Array class - makeArray method

a = .array~of("Fred", , "Mike", , "David")

The Array Class

257

b = a~makeArray -- b = .array~of("Fred", "Mike", "David")

5.3.6.26. makeString

 +-,separator-+
 +-(LINE)--+------------+-+
>>-makeString(-+------------------------+-)--------------------><
 +-(CHAR)-----------------+

Returns a string that contains the data of an array. The elements of the array are treated either in line
or character format, starting at the first element in the array. The line format is the default. If the line
format is use, a separator string can be specified. The separator will be used between concatenated
elements instead of the default line end separator.

Examples:

See Section 5.3.6.39, “toString” for examples.

5.3.6.27. next

>>-next(index)---><

Returns the index of the item that follows the array item having index index or returns the Nil object if
the item having that index is last in the array. For multi-dimension arrays, the same ordering used by
the allitems() (Section 5.3.6.8, “allItems”) method is used to determine the next position and the index
is returned as an array of index values.

Note that the index argument may also be specified as an array of indexes.

Example 5.151. Array class - next method

a = .array~of("Fred", , "Mike", , "David")
say a~next(3) -- says: 5

5.3.6.28. previous

>>-previous(index)---><

Returns the index of the item that precedes the array item having index index or the Nil object if the
item having that index is first in the array. For multi-dimension arrays, the same ordering used by the

Chapter 5. The Builtin Classes

258

allitems() (Section 5.3.6.8, “allItems”) method is used to determine the previous position and the index
is returned as an array of index values.

Note that the index argument may also be specified as an array of indexes.

Example 5.152. Array class - previous method

a = .array~of("Fred", , "Mike", , "David")
say a~previous(3) -- says: 1

5.3.6.29. put

 +--------+
 V |
>>-put(item---,index-+-)---------------------------------------><

Makes the object item a member item of the array and associates it with the specified index or
indexes. This replaces any existing item associated with the specified index or indexes with the new
item. If the index for a particular dimension is greater than the current size of that dimension, the array
is expanded to the new dimension size.

Note that the index argument may also be specified as an array of indexes.

Examples:

Example 5.153. Array class - put method

a = .array~new
a~put("Fred", 1) -- a = .array~of("Fred")
a~put("Mike", 2) -- a = .array~of("Fred", "Mike")
a~put("Mike", 1) -- a = .array~of("Mike", "Mike")

do name over a
 say name
end

/* Output would be: */

Mike
Mike

5.3.6.30. remove

 +-,-----+

The Array Class

259

 V |
>>-remove(---index-+-)---><

Returns and removes the member item with the specified index or indexes from the array. If there is
no item with the specified index or indexes, the Nil object is returned and no item is removed. The
index of the removed item becomes unused and the hasIndex method for the given index will now
return false. The size of the array is unchanged and no other indexes of the array are modified with the
removal.

Note that the index argument may also be specified as an array of indexes.

Example 5.154. Array class - remove method

a = .array~of("Fred", "Mike", "Mike", "David")
a~remove(2) -- removes "Mike"

5.3.6.31. removeItem

>>-removeItem(item)--><

Removes an item from the array. If the target item exists at more than one index, the first located
item is removed. Item equality is determined by using the == method of item. The return value is the
removed item.

Example 5.155. Array class - removeItem method

a = .array~of("Fred", "Mike", "Mike", "David")
a~removeItem("Mike") -- removes the item at index "2"

5.3.6.32. section

>>-section(start-+--------+-)----------------------------------><
 +-,items-+

Returns a new array (of the same class as the receiver) containing selected items from the receiver
array. The first item in the new array is the item corresponding to index start in the receiver array.
Subsequent items in the new array correspond to those in the receiver array (in the same sequence).
If you specify the whole number items, the new array contains only this number of items (or the
number of subsequent items in the receiver array, if this is less than items). If you do not specify

Chapter 5. The Builtin Classes

260

items, the new array contains all subsequent items of the receiver array. The receiver array remains
unchanged. The section() method is valid only for single-index arrays.

Note that the start argument, (the index argument,) may also be specified as an array of indexes.

Example 5.156. Array class - section method

a = .array~of(1,2,3,4) -- Loads the array

b = a~section(2) -- b = .array~of(2,3,4)
c = a~section(2,2) -- c = .array~of(2,3)
d = a~section(2,0) -- d = .array~new

5.3.6.33. size

>>-size--><

Returns the number of items that can be placed in the array before it needs to be extended. This value
is the same as the product of the sizes of the dimensions in the array.

5.3.6.34. sort

>>-sort--><

Sorts an array of Comparable items into ascending order using an unstable Quicksort algorithm. See
Section 5.3.18, “Sorting Ordered Collections” for details.

5.3.6.35. sortWith

>>-sortWith(comparator)--><

Sorts an array of items into ascending order using an unstable Quicksort algorithm. Ordering of
elements is determined using the comparator argument. See Section 5.3.18, “Sorting Ordered
Collections” for details.

5.3.6.36. stableSort

The Array Class

261

>>-stableSort--><

Sorts an array of Comparable items into ascending order using a stable Mergesort algorithm. See
Section 5.3.18, “Sorting Ordered Collections” for details.

5.3.6.37. stableSortWith

>>-stableSortWith(comparator)----------------------------------><

Sorts an array of items into ascending order using a stable Mergesort algorithm. Ordering of elements
is determined using the comparator argument. See Section 5.3.18, “Sorting Ordered Collections” for
details.

5.3.6.38. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the collection. The supplier allows
you to iterate over the index/item pairs for the collection. The supplier enumerates the array items in
their sequenced order. For multi-dimensional arrays, the supplier index method will return the index
values as an array of index numbers.

Example 5.157. Array class - supplier method

a = .array~of("Fred", "Mike", "David")
sup = a~supplier
a~append("Joe")
do while sup~available
 say sup~item -- displays "Fred", "Mike", and "David"
 sup~next
end

5.3.6.39. toString

 +-,separator-+
 +-(LINE)--+------------+-+
>>-toString(-+------------------------+-)----------------------><
 +-(CHAR)-----------------+

Chapter 5. The Builtin Classes

262

Returns a string that contains the data of an array (one to n dimensional). The elements of the array
are treated either in line or character format, starting at the first element in the array. The line format
is the default. If the line format is use, a separator string can be specified. The separator will be used
between concatenated elements instead of the default line end separator.

Example 5.158. Array class - toString method

a = .array~of(1,2,3,4) -- Loads the array

say a~toString -- Produces: 1
 -- 2
 -- 3
 -- 4

say a~toString("c") -- Produces: 1234

say a~toString(, ", ") -- Produces: 1, 2, 3, 4

5.3.6.40. Examples

Example 5.159. Array class - examples

array1=.array~of(1,2,3,4) /* Loads the array */

/* Alternative way to create and load an array */
array2=.array~new(4) /* Creates array2, containing 4 items */
do i=1 to 4 /* Loads the array */
 array2[i]=i
end

You can produce the elements loaded into an array, for example:

Example 5.160. Array class - examples

do i=1 to 4
 say array1[i]
end

If you omit any argument values before arguments you supply, the corresponding indexes are skipped
in the returned array:

Example 5.161. Array class - examples

directions=.array~of("North","South", ,"West")
do i=1 to 4 /* Produces: North */
 say directions[i] /* South */
 /* The NIL object */
end /* West */

The Bag Class

263

Here is an example using the ~~:

Example 5.162. Array class - examples

z=.array~of(1,2,3)~~put(4,4)
do i = 1 to z~size
 say z[i] /* Produces: 1 2 3 4 */
end

5.3.7. The Bag Class

A bag is a non-sparse collection that restricts the elements to having an item that is the same as the
index. Any object can be placed in a bag, and the same object can be placed in a bag several times.

Table 5.17. ooRexx Bag Class

Object

↓

Relation

+ MapCollection

↓

Bag

+ SetCollection

of

difference
hasIndex
hasItem
intersection
put, []=

putAll
subset
union
xor

Note

The Bag class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the Set Collection
(Section 5.3.5, “The SetCollection Class”) class, although there are not currently any methods
defined in that class.

The Bag class is a subclass of the Relation class. In addition to its own methods, it inherits the
methods of the Object class and the Relation class.

5.3.7.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith

Chapter 5. The Builtin Classes

264

|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection class (Section 5.3.3, “The MapCollection Class”).

putAll

Methods inherited from the Relation class (Section 5.3.13, “The Relation Class”).

new (Class Method) hasIndex remove
allAt hasItem removeAll
allIndex index removeItem
allIndexes intersection subset
allItems isEmpty supplier
at items union
[] makeArray xor
difference put
empty []=

5.3.7.2. of (Class Method)

 +-,----+
 V |
>>-of(---item-+-)--><

Returns a newly created bag containing the specified item objects.

5.3.7.3. []=

>>-[index]=item--><

Adds an item to the Bag. This method is the same as the put() (Section 5.3.7.7, “put”) method.

The Bag Class

265

5.3.7.4. difference

>>-difference(argument)--><

Returns a new Bag containing only those items from the receiver that the argument collection does not
contain. The argument can be any collection class object.

5.3.7.5. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false). Index
equality is determined by using the == method of index.

5.3.7.6. intersection

>>-intersection(argument)--------------------------------------><

Returns a new Bag containing only those items from the receiver that are also in the argument
collection. The argument can be any collection class object.

5.3.7.7. put

>>-put(item,index)---><

Makes the object item a member item of the bag and associates it with index index. If the relation
already contains any items with index index, this method adds a new member item item with the same
index, without removing any existing member items.

5.3.7.8. putAll

>>-putAll(collection)--><

Chapter 5. The Builtin Classes

266

Adds all items collection to the target bag. The collection argument can be any object that supports a
supplier method. Items from collection are added using the item values returned by the supplier.

5.3.7.9. subset

>>-subset(argument)--><

Returns 1 (true) if all indexes in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object.

5.3.7.10. union

>>-union(argument)---><

Returns a new Bag that contains all the items from the receiver collection and selected items from
the argument collection. The order in which this method selects items in argument is unspecified. The
argument can be any collection class object.

5.3.7.11. xor

>>-xor(argument)---><

Returns a new Bag that contains all items from the receiver collection and the argument collection;
items that appear in both collections are removed. The argument can be any collection class object.

5.3.7.12. Examples

Example 5.163. Bag class - examples

/* Create a bag of fruit */
fruit = .bag~of("Apple", "Orange", "Apple", "Pear")
say fruit~items /* How many pieces? (4) */
say fruit~items("Apple") /* How many apples? (2) */
fruit~remove("Apple") /* Remove one of the apples. */
fruit~~put("Banana")~put("Orange") /* Add a couple. */
say fruit~items /* How many pieces? (5) */

5.3.8. The CircularQueue Class

The CircularQueue Class

267

The CircularQueue class allows for storing objects in a circular queue of a predefined size. Once
the end of the queue has been reached, new item objects are inserted from the beginning, replacing
earlier entries. Any object can be placed in the queue and the same object can occupy more than one
position in the queue.

Table 5.18. ooRexx CircularQueue Class

Object

↓

Queue

+ OrderedCollection

↓

CircularQueue

of

init
append
insert
intersection
makeArray
push
queue

resize
section
size
string
supplier
union
xor

Note

The CircularQueue class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

The collected objects can be processed in FIFO (first in, first out) or in a stack-like LIFO (last in, first
out) order.

5.3.8.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier

Chapter 5. The Builtin Classes

268

allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the orderedCollection (Section 5.3.4, “The OrderedCollection Class”).

append intersection sortWith
appendAll last stableSort
delete lastItem stableSortWith
difference next subset
first previous union
firstItem section xor
insert sort

Methods inherited from the Queue class (Section 5.3.12, “The Queue Class”).

new (Class Method) hasIndex pull
of (Class Method) hasItem push
allIndexes index put
allItems insert []=
append isEmpty queue
at items remove
[] last removeItem
delete makeArray section
empty next supplier
first peek
firstItem previous

5.3.8.2. of (Class Method)

>>-of-+----------------+---------------------------------------><
 | +-,----+ |
 | V | |
 +-(----item-+--)-+

Returns a newly created circular queue containing the specified item objects. The first item has index
1, the second has index 2, and so on. The number of item objects determines the size of the circular
queue.

5.3.8.3. init

>>-init(--size--)--><

Performs initialization of the circular queue. The required size argument, a non-negative whole
number, specifies the initial size of the queue.

The CircularQueue Class

269

5.3.8.4. append

>>-append(item)--><

Append an item to the end of the collection ordering, returning the index of the added item. If the
circular queue is full, then the first item will be deleted, before the insertion takes place.

5.3.8.5. insert

>>-insert(item-+--------+-)------------------------------------><
 +-,index-+

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is the Nil object, item is inserted at the
head of the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index
to have their indexes modified by the queue object. If inserting an object causes the queue to grow
beyond the size, the last item in the queue will be removed.

5.3.8.6. intersection

>>-intersection(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver that are in both the receiver collection and the argument collection. The argument can be any
collection class object. The resulting CircularQueue instance will be the same size as the receiver.

5.3.8.7. makeArray

>>-makeArray(-+---------+-)------------------------------------><
 +--order--+

Returns a single-index array containing the items of the circular queue in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Chapter 5. The Builtin Classes

270

Fifo
First-in, first-out order. This is the default.

Lifo
Last-in, first-out order (stack-like).

5.3.8.8. push

>>-push(item-+------------+)-----------------------------------><
 +--,option---+

Makes the object item a member item of the circular queue, inserting the item object in front of the first
item in the queue. The pushed item object will be the new first item in the circular queue.

If the circular queue is full, then the last item stored in the circular queue will be deleted, before the
insertion takes place. In this case the deleted item will be returned, otherwise .nil.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique', any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.9. queue

 +--,Normal---+
>>-queue(item-+------------+)----------------------------------><
 +--,Unique---+

Makes the object item a member item of the circular queue, inserting the item at the end of the circular
queue.

If the circular queue is full, then the first item will be deleted, before the insertion takes place. In this
case the deleted item will be returned, otherwise .nil.

If option is specified, it may be "Normal" or "Unique". The default is "Normal". Only the capitalized
letter is needed; all characters following it are ignored. If option is 'Unique', any matching items already
in the queue will be removed before item is added to the queue. This allows you to maintain a list like
the recent files list of an editor.

5.3.8.10. resize

>>-resize(-newSize-+----------+-)------------------------------><
 +--,order--+

The CircularQueue Class

271

Resizes the circular queue object to be able to contain newSize items. If more than newSize items are
in the queue, any extra items are removed in the specified order.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This keeps the items at the front of the queue. Item deletions occur at the end of
the queue. This is the default action.

Lifo
Last-in, first-out (stack-like). This removes items from the front of the queue.

Note:

Resizing with a value of 0 removes all items from the circular queue.

5.3.8.11. section

>>-section(start-+--------+-)----------------------------------><
 +-,items-+

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number items, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged. The new queue item will
be sized to the larger of the receiver queue size or items. The selection of the items will wrap from the
end around to the beginning of the queue. For example,

q1 = .circularqueue~of("Fred", "Mike", "David")
q2 = q1~section(2) -- effectively rotates the queue

do name over a
 say name -- displays "Mike", "David", and "Fred"
end

returns a new queue of three items, starting with the second item, effectively rotating the order of the
contained items.

5.3.8.12. size

>>-size--><

Chapter 5. The Builtin Classes

272

Returns the maximum number of objects that can be stored in the circular queue.

5.3.8.13. string

 +--","------+ +-,-Fifo--+
>>-string(-+-----------+--+---------+-)------------------------><
 +-delimiter-+ +-,-order-+

Returns a string object that concatenates the string values of the collected item objects, using the
delimiter string to delimit them, in the specified order. The default delimiter is a single comma.

If the delimiter string argument is omitted the comma character (",") is used as the default delimiter
string.

The following order can be used. (Only the capitalized letter is needed; all characters following it are
ignored.)

Fifo
First-in, first-out. This is the default

Lifo
Last-in, first-out (stack-like)

5.3.8.14. supplier

>>-supplier(-+----------+-)------------------------------------><
 +--order---+

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the collection. The supplier allows
you to iterate over the items that were in the queue at the time of the supplier's creation.

The supplier will iterate over the items in the specified order. (Only the capitalized letter is needed; all
characters following it are ignored.)

Fifo
First-in, first-out, default

Lifo
Last-in, first-out (stack-like)

5.3.8.15. union

>>-union(argument)---><

The CircularQueue Class

273

Returns a new collection of the same class as the receiver that contains all the items from the receiver
collection and selected items from the argument collection. The resulting CircularQueue object will
have a size that is the larger of the receiver's size or the union size of the two collections. This method
includes an item from argument in the new collection only if there is no equivalent item in the receiver
collection and the method has not already included. The order in which this method selects items
in argument is unspecified (the program should not rely on any order.). The argument can be any
collection class object.

5.3.8.16. xor

>>-xor(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection; all items that appear in both collections are removed. The
resulting CircularQueue object will have a size that is the larger of the receiver's size or the xor size of
the two collections. The argument can be any collection class object.

5.3.8.17. Example

Example 5.164. CircularQueue class - examples

 -- create a circular buffer with five items
u=.circularQueue~of("a", "b", "c", "d", "e")
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(4, "FIFO") -- resize fifo-style (keep newest)
say "after resizing to 4 items in FIFO style (keeping the newest):"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(2, "LIFO") -- resize lifo-style (keep oldest)
say "after resizing to 2 items in LIFO style (keeping the oldest):"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(0) -- resize lifo-style (keep oldest)
say "after resizing to 0 items, thereby deleting all items:"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~resize(2) -- resize lifo-style (keep oldest)
say "after resizing to 2, size="u~size "and items="u~items
u~~queue('x')~~queue('y')~~queue('z')
say "after queuing the three items 'x', 'y', 'z':"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

u~~push('1')~~push('2')~~push('3')
say "after pushing the three items '1', '2', '3':"
say "content: ["u"]," "content (LIFO): ["u~string("->","L")"]"
say

Chapter 5. The Builtin Classes

274

Output:

content: [a,b,c,d,e], content (LIFO): [e->d->c->b->a]

after resizing to 4 items in FIFO style (keeping the newest):
content: [b,c,d,e], content (LIFO): [e->d->c->b]

after resizing to 2 items in LIFO style (keeping the oldest):
content: [b,c], content (LIFO): [c->b]

after resizing to 0 items, thereby deleting all items:
content: [], content (LIFO): []

after resizing to 2, size=2 and items=0
after queuing the three items 'x', 'y', 'z':
content: [y,z], content (LIFO): [z->y]

after pushing the three items '1', '2', '3':
content: [3,2], content (LIFO): [2->3]

5.3.9. The Directory Class

A Directory is a MapCollection using unique character string indexes. The items of the collection can
be any valid Rexx object.

Table 5.19. ooRexx Directory Class

Object

↓

Directory

+ MapCollection

new

allIndexes
allItems
at, []
empty
entry
hasEntry
hasIndex
hasItem
index
isEmpty
items

makeArray
put, []=
remove
removeItem
setEntry
setMethod
supplier
unknown
unSetMethod
xor

Note

The Directory class also has available class methods that metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the Map (Section 5.3.3,
“The MapCollection Class”) class, although there are not currently any methods defined in that
class.

The Directory Class

275

In addition to the standard put() and at() methods defined for Collections, Directories provide access to
objects using methods. For example:

mydir = .directory~new
mydir~name = "Mike" -- same as mydir~put("Mike", "NAME")
say mydir~name -- same as say mydir['NAME']

5.3.9.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection (Section 5.3.3, “The MapCollection Class”).

putAll

5.3.9.2. new (Class Method)

>>-new---><

Returns an empty Directory object.

5.3.9.3. []

>>-[name]--><

Chapter 5. The Builtin Classes

276

Returns the item corresponding to name. This method is the same as the at() (Section 5.3.9.17, “put”)
method.

5.3.9.4. []=

>>-[name]=item---><

Adds or replaces the entry at index name. This method is the same as the put() (Section 5.3.9.17,
“put”) method.

5.3.9.5. allIndexes

>>-allIndexes--><

Returns an array of all the directory indexes, including those of all the setMethods (Section 5.3.9.21,
“setMethod”) methods.

5.3.9.6. allItems

>>-allItems--><

Returns an array of all items contained in the directory, including those returned by all setMethod
(Section 5.3.9.21, “setMethod”) methods.

5.3.9.7. at

>>-at(name)--><

Returns the item associated with index name. If a method defined using setMethod (Section 5.3.9.21,
“setMethod”) is associated with index name, the result of running this method is returned. If the
collection has no item or method associated with index name, the Nil object is returned.

Example 5.165. Directory class - at method

say .environment~at("OBJECT") /* Produces: "The Object class" */

The Directory Class

277

5.3.9.8. empty

>>-empty---><

Removes all items from the directory. Empty also removes all methods added using setMethod
(Section 5.3.9.21, “setMethod”).

5.3.9.9. entry

>>-entry(name)---><

Returns the directory entry with name name (translated to uppercase). If there is no such entry, name
returns the item for any method that setMethod (Section 5.3.9.21, “setMethod”) supplied. If there is
neither an entry nor a method for name the Nil object is returned.

5.3.9.10. hasEntry

>>-hasEntry(name)--><

Returns 1 (true) if the directory has an entry or a method for name name (translated to uppercase), or
0 (false).

5.3.9.11. hasIndex

>>-hasIndex(name)--><

Returns 1 (true) if the collection contains any item associated with index name, or 0 (false).

5.3.9.12. hasItem

>>-hasItem(item)---><

Returns 1 (true) if the collection contains the item at any index position or otherwise returns 0 (false).
Item equality is determined by using the == method of item.

Chapter 5. The Builtin Classes

278

5.3.9.13. index

>>-index(item)---><

Returns the index of the specified item within the directory. If the target item appears at more than one
index, the first located index will be returned. If the directory does not contain the specified item, the
Nil object is returned. Item equality is determined by using the == method of item.

5.3.9.14. isEmpty

>>-isEmpty---><

Returns 1 (true) if the directory is empty. Returns 0 (false) otherwise.

5.3.9.15. items

>>-items---><

Returns the number of items in the collection.

5.3.9.16. makeArray

>>-makeArray---><

Returns a single-index array containing the index objects. The array indexes range from 1 to the
number of items. The collection items appear in the array in an unspecified order. (The program
should not rely on any order.)

5.3.9.17. put

>>-put(item,name)--><

Makes the object item a member item of the collection and associates it with index name. The new
item replaces any existing item or method associated with index name.

The Directory Class

279

5.3.9.18. remove

>>-remove(name)--><

Returns and removes the member item with index name from a collection. If a method is associated
with setMethod (Section 5.3.9.21, “setMethod”) for index name, the method is removed and running
the method is returned. If there is no item or method with index name, the Nil object is returned.

5.3.9.19. removeItem

>>-removeItem(item)--><

Removes an item from the directory. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Item equality is determined by using the ==
method of item.

5.3.9.20. setEntry

>>-setEntry(name-+--------+-)----------------------------------><
 +-,entry-+

Sets the directory entry with name name (translated to uppercase) to the object entry, replacing any
existing entry or method for name. If you omit entry, this method removes any entry or method with
this name.

5.3.9.21. setMethod

>>-setMethod(name-+---------+-)--------------------------------><
 +-,method-+

Associates entry name name (translated to uppercase) with method method. Thus, the object returns
the result of running method when you access this entry. This occurs when you specify name on the
at, entry, or remove method. This method replaces any existing item or method for name.

You can specify the name "UNKNOWN" as name. Doing so supplies a method that is run whenever
an at() or entry() message specifies a name for which no item or method exists in the collection. This
method's first argument is the specified directory index. This method has no effect on the action of any
hasEntry, hasIndex, items, remove, or supplier message sent to the collection.

Chapter 5. The Builtin Classes

280

The method can be a string containing a method source line instead of a method object. Alternatively,
an array of strings containing individual method lines can be passed. In either case, an equivalent
method object is created.

If you omit method, setMethod() removes the entry with the specified name.

5.3.9.22. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the collection. The supplier allows
you to iterate over the index/item pairs in the directory at the time the supplier was created. The
supplier iterates the items in an unspecified order.

5.3.9.23. unknown

>>-unknown(messagename,messageargs)----------------------------><

Runs either the entry (Section 5.3.9.9, “entry”) or setEntry (Section 5.3.9.20, “setEntry”) method,
depending on whether messagename ends with an equal sign. If messagename does not end with
an equal sign, this method runs the entry() method, passing messagename as its argument. The
messageargs argument is ignored. The entry() method is the return result.

If messagename does end with an equal sign, this method runs the setEntry() method, passing the
first part of messagename (up to, but not including, the final equal sign) as its first argument, and the
first item in the array messageargs as its second argument. In this case, unknown() returns no result.

5.3.9.24. unsetMethod

>>-unsetMethod(name)---><

Removes the association between entry name name (translated to uppercase) and a method.

5.3.9.25. xor

>>-xor(argument)---><

The List Class

281

Returns a new Directory object containing all items from the receiver collection and the argument
collection; all indexes that appear in both collections are removed. The argument can be any collection
class object. The argument must also allow all of the index values in the receiver collection.

5.3.9.26. Examples

Example 5.166. Directory class - examples

/**/
/* A Phone Book Directory program */
/* This program demonstrates use of the directory class. */
/**/

/* Define an UNKNOWN method that adds an abbreviation lookup feature. */
/* Directories do not have to have an UNKNOWN method. */
book = .directory~new~~setMethod("UNKNOWN", .methods["UNKNOWN"])

book["ANN"] = "Ann B. 555-6220"
book["ann"] = "Little annie . 555-1234"
book["JEFF"] = "Jeff G. 555-5115"
book["MARK"] = "Mark C. 555-5017"
book["MIKE"] = "Mike H. 555-6123"
book~Rick = "Rick M. 555-5110" /* Same as book["RICK"] = ... */

Do i over book /* Iterate over the collection */
 Say book[i]
end i

Say "" /* Index lookup is case sensitive... */
Say book~entry("Mike") /* ENTRY method uppercases before lookup */
Say book["ANN"] /* Exact match */
Say book~ann /* Message sends uppercase before lookup */
Say book["ann"] /* Exact match with lowercase index */

Say ""
Say book["M"] /* Uses UNKNOWN method for lookup */
Say book["Z"]
Exit

/* Define an unknown method to handle indexes not found. */
/* Check for abbreviations or indicate listing not found */
::Method unknown
 Parse arg at_index
 value = ""
 Do i over self
 If abbrev(i, at_index) then do
 If value <> "" then value = value", "
 value = value || self~at(i)
 end
 end i
 If value = "" then value = "No listing found for" at_index
 Return value

5.3.10. The List Class

A list is a non-sparse sequenced collection similar to the Arrat class (Section 5.3.6, “The Array Class”)
to which you can add new items at any position in the sequence. The List creates a new index value
whenever an item is added to the list and the associated index value remains valid for that item

Chapter 5. The Builtin Classes

282

regardless of other additions or removals. Only indexes the list object generates are valid i.e. the list is
never a sparse list and the list object will not modify indexes for items in the list.

Table 5.20. ooRexx List Class

Object

↓

List

+ OrderedCollection

new
of

allIndexes
allItems
append
at, []
delete
empty
first
firstItem
hasIndex
hasItem
index
insert
isEmpty

items
last
lastItem
makeArray
previous
put, []=
remove
removeItem
section
supplier

Note

The List class also has available class methods that its metaclass, metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the OrderedCollection
(Section 5.3.4, “The OrderedCollection Class”) class.

5.3.10.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor

The List Class

283

difference items
disjoint makeArray

Methods inherited from the OrderedCollection (Section 5.3.4, “The OrderedCollection Class”).

append intersection sortWith
appendAll last stableSort
delete lastItem stableSortWith
difference next subset
first previous union
firstItem section xor
insert sort

5.3.10.2. new (Class Method)

>>-new---><

Returns a new empty List object.

5.3.10.3. of (Class Method)

 +-,----+
 V |
>>-of(---item-+-)--><

Returns a newly created list containing the specified item objects in the order specified.

5.3.10.4. []

>>-[index]---><

Returns the item located at index. This is the same as the at() (Section 5.3.10.9, “at”) method.

5.3.10.5. []=

>>-[index]=item--><

Replaces the item at index with item. This method is the same as the put() (Section 5.3.10.25, “put”)
method.

Chapter 5. The Builtin Classes

284

5.3.10.6. allIndexes

>>-allIndexes--><

Returns an array of all indexes contained in the list in the same order they are used in the list.

5.3.10.7. allItems

>>-allItems--><

Returns an array of all items contained in the list in list iteration order.

5.3.10.8. append

>>-append(item)--><

Appends item to the end of the list, returning the index associated with item.

5.3.10.9. at

>>-at(index)---><

Returns the item associated with index index. Returns the Nil object if the list has no item associated
with index.

5.3.10.10. delete

>>-delete(---index--)--><

Returns and deletes the member item with the specified index from the list. If there is no item with the
specified index, the Nil object is returned and no item is deleted. All elements following the deleted
item will be moved up in the list ordering, but the indexes associated with the moved items will not
change. The size of the list will be reduced by 1 element. The delete method and the remove method
produce the same result for the list class.

The List Class

285

5.3.10.11. empty

>>-empty---><

Removes all items from the list.

5.3.10.12. first

>>-first---><

Returns the index of the first item in the list or the Nil object if the list is empty.

5.3.10.13. firstItem

>>-firstItem---><

Returns the first item in the list or the Nil object if the list is empty.

Example 5.167. Directory class - firstItem method

musketeers=.list~of("Porthos","Athos","Aramis") /* Creates list MUSKETEERS */
item=musketeers~firstItem /* Gives first item in list */
 /* (Assigns "Porthos" to item) */

5.3.10.14. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the list contains any item associated with index index, or 0 (false).

5.3.10.15. hasItem

Chapter 5. The Builtin Classes

286

>>-hasItem(item)---><

Returns 1 (true) if the list contains the item at any index position or otherwise returns 0 (false). Item
equality is determined by using the == method of item.

5.3.10.16. index

>>-index(item)---><

Returns the index of the specified item within the list. If the target item appears at more than one
index, the first located index will be returned. Returns the Nil object if the list does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.10.17. insert

>>-insert(item-+--------+-)------------------------------------><
 +-,index-+

Returns a list-supplied index for item item, which is added to the list. The inserted item follows an
existing item with index index in the list ordering. If index is the Nil object, item becomes the first item
in the list. If you omit index, the item becomes the last item in the list.

Inserting an item in the list at position index will cause the items in the list after position index to have
their relative positions shifted by the list object. The index values for any items in the list are not
modified by the insertion.

Example 5.168. List class - insert method

musketeers=.list~of("Porthos","Athos","Aramis") /* Creates list MUSKETEERS */
 /* consisting of: Porthos */
 /* Athos */
 /* Aramis */
index=musketeers~first /* Gives index of first item */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
 /* List is now: Porthos */
 /* D'Artagnan */
 /* Athos */
 /* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
 /* List is now: D'Artagnan */
 /* Porthos */
 /* Athos */
 /* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */

The List Class

287

 /* List is now: Porthos */
 /* Athos */
 /* Aramis */
 /* D'Artagnan */

5.3.10.18. isEmpty

>>-isEmpty---><

Returns 1 (true) if the list is empty. Returns 0 (false) otherwise.

5.3.10.19. items

>>-items---><

Returns the number of items in the list.

5.3.10.20. last

>>-last--><

Returns the index of the last item in the list or the Nil object if the list is empty.

5.3.10.21. lastItem

>>-lastItem--><

Returns the last item in the list or the Nil object if the list is empty.

5.3.10.22. makeArray

>>-makeArray---><

Chapter 5. The Builtin Classes

288

Returns a single-index array containing the list collection items. The array indexes range from 1 to
the number of items. The order in which the collection items appear in the array is the same as their
sequence in the list collection.

5.3.10.23. next

>>-next(index)---><

Returns the index of the item that follows the list item having index index. Returns the Nil object if
index is the end of the list.

5.3.10.24. previous

>>-previous(index)---><

Returns the index of the item that precedes the list item having index index. Returns the Nil object if
index is the beginning of the list.

5.3.10.25. put

>>-put(item,index)---><

Replaces any existing item associated with the specified index with the item. If index does not exist in
the list, an error is raised.

5.3.10.26. remove

>>-remove(index)---><

Returns and removes from a collection the member item with index index. If no item has index index,
this method returns the Nil object and removes no item.

Removing an item from the list at position index will shift the relative position of items after position
index. The index values assigned to those items will not change.

5.3.10.27. removeItem

The Properties Class

289

>>-removeItem(item)--><

Removes an item from the list. If the target item exists at more than one index, the first located item is
removed. The return value is the removed item. Item equality is determined by using the == method of
item.

5.3.10.28. section

>>-section(start-+--------+-)----------------------------------><
 +-,items-+

Returns a new list (of the same class as the receiver) containing selected items from the receiver list.
The first item in the new list is the item corresponding to index start in the receiver list. Subsequent
items in the new list correspond to those in the receiver list (in the same sequence). If you specify the
whole number items, the new list contains only this number of items (or the number of subsequent
items in the receiver list, if this is less than items). If you do not specify items, the new list contains all
subsequent items from the receiver list. The receiver list remains unchanged.

5.3.10.29. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the list. The supplier allows you to
iterate over the index/item pairs stored in the list at the time the supplier is created. The iteration is in
the same order as the list sequence order.

5.3.11. The Properties Class

A properties object is a collection with unique indexes that are character strings representing
names and items that are also restricted to character string values. Properties objects are useful for
processing bundles of application option values.

Table 5.21. ooRexx Properties Class

Object

↓

Directory

+ MapCollection

↓

Properties

load

Chapter 5. The Builtin Classes

290

new

getLogical
getProperty
getWhole
load
put, []=

save
setLogical
setProperty
setWhole

Note

The Properties class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.3.11.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection (Section 5.3.3, “The MapCollection Class”).

putAll

Methods inherited from the Directory class (Section 5.3.9, “The Directory Class”).

allIndexes hasIndex []=
allItems hasItem remove
at index removeItem
[] isEmpty setEntry
empty items setMethod
entry makeArray supplier
hasEntry put unsetMethod

5.3.11.2. load (Class method)

The Properties Class

291

>>-load(source)--><

Loads a set of properties from source and returns them as a new Properties object. The load source
can be either the string name of a file or a stream object. Properties are read from the source as
individual lines using linein() (Section 5.2.4.13, “lineIn”). Blank lines and lines with a Rexx line
comment ("--") as the first non-blank characters are ignored. Otherwise, the lines are assumed to be of
the form "name=value" and are added to the receiver Properties value using name as the index for the
value.

5.3.11.3. new (Class method)

>>-new---><

Returns an empty Properties object.

5.3.11.4. []=

>>-[name]=item---><

Adds item using the index index. This method is the same as the put() (Section 5.3.11.9, “put”)
method.

5.3.11.5. getLogical

>>-getLogical(name-+----------+-)------------------------------><
 +-,default-+

Returns the value of name as either .true or .false. The raw value of the name may be either the
numeric values "0" or "1" or the string values "true" or "false". Any other value will raise a syntax error.
If the property name does not exist and default has been specified, the default value will be returned. If
default has not been specified, a syntax error is raised for missing values.

5.3.11.6. getProperty

>>-getProperty(name-+----------+-)-----------------------------><

Chapter 5. The Builtin Classes

292

 +-,default-+

Returns the value of name. If property name does not exist and default has been specified, the default
value will be returned. If default has not been specified, the Nil object is returned.

5.3.11.7. getWhole

>>-getWhole(name-+----------+-)--------------------------------><
 +-,default-+

Returns the value of name, validated as being a Rexx whole number. If property name does not exist
and default has been specified, the default value will be returned. If default has not been specified, a
syntax error is raised for missing values.

5.3.11.8. load

>>-load(source)--><

Loads a set of properties into the receiving Properties object from source. The load source can be
either the string name of a file or a stream object. Properties are read from the source as individual
lines using linein() (Section 5.2.4.13, “lineIn”). Blank lines and lines with a Rexx line comment ("--")
as the first non-blank characters are ignored. Otherwise, the lines are assumed to be of the form
"name=value" and are added to the receiver Properties value using name as the index for the value.
Properties loaded from source that have the same names as existing items will replace the current
entries.

5.3.11.9. put

>>-put(item,name)--><

Makes the object item a member item of the collection and associates it with index name. The item
value must be a character string. The new item replaces any existing item or method associated with
index name.

5.3.11.10. save

>>-save(target)--><

The Queue Class

293

Saves a set of properties into target. The save target can be either the string name of a file or a stream
object. Properties are stored as individual lines using lineout() (Section 5.2.4.14, “lineOut”). The lines
are written in the form "name=value". A saved Properties file can be reloaded using the Properties
load() (Section 5.3.11.8, “load”) method.

5.3.11.11. setLogical

>>-setLogical(name,value)--------------------------------------><

Sets a logical value in the property bundle. The value argument must be either the numbers "0" or "1",
or the logical values .true or .false. The property value will be added with value converted in to the
appropriate "true" or "false" string value.

5.3.11.12. setProperty

>>-setProperty(name,value)-------------------------------------><

Sets a named property in the property bundle. The value argument must be a character string value.

5.3.11.13. setWhole

>>-setWhole(name,value)--><

Sets a whole number value in the property bundle. The value argument must be a valid Rexx whole
number.

5.3.12. The Queue Class

A queue is a non-sparse sequenced collection with whole-number indexes. The indexes specify the
position of an item relative to the head (first item) of the queue. Adding or removing an item changes
the association of an index to its queue item. You can add items at either the tail or the head of the
queue.

Table 5.22. ooRexx Queue Class

Object

↓

Queue

Chapter 5. The Builtin Classes

294

+ OrderedCollection

new
of

allIndexes
allItems
append
at, []
delete
empty
first
firstItem
hasIndex
hasItem
index
insert
isEmpty
items

last
lastItem
makeArray
next
peek
previous
pull
push
put
queue
remove
removeItem
section
supplier

Note

The Queue class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the OrederedCollection
(Section 5.3.4, “The OrderedCollection Class”) class.

5.3.12.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the OrderedCollection (Section 5.3.4, “The OrderedCollection Class”).

append intersection sortWith
appendAll last stableSort
delete lastItem stableSortWith

The Queue Class

295

difference next subset
first previous union
firstItem section xor
insert sort

5.3.12.2. new (Class Method)

>>-new---><

Returns a new empty Queue object.

5.3.12.3. of (Class Method)

 +-,----+
 V |
>>-of(---item-+-)--><

Returns a newly created queue containing the specified item objects in the order specified.

5.3.12.4. []

>>-[index]---><

Returns the item located at index index. This is the same as the at() (Section 5.3.12.9, “at”) method.

5.3.12.5. []=

>>-[index]=item--><

Replaces item at index with item. This method is the same as the put() (Section 5.3.12.28, “put”)
method.

5.3.12.6. allIndexes

Chapter 5. The Builtin Classes

296

>>-allIndexes--><

Returns an array of all index values for the queue. For the Queue class, the indices are integers 1 -
items (Section 5.3.12.19, “items”).

5.3.12.7. allItems

>>-allItems--><

Returns an array of all items contained in the queue, in queue order.

5.3.12.8. append

>>-append(item)--><

Appends item to the end of the queue, returning the index of the inserted item.

5.3.12.9. at

>>-at(index)---><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

5.3.12.10. delete

>>-delete(---index--)--><

Returns and deletes the member item with the specified index from the queue. If there is no item
with the specified index, the Nil object is returned and no item is deleted. All elements following the
deleted item will be moved up in the queue ordering and the item indexes will adjusted for the deletion.
The size of the collection will be reduced by 1 element. The delete method and the remove method
produce the same result for the list class.

The Queue Class

297

Example 5.169. Queue class - delete method

 a = .queue~of("Fred", "Mike", "Rick", "David")
 a~delete(2) -- removes "Mike", resulting in the queue
 -- ("Fred", "Rick", "David")

5.3.12.11. empty

>>-empty---><

Removes all items from the queue.

5.3.12.12. first

>>-first---><

Returns the index of the first item in the queue or the Nil object if the queue is empty. The index will
always be 1 for non-empty queues.

5.3.12.13. firstItem

>>-firstItem---><

Returns the first item in the queue or the Nil object if the queue is empty.

5.3.12.14. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the queue contains any item associated with index index, or 0 (false).

5.3.12.15. hasItem

Chapter 5. The Builtin Classes

298

>>-hasItem(item)---><

Returns 1 (true) if the queue contains the item at any index position or otherwise returns 0 (false). Item
equality is determined by using the == method of item.

5.3.12.16. index

>>-index(item)---><

Returns the index of the specified item within the queue. If the target item appears at more than one
index, the first located index will be returned. Returns the Nil object if the queue does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.12.17. insert

>>-insert(item-+--------+-)------------------------------------><
 +-,index-+

Returns a queue-supplied index for item, which is added to the queue. The inserted item follows any
existing item with index index in the queue ordering. If index is the Nil object, item is inserted at the
head of the queue. If you omit index, item becomes the last item in the queue.

Inserting an item in the queue at position index will cause the items in the queue after position index to
have their indexes modified by the queue object.

Example 5.170. Queue class - insert method

musketeers=.queue~of("Porthos","Athos","Aramis) /* Creates queue MUSKETEERS */
 /* consisting of: Porthos */
 /* Athos */
 /* Aramis */
index=musketeers~first /* Gives index of first item */
musketeers~insert("D'Artagnan",index) /* Adds D'Artagnan after Porthos */
 /* List is now: Porthos */
 /* D'Artagnan */
 /* Athos */
 /* Aramis */
/* Alternately, you could use */
musketeers~insert("D'Artagnan",.nil) /* Adds D'Artagnan before Porthos */
 /* List is now: D'Artagnan */
 /* Porthos */
 /* Athos */
 /* Aramis */

The Queue Class

299

/* Alternately, you could use */
musketeers~insert("D'Artagnan") /* Adds D'Artagnan after Aramis */
 /* List is now: Porthos */
 /* Athos */
 /* Aramis */
 /* D'Artagnan */

5.3.12.18. isEmpty

>>-isEmpty---><

Returns 1 (true) if the queue is empty. Returns 0 (false) otherwise.

5.3.12.19. items

>>-items---><

Returns the number of items in the collection.

5.3.12.20. last

>>-last--><

Returns the index of the last item in the queue or the Nil object if the queue is empty.

5.3.12.21. lastItem

>>-lastItem--><

Returns the last item in the array or the Nil object if the array is empty.

Example 5.171. Queue class - lastItem method

musketeers=.array~of("Porthos","Athos","Aramis"") /* Creates array MUSKETEERS */
item=musketeers~lastItem /* Gives last item in array */
 /* (Assigns "Aramis" to item) */

Chapter 5. The Builtin Classes

300

5.3.12.22. makeArray

>>-makeArray---><

Returns a single-index array containing the receiver queue items. The array indexes range from 1
to the number of items. The order in which the queue items appear in the array is the same as their
queuing order, with the head of the queue as index 1.

5.3.12.23. next

>>-next(index)---><

Returns the index of the item that follows the queue item having index index or returns the Nil object if
the item having that index is last in the queue.

5.3.12.24. peek

>>-peek--><

Returns the item at the head of the queue. Returns the Nil object if the queue is empty. The collection
remains unchanged.

5.3.12.25. previous

>>-previous(index)---><

Returns the index of the item that precedes the queue item having index index or the Nil object if the
item having that index is first in the queue.

5.3.12.26. pull

>>-pull--><

Returns and removes the item at the head of the queue. Returns the Nil object if the queue is empty.

The Queue Class

301

5.3.12.27. push

>>-push(item)--><

Adds the object item to the head of the queue.

5.3.12.28. put

>>-put(item,index)---><

Replaces any existing item associated with the specified index with the new item. If the index does not
exist in the queue, an error is raised.

5.3.12.29. queue

>>-queue(item)---><

Adds the object item to the tail of the queue.

5.3.12.30. remove

>>-remove(index)---><

Returns and removes from a collection the member item with index index. Returns the Nil object if no
item has index index.

5.3.12.31. removeItem

>>-removeItem(item)--><

Removes an item from the queue. If the target item exists at more than one index, the first located
item is removed. The return value is the removed item. Item equality is determined by using the ==
method of item.

Chapter 5. The Builtin Classes

302

5.3.12.32. section

>>-section(start-+--------+-)----------------------------------><
 +-,items-+

Returns a new queue (of the same class as the receiver) containing selected items from the receiver.
The first item in the new queue is the item corresponding to index start in the receiver. Subsequent
items in the new queue correspond to those in the receiver (in the same sequence). If you specify the
whole number items, the new queue contains only this number of items (or the number of subsequent
items in the receiver, if this is less than items). If you do not specify items, the new queue contains all
subsequent items from the receiver. The receiver queue remains unchanged.

5.3.12.33. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the queue. The supplier allows
you to iterate over the index/item pair contained in the queue at the time the supplier was created. The
supplier iterates the items in their queuing order, with the head of the queue first.

5.3.13. The Relation Class

A relation is a collection with indexes that can be any object. In a relation, each item is associated with
a single index, but there can be more than one item with the same index (unlike a table, which can
contain only one item for any index).

Table 5.23. ooRexx Relation Class

Object

↓

Relation

+ MapCollection

new

allAt
allIndex
allIndexes
allItems
at, []
difference
empty
hasIndex
hasItem
index
intersection
isEmpty

items
makeArray
put, []=
remove
removeAll
removeItem
subset
supplier
union
uniqueIndexes
xor

The Relation Class

303

Note

The Relation class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the MapCollection
(Section 5.3.3, “The MapCollection Class”) class.

5.3.13.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection (Section 5.3.3, “The MapCollection Class”).

putAll

5.3.13.2. new (Class Method)

>>-new---><

Returns an empty Relation object.

5.3.13.3. []

>>-[index]---><

Chapter 5. The Builtin Classes

304

Returns an item associated with index. This is the same as the at() (Section 5.3.13.9, “at”) method.

5.3.13.4. []=

>>-[index]=item--><

Adds item to the relation associated with index index. This is the same as the put() (Section 5.3.13.19,
“put”) method.

5.3.13.5. allAt

>>-allAt(index)--><

Returns a single-index array containing all the items associated with index index. Items in the array
appear in an unspecified order. Index equality is determined by using the == method of index.

5.3.13.6. allIndex

>>-allIndex(item)--><

Returns a single-index array containing all indexes for item item, in an unspecified order. Item equality
is determined by using the == method of item.

5.3.13.7. allIndexes

>>-allIndexes--><

Returns an array of all indexes contained in the Relation. The returned array will have one index for
every item stored in the relation, including duplicates. To retrieve the indexes without duplicates, use
the uniqueIndexes (Section 5.3.13.26, “uniqueIndexes”) method.

5.3.13.8. allItems

>>-allItems--><

The Relation Class

305

Returns an array of all items contained in the relation.

5.3.13.9. at

>>-at(index)---><

Returns the item associated with index index. If the relation contains more than one item associated
with index index, the item returned is unspecified. (The program should not rely on any particular item
being returned.) Returns the Nil object if the relation has no item associated with index index. Index
equality is determined by using the == method of index.

5.3.13.10. difference

>>-difference(argument)--><

Returns a new Relation containing only those items that the argument collection does not contain (with
the same associated index). The argument can be any collection class object.

5.3.13.11. empty

>>-empty---><

Removes all items from the relation.

5.3.13.12. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false). Index
equality is determined by using the == method of index.

5.3.13.13. hasItem

Chapter 5. The Builtin Classes

306

>>-hasItem(item-+--------+-)-----------------------------------><
 +-,index-+

Returns 1 (true) if the relation contains the member item item, 0 (false). If index is specified, hasItem()
will only return true if the relation contains the pairing of item associated with index index. Item and
index equality is determined by using the == method.

5.3.13.14. index

>>-index(item)---><

Returns the index for item item. If there is more than one index associated with item item, the one
returned is not defined. Item equality is determined by using the == method of item.

5.3.13.15. intersection

>>-intersection(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items that are
in both the receiver collection and the argument collection with the same associated index. The
argument can be any collection class object.

5.3.13.16. isEmpty

>>-isEmpty---><

Returns 1 (true) if the relation is empty. Returns 0 (false) otherwise.

5.3.13.17. items

>>-items-+---------+---><
 +-(index)-+

Returns the number of relation items with index index. If you specify no index, this method returns the
total number of items associated with all indexes in the relation. Index equality is determined by using
the == method of index.

The Relation Class

307

5.3.13.18. makeArray

>>-makeArray---><

Returns a single-index array containing the index objects. The collection items appear in the array in
an unspecified order.

5.3.13.19. put

>>-put(item,index)---><

Makes the object item a member item of the relation and associates it with index index. If the relation
already contains any items with index index, this method adds a new member item item with the same
index, without removing any existing member items.

5.3.13.20. remove

>>-remove(index)---><

Returns and removes from a relation the member item with index index. If the relation contains more
than one item associated with index index, the item returned and removed is unspecified. Returns the
Nil object if no item has index index. Index equality is determined by using the == method of index.

5.3.13.21. removeAll

>>-removeAll(index)--><

Returns and removes from a relation all member items with index index. All removed items are
returned in an array containing each of the removed items. The order of the returned items is
unspecified. If no items have the specified index, an empty array is returned. Index equality is
determined by using the == method of index.

5.3.13.22. removeItem

Chapter 5. The Builtin Classes

308

>>-removeItem(item-+--------+-)--------------------------------><
 +-,index-+

If index is not specified, returns and removes from a relation the member item item. If the relation
contains item associated with more than one index, the item returned and removed is unspecified.

If index is specified, returns and removes the member item item associated with index index. If item is
the only member with index, then the index is also removed from the Relation.

Returns the Nil object if item is not a member item (associated with index index, if specified).

5.3.13.23. subset

>>-subset(argument)--><

Returns 1 (true) if all items in the receiver Relation are also contained in the argument collection with
the same associated index; returns 0 (false) otherwise. The argument can be any collection class
object.

5.3.13.24. supplier

>>-supplier--+---------+---------------------------------------><
 +-(index)-+

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the relation. The supplier allows
you to iterate over all index/item pairs in the relation at the time the supplier was created. The supplier
enumerates the items in an unspecified order. If you specify index, the supplier contains all of the
items with the specified index.

5.3.13.25. union

>>-union(argument)---><

Returns a new collection containing all items from the receiver collection and the argument collection.
The argument can be any collection class object.

5.3.13.26. uniqueIndexes

The Relation Class

309

>>-uniqueIndexes---><

Returns an array of all indexes contained in the Relation, with no duplicates.

5.3.13.27. xor

>>-xor(argument)---><

Returns a new collection of the same class as the receiver that contains all items from the receiver
collection and the argument collection. All index-item pairs that appear in both collections are
removed. The argument can be any collection class object.

5.3.13.28. Examples

Example 5.172. Relation class - examples

/* Use a relation to express parent-child relationships */
family = .relation~new
family["Henry"] = "Peter" /* Peter is Henry's child */
family["Peter"] = "Bridget" /* Bridget is Peter's child */
family["Henry"] = "Jane" /* Jane is Henry's child */

/* Show all children of Henry recorded in the family relation */
henrys_kids = family~allAt("Henry")
Say "Here are all the listed children of Henry:"
Do kid Over henrys_kids
 Say " "kid
End

/* Show all parents of Bridget recorded in the family relation */
bridgets_parents = family~allIndex("Bridget")
Say "Here are all the listed parents of Bridget:"
Do parent Over bridgets_parents
 Say " "parent
End

/* Display all the grandparent relationships we know about. */
checked_for_grandkids = .set~new /* Records those we have checked */
Do grandparent Over family /* Iterate for each index in family */
 If checked_for_grandkids~hasIndex(grandparent)
 Then Iterate /* Already checked this one */
 kids = family~allat(grandparent) /* Current grandparent's children */
 Do kid Over kids /* Iterate for each item in kids */
 grandkids = family~allAt(kid) /* Current kid's children */
 Do grandkid Over grandkids /* Iterate for each item in grandkids */
 Say grandparent "has a grandchild named" grandkid"."
 End
 End
 checked_for_grandkids~put(grandparent) /* Add to already-checked set */
End

Chapter 5. The Builtin Classes

310

5.3.14. The Set Class

A Set is a collection containing member items where the index is the same as the item (similar to a
Bag collection). Any object can be placed in a set. There can be only one occurrence of any object in a
set (unlike a Bag collection). Item equality is determined by using the == method.

Table 5.24. ooRexx Set Class

Object

↓

Table

+ MapCollection

↓

Set

+ SetCollection

of

hasItem
intersection
put, []=
putAll

subset
union
xor

Note

The Set class also has available class methods that its metaclass, the Class class (Section 5.1.2,
“The Class Class”), defines.

The Set class is a subclass of the Table class. In addition to its own methods, it inherits the methods
of the Object class (see Section 5.1.1, “The Object Class”) and the Table class. It also inherits
methods from the Set Collection (Section 5.3.5, “The SetCollection Class”) class.

5.3.14.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset

The Set Class

311

allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection (Section 5.3.3, “The MapCollection Class”).

putAll

Methods inherited from the Table class (Section 5.3.16, “The Table Class”).

new (Class Method) hasIndex put
allIndexes hasItem []=
allItems index remove
at isEmpty removeItem
[] items supplier
empty makeArray

5.3.14.2. of (Class Method)

 +-,----+
 V |
>>-of(---item-+-)--><

Returns a newly created set containing the specified item objects.

5.3.14.3. []=

>>-[index]=item--><

Add an item to the Set. This method is the same as the put() (Section 5.3.14.6, “put”) method.

5.3.14.4. hasItem

>>-hasItem(item)---><

Returns 1 (true) if the collection contains the specified item at any index location. Returns 0 (false)
otherwise.

5.3.14.5. intersection

Chapter 5. The Builtin Classes

312

>>-intersection(argument)--------------------------------------><

Returns a new collection (of the same class as the receiver) containing only those items from the
receiver whose indexes are in both the receiver collection and the argument collection. The argument
can be any collection class object. The argument must also allow all of the index values in the receiver
collection.

5.3.14.6. put

>>-put(item-+--------+-)---------------------------------------><
 +-,index-+

Adds item to the Set. If there is an equivalent item in the Set, the exiting item will be replaced by the
new instance. Item equality is determined by using the == method of item. If index is specified, it must
be the same as item.

5.3.14.7. putAll

>>-putAll(collection)--><

Adds all items collection to the target set. The collection argument can be any object that supports
a supplier method. Items from collection are added using the item values returned by the supplier. If
duplicate items exist in collection, the last item provided by the supplier will overwrite previous items
with the same index.

5.3.14.8. subset

>>-subset(argument)--><

Returns 1 (true) if all items in the receiver collection are also contained in the argument collection;
returns 0 (false) otherwise. The argument can be any collection class object. The argument must also
allow all of the index values in the receiver collection.

5.3.14.9. union

The Stem Class

313

>>-union(argument)---><

Returns a new Set contains all the items from the receiver collection and selected items from the
argument collection. This method includes an item from argument in the new collection only if there is
no item already in the in the receiver collection and the method has not already included a matching
item. The order in which this method selects items in argument is unspecified. The argument can
be any collection class object. The argument must also allow all of the index values in the receiver
collection.

5.3.14.10. xor

>>-xor(argument)---><

Returns a new Set that contains all items from the receiver collection and the argument collection; all
items that appear in both collections are removed. The argument can be any collection class object.
The argument must also allow all of the index values in the receiver collection.

5.3.15. The Stem Class

A stem object is a collection with unique indexes that are character strings.

Table 5.25. ooRexx Stem Class

Object

↓

Stem

+ MapCollection

= \= == \== <> ><
allIndexes
allItems
at, []
empty
hasIndex
hasItem
index
isEmpty

items
makeArray
put, []=
remove
removeItem
request
supplier
toDirectory
unknown

Note

The Stem class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the Map Collection
(Section 5.3.3, “The MapCollection Class” class.

Chapter 5. The Builtin Classes

314

Stems are automatically created whenever a Rexx stem variable or Rexx compound variable is used.
For example:

Example 5.173. Stem class - examples

a.1 = 2

creates a new stem collection with the name A. and assigns it to the Rexx variable A.; it also assigns
the value 2 to entry 1 in the collection.

The value of an uninitialized stem index is the stem object NAME concatenated with the derived stem
index.

Example 5.174. Stem class - examples

say a.[1,2] -- implicitly creates stem object with name "A."
-- displays "A.1.2"

a = .stem~new("B.")
say a[1,2] -- displays "B.1.2"

In addition to the items explicitly assigned to the collection indexes, a value may be assigned to all
possible stem indexes. The []= method (with no index argument) will assign the target value to all
possible stem indexes. Following assignment, a reference to any index will return the new value until
another value is assigned or the index is dropped.

The [] method (with no index specified) will retrieve any globally assigned value. By default, this
returns the stem NAME value.

In addition to the methods defined in the following, the Stem class removes the methods =, ==, \=, \==,
<>, and >< using the DEFINE method.

5.3.15.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union

The Stem Class

315

at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection class (Section 5.3.3, “The MapCollection Class”).

putAll

5.3.15.2. new (Class Method)

>>-new-+--------+--><
 +-(name)-+

Returns a new stem object. If you specify a string name, this value is used to create the derived name
of compound variables. The default stem name is a null string ("").

5.3.15.3. []

 +-,---------+
 V |
>>-[---+-------+-+-]---><
 +-index-+

Returns the item associated with the specified indexes. Each index is an expression; use commas
to separate the expressions. The Stem object concatenates the index string values, separating them
with a period (.), to create a derived index. A null string ("") is used for any omitted expressions.
The resulting string is the index of the target stem item. If the stem has no item associated with the
specified final index, the stem default value is returned. If a default value has not been set, the stem
name concatenated with the final index string is returned.

If you do not specify index, the stem default value is returned. If no default value has been assigned,
the stem name is returned.

Note

You cannot use the [] method in a DROP or PROCEDURE instruction.

5.3.15.4. []=

 +-,---------+
 V |

Chapter 5. The Builtin Classes

316

>>-[---+-------+-+-]=value-------------------------------------><
 +-index-+

Makes the value a member item of the stem collection and associates it with the specified index. The
final index is derived by concatenation each of the index arguments together with a "." separator. If
you specify no index arguments, a new default stem value is assigned. Assigning a new default value
will re-initialize the stem and remove all existing assigned indexes.

5.3.15.5. allIndexes

>>-allIndexes--><

Returns an array of all the stem tail names used in the stem.

5.3.15.6. allItems

>>-allItems--><

Returns an array of all items contained in the stem.

5.3.15.7. at

>>-at(tail)--><

Returns the item associated with the specified tail. The Nil object is returned if the stem has no item
associated with the specified tail.

5.3.15.8. empty

>>-empty---><

Removes all items from the stem.

5.3.15.9. hasIndex

The Stem Class

317

>>-hasIndex(tail)--><

Returns 1 (true) if the collection contains any item associated with a stem tail tail, or 0 (false).

5.3.15.10. hasItem

>>-hasItem(value)--><

Returns 1 (true) if the collection contains the value at any tail position or otherwise returns 0 (false).
Item equality is determined by using the == method of item.

5.3.15.11. index

>>-index(item)---><

Returns the index of the specified item within the stem. Returns the Nil object if the stem does not
contain the specified item. Item equality is determined by using the == method of item.

5.3.15.12. isEmpty

>>-isEmpty---><

Returns 1 (true) if the stem is empty. Returns 0 (false) otherwise.

5.3.15.13. items

>>-items---><

Returns the number of items in the collection.

5.3.15.14. makeArray

Chapter 5. The Builtin Classes

318

>>-makeArray---><

Returns an array of all stem indexes that currently have an associated value. The items appear in the
array in an unspecified order.

5.3.15.15. put

>>-put(item,tail)--><

Replaces any existing item associated with the specified tail with the new item item.

5.3.15.16. remove

>>-remove(tail)--><

Returns and removes from the stem the member item with index tail. Returns the Nil object if no item
has index tail.

5.3.15.17. removeItem

>>-removeItem(item)--><

Removes an item from the stem. If the target item exists at more than one tail, the first located item is
removed. Item equality is determined by using the == method of item. The return value is the removed
item.

5.3.15.18. request

>>-request(classid)--><

This method requests conversion to a specific class. All conversion requests except Array are
forwarded to the stem's current stem default value. Returns the result of the Stem class makeArray
method, if the requested class is Array. For all other classes, request forwards the message to the
stem object's default value.

The Table Class

319

5.3.15.19. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the stem. The supplier allows
you to iterate though the index/item pairs contained in the Stem object at the time the supplier was
created. The supplier iterates the items in an unspecified order.

5.3.15.20. toDirectory

>>-toDirectory---><

Returns a Directory (Section 5.3.9, “The Directory Class”) object for the stem. The directory will
contain a name/value pair for each stem index with a directly assigned value.

5.3.15.21. unknown

>>-unknown-(messagename,messageargs)---------------------------><

Reissues or forwards all unknown messages to the stem's current default value. For additional
information, see Section 4.2.6, “Defining an UNKNOWN Method”.

5.3.16. The Table Class

A table is a collection with indexes that can be any object. In a table, each item is associated with a
single index, and there can be only one item for each index (unlike a relation, which can contain more
than one item with the same index). Index equality is determined by using the == method.

Table 5.26. ooRexx Table Class

Object

↓

Table

+ MapCollection

new

allIndexes
allItems
at, []
empty

isEmpty
items
makeArray
put, []=

Chapter 5. The Builtin Classes

320

hasIndex
hasItem
index

remove
removeItem
supplier

Note

The Table class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the MapCollection
(Section 5.3.3, “The MapCollection Class”) class.

5.3.16.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Collextion class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection class (Section 5.3.3, “The MapCollection Class”).

putAll

5.3.16.2. new (Class Method)

>>-new---><

Returns an empty Table object.

5.3.16.3. []

The Table Class

321

>>-[index]---><

Returns the item associated with index. This is the same as the at () (Section 5.3.16.7, “at”) method.

5.3.16.4. []=

>>-[index]=item--><

Adds item to the table at index index. This method is the same as the put() (Section 5.3.16.15, “put”)
method.

5.3.16.5. allIndexes

>>-allIndexes--><

Returns an array of all indexes contained in the table.

5.3.16.6. allItems

>>-allItems--><

Returns an array of all items contained in the table.

5.3.16.7. at

>>-at(index)---><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

5.3.16.8. empty

Chapter 5. The Builtin Classes

322

>>-empty---><

Removes all items from the table.

5.3.16.9. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false).

5.3.16.10. hasItem

>>-hasItem(value)--><

Returns 1 (true) if the collection contains the value at any index position or otherwise returns 0 (false).
Item equality is determined by using the == method of item.

5.3.16.11. index

>>-index(item)---><

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns the Nil object if the table does not contain the
specified item. Item equality is determined by using the == method of item.

5.3.16.12. isEmpty

>>-isEmpty---><

Returns 1 (true) if the table is empty. Returns 0 (false) otherwise.

5.3.16.13. items

The Table Class

323

>>-items---><

Returns the number of items in the collection.

5.3.16.14. makeArray

>>-makeArray---><

Returns a single-index array containing the index objects. The array indexes range from 1 to the
number of items. The collection items appear in the array in an unspecified order.

5.3.16.15. put

>>-put(item,index)---><

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing items associated with index index.

5.3.16.16. remove

>>-remove(index)---><

Returns and removes the table item with index index. Returns the Nil object if no item has index index.

5.3.16.17. removeItem

>>-removeItem(item)--><

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item. Item equality is determined by using the == method
of item.

5.3.16.18. supplier

Chapter 5. The Builtin Classes

324

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the collection. The supplier allows
you iterate over the index/item pairs contained in the table at the time the supplier was created. The
supplier iterates over the items in an unspecified order.

5.3.17. The IdentityTable Class

An identity table is a collection with indexes that can be any object. In an identity table, each item is
associated with a single index, and there can be only one item for each index. Index and item matches
in an identity table are made using an object identity comparison. That is, an index will only match if
the same instance is used in the collection.

Table 5.27. ooRexx IdentityTable Class

Object

↓

IdentityTable

+ MapCollection

new

allIndexes
allItems
at, []
empty
hasIndex
hasItem
index

isEmpty
items
makeArray
put, []=
remove
removeItem
supplier

Note

The IdentityTable class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines. It also inherits methods from the MapCollection
(Section 5.3.3, “The MapCollection Class” class.

5.3.17.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request

The IdentityTable Class

325

identityHash run

Methods inherited from the Collection class (Section 5.3.2, “The Collection Class”).

[] equivalent put
[]= hasIndex subset
allIndexes hasItem supplier
allItems index union
at intersection xor
difference items
disjoint makeArray

Methods inherited from the MapCollection class (Section 5.3.3, “The MapCollection Class”).

putAll

5.3.17.2. new (Class Method)

>>-new---><

Returns an empty IdentityTable object.

5.3.17.3. []

>>-[index]---><

Returns the item associated with index. This is the same as the at() (Section 5.3.17.7, “at”) method.

5.3.17.4. []=

>>-[index]=item--><

Adds item to the table at index index. This method is the same as the put() (Section 5.3.17.15, “put”)
method.

5.3.17.5. allIndexes

>>-allIndexes--><

Chapter 5. The Builtin Classes

326

Returns an array of all indices contained in the table.

5.3.17.6. allItems

>>-allItems--><

Returns an array of all items contained in the table.

5.3.17.7. at

>>-at(index)---><

Returns the item associated with index index. Returns the Nil object if the collection has no item
associated with index.

5.3.17.8. empty

>>-empty---><

Removes all items from the table.

5.3.17.9. hasIndex

>>-hasIndex(index)---><

Returns 1 (true) if the collection contains any item associated with index index, or 0 (false).

5.3.17.10. hasItem

>>-hasItem(item)---><

The IdentityTable Class

327

Returns 1 (true) if the collection contains the item at any index position or otherwise returns 0 (false).

5.3.17.11. index

>>-index(item)---><

Returns the index of the specified item within the table. If the target item appears at more than one
index, the first located index will be returned. Returns the Nil object if the table does not contain the
specified item.

5.3.17.12. isEmpty

>>-isEmpty---><

Returns 1 (true) if the table is empty. Returns 0 (false) otherwise.

5.3.17.13. items

>>-items---><

Returns the number of items in the collection.

5.3.17.14. makeArray

>>-makeArray---><

Returns a single-index array containing the index objects. The array indexes range from 1 to the
number of items. The collection items appear in the array in an unspecified order.

5.3.17.15. put

Chapter 5. The Builtin Classes

328

>>-put(item,index)---><

Makes the object item a member item of the collection and associates it with index index. The new
item replaces any existing items associated with index index.

5.3.17.16. remove

>>-remove(index)---><

Returns and removes from a collection the member item with index index. Returns the Nil object if no
item has index index.

5.3.17.17. removeItem

>>-removeItem(item)--><

Removes an item from the table. If the target item exists at more than one index, the first located item
is removed. The return value is the removed item.

5.3.17.18. supplier

>>-supplier--><

Returns a Supplier (Section 5.4.18, “The Supplier Class”) object for the collection. The supplier allows
you iterate over the index/item pairs contained in the table at the time the supplier was created. The
supplier iterates over the items in an unspecified order.

5.3.18. Sorting Ordered Collections
Any ordered collection, such as non-sparse Arrays or Lists can have its elements placed into sorted
order using the sort method. The simplest sort is sorting an array of strings.

Example 5.175. Array class - sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sort

do name over myArray
 say name
end

Sorting Ordered Collections

329

will display the names in the order "Andy", "Fred", "Xavier", "Zoe".

The sort method orders the strings by using the compareTo method of the String class. The
compareTo method knows how to compare one string to another, and returns the values -1 (less
than), 0 (equal), or 1 (greater than) to indicate the relative ordering of the two strings.

5.3.18.1. Sorting non-strings
Sorting is not limited to string values. Any object that inherits the Comparable mixin class and
implements a compareTo method can be sorted. The DateTime class (Section 5.4.1, “The DateTime
Class”) and TimeSpan class (Section 5.4.3, “The TimeSpan Class”) are examples of built-in Rexx
classes that can be sorted. Any user created class may also implement a compareTo() method to
enable sorting. For example, consider the following simple class:

Example 5.176. Non-string sorting

 ::class Employee inherit Comparable

 ::attribute id
 ::attribute name

 ::method init
 expose id name
 use arg id, name

 ::method compareTo
 expose id
 use arg other
 return id~compareTo(other~id) -- comparison performed using employee id

 ::method string
 expose name
 return "Employee" name

The Employee class implements its sort order using the employee identification number. When the
sort method needs to compare two Employee instances, it will call the compareTo method on one of
the instances, passing the second instance as an argument. The compareTo method tells the sort
method which of the two instances should be first.

Example 5.177. Comparison during sorting

 a = .array~new
 a[1] = .Employee~new(654321, "Fred")
 a[2] = .Employee~new(123456, "George")
 a[3] = .Employee~new(333333, "William")

 a~sort

 do employee over a
 say employee -- sorted order is "George", "William", "Fred"
 end

Chapter 5. The Builtin Classes

330

5.3.18.2. Sorting with more than one order
The String class compareTo method only implements a sort ordering for an ascending sort using
a strict comparison. Frequently it is desirable to override a class-defined sort order or even to sort
items that do not implement a compareTo method. To change the sorting criteria, use the sortWith
method. The sortWith method takes a single argument, which is a Comparator object that implements
a compare method. The compare method performs comparisons between pairs of items. Different
comparators can be customized for different comparison purposes. For example, the Rexx language
provides a DescendingComparator class that will sort items into descending order:

Example 5.178. Multi-order sorting

::CLASS 'DescendingComparator' MIXINCLASS Comparator
::METHOD compare
use strict arg left, right
return -left~compareTo(right)

The DescendingComparator merely inverts the result returned by the item compareTo method. Our
previous example

Example 5.179. Descending compare sorting

myArray = .array~of("Zoe", "Fred", "Xavier", "Andy")
myArray~sortWith(.DescendingComparator~new)

do name over myArray
 say name
end

now displays in the order "Zoe", "Xavier", "Fred", "Andy".

Custom Comparators are simple to create for any sorting purpose. The only requirement is
implementing a compare method that knows how to compare pairs of items in some particular
manner. For example, to sort our Employee class by name instead of the default employee id, we can
use the following simple comparator class:

Example 5.180. Custom compare sorting

::CLASS EmployeeNameSorter MIXINCLASS Comparator
::METHOD compare
 use strict arg left, right
 return left~name~compareTo(right~name) -- do the comparison using the names

5.3.18.3. Builtin Comparators
Rexx includes a number of built-in Comparators for common sorting operations.

Comparator
Base comparator. The Comparator class just uses the compareTo method of the first argument
to generate the result. Using sortWith and a Comparator instance is equivalent to using the sort
method and no comparator.

The Concept of Set Operations

331

DescendingComparator
The reverse of the Comparator class. The DescendingComparator can be used to sort items in
descending order.

InvertingComparator
The InvertingComparator will invert the result returned by another Comparator instance. This
comparator can be combined with another comparator instance to reverse the sort order.

CaselessComparator
Like the base comparator, but uses the caselessCompareTo method to determine order. The
String class implements caselessCompareTo, so the CaselessComparator can be used to sort
arrays of strings independent of case.

ColumnComparator
The ColumnComparator will sort string items using specific substrings within each string item. If
sorting is performed on multiple column positions, the stableSortWith method is recommended to
ensure the results of previous sort operations are retained.

CaselessColumnComparator
Like the ColumnComparator, but the substring comparisons are done independently of case.

NumericComparator
Performs comparisons of strings using numeric comparison rules. Use the NumericComparator to
sort collections of numbers.

5.3.18.4. Stable and Unstable Sorts
The default sorting algorithm is an unstable sort. In an unstable sort, items are not guaranteed to
maintain their original positions if they compare equal during the sort. Consider the following simple
example:

Example 5.181. Unstable sort

a = .array~of("Fred", "George", "FRED", "Mike", "fred")
a~sortwith(.caselesscomparator~new)
do name over a
 say name
end

This example displays the 3 occurrences of Fred in the order "Fred", "fred", "FRED", even though they
compare equal using a caseless comparison.

The Array class implements a second sort algorithm that is available using the stableSort and
stableSortWith methods. These methods use a Mergesort algorithm, which is less efficient than the
default Quicksort and requires additional memory. The Mergesort is a stable algorithm that maintains
the original relative ordering of equivalent items. Our example above, sorted with stableSortWith,
would display "Fred", "FRED", "fred".

5.3.19. The Concept of Set Operations

The following sections describe the concept of set operations to help you work with set operators, in
particular if the receiver collection class differs from the argument collection class.

Chapter 5. The Builtin Classes

332

Rexx provides the following set-operator methods:

• difference

• intersection

• subset

• union

• xor

These methods are available to instances of the following collection classes:

• The OrderedCollections Array, List, Queue, and CircularQueue

• The MapCollections Directory, Stem, Table, IdentityTable, and Relation

• The SetCollections Set and Bag.

result = receiver~setoperator(argument)

where:

receiver
is the collection object receiving the set-operator message.

setoperator
is the set-operator method used.

argument
is the argument collection supplier supplied to the method. It can be an instance of one of the
Rexx collection classes or any object that implements a makearray method or supplier method,
depending on class of receiver.

The result object is of the same class as the receiver collection object.

5.3.19.1. The Principles of Operation

A set operation is performed by iterating over the elements of the receiver collection to compare each
element of the receiver with each element of the argument collection. The element is defined as the
tuple < index,item> (see Section 5.3.19.4, “Determining the Identity of an Item”). Depending on the
set-operator method and the result of the comparison, an element of the receiver collection is, or is
not, included in the resulting collection. A receiver collection that allows for duplicate elements can,
depending on the set-operator method, also accept elements of the argument collection after they
have been coerced to the type of the receiver collection.

The following examples are to help you understand the semantics of set operations. The collections
are represented as a list of elements enclosed in curly brackets. The list elements are separated by a
comma.

5.3.19.2. Set Operations on Collections without Duplicates

The Concept of Set Operations

333

Assume that the example sets are A={a,b} and B={b,c,d}. The result of a set operation is another
set. The only exception is a subset resulting in a Boolean .true or .false. Using the collection A and B,
the different set operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first set except for those that also appear in
the second set. The system iterates over the elements of the second set and removes them from
the first set one by one.

A DIFFERENCE B = {a}
B DIFFERENCE A = {c,d}

XOR operation
The resulting collection contains all elements of the first set that are not in the second set and all
elements of the second set that are not in the first set:

A XOR B = {a,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both sets:

A INTERSECTION B = {b}

SUBSET operation
Returns .true if the first set contains only elements that also appear in the second set, otherwise
it returns .false:

A SUBSET B = .false
B SUBSET A = .false

EQUIVALENT operation
Returns .true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns .false:

A EQUIVALENT B = .false
B EQUIVALENT A = .false

DISJOINT operation
Returns .true if there are no elements that appear in both sets, otherwise it returns .false:

A DISJOINT B = .false
B DISJOINT A = .false

Chapter 5. The Builtin Classes

334

5.3.19.3. Set-Like Operations on Collections with Duplicates

Assume that the example bags are A={a,b,b} and B={b,b,c,c,d}. The result of any set-like
operation is a collection, in this case a bag. The only exception is subset resulting in a Boolean .true
or .false. Using the collections A and B, the different set-like operators produce the following:

UNION operation
All elements of A and B are united:

A UNION B = {a,b,b,b,b,c,c,d}

DIFFERENCE operation
The resulting collection contains all elements of the first bag except for those that also appear in
the second bag. The system iterates over the elements of the second bag and removes them from
the first bag one by one.

A DIFFERENCE B = {a}
B DIFFERENCE A = {c,c,d}

XOR operation
The resulting collection contains all elements of the first bag that are not in the second bag and all
elements of the second bag that are not in the second bag:

A XOR B = {a,c,c,d}

INTERSECTION operation
The resulting collection contains all elements that appear in both bags:

A INTERSECTION B = {b,b}

SUBSET operation
Returns .true if the first set contains only elements that also appear in the second set, otherwise
it returns .false:

A SUBSET B = .false
B SUBSET A = .false

EQUIVALENT operation
Returns .true if the first set contains only elements that also appear in the second set and the
two sets have the same number of elements, otherwise it returns .false:

A EQUIVALENT B = .false
B EQUIVALENT A = .false

DISJOINT operation
Returns .true if there are no elements that appear in both sets, otherwise it returns .false:

The Concept of Set Operations

335

A DISJOINT B = .false
B DISJOINT A = .false

5.3.19.4. Determining the Identity of an Item
Set operations require the definition of the identity of an element to determine whether a certain
element exists in the receiver collection. The element of a collection is conceived as the tuple
<index,item>. The index is used as the identification tag associated with the item. Depending on
the collection class, the index is an instance of a particular class, for example, the string class for a
directory element, an integer for an array, or any arbitrary class for a relation. The Array class is an
exception because it can be multidimensional having more than one index. However, as a collection, it
is conceptionally linearized by the set operator.

For collection classes that require unique indexes, namely the Set, IdentityTable, Table, Directory, and
Stem, an item is identified by its index. For collections of collection classes that allow several items
to have the same index, namely the Relation class, an item is identified by both its index and its item.
For the Bag and the Set subclasses, where several items can have the same index but index and item
must be identical, the item is identified by its index. For Array, List, and Queue classes, the index is
derived from an object's position within the collection's order. Items are identified using only item.

When collections with different index semantics are used in set operations, the argument collection is
coerced into a collection of the same type as the receiver, and the operation is then performed using
the converted collection. The coercion process differs based on the types of both the receiver and
the argument collection. According to this concept, an item of a collection is identified for the different
receiver categories as follows:

Map Collection
If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection.

Ordered Collection and Set Collection
If argument is an instance of Collection, the matching set is obtained from the allItems method.
For any other class of object, the makearray method is used. The hasItem method is used to
perform the matching operations between the two collections.

Relation
If argument is a MapCollection, then index values are used to determine membership, and items
are inserted into the result using the index and item pairs.

If argument is an OrderedCollection or SetCollection, argument is converted into a MapCollection
using the collection items as both index and item values. Since the argument collection may
contain duplicate items, the converted collection is effectively a Relation instance.

For all other argument objects, the makearray method is used to obtain a set of values which are
used as if argument was an OrderedCollection. All tests for result membership are made using
both the index and item values.

Chapter 5. The Builtin Classes

336

5.4. The Utility Classes
This section describes the Rexx utility classes.

5.4.1. The DateTime Class

A DateTime object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A DateTime object has methods to allow formatting a date or time in various
formats, as well as allowing arithmetic operations between dates.

Table 5.28. ooRexx DateTime Class

Object

↓

DateTime

+ Comparable

+ Orderable

fromBaseDate
fromCivilTime
fromEuropeandate
fromIsoDate
fromLongTime
fromNormalDate
fromNormalTime
fromOrderedDate

fromStandardDate
fromTicks
fromUsaDate
fromUTCIsoDate
maxDate
minDate
today

+ -
addDays
addHours
addMicroseconds
addMinutes
addSeconds
addWeeks
addYears
baseDate
civilTime
compareTo
date
day
dayMicroseconds
dayMinutes
dayName
daySeconds

daysInMonth
daysInYear
elapsed
europeanDate
fullDate
hashCode
hours
init
isLeapYear
isoDate
languageDate
longTime
microseconds
minutes
month
monthName
normalDate

normalTime
offset
orderedDate
seconds
standardDate
string
ticks
timeOfDay
toLocalTime
toTimeZone
toUtcTime
usaDate
utcDate
utcIsoDate
weekDay
year
yearDay

Note

The DateTime class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.1.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send

The DateTime Class

337

= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparable class (Section 5.4.4, “The Comparable Class”.

compareTo

Methods inherited from the Orderable class (Section 5.1.1, “The Object Class”).

=, \=, ==, \==, <>, ><, >, <, >=, \<,
<=, \>, >>, <<, >>=, \<<, <<=, \>>
(Comparison Methods)

5.4.1.2. minDate (Class Method)

>>-minDate---><

Returns a DateTime instance representing the minimum supported Rexx date, 1 January 0001 at
00:00:00.000000.

5.4.1.3. maxDate (Class Method)

>>-maxDate---><

Returns a DateTime instance representing the maximum supported Rexx date, 31 December 9999 at
23:59:59.999999.

5.4.1.4. today (Class Method)

>>-today---><

Returns a DateTime instance for the current day, with a time value of 00:00:00.000000.

5.4.1.5. fromNormalDate (Class Method)

Chapter 5. The Builtin Classes

338

>>-fromNormalDate(-date-+------------------------------+-)-------------><
 +-,-+-----------+--+---------+-+
 +-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the Normal option of the Date() (Section 7.4.24,
“DATE”) built-in function. The time component will be set to the beginning of the input day
(00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A blank (" ") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.6. fromEuropeanDate (Class Method)

>>-fromEuropeanDate(-date-+------------------------------+--)------------><
 +-,-+-----------+--+---------+-+
 +-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the European option of the Date()
(Section 7.4.24, “DATE”) built-in function. The time component will be set to the beginning of the input
day (00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator. The time component will
be set to the beginning of the input day (00:00:00.000000).

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.7. fromOrderedDate (Class Method)

>>-fromOrderedDate(-date-+------------------------------+--)------------><
 +-,-+-----------+--+---------+-+
 +-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the Ordered option of the Date() (Section 7.4.24,
“DATE”) built-in function. The time component will be set to the beginning of the input day
(00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator. The time component will
be set to the beginning of the input day (00:00:00.000000).

The DateTime Class

339

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.8. fromStandardDate (Class Method)

>>-fromStandardDate(-date-+------------------------------+--)------------><
 +-,-+-----------+--+---------+-+
 +-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the Standard option of the Date() (Section 7.4.24,
“DATE”) built-in function. The time component will be set to the beginning of the input day
(00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A null string ("") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.9. fromUsaDate (Class Method)

>>-fromUsaDate(-date-+------------------------------+--)------------><
 +-,-+-----------+--+---------+-+
 +-separator-+ +-,offset-+

Creates a DateTime object from a string returned by the Usa option of the Date() (Section 7.4.24,
“DATE”) built-in function. The time component will be set to the beginning of the input day
(00:00:00.000000).

If specified, separator identifies the field separator character used in the string. The separator must be
a single character or the null string (""). A slash ("/") is the default separator.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.10. fromNormalTime (Class Method)

>>-fromNormalTime(time--+---------+-)------------------------><
 +-,offset-+

Creates a DateTime object from a string returned by the Normal option of the Time() (Section 7.4.65,
“TIME” built-in function. The date component will be set to 1 January 0001.

Chapter 5. The Builtin Classes

340

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.11. fromCivilTime (Class Method)

>>-fromCivilTime(time--+---------+-)------------------------><
 +-,offset-+

Creates a DateTime object from a string returned by the Civil option of the Time() (Section 7.4.65,
“TIME”) built-in function. The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.12. fromLongTime (Class Method)

>>-fromLongTime(time--+---------+-)------------------------><
 +-,offset-+

Creates a DateTime object from a string returned by the Long option of the Time() (Section 7.4.65,
“TIME”) built-in function. The date component will be set to 1 January 0001.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.13. fromBaseDate (Class Method)

>>-fromBaseDate(date--+---------+-)-------------------------------><
 +-,offset-+

Creates a DateTime object from a string returned by the Basedate option of the Date() (Section 7.4.24,
“DATE”) built-in function. The time component will be set to the beginning of the input day
(00:00:00.000000).

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.14. fromTicks (Class Method)

The DateTime Class

341

>>-fromTicks(time--+---------+-)--------------------------><
 +-,offset-+

Creates a DateTime object from a string returned by the Ticks option of the Date() (Section 7.4.24,
“DATE”) or Time() (Section 7.4.65, “TIME”) built-in functions.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.15. fromIsoDate (Class Method)

>>-fromIsoDate(date--+---------+-)------------------------><
 +-,offset-+

Creates a DateTime object from a string in ISO date format (yyyy-mm-ddThh:mm:ss.uuuuuu). The
DateTime string method returns the ISO format as the string form of a DateTime object.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

5.4.1.16. fromUTCIsoDate (Class Method)

>>-fromUTCIsoDate(date)--------------------------------------><

Creates a DateTime object from a string in ISO timezone qualified date format (yyyy-mm-
ddThh:mm:ss.uuuuuu+hhmm). The DateTime string method returns the ISO format as the string form
of a DateTime object.

5.4.1.17. init

>>-init--><

>>-init(fullDate--+---------+-)-------------------------------><
 +-,offset-+

>>-init(year,month,day-+---------+--------------------------------)----><
 +-,offset-+

>>-init(year,month,day,hours,minutes,seconds--+--------------------------------+-)-><
 +-,-+--------------+-+---------+-+
 +-microseconds-+ +-,offset-+

Initializes a new DateTime instance. If no arguments are specified, the DateTime instance is set to
the current date and time. If the single fullDate argument is used, the DateTime argument is initialized

Chapter 5. The Builtin Classes

342

to the date and time calculated by adding fullDate microseconds to 0001-01-01T00:00:00.000000.
If the year, month, day, form is used, the DateTime instance is initialized to 00:00:00.000000 on the
indicated date. Otherwise, the DateTime instance is initialized to the year, month, day, hours, minutes,
seconds, and microseconds components. Each of these components must be a valid whole number
within the acceptable range for the given component. For example, year must be in the range 1-9999,
while minutes must be in the range 0-59.

If specified, offset is the offset from UTC, in minutes. The offset must be valid whole number value.
The default offset is the current system offset timezone offset.

Example 5.182. Class DATETIME

today = .DateTime~new -- initializes to current date and time
 -- initializes to 9 Sep 2007 at 00:00:00.000000
day = .DateTime~new(date('F', "20070930", "S"))
 -- also initializes to 9 Sep 2007 at 00:00:00.000000
day = .DateTime~new(2007, 9, 30)
 -- initializes to 9 Sep 2007 at 10:33:00.000000
day = .DateTime~new(2007, 9, 30, 10, 33, 00)

5.4.1.18. Arithmetic Methods

>>-arithmetic_operator(argument)-------------------------------><

Note

For the prefix + operators, omit the parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver DateTime object.
Depending on the operation, the argument be either a TimeSpan object or a DateTime object. See the
description of the individual operations for details. The arithmetic_operator can be:

+ Addition. Adds a TimeSpan to the DateTime object, returning a new DateTime
instance. The receiver DateTime object is not changed. The TimeSpan may be
either positive or negative.

- Subtraction. If argument is a DateTime object, the two times are subtracted, and
a TimeSpan object representing the interval between the two times is returned.
If the receiver DateTime is less than the argument argument DateTime, a
negative TimeSpan interval is returned. The receiver DateTime object is not
changed.

If argument is a TimeSpan object, subtracts the TimeSpan from the DateTime
object, returning a new DateTime instance. The receiver DateTime object is not
changed. The TimeSpan may be either positive or negative.

The DateTime Class

343

Prefix - A prefix - operation on a DateTime object will raise a SYNTAX error condition.

Prefix + Returns a new instance of the DateTime object with the same time value.

Example 5.183. Class DATETIME - arithmetic

t = .dateTime~new~timeOfDay -- returns TimeSpan for current time.
say t -- displays "11:27:12.437000", perhaps
d = .dateTime~new(2010, 4, 11) -- creates new date

future = d + t -- adds timespan to d
say future -- displays "2010-04-11T11:27:12.437000"
 -- "real" start of next century
nextCentury = .dateTime~new(2101, 1, 1)
 -- displays "34060.12:25:49.922000", perhaps
say "The next century starts in" (nextCentury - .dateTime~new)

5.4.1.19. compareTo

>>-compareTo(other)--><

This method returns "-1" if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.1.20. year

>>-year--><

Returns the year represented by this DateTime instance.

5.4.1.21. month

>>-month--><

Returns the month represented by this DateTime instance.

5.4.1.22. day

Chapter 5. The Builtin Classes

344

>>-day--><

Returns the day represented by this DateTime instance.

5.4.1.23. hours

>>-hours--><

Returns number of whole hours since midnight.

5.4.1.24. minutes

>>-minutes--><

Returns minutes portion of the timestamp time-of-day.

5.4.1.25. seconds

>>-seconds--><

Returns seconds portion of the timestamp time-of-day.

5.4.1.26. microseconds

>>-microseconds---><

Returns microseconds portion of the timestamp time-of-day.

5.4.1.27. dayMinutes

>>-dayMinutes---><

The DateTime Class

345

Returns the number of minutes since midnight in the time-of-day.

5.4.1.28. daySeconds

>>-daySeconds---><

Returns the number of seconds since midnight in the time-of-day.

5.4.1.29. dayMicroseconds

>>-dayMicroseconds---><

Returns the number of microseconds since midnight in the time-of-day.

5.4.1.30. hashCode

>>-hashCode---><

Returns a string value that is used as a hash value for a MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.1.31. addYears

>>-addYears(years)--><

Add a number of years to the DateTime object, returning a new DateTime instance. The receiver
DateTime object is unchanged. The years value must be a valid whole number. Negative values result
in years being subtracted from the DateTime value.

The addYears method will take leap years into account. If the addition result would fall on February
29th of a non-leap year, the day will be rolled back to the 28th.

Example 5.184. Class DATETIME - addYears method

Chapter 5. The Builtin Classes

346

date = .DateTime~new(2008, 2, 29)
say date -- Displays "2008-02-29T00:00:00.000000"
say date~addYears(1) -- Displays "2009-02-29T00:00:00.000000"

5.4.1.32. addWeeks

>>-addWeeks(weeks)--><

Adds weeks to the DateTime object, returning a new DateTime instance. The receiver DateTime
object is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in week being subtracted from the DateTime value.

5.4.1.33. addDays

>>-addDays(days)--><

Adds days to the DateTime object, returning a new DateTime instance. The receiver DateTime object
is unchanged. The days value must be a valid number, including fractional values. Negative values
result in days being subtracted from the DateTime value.

Example 5.185. Class DATETIME - addDays method

date = .DateTime~new(2008, 2, 29)
say date -- Displays "2008-02-29T00:00:00.000000"
say date~addDays(1.5) -- Displays "2008-03-01T12:00:00.000000"

5.4.1.34. addHours

>>-addHours(hours)--><

Adds hours to the DateTime object, returning a new DateTime instance. The receiver DateTime object
is unchanged. The hours value must be a valid number, including fractional values. Negative values
result in hours being subtracted from the DateTime value.

5.4.1.35. addMinutes

The DateTime Class

347

>>-addMinutes(minutes)--------------------------------------><

Adds minutes to the DateTime object, returning a new DateTime instance. The receiver DateTime
object is unchanged. The minutes value must be a valid number, including fractional values. Negative
values result in minutes being subtracted from the DateTime value.

5.4.1.36. addSeconds

>>-addSeconds(seconds)--------------------------------------><

Adds seconds to the DateTime object, returning a new DateTime instance. The receiver DateTime
object is unchanged. The seconds value must be a valid number, including fractional values. Negative
values result in seconds being subtracted from the DateTime value.

5.4.1.37. addMicroseconds

>>-addMicroseconds(microseconds)----------------------------><

Adds microseconds to the DateTime object, returning a new DateTime instance. The receiver
DateTime object is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted from the DateTime value.

5.4.1.38. isoDate

>>-isoDate--><

Returns a String formatted into ISO date format, yyyy-mm-ddThh:mm:ss.uuuuuu.

5.4.1.39. utcIsoDate

>>-utcIsoDate---><

Returns a String formatted into a fully qualified ISO date format. If the timezone offiset is 0, the
format is yyyy-mm-ddThh:mm:ss.uuuuuuZ. If the offset is positive, the date is formatted as yyyy-

Chapter 5. The Builtin Classes

348

mm-ddThh:mm:ss.uuuuuu+hhmm. If the offset is negative, the result will be in the format yyyy-mm-
ddThh:mm:ss.uuuuuu-hhmm.

5.4.1.40. baseDate

>>-baseDate---><

Returns the number of complete days (that is, not including the current day) since and including the
base date, 1 January 0001, in the format: dddddd (no leading zeros or whitespace characters).

The base date of 1 January 0001 is determined by extending the current Gregorian calendar backward
(365 days each year, with an extra day every year that is divisible by 4 except century years that are
not divisible by 400). It does not take into account any errors in the calendar system that created the
Gregorian calendar originally.

5.4.1.41. yearDay

>>-yearDay--><

Returns the number of days, including the current day, that have passed in the DateTime year in the
format ddd (no leading zeros or blanks).

5.4.1.42. weekDay

>>-weekDay--><

Returns the day of the week, as an integer. The values returned use the ISO convention for day
numbering. Monday is "1", Tuesday is "2", running through "7" for Sunday.

5.4.1.43. europeanDate

>>-europeanDate(-+-----------+-)-------------------------------><
 +-separator-+

Returns the date in the format dd/mm/yy. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/")
is the default separator.

The DateTime Class

349

5.4.1.44. languageDate

>>-languageDate---><

Returns the date in an implementation- and language-dependent, or local, date format. The format is
dd month yyyy. The name of the month is according to the national language installed on the system.
If no local date format is available, the default format is returned.

Note

This format is intended to be used as a whole; Rexx programs must not make any assumptions
about the form or content of the returned string.

5.4.1.45. monthName

>>-monthName--><

Returns the name of the DateTime month, in English.

5.4.1.46. dayName

>>-dayName--><

Returns the name of the DateTime day, in English.

5.4.1.47. normalDate

>>-normalDate(-+-----------+-)-------------------------------><
 +-separator-+

Returns the date in the format dd mon yyyy. If specified, separator identifies the field separator
character used in the returned date. The separator must be a single character or the null string (""). A
blank (" ") is the default separator.

Chapter 5. The Builtin Classes

350

5.4.1.48. orderedDate

>>-orderedDate(-+-----------+-)-------------------------------><
 +-separator-+

Returns the date in the format yy/mm/dd. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/")
is the default separator.

5.4.1.49. standardDate

>>-standardDate(-+-----------+-)-------------------------------><
 +-separator-+

Returns the date in the format yyyymmdd. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A null string
("") is the default separator.

5.4.1.50. usaDate

>>-usaDate(-+-----------+-)-------------------------------><
 +-separator-+

Returns the date in the format mm/dd/yy. If specified, separator identifies the field separator character
used in the returned date. The separator must be a single character or the null string (""). A slash ("/")
is the default separator.

5.4.1.51. civilTime

>>-civilTime---><

Returns the time in Civil format hh:mmxx. The hours can take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59 a.m.--appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing as 12:00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

The DateTime Class

351

5.4.1.52. normalTime

>>-normalTime---><

Returns the time in the default format hh:mm:ss. The hours can have the values 00 through 23, and
minutes and seconds, 00 through 59. There are always two digits. Any fractions of seconds are
ignored (times are never rounded). This is the default.

5.4.1.53. longTime

>>-longTime---><

Returns time in the format hh:mm:ss.uuuuuu (where uuuuuu are microseconds).

5.4.1.54. fullDate

>>-fullDate---><

Returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or blanks).

5.4.1.55. utcDate

>>-utcDate---><

Returns the date converted to UTC time as the number of microseconds since 00:00:00.000000 on 1
January 0001, in the format: dddddddddddddddddd (no leading zeros or blanks).

5.4.1.56. toLocalTime

>>-toLocalTime---><

Chapter 5. The Builtin Classes

352

Returns a new DateTime object representing the time for the local timezone.

5.4.1.57. toUtcTime

>>-toUtcTime---><

Returns a new DateTime object representing the time for the UTC timezone (offset 0).

5.4.1.58. toTimeZone

>>-toTimeZone(-+--------+-)------------------------------><
 +-offset-+

Returns a new DateTime object representing the time for the timezone indicated by offset. If specified,
offset is the offset from UTC, in minutes. The offset must be valid whole number value. The default
offset 0, which creates a DateTime object for UTC.

5.4.1.59. ticks

>>-ticks--><

returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format:
dddddddddddd (no leading zeros or blanks). Times prior to 1 January 1970 are returned as a negative
value.

5.4.1.60. offset

>>-offset---><

Returns the timezone for the DateTime instance as the offset in minutes from UTC. Timezones east of
UTC will return a positive offset. Timezones west of UTC will return a negative offset.

5.4.1.61. date

The DateTime Class

353

>>-date---><

Returns a new DateTime object instance for the current date, with the time component set to
00:00:00.000000.

5.4.1.62. timeOfDay

>>-timeOfDay---><

Returns the interval since 00:00:00.000000 of the current day as a TimeSpan object.

5.4.1.63. elapsed

>>-elapsed---><

Returns the difference between current time and the receiver DateTime as a TimeSpan object. The
TimeSpan will be negative if the receiver DateTime represents a time in the future.

5.4.1.64. isLeapYear

>>-isLeapYear---><

Returns true ("1") if the current year is leap year. Returns false ("0") if the current year is not a leap
year.

5.4.1.65. daysInMonth

>>-daysInMonth--><

Returns the number of days in the current month. For example, for dates in January, 31 is returned.
The daysInMonth method takes leap years into account, returning 28 days for February in non-leap
years, and 29 days for leap years.

Chapter 5. The Builtin Classes

354

5.4.1.66. daysInYear

>>-daysInYear---><

Returns the number of days in the current year. For leap years, 366 is returned. For non-leap years,
this returns 365.

5.4.1.67. string

>>-string---><

Returns DateTime formatted as a string. The string value is returned in ISO format.

5.4.2. The Alarm Class

An alarm object provides timing and notification capability by supplying a facility to send any message
to any object at a given time. You can cancel an alarm before it sends its message.

Table 5.29. ooRexx Alarm Class

Object

↓

Alarm

cancel
init

Note

The Alarm class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.2.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start

The Alarm Class

355

class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.2.2. cancel

>>-cancel--><

Cancels the pending alarm request represented by the receiver. This method takes no action if the
specified time has already been reached.

5.4.2.3. init

>>-init(atime,message)---><

Sets up an alarm for a future time atime. At this time, the alarm object sends the message that
message, a message object, specifies. (See Section 5.1.7, “The Message Class”.) The atime can a
String, DateTime object, or TimeSpan object.

If atime is a DateTime object, the DateTime specifies a time when the alarm will be triggered. The
DateTime must be greater than the current time.

If atime is a TimeSpan, the Alarm will be set to the current time plus the TimeSpan. The TimeSpan
must not be a negative interval.

If atime is a String, you can specify this as a date and time ('hh:mm:ss') or as a number of seconds
starting at the present time. If you use the date and time format, you can specify a date in the default
format ('dd Mmm yyyy') after the time with a single blank separating the time and date. Leading
and trailing whitespace characters are not allowed in the atime. If you do not specify a date, the Alarm
uses the first future occurrence of the specified time. You can use the cancel() method to cancel a
pending alarm. See Section 4.2.9, “Initialization” for more information.

The following code sets up an alarm at 5:10 p.m. on December 15, 2007. (Assume today's date/time is
prior to December 15, 2007.)

Example 5.186. Class ALARM

/* Alarm Examples */

PersonalMessage=.MyMessageClass~new("Call the Bank")
msg=.message~new(PersonalMessage,"RemindMe")

Chapter 5. The Builtin Classes

356

time = .DateTime~fromIsoDate("2007-12-15T17:10:00.000000")

a=.alarm~new(time, msg)
exit
::class MyMessageClass public
::method init
expose inmsg
use arg inmsg
::method RemindMe
expose inmsg
say "It is now" "TIME"("C")".Please "inmsg
/* On the specified data and time, displays the following message: */
/* "It is now 5:10pm. Please Call the Bank" */

For the following example, the user uses the same code as in the preceding example to define msg,
a message object to run at the specified time. The following code sets up an alarm to run the msg
message object in 30 seconds from the current time:

Example 5.187. Class ALARM

a=.alarm~new(30,msg)

5.4.3. The TimeSpan Class

A TimeSpan object represents a point in between 1 January 0001 at 00:00.000000 and 31 December
9999 at 23:59:59.999999. A TimeSpan object has methods to allow formatting a date or time in
various formats, as well as allowing arithmetic operations between dates.

Table 5.30. ooRexx TimeSpan Class

Object

↓

TimeSpan

+ Comparable

+ Orderable

fromCivilTime
fromDays
fromHours
fromLongTime
fromMicroseconds
fromMinutes
fromNormalTime
fromSeconds
fromStringFormat

+ - / % // *
addDays
addHours
addMicroseconds
addMinutes
addSeconds
addWeeks
compareTo
days

hours
init
microseconds
minutes
seconds
sign
string
totalDays
totalHours

The TimeSpan Class

357

duration
fromStringFormat
hashCode

totMicroseconds
totalMinutes
totalSeconds

Note

The TimeSpan class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.3.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparable class (Section 5.4.4, “The Comparable Class”).

compareTo

Methods inherited from the Orderable class (Section 5.1.1, “The Object Class”).

=, \=, ==, \==, <>, ><, >, <, >=, \<,
<=, \>, >>, <<, >>=, \<<, <<=, \>>
(Comparison Methods)

5.4.3.2. fromDays (Class Method)

>>-fromDays(days)--><

Creates a TimeSpan object from a number of days. The days argument must be a valid Rexx number.

5.4.3.3. fromHours (Class Method)

>>-fromHours(hours)--><

Chapter 5. The Builtin Classes

358

Creates a TimeSpan object from a number of hours. The hours argument must be a valid Rexx
number.

5.4.3.4. fromMinutes (Class Method)

>>-fromMinutes(minutes)--------------------------------------><

Creates a TimeSpan object from a number of minutes. The minutes argument must be a valid Rexx
number.

5.4.3.5. fromSeconds (Class Method)

>>-fromSeconds(seconds)--------------------------------------><

Creates a TimeSpan object from a number of seconds. The seconds argument must be a valid Rexx
number.

5.4.3.6. fromMicroseconds (Class Method)

>>-fromMicroseconds(microseconds)---------------------------------><

Creates a TimeSpan object from a number of microseconds. The microseconds argument must be a
valid Rexx number.

5.4.3.7. fromNormalTime (Class Method)

>>-fromNormalTime(time)--><

Creates a TimeSpan object from a string returned by the Normal option of the Time() (Section 7.4.65,
“TIME”) built-in function. The TimeSpan will contain an interval equal to the time of day represented by
the string.

5.4.3.8. fromCivilTime (Class Method)

The TimeSpan Class

359

>>-fromCivilTime(time)--><

Creates a TimeSpan object from a string returned by the Civil option of the Time() (Section 7.4.65,
“TIME”) built-in function. The TimeSpan will contain an interval equal to the time of day represented by
the string.

5.4.3.9. fromLongTime (Class Method)

>>-fromLongTime(time)--><

Creates a TimeSpan object from a string returned by the Long option of the Time() (Section 7.4.65,
“TIME”) built-in function. The TimeSpan will contain an interval equal to the time of day represented by
the string.

5.4.3.10. fromStringFormat (Class Method)

>>-fromStringFormat(time)------------------------------------><

Creates a TimeSpan object from a string in the format returned by the TimeSpan string method.

5.4.3.11. init

>>-init(fullDate)---><

>>-init(hours, minutes, seconds)------------------------------><

>>-init(day, hours, minutes, second, microseconds)------------><

Initializes a new TimeSpan instance. If the single fullDate argument is used, the TimeSpan argument
is initialized to the time span fullDate microseconds. Otherwise, the TimeSpan instance is initialized
to either the hours, minutes, and seconds or the days, hours, minutes, seconds, and microseconds
components. Each of these components must be a valid whole number within the acceptable range
for the given component. For example, hours must be in the range 0-23, while minutes must be in the
range 0-59.

Example 5.188. Class TIMESPAN

 -- initializes to 15 hours, 37 minutes and 30 seconds
 -- (15:37:30.000000)

Chapter 5. The Builtin Classes

360

span = .TimeSpan~new(time('F', "15:37:30", "N))
 -- also initializes to 15:37:30.000000
span = .TimeSpan~new(15, 37, 30)
 -- initializes to 6.04:33:15.000100
span = .TimeSpan~new(6, 4, 33, 15, 100)

5.4.3.12. Arithmetic Methods

>>-arithmetic_operator(argument)-------------------------------><

Note

For the prefix + operators, omit the parentheses and argument.

Returns the result of performing the specified arithmetic operation on the receiver TimeSpan object.
Depending on the operation, the argument be either a TimeSpan object, a DateTime object, or a
number. See the description of the individual operations for details. The arithmetic_operator can be:

+ Addition. If argument is a DateTime object, the TimeSpan is added to the
DateTime object, returning a new DateTime instance. Neither the receiver
TimeSpan or the argument DateTime object is altered by this operation. The
TimeSpan may be either positive or negative.

If argument is a TimeSpan object, the two TimeSpans are added together, and
a new TimeSpan instance is returned. Neither the TimeSpan object is altered by
this operation.

- Subtraction. The argument must be a TimeSpan object. The argument
TimeSpan is subtracted from the receiver TimeSpan and a new TimeSpan
instance is returned. Neither the TimeSpan object is altered by this operation.

* Multiplication. The argument must be a valid Rexx number. The TimeSpan is
multiplied by the argument value, and a new TimeSpan instance is returned.
The receiver TimeSpan object is not altered by this operation.

/ Division. The argument must be a valid Rexx number. The TimeSpan is divided
by the argument value, and a new TimeSpan instance is returned. The receiver
TimeSpan object is not altered by this operation. The / operator and % produce
the same result.

% Integer Division. The argument must be a valid Rexx number. The TimeSpan is
divided by the argument value, and a new TimeSpan instance is returned. The
receiver TimeSpan object is not altered by this operation. The / operator and %
produce the same result.

// Remainder Division. The argument must be a valid Rexx number. The
TimeSpan is divided by the argument value and the division remainder is
returned as a new TimeSpan instance. The receiver TimeSpan object is not
altered by this operation.

The TimeSpan Class

361

Prefix - The TimeSpan is negated, returning a new TimeSpan instance. The receiver
TimeSpan is not altered by this operation.

Prefix + Returns a new instance of the TimeSpan object with the same time value.

Example 5.189. Class TIMESPAN

t1 = .timespan~fromHours(1)
t2 = t1 * 2
-- displays "01:00:00.000000 02:00:00.000000 03:00:00.000000"
say t1 t2 (t1 + t2)

5.4.3.13. compareTo

>>-compareTo(other)--><

This method returns "-1" if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.3.14. duration

>>-duration--><

Returns a new TimeSpan object containing the absolute value of the receiver TimeSpan object.

5.4.3.15. days

>>-days--><

Returns the number of whole days in the TimeSpan, as a positive number.

5.4.3.16. hours

Chapter 5. The Builtin Classes

362

>>-hours---><

Returns the hours component of the TimeSpan, as a positive number.

5.4.3.17. minutes

>>-minutes---><

Returns the minutes component of the TimeSpan, as a positive number.

5.4.3.18. seconds

>>-seconds---><

Returns the seconds component of the TimeSpan, as a positive number.

5.4.3.19. microseconds

>>-microseconds--><

Returns the microseconds component of the TimeSpan, as a positive number.

5.4.3.20. totalDays

>>-totalDays---><

Returns the time span expressed as a number of days. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.3.21. totalHours

>>-totalHours--><

The TimeSpan Class

363

Returns the time span expressed as a number of hours. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.3.22. totalMinutes

>>-totalMinutes--><

Returns the time span expressed as a number of minutes. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.3.23. totalSeconds

>>-totalSeconds--><

Returns the time span expressed as a number of seconds. The result includes any fractional part and
retains the sign of the receiver TimeSpan.

5.4.3.24. totalMicroseconds

>>-totalMicroseconds---><

Returns the time span expressed as a number of microseconds. The result retains the sign of the
receiver TimeSpan.

5.4.3.25. hashCode

>>-hashCode---><

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.3.26. addWeeks

Chapter 5. The Builtin Classes

364

>>-addWeeks(weeks)--><

Adds weeks to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The weeks value must be a valid number, including fractional values. Negative
values result in week being subtracted from the TimeSpan value.

5.4.3.27. addDays

>>-addDays(days)--><

Adds days to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The days value must be a valid number, including fractional values. Negative
values result in days being subtracted from the TimeSpan value.

5.4.3.28. addHours

>>-addHours(hours)--><

Adds hours to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The hours value must be a valid number, including fractional values. Negative
values result in hours being subtracted from the TimeSpan value.

5.4.3.29. addMinutes

>>-addMinutes(minutes)--------------------------------------><

Adds minutes to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The minutes value must be a valid number, including fractional values. Negative
values result in minutes being subtracted from the TimeSpan value.

5.4.3.30. addSeconds

>>-addSeconds(seconds)--------------------------------------><

The Comparable Class

365

Adds seconds to the TimeSpan object, returning a new TimeSpan instance. The receiver TimeSpan
object is unchanged. The seconds value must be a valid number, including fractional values. Negative
values result in seconds being subtracted from the TimeSpan value.

5.4.3.31. addMicroseconds

>>-addMicroseconds(microseconds)----------------------------><

Adds microseconds to the TimeSpan object, returning a new TimeSpan instance. The receiver
TimeSpan object is unchanged. The microseconds value must be a valid whole number. Negative
values result in microseconds being subtracted from the TimeSpan value.

5.4.3.32. sign

>>-sign---><

Returns "-1" if the TimeSpan is negative, "1" if the TimeSpan is positive, and "0" if the TimeSpan
duration is zero.

5.4.3.33. string

>>-string---><

Returns TimeSpan formatted as a string. The string value is in the format "-
dddddddd.hh:mm:ss.uuuuuu". If the TimeSpan is positive or zero, the sign is omitted. The days field
will be formatted without leading zeros or blanks. If the TimeSpan duration is less than a day, the days
field and the period separator will be omitted.

5.4.4. The Comparable Class

This class is defined as a mixin class.

Table 5.31. ooRexx Comparable Class

Object

↓

Comparable

Chapter 5. The Builtin Classes

366

compareTo

Note

The Comparable class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.4.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.4.2. compareTo

This method compares the receiving object to the object supplied in the comparable argument.

>>-compareTo(other)---------------------------------------><

This method returns "-1" if the other is larger than the receiving object, "0" if the two objects are equal,
and "1" if other is smaller than the receiving object.

5.4.5. The Orderable Class

The Orderable class can be inherited by classes which wish to provide each of the comparison
operator methods without needing to implement each of the individual methods. The inheriting class
need only implement the Comparable compareTo() method (Section 5.4.4.2, “compareTo”). This class
is defined as a mixin class.

Table 5.32. ooRexx Orderable Class

Object

↓

Orderable

compareTo

The Orderable Class

367

= \= <> >< == \=
> >= \> < <= \<
>> >>= << <<=
\>> \<<

5.4.5.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.5.2. Comparison Methods

>>-comparison_operator(argument)-------------------------------><

Returns 1 (true) or 0 (false), the result of performing the specified comparison operation. The receiver
object and the argument are the terms compared.

The comparison operators you can use in a message are:

= True if the terms are equal

\=, ><, <> True if the terms are not equal (inverse of =)

> Greater than

< Less than

>= Greater than or equal to

\< Not less than

<= Less than or equal to

\> Not greater than

All strict comparison operations have one of the characters doubled that define the operator. The
Orderable strict comparison operators produce the same results as the non-strict comparisons.

The strict comparison operators you can use in a message are:

== True if terms are strictly equal

\== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

Chapter 5. The Builtin Classes

368

>>= Strictly greater than or equal to

\<< Strictly NOT less than

<<= Strictly less than or equal to

\>> Strictly NOT greater than

5.4.6. The Comparator Class

The Comparator class is the base class for implementing Comparator objects that can be used with
the Array sortWith() (Section 5.3.6.35, “sortWith”) or stableSortWith() method (Section 5.3.6.37,
“stableSortWith”). The compare() method implements some form of comparison that determines the
relative ordering of two objects. Many Comparator implementations are specific to particular object
types.

Table 5.33. ooRexx Comparator Class

Object

↓

Comparator

compare

Note

The Comparator class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.6.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.6.2. compare

The CaselessComparator Class

369

>>-compare(first,second)--------------------------------><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first .

The default Comparator compare() method assumes that first is an object that implements the
Comparable compareTo method (Section 5.4.4.2, “compareTo”. Subclasses may override this to
implement more specific comparisons.

5.4.7. The CaselessComparator Class

The CaselessComparator class performs caseless orderings of String objects.

Table 5.34. ooRexx CaselessComparator Class

Object

↓

Comparator

↓

CaselessComparator

compare

Note

The CaselessComparator class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.7.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

Chapter 5. The Builtin Classes

370

compare

5.4.7.2. compare

>>-compare(first,second)--------------------------------><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. The two strings are compared using a caseless comparison.

5.4.8. The ColumnComparator Class

The ColumnComparator class performs orderings based on specific substrings of String objects.

Table 5.35. ooRexx ColumnComparator Class

Object

↓

Comparator

↓

ColumnComparator

compare
init

Note

The ColumnComparator class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.8.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request

The CaselessColumnComparator Class

371

identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.8.2. compare

>>-compare(first,second)--------------------------------><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. Only the defined columns of the strings are compared.

5.4.8.3. init

>>-init(start, length)----------------------------------><

Initializes a comparator to sort strings starting at position start for length characters.

5.4.9. The CaselessColumnComparator Class

The CaselessColumnComparator class performs caseless orderings of specific substrings of String
objects.

Table 5.36. ooRexx CaselessColumnComparator Class

Object

↓

Comparator

↓

CaselessColumnComparator

compare
init

Note

The CaselessColumnComparator class also has available class methods that its metaclass, the
Class class (Section 5.1.2, “The Class Class”), defines.

Chapter 5. The Builtin Classes

372

This class is defined as a mixin class.

5.4.9.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.9.2. compare

>>-compare(first,second)--------------------------------><

This method returns "-1" if the second is larger than first object, "0" if the two objects are equal, and "1"
second is smaller than first. Only the defined columns of the strings are compared, using a caseless
comparison.

5.4.9.3. init

>>-init(start, length)----------------------------------><

Initializes a comparator to sort strings starting at position start for length characters.

5.4.10. The DescendingComparator Class

The DescendingComparator class performs sort orderings in descending order. This is the inverse of a
Comparator (Section 5.4.6, “The Comparator Class”) sort order.

This class is defined as a mixin class. It must be used by inheriting from it as a mixin.

Table 5.37. ooRexx DescendingComparator Class

Object

↓

The CaselessDescendingComparator Class

373

Comparator

↓

DescendingComparator

compare

Note

The DescendingComparator class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.10.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.10.2. compare

>>-compare(first,second)--------------------------------><

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and
"-1" second is smaller than first, resulting in a descending sort sequence. The DescendingComparator
assumes the first object implements the Comparable compareTo method (Section 5.4.4.2,
“compareTo”.

5.4.11. The CaselessDescendingComparator Class

Chapter 5. The Builtin Classes

374

The CaselessDescendingComparator class performs caseless string sort orderings in descending
order. This is the inverse of a CaselessComparator (Section 5.4.7, “The CaselessComparator Class”)
sort order.

Table 5.38. ooRexx CaselessDescendingComparator Class

Object

↓

Comparator

↓

CaselessDescendingComparator

compare

Note

The CaselessDescendingComparator class also has available class methods that its metaclass,
the Class class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.11.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.11.2. compare

>>-compare(first,second)--------------------------------><

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and "-1"
second is smaller than first. The two strings are compared using a caseless comparison.

The InvertingComparator Class

375

5.4.12. The InvertingComparator Class

The InvertingComparator class inverts the comparison results of another Comparator object to reverse
the resulting sort order.

Table 5.39. ooRexx InvertingComparator Class

Object

↓

Comparator

↓

InvertingComparator

compare
init

Note

The InvertingComparator class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.12.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.12.2. compare

>>-compare(first,second)--------------------------------><

Chapter 5. The Builtin Classes

376

This method returns "1" if the second is larger than first object, "0" if the two objects are equal, and
"-1" second is smaller than first, resulting in a descending sort sequence. The InvertingComparator will
invert the ordering returned by the provided Comparator.

5.4.12.3. init

>>-init(comparator)----------------------------------><

Initializes an inverting comparator to sort strings using an inversion of the result from the comparator
compare() method.

5.4.13. The NumericComparator Class

The NumericComparator class compares strings using numeric comparison rules rather than string
comparison rules.

Table 5.40. ooRexx NumericComparator Class

Object

↓

Comparator

↓

NumericComparator

compare
init

Note

The NumericComparator class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

This class is defined as a mixin class.

5.4.13.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod

The Monitor Class

377

(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparator class (Section 5.4.6, “The Comparator Class”).

compare

5.4.13.2. compare

>>-compare(first,second)--------------------------------><

This method returns "1" if first is larger than the second object, "0" if the two objects are equal, and
"-1" if first is smaller than second. Comparisons are performed using numeric comparison rules, so the
collection strings must be valid numeric values.

5.4.13.3. init

>>-init(-+--------+-)----------------------------------><
 +-digits-+

Initializes a Numeric comparator to sort strings using numeric comparison rules using the comparator
compare() method. If digits is specified, the comparisons will be performed using the provided
precision. The default precision is 9.

5.4.14. The Monitor Class

The Monitor class acts as a proxy for other objects. Messages sent to the Monitor object are
forwarded to a different target object. The message target can be changed dynamically.

Table 5.41. ooRexx Monitor Class

Object

↓

Monitor

current
destination
init
unknown

Chapter 5. The Builtin Classes

378

Note

The Monitor class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.14.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.14.2. current

>>-current---><

Returns the current destination object.

5.4.14.3. destination

>>-destination--+---------------+------------------------------><
 +-(destination)-+

Returns a new destination object. If you specify destination, this becomes the new destination for
any forwarded messages. If you omit destination, the previous destination object becomes the new
destination for any forwarded messages.

5.4.14.4. init

>>-init--+---------------+-------------------------------------><
 +-(destination)-+

The MutableBuffer Class

379

Initializes the newly created monitor object.

5.4.14.5. unknown

>>-unknown(messagename,messageargs)----------------------------><

Reissues or forwards to the current monitor destination all unknown messages sent to a monitor
object. For additional information, see Section 4.2.6, “Defining an UNKNOWN Method”.

5.4.14.6. Examples

Example 5.190. Class MONITOR

.local~setentry("output",.monitor~new(.stream~new("my.new")~~command("open nobuffer")))

/* The following sets the destination */
previous_destination=.output~destination(.stream~new("my.out")~~command("open write"))
/* The following resets the destination */
.output~destination

.output~destination(.Stdout)
current_output_destination_stream_object=.output~current

5.4.15. The MutableBuffer Class

The MutableBuffer class is a buffer on which certain string operations such as concatenation can
be performed very efficiently. Unlike String objects, MutableBuffers can be altered without requiring
a new object allocation. A MutableBuffer object can provide better performance for algorithms that
involve frequent concatenations to build up longer string objects because it creates fewer intermediate
objects.

Table 5.42. ooRexx MutableBuffer Class

Object

↓

MutableBuffer

new

append
caselessChangeStr
caselessCountStr
caselessLastPos
caselessMatch
caselessMatchChar
caselessPos

getBufferSize
insert
lastPos
length
lower
makeArray
match

string
subChar
subStr
subWord
subWords
translate
upper

Chapter 5. The Builtin Classes

380

caselessWordPos
changeStr
countStr
delete
delStr
delWord

matchChar
overlay
pos
replaceAt
setBufferSize
space

verify
word
wordIndex
wordLength
wordPos
words

Note

The MutableBuffer class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.15.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.15.2. new

>>-new(-+--------+-+---------------+-)--------------------><
 +-string-+ +-,-buffersize--+

Initialize the buffer, optionally assign a buffer content and a starting buffer size. The default size is 256;
the buffer size increases to the length of string if the string does not fit into the buffer.

5.4.15.3. append

>>-append(string)--><

Appends string to the buffer content. The buffer size is increased if necessary.

5.4.15.4. caselessChangeStr

The MutableBuffer Class

381

>>-caselessChangeStr(needle,newneedle--+--------+--)---------------------------------><
 +-,count-+

Returns the receiver MutableBuffer newneedle replacing occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a positive, whole
number that gives the maximum number of occurrences to be replaced. The needle searches are
performed using caseless comparisons.

5.4.15.5. caselessCountStr

>>-caselessCountStr(needle)--><

Returns a count of the occurrences of needle in the receiving MutableBuffer that do not overlap. All
matches are made using caseless comparisons.

5.4.15.6. caselessLastPos

>>-caselessLastPos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position of the last occurrence of a string, needle, in the receiving buffer. (See also
Section 5.4.15.25, “pos”.) It returns 0 if needle is the null string or not found. By default, the search
starts at the last character of the receiving buffer and scans backward to the beginning of the
string. You can override this by specifying start, the point at which the backward scan starts and
length, the range of characters to scan. The start must be a positive whole number and defaults to
receiving_buffer~length if larger than that value or omitted. The length must be a non-negative
whole number and defaults to start. The search is performed using caseless comparisons.

5.4.15.7. caselessMatch

>>-caselessMatch(start,other-+----------------------------+-)-------------------><
 +-,--+---+--+---------+------+
 +-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target buffer beginning at
position start. Return .false ("0") if the characters are not a match. The matching is performed using
caseless comparisons. start must be a positive whole number less than or equal to the length of the
target buffer.

Chapter 5. The Builtin Classes

382

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The caselessMatch method is useful for efficient string parsing as it does not require new string
objects be extracted from the target string.

5.4.15.8. caselessMatchChar

>>-caselessMatchChar(n,chars)-------------------------><

Returns .true ("1") if the character at position n matches any character of the string chars.
Returns .false ("0") if the character does not match any of the characters in the reference set. The
match is made using caseless comparisons. The argument n must be a positive whole number less
than or equal to the length of the target MutableBuffer.

5.4.15.9. caselessPos

>>-caselessPos(needle-+---------------------------+-)---><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position in the receiving buffer of a needle string. (See also Section 5.4.15.18, “lastPos”.)
It returns 0 if needle is the null string or is not found or if start is greater than the length of the receiving
buffer. The search is performed using caseless comparisons. By default, the search starts at the
first character of the receiving buffer (that is, the value of start is 1), and continues to the end of the
buffer. You can override this by specifying start , the point at which the search starts, and length, the
bounding limit for the search. If specified, start must be a positive whole number and length must be a
non-negative whole number.

5.4.15.10. caselessWordPos

>>-caselessWordPos(phrase-+--------+-)---------------------------------><
 +-,start-+

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Word matches are made independent of case. Multiple
whitespace characters between words in either phrase or the receiving buffer are treated as a single
blank for the comparison, but, otherwise, the words must match exactly.

The MutableBuffer Class

383

By default the search starts at the first word in the receiving string. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.15.11. changeStr

>>-changeStr(needle,newneedle--+--------+--)---------------------------------><
 +-,count-+

Returns the receiver MutableBuffer with newneedle replacing occurrences of needle.

If count is not specified, all occurrences of needle are replaced. If count is specified, it must be a
positive, whole number that gives the maximum number of occurrences to be replaced.

5.4.15.12. countStr

>>-countStr(needle)--><

Returns a count of the occurrences of needle in the receiving buffer that do not overlap.

5.4.15.13. delete

>>-delete(n---+---------+--)-------------------------------><
 +-,length-+

Deletes length characters from the buffer beginning at the n'th character. If length is omitted, or if
length is greater than the number of characters from n to the end of the buffer, the method deletes the
remaining buffer contents (including the n'th character). The length must be a positive integer or zero.
The n must be a positive integer. If n is greater than the length of the buffer or zero, the method does
not modify the buffer content.

5.4.15.14. delstr

>>-delstr(n---+---------+--)-------------------------------><
 +-,length-+

Deletes length characters from the buffer beginning at the n'th character. If length is omitted, or if
length is greater than the number of characters from n to the end of the buffer, the method deletes the

Chapter 5. The Builtin Classes

384

remaining buffer contents (including the n'th character). The length must be a positive integer or zero.
The n must be a positive integer. If n is greater than the length of the buffer or zero, the method does
not modify the buffer content. The delstr() method is the same as the delete() method. It is provided for
polymorphism with the String class.

5.4.15.15. delWord

>>-delWord(n--+---------+--)-----------------------------------><
 +-,length-+

Deletes a substring from the MutableBuffer the substring that starts at the nth word and is of length
whitespace-delimited words. If you omit length, or if length is greater than the number of words from
n to the end of the receiving bufffer, the method deletes the remaining words in the receiving buffer
(including the nth word). The length must be a positive whole number or zero. The n must be a
positive whole number. If n is greater than the number of words in the receiving buffer, the method
returns the receiving buffer unchanged. The portion deleted includes any whitespace characters
following the final word involved but none of the whitespace characters preceding the first word
involved.

5.4.15.16. getBufferSize

>>-getBufferSize---><

Retrieves the current buffer size.

5.4.15.17. insert

>>-insert(new-+---+--)><
 +-,--+---+--+--------------------------+--+
 +-n-+ +-,--+--------+--+------+--+
 +-length-+ +-,pad-+

Inserts the string new, padded or truncated to length length, into the mutable buffer after the n'th
character. The default value for n is 0, which means insertion at the beginning of the string. If
specified, n and length must be positive integers or zeros. If n is greater than the length of the buffer
contents, the string new is padded at the beginning. The default value for length is the length of new.
If length is less than the length of string new, insert truncates new to length length. The default pad
character is a blank.

5.4.15.18. lastPos

The MutableBuffer Class

385

>>-lastPos(needle-+--------+-)---------------------------------><
 +-,start-+

Returns the position of the last occurrence of a string, needle, in the receiving buffer. (See also
Section 5.4.15.25, “pos”.) It returns 0 if needle is the null string or not found. By default, the search
starts at the last character of the receiving buffer and scans backward. You can override this by
specifying start, the point at which the backward scan starts. The start must be a positive whole
number and defaults to receiving_buffer~length if larger than that value or omitted.

Example 5.191. Class MUTABLEBUFFER - lastPos method

x1 - .mutablebuffer~new("abc def ghi")
x1~lastPos(" ") -> 8
x1 - .mutablebuffer~new("abcdefghi")
x1~lastPos(" ") -> 0
x1 - .mutablebuffer~new("efgxyz")
x1~lastPos("xy") -> 4
x1 - .mutablebuffer~new("abc def ghi")
x1~lastPos(" ",7) -> 4

5.4.15.19. length

>>-length--><

Returns length of data in buffer.

5.4.15.20. lower

>>-lower(+---+--+---------+---)----------------------><
 +-n-+ +-,length-+

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to lowercase. If n is specified, it must be a positive whole number. If n is
not specified, the case conversion will start with the first character. If length is specified, it must be a
non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.15.21. makeArray

Chapter 5. The Builtin Classes

386

>>-makeArray(-+-----------+-)----><
 +-Separator-+

This method returns an array of strings containing the substrings that were separated using the
separator character. The default separator is the newline character.

5.4.15.22. match

>>-match(start,other-+----------------------------+-)-------------------><
 +-,--+---+--+---------+------+
 +-n-+ +-,length-+

Returns .true ("1") if the characters of the other match the characters of the target buffer beginning
at position start. Return .false ("0") if the characters are not a match. start must be a positive whole
number less than or equal to the length of the target buffer.

If n is specified, the match will be performed starting with character n of other. The default value for n
is "1". n must be a positive whole number less than or equal to the length of other.

If length is specified, it defines a substring of other that is used for the match. length must be a positive
whole number and the combination of n and length must be a valid substring within the bounds of
other.

The match method is useful for efficient string parsing as it does not require new string objects be
extracted from the target buffer.

5.4.15.23. matchChar

>>-matchChar(n,chars)-------------------------><

Returns .true ("1") if the character at position n matches any character of the string chars.
Returns .false ("0") if the character does not match any of the characters in the reference set. The
argument n must be a positive whole number less than or equal to the length of the target buffer.

5.4.15.24. overlay

>>-overlay(new-+---+--)--><
 +-,--+---+--+--------------------------+--+
 +-n-+ +-,--+--------+--+------+--+
 +-length-+ +-,pad-+

The MutableBuffer Class

387

Modifies the buffer content by overlaying it, starting at the n'th character, with the string new, padded
or truncated to length length. The overlay can extend beyond the end of the buffer. In this case the
buffer size will be increased. If you specify length, it must be a positive integer or zero. The default
value for length is the length of new. If n is greater than the length of the buffer content, padding is
added before the new string. The default pad character is a blank, and the default value for n is 1. If
you specify n, it must be a positive integer.

5.4.15.25. pos

>>-pos(needle-+--------+-)-------------------------------------><
 +-,start-+

Returns the position in the receiving buffer of another string, needle. (See also Section 5.4.15.18,
“lastPos”.) It returns 0 if needle is the null string or is not found or if start is greater than the length
of the receiving buffer. By default, the search starts at the first character of the receiving buffer (that
is, the value of start is 1). You can override this by specifying start (which must be a positive whole
number), the point at which the search starts.

Example 5.192. Class MUTABLEBUFFER - pos method

x1 = .mutablebuffer~new("Saturday")
x1~pos("day") -> 6
x1 = .mutablebuffer~new("abc def ghi")
x1~pos("x") -> 0
x1~pos(" ") -> 4
x1~pos(" ",5) -> 8

5.4.15.26. replaceAt

>>-replaceAt(new-,-n-,-+----------+-+-------+-)-----><
 +-,-length-+ +-,-pad-+

Returns the receiving buffer with the characters from the nth character for length characters replaced
with new. The replacement position and length can extend beyond the end of the receiving string. The
starting position, n, is required and must be a positive whole number. The length is optional and must
be a positive whole number or zero. If length is omitted, it defaults to the length of new.

If n is greater than the length of the receiving string, padding is added before the new string. The
default pad character is a blank.

5.4.15.27. setBufferSize

Chapter 5. The Builtin Classes

388

>>-setBufferSize(n)--><

Sets the buffer size. If n is less than the length of buffer content, the content is truncated. If n is 0, the
entire contents is erased and the new buffer size is the value given in the init method.

5.4.15.28. space

>>-space-+---------------+-------------------------------------><
 +-(n-+------+-)-+
 +-,pad-+

Returns the target mutablebuffer, with n pad characters between each whitespace-delimited word.
If you specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are
removed. Leading and trailing whitespace characters are always removed. The default for n is 1, and
the default pad character is a blank.

5.4.15.29. string

>>-string--><

Retrieves the content of the buffer as a string.

5.4.15.30. subChar

>>-subChar(n)--><

Returns the n'th character of the receiving buffer. n must be a positive whole number. If n is greater
that the length of the receiving buffer then a zero-length string is returned.

5.4.15.31. substr

>>-substr(n-+--------------------------+--)----------------><
 +-,--+--------+--+------+--+
 +-length-+ +-,pad-+

The MutableBuffer Class

389

Returns a substring from the buffer content that begins at the n'th character and is of length
length, padded with pad if necessary. The n must be a positive integer. If n is greater than
receiving_string~length, only pad characters are returned. If you omit length, the remaining buffer
content is returned. The default pad character is a blank.

5.4.15.32. subWord

>>-subWord(n-+---------+-)-------------------------------------><
 +-,length-+

Returns the substring of the receiving buffer that starts at the nth word and is up to length whitespace-
delimited words. The n must be a positive whole number. If you omit length, it defaults to the number
of remaining words in the receiving buffer. The returned string never has leading or trailing whitespace
characters, but includes all whitespace characters between the selected words.

5.4.15.33. subWords

>>-subWords(--+---+-+---------+-)-------------------------------------><
 +-n-+ +-,length-+

Returns an array containing all words within the substring of the receiving mutablebuffer that starts at
the nth word and is up to length blank-delimited words. The n must be a positive whole number. If you
omit n, it defaults to 1. If you omit length, it defaults to the number of remaining words in the receiving
mutablebuffer. The strings in the returned array never have leading or trailing whitespace.

5.4.15.34. translate

>>-translate-+--+-><
 +-(--+-------------------------------------+-+-----------------------+-)---+
 +-tableo--+-------------------------+-+ +-,--+---+--+---------+-+
 +-,--+--------+--+------+-+ +-n-+ +-,length-+
 +-tablei-+ +-,pad-+

Returns the receiving buffer with each character translated to another character or unchanged.

The output table is tableo and the input translation table is tablei. translate searches tablei for each
character in the receiving buffer. If the character is found, the corresponding character in tableo is
replaces the character in the buffer. If there are duplicates in tablei, the first (leftmost) occurrence is
used. If the character is not found, the original character in the receiving buffer is unchanged.

The tables can be of any length. If you specify neither translation table and omit pad, the receiving
string is translated to uppercase (that is, lowercase a-z to uppercase A-Z), but if you include pad the

Chapter 5. The Builtin Classes

390

buffer translates the entire string to pad characters. tablei defaults to XRANGE("00"x,"FF"x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is
a blank.

n is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If omitted, length remainder of the buffer from the starting
position to the end is used.

5.4.15.35. upper

>>-upper(+---+--+---------+---)----------------------><
 +-n-+ +-,length-+

Returns the receiving buffer with the characters of the target string beginning with character n for
length characters converted to uppercase. If n is specified, it must be a positive whole number. If n
is not specified, the case conversion will start with the first character. If length is specified, it must be
a non-negative whole number. If length is not specified, the default is to convert the remainder of the
buffer.

5.4.15.36. verify

>>-verify(reference-+--+-)--><
 +-,--+--------+--+---------------------------+-+
 +-option-+ +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns a number that, by default, indicates whether the receiving buffer is composed only of
characters from reference. It returns 0 if all characters in the receiving buffer are in reference or
returns the position of the first character in the receiving buffer not in reference.

The option can be either Nomatch (the default) or Match. (You need to specify only the first
capitalized and highlighted letter; all characters following the first character are ignored, which can be
in uppercase or lowercase.)

If you specify Match, the method returns the position of the first character in the receiving buffer that is
in reference, or returns 0 if none of the characters are found.

The default for start is 1. Thus, the search starts at the first character of the receiving buffer. You can
override this by specifying a different start point, which must be a positive whole number.

The default for length is the length of the buffer from start to the end of the buffer. Thus, the search
proceeds to the end of the receiving buffer. You can override this by specifying a different length,
which must be a non-negative whole number.

If the receiving string is null, the method returns 0, regardless of the value of the option. Similarly,
if start is greater than receiving_buffer~length, the method returns 0. If reference is null, the
method returns 0 if you specify Match. Otherwise, the method returns the start value.

The MutableBuffer Class

391

Example 5.193. Class MUTABLEBUFFER - verify method

.mutablebuffer~new('123')~verify('1234567890') -> 0

.mutablebuffer~new('1Z3')~verify('1234567890') -> 2

.mutablebuffer~new('AB4T')~verify('1234567890') -> 1

.mutablebuffer~new('AB4T')~verify('1234567890','M') -> 3

.mutablebuffer~new('AB4T')~verify('1234567890','N') -> 1

.mutablebuffer~new('1P3Q4')~verify('1234567890', ,3) -> 4

.mutablebuffer~new('123')~verify("",N,2) -> 2

.mutablebuffer~new('ABCDE')~verify("", ,3) -> 3

.mutablebuffer~new('AB3CD5')~verify('1234567890','M',4) -> 6

.mutablebuffer~new('ABCDEF')~verify('ABC',"N",2,3) -> 4

.mutablebuffer~new('ABCDEF')~verify('ADEF',"M",2,3) -> 4

5.4.15.37. word

>>-word(n)---><

Returns the nth whitespace-delimited word in the receiving buffer or the null string if the receiving
buffer has fewer than n words. The n must be a positive whole number. This method is exactly
equivalent to receiving_buffer~subWord(n,1).

5.4.15.38. wordIndex

>>-wordIndex(n)--><

Returns the position of the first character in the nth whitespace-delimited word in the receiving buffer.
It returns 0 if the receiving buffer has fewer than n words. The n must be a positive whole number.

5.4.15.39. wordLength

>>-wordLength(n)---><

Returns the length of the nth whitespace-delimited word in the receiving buffer or 0 if the receiving
buffer has fewer than n words. The n must be a positive whole number.

5.4.15.40. wordPos

Chapter 5. The Builtin Classes

392

>>-wordPos(phrase-+--------+-)---------------------------------><
 +-,start-+

Returns the word number of the first word of phrase found in the receiving buffer, or 0 if phrase
contains no words or if phrase is not found. Multiple whitespace characters between words in either
phrase or the receiving buffer are treated as a single blank for the comparison, but, otherwise, the
words must match exactly.

By default the search starts at the first word in the receiving buffer. You can override this by specifying
start (which must be positive), the word at which the search is to be started.

5.4.15.41. words

>>-words---><

Returns the number of whitespace-delimited words in the receiving buffer.

5.4.16. The RegularExpression Class

This class provides support for regular expressions. A regular expression is a pattern you can use to
match strings.

Note

The RegularExpression class is not a built-in class and is NOT preloaded. It is defined in the
rxregexp.cls file. This means you must use a ::requires statement to activate its
functionality, as follows:

::requires "rxregexp.cls"

Table 5.43. ooRexx RegularExpression Class

Object

↓

RegularExpression

::require "rxregexp.cls"

init

The RegularExpression Class

393

match
parse
pos
position

Note

The RegularExpression class also has available class methods that its metaclass, the Class
class (Section 5.1.2, “The Class Class”), defines.

Here is a description of the syntax:

| OR operator between the left and right expression

? Matches any single character

* Matches the previous expression zero or more times

+ Matches the previous expression one or more times

\ "Escape" symbol: use the next character literally

() Expression in parenthesis (use where needed)

{n} Matches previous expression n times (n>1)

[] Set definition: matches any single character out of the defined set.

A '^' right after the opening bracket means that none of the following characters
should be matched.

A '-' (if not used with '\') defines a range between the last specified character
and the one following '-'. If it is the first character in the set definition, it is used
literally.

The following symbolic names (they must start and end with ':') can be used to abbreviate common
sets:

:ALPHA: Characters in the range A-Z and a-z

:LOWER: Characters in the range a-z

:UPPER: Characters in the range A-Z

:DIGIT: Characters in the range 0-9

:ALNUM: Characters in :DIGIT: and :ALPHA:

:XDIGIT: Characters in :DIGIT:, A-F and a-f

:BLANK: Space and tab characters

:SPACE: Characters "09"x to "0D"x and space

:CNTRL: Characters "00"x to "1F"x and "7F"x

:PRINT: Characters in the range "20"x to "7E"x

:GRAPH: Characters in :PRINT: without space

:PUNCT: All :PRINT: characters without space and not in :ALNUM:

Chapter 5. The Builtin Classes

394

Example 5.194. Class REGULAREXPRESSION

::requires "rxregexp.cls"

 "(Hi|Hello) World" Matches "Hi World" and
 "Hello World".
 "file.???" Matches any file with three
 characters after "."
 "file.?{3}" Same as above.
 "a *b" Matches all strings that begin with
 "a" and end with "b" and have an
 arbitrary number of spaces in between
 both.
 "a +b" Same as above, but at least one space
 must be present.
 "file.[bd]at" Matches "file.bat" and "file.dat".
 "[A-Za-z]+" Matches any string containing only
 letters.
 "[:ALPHA:]+" Same as above, using symbolic names.
 "[^0-9]*" Matches any string containing no
 numbers, including the empty string.
 "[:DIGIT::LOWER:]" A single character, either a digit or
 a lower case character.
 "This is (very)+nice." Matches all strings with one or more
 occurrences of "very " between
 "This is " and "nice.".

5.4.16.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.16.2. init

 +-,-"MAXIMAL"--+
>>-init(-+---------+-+--------------+-)--------------------><
 +-Pattern-+ +-,-"MINIMAL"--+

Instantiates a RegularExpression object. Use the optional parameter Pattern to define a pattern that
is used to match strings. See the introductory text below for a description of the syntax. If the strings
match, you can decide whether you want to apply "greedy" matching (a maximum-length match) or
"non-greedy" matching (a minimum-length match).

The RegularExpression Class

395

Example 5.195. Class REGULAREXPRESSION - new method

myRE1 = .RegularExpression~new
myRE2 = .RegularExpression~new("Hello?*")

5.4.16.3. match

>>-match(-string-)---><

This method tries to match string to the regular expression that was defined on the "new" invocation or
on the "parse" invocation. It returns 0 on an unsuccessful match and 1 on a successful match. For an
example see Section 5.4.16.4, “parse”.

5.4.16.4. parse

 +-,-"CURRENT"--+
>>-parse(-Pattern-+--------------+-------------------------><
 +-,-"MAXIMAL"--+
 +-,-"MINIMAL"--+

This method creates the matcher used to match a string from the regular expression specified with
Pattern. The RegularExpression object uses this regular expression until a new invocation of Parse
takes place. The second (optional) parameter specifies whether to use minimal or maximal matching.
The default is to use the current matching behavior.

Return values:

0
Regular expression was parsed successfully.

1
An unexpected symbol was met during parsing.

2
A missing ')' was found.

3
An illegal set was defined.

4
The regular expression ended unexpectedly.

5
An illegal number was specified.

Chapter 5. The Builtin Classes

396

Example 5.196. Class REGULAREXPRESSION - parse method

a.0 = "does not match regular expression"
a.1 = "matches regular expression"
b = .array~of("This is a nice flower.",
 "This is a yellow flower.", ,
 "This is a blue flower.",
 "Hi there!")

myRE = .RegularExpression~new
e = myRE~parse("This is a ???? flower.")
if e == 0 then do
 do i over b
 j = myRE~match(i)
 say i~left(24) ">>" a.j
 end
end
else
 say "Error" e "occurred!"
exit

::requires "rxregexp.cls"

Output:

This is a nice flower. >> Does match regular expression
This is a yellow flower. >> Does not match regular expression
This is a blue flower. >> Does match regular expression
Hi there! >> Does not match regular expression

Example 5.197. Class REGULAREXPRESSION - parse method

a.0 = "an invalid number!"
a.1 = "a valid number."
b = .array~of("1","42","0","5436412","1a","f43g")
myRE = .RegularExpression~new("[1-9][0-9]*")
do i over b
 j = myRE~match(i)
 say i "is" a.j
end
say

/* Now allow "hex" numbers and a single 0 */
if myRE~parse("0|([1-9a-f][0-9a-f]*)") == 0 then do
 do i over b
 j = myRE~match(i)
 say i "is" a.j
 end
end
else

The RegularExpression Class

397

 say "invalid regular expression!"

exit

::requires "rxregexp.cls"

Example 5.198. Class REGULAREXPRESSION - parse method

str = "<p>Paragraph 1</p><p>Paragraph 2</p>"
myRE1 = .RegularExpression~new("<p>?*</p>","MINIMAL")
myRE1~match(str)
myRE2 = .RegularExpression~new("<p>?*</p>","MAXIMAL")
myRE2~match(str)

say "myRE1 (minimal) matched" str~substr(1,myRE1~position)
say "myRE2 (maximal) matched" str~substr(1,myRE2~position)

::requires "rxregexp.cls"

Output:

myRE1 (minimal) matched <p>Paragraph 1</p>
myRE2 (maximal) matched <p>Paragraph 1</p><p>Paragraph 2</p>

5.4.16.5. pos

>>-pos-(-haystack-)--><

This method tries to locate a string defined by the regular expression on the "new" invocation or on the
"parse" invocation in the given haystack string. It returns 0 on an unsuccessful match or the starting
position on a successful match. The end position of the match can be retrieved with the position
method (Section 5.4.16.6, “position”).

Example 5.199. Class REGULAREXPRESSION - haystack method

str = "It is the year 2002!"
myRE = .RegularExpression~new("[1-9][0-9]*")
begin = myRE~pos(str)
if begin > 0 then do
 year = str~substr(begin, myRE~position - begin + 1)
 say "Found the number" year "in this sentence."
end

Chapter 5. The Builtin Classes

398

::requires "rxregexp.cls"

Output:

Found the number 2002 in this sentence.

5.4.16.6. position

>>-position--><

Returns the character position at which the last parse(), pos(), or match() method ended.

Example 5.200. Class REGULAREXPRESSION - position method

myRE = .RegularExpression~new
myRE~parse("[abc") -- illegal set definition
say myRE~position -- will be 4

myRE = .RegularExpression~new("[abc]12")
myRE~match("c12")
say myRE~position -- will be 3

myRE~match("a13")
say myRE~position -- will be 2 (failure to match)

::requires "rxregexp.cls"

5.4.17. The RexxQueue Class

The RexxQueue class provides object-style access to Rexx external data queues.

Table 5.44. ooRexx RexxQueue Class

Object

↓

RexxQueue

create
delete
exists
open

delete
empty

pull
push

The RexxQueue Class

399

get
init
lineIn
lineOut
makeArray

queue
queued
say
set

Note

The RexxQueue class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.17.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.17.2. create (Class Method)

>>-create(name)--><

Attempts to create an external Rexx named queue using name. If a name queue already exists, a
new queue with a Rexx-generated name will be created. This method returns the name of the created
queue, which will be either name, or a generated name if there is a conflict.

5.4.17.3. delete (Class Method)

>>-delete(name)--><

Attempts to delete an external Rexx named queue named name. This method returns "0" if the
queue was successfully deleted. Non-zero results are the error codes from the RexxDeleteQueue()
programming interface.

5.4.17.4. exists (Class Method)

Chapter 5. The Builtin Classes

400

>>-exists(name)--><

Tests if an external Rexx queue name currently exists, returning 1 (true) if it does and 0 (false)
otherwise.

5.4.17.5. open (Class Method)

>>-open(name)--><

Tests if the external Rexx named queue nameexists and creates the queue if it does not.

5.4.17.6. delete

>>-delete--><

Deletes the Rexx external queue associated with this RexxQueue instance.

5.4.17.7. empty

>>-empty---><

Removes all items from the Rexx external queue associated with this RexxQueue instance.

5.4.17.8. get

>>-get--><

Returns the name of the Rexx external queue associated with this instance.

5.4.17.9. init

The RexxQueue Class

401

>>-init(-+------+-)----------------------------------><
 +-name-+

Initializes a new RexxQueue instance associated with the named Rexx external queue. If name is not
specified, the SESSION queue is used. If the named queue does not exist, one will be created.

5.4.17.10. lineIn

>>-lineIn--><

Reads a single line from the Rexx external queue. If the queue is empty, lineIn will wait until a line is
added to the queue.

5.4.17.11. lineOut

>>-lineOut(-+------+-)----------------------------------><
 +-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.17.12. makeArray

>>-makeArray---><

Returns a single-index array with the same number of items as the receiver object. Items in the new
array will have the same order as the items in the external queue. The external queue is emptied.

5.4.17.13. pull

>>-pull--><

Reads a line from the Rexx external queue. If the queue is currently empty, this method will
immediately return the Nil Object without waiting for lines to be added to the queue.

Chapter 5. The Builtin Classes

402

5.4.17.14. push

>>-push(-+------+-)----------------------------------><
 +-line-+

Adds a line to the Rexx external queue in last-in-last-out (LIFO) order. If line is not specified, a null
string ("") is added.

5.4.17.15. queue

>>-queue(-+------+-)----------------------------------><
 +-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.17.16. queued

>>-queued---><

Returns the count of lines currently in the Rexx external queue.

5.4.17.17. say

>>-say(-+------+-)----------------------------------><
 +-line-+

Adds a line to the Rexx external queue in first-in-first-out (FIFO) order. If line is not specified, a null
string ("") is added.

5.4.17.18. set

>>-set(name)----------------------------------><

The Supplier Class

403

Switches the Rexx external queue associated with the RexxQueue instance. The new queue must
have been previously created. The method return value is the name of current queue being used by
the instance.

5.4.18. The Supplier Class

You can use a supplier object to iterate over items of a collection. Supplier objects are created from a
snapshot of a collection. The iteration results are not affected by later changes to the source collection
object.

Table 5.45. ooRexx Supplier Class

Object

↓

Supplier

new

allIndexes
allItems
available
getArrays
index

init
item
next
supplier

Note

The Supplier class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.18.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.18.2. new (Class Method)

>>-new(items,indexes)---><

Chapter 5. The Builtin Classes

404

Returns a new supplier object. The items argument must be an array of objects over which the
supplier iterates. The indexes argument is an array of index values with a one-to-one correspondence
to the objects contained in the items array. The created supplier iterates over the arrays, returning
elements of the values array in response to items messages, and elements of the indexes array in
response to index messages. The supplier iterates for the number of items contained in the values
array, returning the Nil object for any nonexistent items in either array.

5.4.18.3. allIndexes

>>-allIndexes---><

Returns an array of all index values from the current supplier position to the end of the supplier. Once
allIndexes is called, no additional items can be retrieved from the supplier. Calls to available will
return "0" (false).

5.4.18.4. allItems

>>-allItems--><

Returns an array of all items from the current supplier position to the end of the supplier. Once
allItems is called, no additional items can be retrieved from the supplier. Calls to available will return
"0" (false).

5.4.18.5. available

>>-available---><

Returns 1 (true) if an item is available from the supplier (that is, if the item method would return a
value). It returns 0 (false) if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.18.6. index

>>-index---><

The Supplier Class

405

Returns the index of the current item in the collection. If no item is available, that is, if available would
return false, the supplier raises an error.

5.4.18.7. init

>>-init--><

Initializes the object instance.

5.4.18.8. item

>>-item--><

Returns the current item in the collection. If no item is available, that is, if available would return false,
the supplier raises an error.

5.4.18.9. next

>>-next--><

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns true), you can enumerate all items in the collection. If no item is available, that is, if
available would return false, the supplier raises an error.

5.4.18.10. Examples

Example 5.201. Class SUPPLIER

desserts=.array~of(apples, peaches, pumpkins, 3.14159) /* Creates array */
say "The desserts we have are:"
baker=desserts~supplier /* Creates supplier object named BAKER */
do while baker~available /* Array suppliers are sequenced */
 if baker~index=4
 then say baker~item "is pi, not pie!!!"
 else say baker~item
 baker~next
end

/* Produces: */
/* The desserts we have are: */
/* APPLES */

Chapter 5. The Builtin Classes

406

/* PEACHES */
/* PUMPKINS */
/* 3.14159 is pi, not pie!!! */

5.4.18.11. supplier

>>-supplier--><

Returns the target supplier as a result. This method allows an existing supplier to be passed to
methods that expect an object that implements a supplier method as an argument.

5.4.19. The StreamSupplier Class

A subclass of the Supplier class (Section 5.4.18, “The Supplier Class”) that will provided stream lines
using supplier semantics. This allows the programmer to iterate over the remaining lines in a stream.
A StreamSupplier object provides a snapshot of the stream at the point in time it is created, including
the current line read position. In general, the iteration is not effected by later changes to the read and
write positioning of the stream. However, forces external to the iteration may change the content of the
remaining lines as the iteration progresses.

Table 5.46. ooRexx StreamSupplier Class

Object

↓

Supplier

↓

StreamSupplier

available
index
init
item
next

Note

The StreamSupplier class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.19.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send

The StreamSupplier Class

407

= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Supplier class (Section 5.4.18, “The Supplier Class”).

new (Class Method) available item
allIndexes index next
allItems init supplier

5.4.19.2. available

>>-available---><

Returns 1 (true) if an item is available from the supplier (that is, if the item method would return a
value). It returns 0 (false) if the collection is empty or the supplier has already enumerated the entire
collection.

5.4.19.3. index

>>-index---><

Returns the index of the current item in the collection. If no item is available, that is, if available would
return false, the supplier raises an error.

5.4.19.4. init

>>-init--><

Initializes the object instance.

5.4.19.5. item

Chapter 5. The Builtin Classes

408

>>-item--><

Returns the current item in the collection. If no item is available, that is, if available would return false,
the supplier raises an error.

5.4.19.6. next

>>-next--><

Moves to the next item in the collection. By repeatedly sending next to the supplier (as long as
available returns true), you can enumerate all items in the collection. If no item is available, that is, if
available would return false, the supplier raises an error.

5.4.20. The RexxContext Class

The RexxContext class gives access to context information about the currently executing Rexx code.
Instances of the RexxContext class can only be obtained via the .CONTEXT environment symbol.
They cannot be directly created by the user. It is a subclass of the Object class (Section 5.1.1, “The
Object Class”).

Table 5.47. ooRexx RexxContext Class

Object

↓

RexxContext

args
condition
digits
executable
form
fuzz

line
name
package
rs
stackFrames
variables

5.4.20.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

The RexxContext Class

409

5.4.20.2. args

>>-args---><

Returns the arguments used to invoke the current context as an array. This is equivalent to using the
Arg(1, 'A') (Section 7.4.4, “ARG (Argument)”) built-in function.

5.4.20.3. condition

>>-condition--><

Returns the current context condition object, or the Nil object if the context does not currently have a
trapped condition. This is equivalent to using the Condition('O') (Section 7.4.18, “CONDITION”) built-in
function.

5.4.20.4. digits

>>-digits---><

Returns the current context digits setting. This is equivalent to using the digits() (Section 7.4.27,
“DIGITS”) built-in function.

5.4.20.5. executable

>>-executable---><

Returns the current executable object for the current context. The executable will be either a Routine
(Section 5.1.5, “The Routine Class”) or Method object (Section 5.1.4, “The Method Class”), depending
on the type of the active context.

5.4.20.6. form

Chapter 5. The Builtin Classes

410

>>-form---><

Returns the current context form setting. This is equivalent to using the form() (Section 7.4.32,
“FORM”) built-in function.

5.4.20.7. fuzz

>>-fuzz---><

Returns the current context fuzz setting. This is equivalent to using the fuzz() (Section 7.4.34, “FUZZ”)
built-in function.

5.4.20.8. line

>>-line---><

Returns the context current execution line. This is equivalent to using the .LINE (Section 6.13, “The
Line Number (.LINE)”) environment symbol.

5.4.20.9. name

>>-name---><

Returns the name used to invoke the current context. If the current context is a method, name is the
message name used to invoke the method. If the current context is a routine invoked as an external
call, name is the name used to call the routine. If the current context is an internal routine call, name is
the name of the label used to invoke the call. If the context is the main part of the program, name will
be the package name.

5.4.20.10. package

>>-package--><

Returns the Package (Section 5.1.6, “The Package Class”) object associated with the current
executable object.

The StackFrame Class

411

5.4.20.11. rs

>>-rs---><

Returns the context current return status value. If no host commands have been issued in the current
context, the Nil object is returned. This is equivalent to using the .RS (Section 6.16, “The Return
Status (.RS)”) environment symbol.

5.4.20.12. stackFrames

>>-stackFrames---><

Returns an array object of StackFrame objects representing the current call stack. The first item will
represent the current Rexx context and subsequent elements are earlier elements in the call stack.

5.4.20.13. variables

>>-variables--><

Returns a directory object containing all of the variables in the current execution context. The directory
keys will be the variable names and the mapped values are the values of the variables. The directory
will only contain simple variables and stem variables. Compound variable values may be accessed by
using the stem objects that are returned for the stem variable names.

5.4.21. The StackFrame Class

The StackFrame class gives access to execution information about the currently executing Rexx
activity. Instances of the StackFrame class can be obtained via the .CONTEXT environment symbol or
from a condition object created for a trapped condition. A StackFrame instance represents an instance
of an execution unit on the current activity's call stack. It provides information on code location,
arguments, etc. that are useful for debugging and problem determination. They cannot be directly
created by the user. It is a subclass of the Object class (Section 5.1.1, “The Object Class”).

Table 5.48. ooRexx StackFrame Class

Object

↓

StackFrame

Chapter 5. The Builtin Classes

412

arguments
executable
line
makeString
name

string
target
traceLine
type

5.4.21.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.21.2. arguments

>>-arguments--><

Returns the arguments used to invoke the execution frame represented by the StackFrame instance.

5.4.21.3. executable

>>-executable---><

Returns the executable object for the StackFrame context. The executable will be either a Routine
(Section 5.1.5, “The Routine Class”) or Method object (Section 5.1.4, “The Method Class”), depending
on the type of the StackFrame element.

5.4.21.4. line

>>-line---><

Returns the current line number of the StackFrame context. If the frame instance is not Rexx code
(e.g., compiled native code), the nil object (.nil) is returned.

The StackFrame Class

413

5.4.21.5. makeString

>>-makeString---><

Returns the frame traceLine value as the object's string value.

5.4.21.6. name

>>-name---><

Returns the name associated with the stack frame context. The name meaning depends on the type of
context.
• If the stack frame context is a method invocation, name is the message name used to invoke the

method.

• If the stack frame context is a routine invocation, name is the routine.

• If the stack frame context is an internal routine invocation, name is the label name used to invoke
the internal routine.

• If the stack frame context is the initial main part of a Rexx program, name is the name of the file
containing the program.

• If the stack frame context is an INTERPRET instruction, a zero-length string is returned.

5.4.21.7. string

>>-string---><

Returns the frame traceLine value as the object's string value.

5.4.21.8. target

>>-target---><

If the StackFrame instance is a method invocation, target returns the object that the method was
invoked against. Return the nil object (.nil) for all other StackFrame types.

Chapter 5. The Builtin Classes

414

5.4.21.9. traceLine

>>-traceLine--><

Returns the trace back line that would be displayed for error message trace. When possible, this will
be the source line of the Rexx code in the call stack. If source is not available, the trace back will
identify the method or routine belonging to the stack frame.

5.4.21.10. type

>>-type---><

Returns the type of invocation for this stack frame. Possible values are:
PROGRAM

The stack frame is the top level of a program.

METHOD
The stack frame is a method invocation.

ROUTINE
The stack frame is a routine invocation.

INTERPRET
The stack frame is code created by an INTERPRET instruction.

INTERNALCALL
The stack frame is a subroutine or function call to an internal label.

5.4.22. The WeakReference Class

A WeakReference instance maintains a non-pinning reference to another object. A non-pinning
reference does not prevent an object from getting garbage collected or having its uninit method run
when there are no longer normal references maintained to the object. Once the referenced object is
eligible for garbage collection, the reference inside the WeakReference instance will be cleared and
the VALUE method will return .nil on all subsequent calls. WeakReferences are useful for maintaining
caches of objects without preventing the objects from being reclaimed by the garbage collector when
needed.

Table 5.49. ooRexx WeakReference Class

Object

↓

WeakReference

new

The Pointer Class

415

value

Note

The WeakReference class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.22.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.22.2. new (Class Method)

>>-new-(object)--><

Returns a new WeakReference instance containing a reference to object.

5.4.22.3. value

>>-value--><

This method returns the referenced object. If the object has been garbage collected, then the Nil
object is returned.

5.4.23. The Pointer Class

Table 5.50. ooRexx Pointer Class

Object

Chapter 5. The Builtin Classes

416

↓

Pointer

new

= ==
\= <> >< \==
isNull

A Pointer instance is a wrapper around a native pointer value. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The Pointer class new method will raise an error if invoked.

Note

The Pointer class also has available class methods that its metaclass, the Class class
(Section 5.1.2, “The Class Class”), defines.

5.4.23.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.23.2. new (Class Method)

>>-new---><

Creating Pointer object instances directly from Rexx code is not supported. The Pointer class new
method will raise an error if invoked.

5.4.23.3. Operator Methods

>>-comparison_operator(argument)-------------------------------><

The Buffer Class

417

Returns 1 (true) or 0 (false), the result of performing a specified comparison operation.

For the Pointer class, the argument object must be a pointer object instance and the wrappered
pointer value must be the same.

The comparison operators you can use in a message are:

=, == True if the wrappered pointer values are the same.

\=, ><, <>, \==

True if the wrappered pointer values are not the same.

5.4.23.4. isNull

>>-isNull---><

Returns 1 (true) if the wrappered pointer value is a NULL pointer (0) value. Returns 0 (false) if the
pointer value is non-zero.

5.4.24. The Buffer Class

Table 5.51. ooRexx Buffer Class

Object

↓

Buffer

new

A Buffer instance is a Rexx interpreter managed block of storage. This class is designed primarily
for writing methods and functions in native code and can only be created using the native code
application programming interfaces. The Buffer class new method will raise an error if invoked.

Note

The Buffer also has available class methods that its metaclass, the Class class(Section 5.1.2,
“The Class Class”), defines.

5.4.24.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send

Chapter 5. The Builtin Classes

418

= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

5.4.24.2. new (Class Method)

>>-new---><

Creating Buffer object instances directly from Rexx code is not supported. The Buffer class new
method will raise an error if invoked.

5.4.25. The File Class

The File class provides services which are common to all the filesystems supported by ooRexx. A File
object represents a path to a file or directory. The path can be relative or absolute.

If you create a File object with a relative path, the absolute path will be calculated using the current
default directory. This absolute path is memorized on the File object, and will not change if you change
of default directory.

Table 5.52. ooRexx File Class

Object

↓

File

+ Comparable

+ Orderable

isCaseSensitive
listRoots
pathSeparator
separator

absoluteFile
absolutePath
canRead
canWrite
compareTo
delete
exists
hashCode
init
isCaseSensitive
isDirectory
isFile
isHidden

length
list
listFiles
makeDir
makeDirs
name
parent
parentFile
path
pathSeparator
renameTo
separator
setReadOnly

The File Class

419

lastModified
lastModified=

string

Note

The File class also has available class methods that its metaclass, the Class class (Section 5.1.2,
“The Class Class”), defines.

5.4.25.1. Inherited Methods
Methods inherited from the Object class (Section 5.1.1, “The Object Class”).

new (Class Method) init send
= \= == \== <> >< instanceMethod sendWith
|| '' (abuttal)' ' (blank) instanceMethods setMethod
(Operator Methods) isA start
class isInstanceOf startWith
copy objectName string
defaultName objectName= unsetMethod
hasMethod request
identityHash run

Methods inherited from the Comparable class (Section 5.4.4, “The Comparable Class”).

compareTo

Methods inherited from the Orderable class (Section 5.1.1, “The Object Class”).

=, \=, ==, \==, <>, ><, >, <, >=, \<,
<=, \>, >>, <<, >>=, \<<, <<=, \>>
(Comparison Methods)

5.4.25.2. isCaseSensitive (Class Method)

>>-isCaseSensitive---><

Returns .true ("1") if the file system is case-sensitive. Otherwise returns .false ("0").

This query method is available as both an instance and class method.

5.4.25.3. listRoots (Class Method)

>>-listRoots---><

Chapter 5. The Builtin Classes

420

Returns the file system root elements, as an array of string. On Windows, each of the drives is a root
element (Ex : "C:\"). On Unix, there is just one root ("/").

Example 5.202. Class FILE

say .File~listRoots~toString
/* Possible output on Windows : /*
C:\
D:\
E:\
R:\

5.4.25.4. pathSeparator (Class Method)

>>-pathSeparator---><

Returns the separator used for file search paths (";" on Windows, ":" on Unix).

This query method is available as both an instance and class method.

5.4.25.5. separator (Class Method)

>>-separator---><

Returns the file name separator used by the file system ("\" on Windows, "/" on Unix).

This query method is available as both an instance and class method.

Example 5.203. Class FILE - separator method

file = .File~new("dir1" || .File~separator || "dir2" || .File~separator || "file")
-- "dir1/dir2/file" on Unix, "dir1\dir2\file" on Windows

5.4.25.6. absoluteFile

>>-absoluteFile--><

The File Class

421

Returns the fully qualified path as a new instance of File.

Example 5.204. Class FILE - absoluteFile method

/* On Windows */
'cd c:\program files\oorexx'
say .File~new("my file")~absoluteFile~class -- The File class
say .File~new("my file")~absoluteFile -- c:\program files\oorexx\my file
say .File~new("..\my file")~absoluteFile -- c:\program files\my file
say .File~new("..\..\my file")~absoluteFile -- c:\my file
say .File~new("..\..\my dir\my file")~absoluteFile -- c:\my dir\my file

/* On Linux */
'cd /opt/ooRexx'
say .File~new("my file")~absoluteFile -- /opt/ooRexx/my file
say .File~new("../my file")~absoluteFile -- /opt/my file

5.4.25.7. absolutePath

>>-absolutePath--><

Returns the fully qualified path as a string.

Example 5.205. Class FILE - absolutePath method

/* On Windows */
'cd c:\program files\oorexx'
say .File~new("my file")~absolutePath~class -- The String class
say .File~new("my file")~absolutePath -- c:\program files\oorexx\my file
say .File~new("..\my file")~absolutePath -- c:\program files\my file
say .File~new("..\..\my file")~absolutePath -- c:\my file
say .File~new("..\..\my dir\my file")~absolutePath -- c:\my dir\my file

/* On Linux */
'cd /opt/ooRexx'
say .File~new("my file")~absolutePath -- /opt/ooRexx/my file
say .File~new("../my file")~absolutePath -- /opt/my file

5.4.25.8. canRead

>>-canRead---><

Returns .true ("1") if the file exists and is readable. Otherwise returns .false ("0").

Chapter 5. The Builtin Classes

422

5.4.25.9. canWrite

>>-canWrite--><

Returns .true ("1") if the file exists and is writable. Otherwise returns .false ("0").

5.4.25.10. compareTo

>>-compareTo(other)--><

Performs a sorting comparison of the target File object to the other File object. The comparison is
made on the absolute paths (strings) of both File objects. If the filesystem is case-sensitive then the
paths comparison is case-sensitive, otherwise the comparison is caseless. If the two paths are equal,
0 is returned. If the target path is larger, 1 is returned. -1 if the other argument is the larger path.

Example 5.206. Class FILE - conpareTo method

file1 = .File~new("file", "dir")
file2 = .File~new("FILE", "DIR")
'cd' .File~listRoots[1]
file1~compareTo(file2) -- 0 on Windows (both Files denote the same path)
file1~compareTo(file2) -- 1 on Unix ("/dir/file" is greater than "/DIR/FILE")

5.4.25.11. delete

>>-delete--><

Deletes the file or directory denoted by the absolute path of the target File object. Only empty
directories can be deleted.

Returns .true ("1") if the deletion was successful, otherwise returns .false ("0").

5.4.25.12. exists

>>-exists--><

The File Class

423

Returns .true ("1") if the file or directory (denoted by the absolute path of the target File object) exists.
Otherwise returns .false ("0").

5.4.25.13. hashCode

>>-hashCode--><

Returns a string value that is used as a hash value for MapCollection such as Table, Relation, Set,
Bag, and Directory.

5.4.25.14. init

>>-init(path-+------+-)--><
 +-,dir-+

Initializes a new File instance with the path path (after normalization).

If specified, dir is a parent path that is prepended to path. If dir is a File object then the absolute path
of dir is prepended, otherwise dir is prepended as-is (after normalization). The normalization consists
in adjusting the separators to the platform's convention and removing the final separator (if any).

Example 5.207. Class FILE - init method

/* Windows */
file = .File~new("file") -- file
file = .File~new("c:\program files\") -- c:\program files
file = .File~new("file", "c:/program files") -- c:\program files\file
'cd c:\program files\oorexx'
samples = .File~new("samples") -- samples
file = .File~new("file", "samples") -- samples\file
file = .File~new("file", samples) -- c:\program files\oorexx\samples\file

/* Unix */
file = .File~new("/opt/ooRexx/") -- /opt/ooRexx
'cd /opt/ooRexx'
samples = .File~new("samples") -- samples
file = .File~new("file", "samples") -- samples/file
file = .File~new("file", samples) -- /opt/ooRexx/samples/file

5.4.25.15. isCaseSensitive

Chapter 5. The Builtin Classes

424

>>-isCaseSensitive---><

Returns .true ("1") if the file system is case-sensitive. Otherwise returns .false ("0").

This query method is available as both an instance and class method.

5.4.25.16. isDirectory

>>-isDirectory---><

Returns .true ("1") if the absolute path of the target File object references a directory. Otherwise
returns .false ("0").

5.4.25.17. isFile

>>-isFile--><

Returns .true ("1") if the absolute path of the target File object references a file. Otherwise
returns .false ("0").

5.4.25.18. isHidden

>>-isHidden--><

Returns .true ("1") if the absolute path of the target File object references an existing file or directory
which is hidden. Otherwise returns .false ("0").

On Windows, a file or directory is hidden when its attribute FILE_ATTRIBUTE_HIDDEN is set.

On Unix, a file or directory is hidden when its name starts with a period character (".") or when one of
its parent directories has a name starting with a period character.

Example 5.208. Class FILE - isHidden method

/* Unix, when file exists */
say .File~new("/tmp/file")~isHidden -- 0
say .File~new("/tmp/.file")~isHidden -- 1
say .File~new("/tmp/.dir/file")~isHidden -- 1

The File Class

425

5.4.25.19. lastModified (Attribute)

>>-lastModified--><

>>-lastModified=date---><

lastModified get:
Returns the last modified date of the file/directory denoted by the absolute path of the receiver
object. The result is a DateTime object, or .nil in case of error.

lastModified set:
Sets the last modified date of the file/directory denoted by the absolute path of the receiver object.

The date parameter is a DateTime object.

Examples:

Example 5.209. Class FILE - lastModified method

 /* On Windows */
 say .File~new("C:\Program Files")~lastModified~class -- The DateTime class
 say .File~new("C:\Program Files")~lastModified --
 2010-11-01T19:14:49.000000
 say .File~new("dummy")~lastModified -- The NIL object

 /* A possible implementation of : touch -c -m -r referenceFile file
 -c, --no-create do not create any files
 -m change only the modification time
 -r, --reference=FILE use this file's time instead of current time
 */
 parse arg referenceFilePath filePath .
 file = .File~new(filePath)
 if \ file~exists then return 0 -- OK, not an error
 referenceFile = .File~new(referenceFilePath)
 referenceDate = referenceFile~lastModified
 if referenceDate == .nil then return 1 -- KO
 file~lastModified = referenceDate
 return 0 -- OK

5.4.25.20. length

>>-length--><

Returns the size in bytes of the file/directory denoted by the absolute path of the receiver object.

Chapter 5. The Builtin Classes

426

5.4.25.21. list

>>-list--><

Returns an array of files/directories names which are immediate children of the directory denoted by
the absolute path of the receiver object. The order in which the names are returned is dependent on
the file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of strings. If the receiver object is not a directory then the result is .nil.

Example 5.210. Class FILE - list method

names = .File~new("c:\program files\oorexx\samples")~list
say names -- an Array
say names~toString
/* Possible output */
api
ccreply.rex
complex.rex
drives.rex
factor.rex
(etc...)

5.4.25.22. listFiles

>>-listFiles---><

Returns an array of files/directories which are immediate children of the directory denoted by the
absolute path of the receiver object. The order in which the names are returned is dependent on the
file system (not necessarily alphabetic order). The special names "." and ".." are not returned.

The result is an array of File objects. If the receiver object is not a directory then the result is .nil.

Example 5.211. Class FILE - listFiles method

do file over deepListFiles("c:\program files\oorexx\samples")
 say file
end

-- Depth first iteration
::routine deepListFiles
use strict arg directory, accumulator=(.List~new)
files = .File~new(directory)~listFiles
if files == .nil then return accumulator
do file over files

The File Class

427

 accumulator~append(file)
 if file~isDirectory then call deepListFiles file~absolutePath, accumulator
end
return accumulator

/* Possible output */
c:\program files\oorexx\samples\api
c:\program files\oorexx\samples\api\callrxnt
c:\program files\oorexx\samples\api\callrxnt\backward.fnc
c:\program files\oorexx\samples\api\callrxnt\callrxnt.c
c:\program files\oorexx\samples\api\callrxnt\callrxnt.exe
c:\program files\oorexx\samples\api\callrxnt\callrxnt.ico
c:\program files\oorexx\samples\api\callrxnt\callrxnt.mak
c:\program files\oorexx\samples\api\callrxwn
c:\program files\oorexx\samples\api\callrxwn\backward.fnc
(etc...)

5.4.25.23. makeDir

>>-makeDir---><

Makes just the directory represented by the last name (Section 5.4.25.25, “name”) portion of the
receiver object's absolute path. Does not create any parent directories, which must all exist for a
successful creation of the leaf directory.

Returns .true ("1") if the creation was successful, otherwise returns .false ("0"). If the directory already
exists then the result is .false.

5.4.25.24. makeDirs

>>-makeDirs--><

Creates the entire directory hierarchy represented by the absolute path of the receiver object.

Returns .true ("1") if the creation was successful, otherwise returns .false ("0"). If the directory already
exists then the result is .false.

5.4.25.25. name

>>-name--><

Returns the name portion of the receiver object's absolute path. This is everything after the last path
separator. On Windows, the file's extension is part of the name.

Chapter 5. The Builtin Classes

428

Example 5.212. Class FILE - name method

/* On Windows */
say .File~new("c:\program files\oorexx\rexx.exe")~name -- rexx.exe
say .File~new("c:\")~name -- empty string
say .File~new("c:")~name -- empty string

/* On Unix */
say .File~new("/opt/ooRexx/bin/rexx.img")~name -- rexx.img
say .File~new("/")~name -- empty string

5.4.25.26. parent

>>-parent--><

Returns the parent directory portion of the receiver object's absolute path. If no separator is found or
the absolute path ends with a separator (which means this is a root path) then returns .nil.

Example 5.213. Class FILE - parent method

/* On Windows */
say .File~new("c:\program files\oorexx\rexx.exe")~parent -- c:\program files\oorexx
say .File~new("c:\")~parent -- The NIL object
say .File~new("c:")~parent -- The NIL object

/* On Unix */
say .File~new("/opt/ooRexx/bin/rexx.img")~parent -- /opt/ooRexx/bin
say .File~new("/")~parent -- The NIL object

5.4.25.27. parentFile

>>-parentFile--><

Returns the parent (Section 5.4.25.26, “parent” directory portion as a File object. If no separator is
found or the absolute path ends with a separator (which means this is a root path) then returns .nil.

5.4.25.28. path

The File Class

429

>>-path--><

Returns the original path (after normalization) used to create the File object. The normalization
consists in adjusting the separators to the platform's convention and removing the final separator (if
any).

5.4.25.29. pathSeparator

>>-pathSeparator---><

Returns the separator used for file search paths (";" on Windows, ":" on Unix).

This query method is available as both an instance and class method.

5.4.25.30. renameTo

>>-renameTo(dest)--><

Changes the name of the file/directory denoted by the absolute path of the target object. The new
name is dest.

Returns .true ("1") if the renaming was successful, otherwise returns .false ("0").

On Windows, this method calls MoveFile to perform the action.

On Unix, this method calls rename to perform the action.

5.4.25.31. separator

>>-separator---><

Returns the file name separator used by the file system ("\" on Windows, "/" on Unix).

This query method is available as both an instance and class method.

5.4.25.32. setReadOnly

Chapter 5. The Builtin Classes

430

>>-setReadOnly---><

Sets the read-only flag of the file/directory denoted by the absolute path of the target object.

Returns .true ("1") if the attribute was set, otherwise returns .false ("0").

5.4.25.33. string

>>-string--><

Returns a string that indicates the path used to create the File object.

Chapter 6.

431

Rexx Runtime Objects
In addition to the class objects described in the previous chapter, the Rexx runtime environment also
provides objects that are accessible via environment symbols (see Section 1.13.6, “Environment
Symbols”).

6.1. The Environment Directory (.ENVIRONMENT)

The Environment object is a directory of public objects that are always accessible. The Environment
object is automatically searched when environment symbols are used, or the Environment object may
be directly accessed using the .ENVIRONMENT symbol. Entries stored in the Environment use the
same name as the corresponding environment symbol, but without a leading period. For example:

 say .true -> Displays "1"
 say .environment~true -> Also displays "1"

The Environment object directory contains all of the Rexx built-in classes (Array, etc.), plus special
Rexx constants such as .NIL, .TRUE, and .FALSE.

6.1.1. The ENDOFLINE Constant (.ENDOFLINE)

The ENDOFLINE object is a string constant representing the line terminator used for file line end
markers for a given system. This constant is "0d0a"x on Windows (carriage return/linefeed) and "0a"x
(linefeed) on Unix platforms.

6.1.2. The FALSE Constant (.FALSE)

The FALSE object is the constant "0" representing a FALSE result for logical and comparison
operations.

6.1.3. The NIL Object (.NIL)

The Nil object is a special object that does not contain data. It usually represents the absence of an
object, as a null string represents a string with no characters. It has only the methods of the Object
class. Note that you use the Nil object (rather than the null string ("")) to test for the absence of data in
an array or other Collection class entry:

if .nil = board[row,col] /* .NIL rather than "" */
then ...

6.1.4. The TRUE Constant (.TRUE)

The TRUE object is the constant "1", representing a true result for logical and comparison operations.

Chapter 6. Rexx Runtime Objects

432

6.2. The Local Directory (.LOCAL)

The Local environment object is a directory of interpreter instance objects that are always accessible.
You can access objects in the Local environment object in the same way as objects in the
Environment object. The Local object contains the .INPUT, .OUTPUT, .ERROR, .DEBUGINPUT,
and .TRACEOUTPUT Monitor objects used for Rexx console I/O, the .STDIN, .STDOUT,
and .STDERR output streams that are the default I/O targets, and the .STDQUE RexxQueue instance
used for Rexx external queue operations.

Because both .ENVIRONMENT and .LOCAL are directory objects, you can place objects into, or
retrieve objects from, these environments by using any of the directory methods ([],[]=, PUT, AT,
SETENTRY, ENTRY, or SETMETHOD). To avoid potential name clashes with built-in objects and
public objects that Rexx provides, each object that your programs add to these environments should
have a period in its index.

Starting with ooRexx 4.2.0 a new object is available in the .LOCAL directory. The object is a Rexx
Array of all the command line options supplied to the program. Normally all the command line objects
are combined into single string and passed to the script as an argument retrievable via the BIF
ARG(1). The array supplied by the .LOCAL environment is a direct collection of the individual C
arguments passed to the program. The name of this array is SYSCARGS.

Example 6.1. .LOCAL

/* .LOCAL example--places something in the Local environment directory */
.local~my.alarm = theAlarm
/* To retrieve it */
say .local~my.alarm

/* Another .LOCAL example (Windows) */
.environment["MYAPP.PASSWORD"] = "topsecret"
.environment["MYAPP.UID"] = 200

/* Create a local directory for my stuff */
.local["MYAPP.LOCAL"] = .directory~new

/* Add log file for my local directory */
.myapp.local["LOG"] = .stream~new("myapp.log")
say .myapp.password /* Displays "topsecret" */
say .myapp.uid /* Displays "200" */

/* Write a line to the log file */
.myapp.local~log~lineout("Logon at "time()" on "date())

/* Redirect SAY lines into a file: */
.output~destination(.stream~new("SAY_REDIRECT.TXT"))
say "This goes into a file, and not onto the screen!"

/* .LOCAL example--get the individual command line arguments */
cmdargs = .local~syscargs
do carg over cmdargs
 say carg
end

The Debug Input Monitor (.DEBUGINPUT)

433

6.3. The Debug Input Monitor (.DEBUGINPUT)

This monitor object (see Section 5.4.14, “The Monitor Class”) holds the default interactive debug input
stream object (see Chapter 14, Input and Output Streams). This input stream is the source for all input
for interactive debug mode.

The default for this object's initial source is the .INPUT monitor.

6.4. The Error Monitor (.ERROR)

This monitor object (see Section 5.4.14, “The Monitor Class”) holds the error stream object. You can
redirect the trace output in the same way as with the output object in the Monitor class example.

The default for this object's initial destination is the .STDERR stream.

6.5. The Input Monitor (.INPUT)

This monitor object (see Section 5.4.14, “The Monitor Class”) holds the default input stream object
(see Chapter 14, Input and Output Streams). This input stream is the source for the PARSE LINEIN
instruction, the LINEIN method of the Stream class, and, if you specify no stream name, the LINEIN
built-in function. It is also the source for the PULL and PARSE PULL instructions if the external data
queue is empty.

The default for this object's initial source is the .STDIN stream.

6.6. The Output Monitor (.OUTPUT)

This monitor object (see Section 5.4.14, “The Monitor Class”) holds the default output stream
object (see Chapter 14, Input and Output Streams). This is the destination for output from the SAY
instruction, the LINEOUT method (.OUTPUT~LINEOUT), and, if you specify no stream name, the
LINEOUT built-in function. You can replace this object in the environment to direct such output
elsewhere (for example, to a transcript window).

The default for this object's initial destination is the .STDOUT stream.

6.7. The Trace Output Monitor (.TRACEOUTPUT)

This monitor object (see Section 5.4.14, “The Monitor Class”) holds the trace output target object. You
can redirect the trace output in the same way as with the output object in the Monitor class example.

The default for this object's initial destination is the .ERROR monitor.

6.8. The STDERR Stream (.STDERR)

This stream object (see Section 5.2.4, “The Stream Class”) is the default stream used for trace and
error message output.

Chapter 6. Rexx Runtime Objects

434

6.9. The STDIN Stream (.STDIN)

This is the stream object (see Section 5.2.4, “The Stream Class”) representing the representing the
standard input file of a process. It is the startup default stream for the .INPUT object.

6.10. The STDOUT Stream (.STDOUT)

This is the stream object (see Section 5.2.4, “The Stream Class”) representing the representing the
standard output file of a process. It is the startup default stream for the .OUTPUT object.

6.11. The STDQUE Queue (.STDQUE)

This RexxQueue object (see Section 5.4.17, “The RexxQueue Class”) is the destination for the PUSH
and QUEUE instruction, and the source for queue lines for the PULL and PARSE PULL instructions.

6.12. The Rexx Context (.CONTEXT)

The .CONTEXT environment symbol accesses a RexxContext instance for the currently active Rexx
execution environment. See Section 5.4.20, “The RexxContext Class” for details on the RexxContext
object. The returned context object is only active until the current method call, routine call, or program
terminates. Once the context object is deactivated, an error will be raised if any of the RexxContext
methods are called.

6.13. The Line Number (.LINE)

.LINE is set to the line number of the instruction currently being executed. If the current instruction is
defined within an INTERPRET instruction, the line number of INTERPRET instruction is returned.

6.14. The METHODS Directory (.METHODS)

The .METHODS environment symbol identifies a directory (see Section 5.3.9, “The Directory Class”)
of methods that ::METHOD directives in the currently running program define. The directory indexes
are the method names. The directory values are the method objects. See Section 5.1.4, “The Method
Class”.

Only methods and/or attributes that are not preceded by a ::CLASS directive are in the .METHODS
directory. These are known as floating methods. If there are no such methods, the .METHODS symbol
has the default value of .METHODS.

Example 6.2. .METHODS

/* .methods contains one entry with the index (method name) "TALK" */
o=.object~enhanced(.methods) /* create object, enhance it with methods */
o~talk("echo this text") /* test "TALK" method */
::method talk /* floating method by the name of "TALK" */
 use arg text /* retrieve the argument */
 say text /* display received argument */

The ROUTINES Directory (.ROUTINES)

435

6.15. The ROUTINES Directory (.ROUTINES)

The .ROUTINES environment symbol identifies a directory (see Section 5.3.9, “The Directory Class”)
of routines that ::ROUTINE directives in the currently running program define. The directory indexes
are the routine names. The directory values are the routine objects. See Section 5.1.5, “The Routine
Class”.

If there are no ::ROUTINE directives, the .ROUTINES symbol has the default value of .ROUTINES.

Example 6.3. .ROUTINES

/* .routines contains one entry with the index (routine name) "TALK" */
.routines~talk~call("echo this text") /* test talk routine */
::routine talk /* floating routine by the name of "TALK" */
 use arg text /* retrieve the argument */
 say text /* display received argument */

6.16. The Return Status (.RS)

.RS is set to the return status from any executed command (including those submitted with the
ADDRESS instruction). The .RS environment symbol has a value of -1 when a command returns a
FAILURE condition, a value of 1 when a command returns an ERROR condition, and a value of 0
when a command indicates successful completion. The value of .RS is also available after trapping the
ERROR or FAILURE condition.

Note

Commands executed manually during interactive tracing do not change the value of .RS. The
initial value of .RS is .RS.

436

Chapter 7.

437

Functions
A function is an internal, built-in, or external routine that returns a single result object. (A subroutine is
a function that is an internal, built-in, or external routine that might return a result and is called with the
CALL instruction.)

7.1. Syntax
A function call is a term in an expression calling a routine that carries out some procedures and
returns an object. This object replaces the function call in the continuing evaluation of the expression.
You can include function calls to internal and external routines in an expression anywhere that a data
term (such as a string) would be valid, using the following notation:

 +-,--------------+
 V |
>>-function_name(----+------------+-+--)-----------------------><
 +-expression-+

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be any number of expressions, separated by commas, between the parentheses. These
expressions are called the arguments to the function. Each argument expression can include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no whitespace
characters in between. (A blank operator would be assumed at this point instead.) Only a comment
can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting objects are then all passed
to the function. This function then runs some operation (usually dependent on the argument objects
passed, though arguments are not mandatory) and eventually returns a single object. This object is
then included in the original expression as though the entire function reference had been replaced by
the name of a variable whose value is the returned object.

For example, the function SUBSTR is built into the language processor and could be used as:

N1="abcdefghijk"
Z1="Part of N1 is: "substr(N1,2,7)
/* Sets Z1 to "Part of N1 is: bcdefgh" */

A function can have a variable number of arguments. You need to specify only those required. For
example, SUBSTR("ABCDEF",4) would return DEF.

7.2. Functions and Subroutines
Functions and subroutines are called in the same way. The only difference between functions and
subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

Chapter 7. Functions

438

Internal
If the routine name exists as a label in the program, the current processing status is saved for a
later return to the point of invocation to resume execution. Control is then passed to the first label
in the program that matches the name. As with a routine called by the CALL instruction, status
information, such as TRACE and NUMERIC settings, is saved too. See the CALL instruction
(Section 2.3, “CALL”) for details.

If you call an internal routine as a function, you must specify an expression in any RETURN
instruction so that the routine can return. This is not necessary if it is called as a subroutine.

Example 7.1. Recursive internal function execution

arg x
say x"! =" factorial(x)
exit
factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE
instruction ensures that a new variable n is created for each invocation.

Built-in
These functions are always available and are defined in Section 7.4, “Built-in Functions”.

External
You can write or use functions that are external to your program and to the language processor.
An external routine can be written in any language, including Rexx, that supports the system-
dependent interfaces the language processor uses to call it. You can call a Rexx program as a
function and, in this case, pass more than one argument string. The ARG, PARSE ARG, or USE
ARG instruction or the ARG built-in function can retrieve these argument strings. When called as a
function, a program must return data to the caller.

Notes:

1. Calling an external Rexx program as a function is similar to calling an internal routine. For an
external routine, however, the caller's variables are hidden. To leave the called Rexx program,
you can use either EXIT or RETURN. In either case, you must specify an expression.

2. You can use the INTERPRET instruction to process a function with a variable function name.
However, avoid this if possible because it reduces the clarity of the program.

7.2.1. Search Order

Functions are searched in the following sequence: internal routines, built-in functions, external
functions.

Function calls or subroutines may use a name that is specified as a symbol or a literal string. For
example, these calls are equivalent:

 call MyProcedure

Search Order

439

 call 'MYPROCEDURE'

Note that the name value when specified as a symbol is the symbol name translated to upper case.
Both of the calls above will search for a routine named "MYPROCEDURE". When the name is
specified as a literal string, then the literal string value is used as-is. Thus the following two calls are
not equivalent:

 call MyProcedure -- calls "MYPROCEDURE"
 call 'MyProcedure' -- calls "MyProcedure"

Some steps of the function and subroutine search order are case sensitive, so some care may need to
be exercised that the correct name form is used:

• Internal routines. Normally, labels are specified as a symbol followed by a ":". These labels have
a name value that's all uppercase. Since unquoted (symbol) names also have uppercase values,
these will match easily. It is also possible to use literal strings for label names. If these labels contain
lowercase characters, they will not be located using normal call mechanisms

• Built-in functions. The built-in function names are all uppercase, so using a mixed-case literal string
built-in function name will fail to locate the function.

 x = wordPos(needle, haystack) -- calls "WORDPOS", which works
 x = "wordPos"(needle, haystack) -- calls "wordPos", which will fail

• External routines. Some steps of the external function search order may be case sensitive,
depending on the system. This may occasionally require a function or subroutine name to be
specified as a mixed case literal string to be located.

If the call or function invocation uses a literal string, then the search for internal label is bypassed. This
bypass mechanism allows you to extend the capabilities of an existing internal function, for example,
and call it as a built-in function or external routine under the same name as the existing internal
function. To call the target built-in or external routine from inside your internal routine, you must use a
literal string for the function name.

Example 7.2. DATE function - overriding

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure
 arg in
 if in="" then in="Standard"
 -- This calls the DATE built-in function rather than recursively
 -- calling the DATE: internal routine. Note that the name needs to
 -- be all uppercase because built-in functions have uppercase names.
 return "DATE"(in)

Since built-in functions have uppercase names the literal string must also be in uppercase for the
search to succeed.

External functions and subroutines have a system-defined search order.

The search order for external functions is as follows:

1. Functions defined on ::ROUTINE directives within the program.

Chapter 7. Functions

440

2. Public functions defined on ::ROUTINE directives of programs referenced with ::REQUIRES.

3. Functions that have been loaded into the macrospace for preorder execution. (See the Open
Object Rexx: Programming Guide for details.)

4. Functions that are part of a function package or library package. (See the Open Object Rexx:
Programming Guide for details.)

5. Rexx functions located in an external file. See below for how these external files are located.

6. Functions that have been loaded into the macrospace for postorder execution.

7.2.1.1. Locating External Rexx Files
Rexx uses an extensive search procedure for locating program files. The first element of the search
procedure is the locations that will be checked for files. The locations, in order of checking, are:

1. The same directory the program invoking the external routine is located. If this is an initial program
execution or the calling program was loaded from the macrospace, this location is skipped.
Checking in this directory allows related program files to be called without requiring the directory
be added to the search path.

2. The current filesystem directory.

3. Some applications using Rexx as a scripting language may define an extension path used to
locate called programs. If the Rexx program was invoked directly from the system command line,
then no extension path is defined.

4. Any directories specified via the REXX_PATH environment variable.

5. Any directories specified via the PATH environment variable.

The second element of the search process is the file extension. If the routine name contains at least
one period, then this routine is extension qualified. The search locations above will be checked for
the target file unchanged, and no additional steps will be taken. If the routine name is not extension
qualified, then additional searches will be performed by adding file extensions to the name. The
following extensions may be used:

1. If the calling program has a file extension, then the interpreter will attempt to locate a file using the
same extension as the caller. All directory locations will be checked for a given extension before
moving to the next potential extension.

2. Some applications using Rexx as a scripting language may define additional extension types. For
example, an editor might define a preferred extension that should be used for editor macros. This
extension would be searched next.

3. The default system extension (.REX).

4. If the target file has not been located using any of the above extensions, the file name is tried
without an added extension.

There are some system file system considerations involved when search for files. The Windows
file system is case insensitive, so files can be located regardless of how the call is specified. Unix-
based systems have a case sensitive file system, so files must be exact case matches in order to be
located. For these systems, each time a file name probe is attempted, the name will be tried in the
case specified and also as a lower case name. The check is not performed on the very last step that
uses the file name without an extension to avoid unintentional conflicts with other executable files.

Search Order

441

Note that for function or subroutine calls using an unquoted name, the target name is the string
value of the name symbol, which will be an uppercase value. Thus calls to myfunc(), MyFunc(), and
myFUNC() all trigger a search for a function named "MYFUNC". Calls specified as a quoted string will
maintain the original string case. Thus 'myfunc'() and 'MyFunc'() would search for different names.

Figure 7.1. Function and Routine Resolution and Execution

Chapter 7. Functions

442

Figure 7.2. Function and Routine External File Resolution

7.2.2. Errors during Execution

If an external or built-in function detects an error, the language processor is informed, and a syntax
error results. Syntax errors can be trapped in the caller using SIGNAL ON SYNTAX and recovery
might be possible. If the error is not trapped, the program is ended.

7.3. Return Values
A function usually returns a value that is substituted for the function call when the expression is
evaluated.

How the value returned by a function (or any Rexx routine) is handled depends on whether it is called
by a function call or as a subroutine with the CALL instruction.

• A routine called as a subroutine: If the routine returns a value, that value is stored in the special
variable named RESULT. Otherwise, the RESULT variable is dropped, and its value is the string
RESULT.

• A routine called as a function: If the function returns a value, that value is substituted in the
expression at the position where the function was called. Otherwise, the language processor stops
with an error message.

Here are some examples of how to call a Rexx procedure:

Built-in Functions

443

Example 7.3. How to call Rexx procedures

call Beep 500, 100 /* Example 1: a subroutine call */

The built-in function BEEP is called as a Rexx subroutine. The return value from BEEP is placed in
the Rexx special variable RESULT.

bc = Beep(500, 100) /* Example 2: a function call */

BEEP is called as a Rexx function. The return value from the function is substituted for the function
call. The clause itself is an assignment instruction; the return value from the BEEP function is
placed in the variable bc.

Beep(500, 100) /* Example 3: result passed as */
 /* a command */

The BEEP function is processed and its return value is substituted in the expression for the function
call, like in the preceding example. In this case, however, the clause as a whole evaluates to a
single expression. Therefore, the evaluated expression is passed to the current default environment
as a command.

Note

Many other languages, such as C, throw away the return value of a function if it is not assigned
to a variable. In Rexx, however, a value returned like in the third example is passed on to the
current environment or subcommand handler. If that environment is the default, the operating
system performs a disk search for what seems to be a command.

7.4. Built-in Functions

Rexx provides a set of built-in functions, including character manipulation, conversion, and
information functions. The following are general notes on the built-in functions:

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no whitespace in between.

• The built-in functions internally work with NUMERIC DIGITS 9 for 32-bit systems or NUMERIC
DIGITS 18 for 64-bit systems, and NUMERIC FUZZ 0 and are unaffected by changes to the
NUMERIC settings, except where stated. Any argument named as a number is rounded, if
necessary, according to the current setting of NUMERIC DIGITS (as though the number had
been added to 0) and checked for validity before use. This occurs in the following functions: ABS,
FORMAT, MAX, MIN, SIGN, and TRUNC, and for certain options of DATATYPE.

• Any argument named as a string can be a null string.

• If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start
character or word in a string, it must be a positive whole number, unless otherwise stated.

Chapter 7. Functions

444

• If the last argument is optional, you can always include a comma to indicate that you have omitted it.
For example, DATATYPE(1,), like DATATYPE(1), would return NUM. You can include any number
of trailing commas; they are ignored. If there are actual parameters, the default values apply.

• If you specify a pad character, it must be exactly one character long. A pad character extends a
string, usually on the right. For an example, see the LEFT built-in function LEFT (Section 7.4.37,
“LEFT”).

• If a function has an option that you can select by specifying the first character of a string, that
character can be in uppercase or lowercase.

• Many of the built-in functions invoke methods of the String (Section 5.1.3, “The String Class”
class. For the functions ABBREV, ABS, BITAND, BITOR, BITXOR, B2X, CENTER, CENTRE,
CHANGESTR, COMPARE, COPIES, COUNTSTR, C2D, C2X, DATATYPE, DELSTR, DELWORD,
D2C, D2X, FORMAT, LEFT, LENGTH, LOWER, MAX, MIN, REVERSE, RIGHT, SIGN, SPACE,
STRIP, SUBSTR, SUBWORD, TRANSLATE, TRUNC, UPPER, VERIFY, WORD, WORDINDEX,
WORDLENGTH, WORDS, X2B, X2C, and X2D, the first argument to the built-in function is
used as the receiver object for the message sent, and the remaining arguments are used in the
same order as the message arguments. For example, SUBSTR("abcde",3,2) is equivalent to
"abcde"~SUBSTR(3,2).

For the functions INSERT, LASTPOS, OVERLAY, POS, and WORDPOS, the second argument to
the built-in functions is used as the receiver object for the message sent, and the other arguments
are used in the same order as the message arguments. For example, POS("a","Haystack",3)
is equivalent to "Haystack"~POS("a",3).

• The language processor evaluates all built-in function arguments to produce character strings.

7.4.1. ABBREV (Abbreviation)

>>-ABBREV(information,info--+---------+--)---------------------><
 +-,length-+

Returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. It returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number
of characters in info.

Here are some examples:

Example 7.4. Builtin function ABBREV examples

ABBREV("Print","Pri") -> 1
ABBREV("PRINT","Pri") -> 0
ABBREV("PRINT","PRI",4) -> 0
ABBREV("PRINT","PRY") -> 0
ABBREV("PRINT","") -> 1

ABS (Absolute Value)

445

ABBREV("PRINT","",1) -> 0

Note

A null string always matches if a length of 0, or the default, is used. This allows a default keyword
to be selected automatically if desired; for example:

Example 7.5. Builtin function ABBREV example

say "Enter option:"; pull option .
select /* keyword1 is to be the default */
 when abbrev("keyword1",option) then ...
 when abbrev("keyword2",option) then ...
 ...
 otherwise nop;
end;

7.4.2. ABS (Absolute Value)

>>-ABS(number)---><

Returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

Example 7.6. Builtin function ABS

ABS("12.3") -> 12.3
ABS(" -0.307") -> 0.307

7.4.3. ADDRESS

>>-ADDRESS()---><

Returns the name of the environment to which commands are currently submitted. Trailing
whitespace characters are removed from the result.

Chapter 7. Functions

446

Here is an example:

Example 7.7. Builtin function ADDRESS

ADDRESS() -> "CMD" /* default under Windows */

ADDRESS() -> "bash" /* default under Linux */

7.4.4. ARG (Argument)

>>-ARG(--+----------------+--)---------------------------------><
 +-n--+---------+-+
 +-,option-+

Returns one or more arguments, or information about the arguments to a program, internal routine, or
method.

If you do not specify n, the number of arguments passed to the program or internal routine is returned.

If you specify only n, the nth argument object is returned. If the argument object does not exist, the null
string is returned. n must be a positive whole number.

If you specify option, the value returned depends on the value of option. The following are valid
options. (Only the capitalized letter is needed; all characters following it are ignored.)

Array
returns a single-index array containing the arguments, starting with the nth argument. The array
indexes correspond to the argument positions, so that the nth argument is at index 1, the following
argument at index 2, and so on. If any arguments are omitted, their corresponding indexes are
absent.

Exists
returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was
called. Otherwise, it returns 0.

Normal
returns the nth argument, if it exists, or a null string.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Otherwise, it returns 0.

Here are some examples:

Example 7.8. Builtin function ARG

B2X (Binary to Hexadecimal)

447

/* following "Call name;" (no arguments) */
ARG() -> 0
ARG(1) -> ""
ARG(2) -> ""
ARG(1,"e") -> 0
ARG(1,"O") -> 1
ARG(1,"a") -> .array~of()

/* following "Call name 'a', ,'b';" */
ARG() -> 3
ARG(1) -> "a"
ARG(2) -> ""
ARG(3) -> "b"
ARG(n) -> "" /* for n>=4 */
ARG(1,"e") -> 1
ARG(2,"E") -> 0
ARG(2,"O") -> 1
ARG(3,"o") -> 0
ARG(4,"o") -> 1
ARG(1,"A") -> .array~of(a, ,b)
ARG(3,"a") -> .array~of(b)

Notes:

1. The number of argument strings is the largest number n for which ARG(n,"e") returns 1 or 0
if there are no explicit argument strings. That is, it is the position of the last explicitly specified
argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0
argument strings if it is called with the name only and has 1 argument string if anything else
(including whitespace characters) is included in the command.

3. Programs called by the RexxStart entry point can have several argument strings. (See the Open
Object Rexx: Programming Guide for information about RexxStart.)

4. You can access the argument objects of a program with the USE instruction. See Section 2.30,
“USE” for more information.

5. You can retrieve and directly parse the argument strings of a program or internal routine with the
ARG or PARSE ARG instructions.

7.4.5. B2X (Binary to Hexadecimal)

>>-B2X(binary_string)--><

Returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
whitespace characters in binary_string (at 4-digit boundaries only, not leading or trailing) to improve
readability; they are ignored.

The returned string uses uppercase alphabetical characters for the values A-F, and does not include
blanks or horizontal tabs.

Chapter 7. Functions

448

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string
is not a multiple of 4, then up to three 0 digits are added on the left before the conversion to make a
total that is a multiple of 4.

Here are some examples:

Example 7.9. Builtin function B2X

B2X("11000011") -> "C3"
B2X("10111") -> "17"
B2X("101") -> "5"
B2X("1 1111 0000") -> "1F0"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms.
For example:

Example 7.10. Builtin function B2X combined with X2D function

X2D(B2X("10111")) -> "23" /* decimal 23 */

7.4.6. BEEP

>>-BEEP(frequency,duration)------------------------------------><

Sounds the speaker at frequency (Hertz) for duration (milliseconds). The frequency can be any whole
number in the range 37 to 32767 Hertz. The duration can be any number in the range 1 to 60000
milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Note

Both parameters (frequency, duration) are ignored on Windows 95 and Linux. On computers with
multimedia support the function plays the default sound event. On computers without soundcard,
the function plays the standard system beep (if activated).

Here is an example for Windows NT:

Example 7.11. Builtin function BEEP

BITAND (Bit by Bit AND)

449

/* C scale */
note.1 = 262 /* middle C */
note.2 = 294 /* D */
note.3 = 330 /* E */
note.4 = 349 /* F */
note.5 = 392 /* G */
note.6 = 440 /* A */
note.7 = 494 /* B */
note.8 = 523 /* C */

do i=1 to 8
call beep note.i,250 /* hold each note for */
/* one-quarter second */
end

7.4.7. BITAND (Bit by Bit AND)

>>-BITAND(string1--+--------------------------+--)-------------><
 +-,--+---------+--+------+-+
 +-string2-+ +-,pad-+

Returns a string composed of the two input strings logically ANDed, bit by bit. (The encodings of the
strings are used in the logical operation.) The length of the result is the length of the longer of the two
strings. If no pad character is provided, the AND operation stops when the shorter of the two strings is
exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero-length (null) string.

Here are some examples:

Example 7.12. Builtin function BITAND

BITAND("12"x) -> "12"x
BITAND("73"x,"27"x) -> "23"x
BITAND("13"x,"5555"x) -> "1155"x
BITAND("13"x,"5555"x,"74"x) -> "1154"x
BITAND("pQrS", ,"DF"x) -> "PQRS" /* ASCII */

7.4.8. BITOR (Bit by Bit OR)

>>-BITOR(string1--+--------------------------+--)--------------><
 +-,--+---------+--+------+-+
 +-string2-+ +-,pad-+

Returns a string composed of the two input strings logically inclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of

Chapter 7. Functions

450

the two strings. If no pad character is provided, the OR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

Here are some examples:

Example 7.13. Builtin function BITOR

BITOR("12"x) -> "12"x
BITOR("15"x,"24"x) -> "35"x
BITOR("15"x,"2456"x) -> "3556"x
BITOR("15"x,"2456"x,"F0"x) -> "35F6"x
BITOR("1111"x, ,"4D"x) -> "5D5D"x
BITOR("pQrS", ,"20"x) -> "pqrs" /* ASCII */

7.4.9. BITXOR (Bit by Bit Exclusive OR)

>>-BITXOR(string1--+--------------------------+--)-------------><
 +-,--+---------+--+------+-+
 +-string2-+ +-,pad-+

Returns a string composed of the two input strings logically eXclusive-ORed, bit by bit. (The encodings
of the strings are used in the logical operation.) The length of the result is the length of the longer of
the two strings. If no pad character is provided, the XOR operation stops when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to the partial result.
If pad is provided, it extends the shorter of the two strings on the right before carrying out the logical
operation. The default for string2 is the zero-length (null) string.

Here are some examples:

Example 7.14. Builtin function BITXOR

BITXOR("12"x) -> "12"x
BITXOR("12"x,"22"x) -> "30"x
BITXOR("1211"x,"22"x) -> "3011"x
BITXOR("1111"x,"444444"x) -> "555544"x
BITXOR("1111"x,"444444"x,"40"x) -> "555504"x
BITXOR("1111"x, ,"4D"x) -> "5C5C"x
BITXOR("C711"x,"222222"x," ") -> "E53302"x /* ASCII */

7.4.10. C2D (Character to Decimal)

C2X (Character to Hexadecimal)

451

>>-C2D(string--+----+--)---------------------------------------><
 +-,n-+

Returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you specify n, it is the length of the returned result. If you do not specify n, string
is processed as an unsigned binary number.

If string is null, 0 is returned.

Here are some examples:

Example 7.15. Builtin function C2D

C2D("09"X) -> 9
C2D("81"X) -> 129
C2D("FF81"X) -> 65409
C2D("") -> 0
C2D("a") -> 97 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n characters. The number is
positive if the leftmost bit is off, and negative if the leftmost bit is on. In both cases, it is converted to
a whole number, which can be negative. The string is padded on the left with "00"x characters (not
"sign-extended"), or truncated on the left to n characters. This padding or truncation is as though
RIGHT(string, n,"00"x) had been processed. If n is 0, C2D always returns 0.

Here are some examples:

Example 7.16. Builtin function C2D

C2D("81"X,1) -> -127
C2D("81"X,2) -> 129
C2D("FF81"X,2) -> -127
C2D("FF81"X,1) -> -127
C2D("FF7F"X,1) -> 127
C2D("F081"X,2) -> -3967
C2D("F081"X,1) -> -127
C2D("0031"X,0) -> 0

7.4.11. C2X (Character to Hexadecimal)

>>-C2X(string)---><

Returns a string, in character format, that represents string converted to hexadecimal. The returned
string contains twice as many bytes as the input string. On an ASCII system, C2X(1) returns 31
because the ASCII representation of the character 1 is "31"X.

Chapter 7. Functions

452

The string returned uses uppercase alphabetical characters for the values A-F and does not include
whitespace characters. The string can be of any length. If string is null, a null string is returned.

Here are some examples:

Example 7.17. Builtin function C2X

C2X("0123"X) -> "0123" /* "30313233"X in ASCII */
C2X("ZD8") -> "5A4438" /* "354134343338"X in ASCII */

7.4.12. CENTER (or CENTRE)

>>-+-CENTER(-+--string,length--+------+--)---------------------><
 +-CENTRE(-+ +-,pad-+

Returns a string of length length with string centered in it and with pad characters added as necessary
to make up length. The length must be a positive whole number or zero. The default pad character
is blank. If the string is longer than length, it is truncated at both ends to fit. If an odd number of
characters is truncated or added, the right-hand end loses or gains one more character than the left-
hand end.

Here are some examples:

Example 7.18. Builtin function CENTER

CENTER(abc,7) -> " ABC "
CENTER(abc,8,"-") -> "--ABC---"
CENTRE("The blue sky",8) -> "e blue s"
CENTRE("The blue sky",7) -> "e blue "

Note

To avoid errors because of the difference between British and American spellings, this function
can be called either CENTRE or CENTER.

7.4.13. CHANGESTR

CHARIN (Character Input)

453

>>-CHANGESTR(needle,haystack,newneedle--+--------+--)------------------------><
 +-,count-+

Returns a copy of haystack in which newneedle replaces occurrences of needle. If count is not
specified, all occurrences of needle are replaced. If count is specified, it must be a positive, whole
number that gives the maximum number of occurrences to be replaced.

Here are some examples:

Example 7.19. Builtin function CHANGESTR

CHANGESTR("1","101100","") -> "000"
CHANGESTR("1","101100","X") -> "X0XX00"
CHANGESTR("1","101100","X", 1) -> "X01100"

7.4.14. CHARIN (Character Input)

>>-CHARIN(--+------+--+---------------------------+--)---------><
 +-name-+ +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns a string of up to length characters read from the character input stream name. (To understand
the input and output functions, see Chapter 14, Input and Output Streams.) If you omit name,
characters are read from STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream
starts at the current read position by default. When the language processor completes reading, the
read position is increased by the number of characters read. You can give a start value to specify an
explicit read position. This read position must be a positive whole number and within the bounds of
the stream, and must not be specified for a transient stream. A value of 1 for start refers to the first
character in the stream. If start is not a positive whole number the appropriate syntax condition is
raised. When the read position is past the bounds of the stream, the empty string is returned and the
NOTREADY condition is raised.

If you specify a length of 0, then the read position is set to the value of start, but no characters are
read and the null string is returned.

In a transient stream, if there are fewer than length characters available, the execution of the program
generally stops until sufficient characters become available. If, however, it is impossible for those
characters to become available because of an error or another problem, the NOTREADY condition is
raised (see Section 14.5, “Errors during Input and Output”) and CHARIN returns with fewer than the
requested number of characters.

Here are some examples:

Chapter 7. Functions

454

Example 7.20. Builtin function CHARIN

CHARIN(myfile,1,3) -> "MFC" /* the first 3 */
 /* characters */
CHARIN(myfile,1,0) -> "" /* now at start */
CHARIN(myfile) -> "M" /* after last call */
CHARIN(myfile, ,2) -> "FC" /* after last call */

/* Reading from the default input (here, the keyboard) */
/* User types "abcd efg" */
CHARIN() -> "a" /* default is */
 /* 1 character */
CHARIN(, ,5) -> "bcd e"

Notes:

1. CHARIN returns all characters that appear in the stream, including control characters such as line
feed, carriage return, and end of file.

2. When CHARIN reads from the keyboard, program execution stops until you press the Enter key.

7.4.15. CHAROUT (Character Output)

>>-CHAROUT(--+------+--+---------------------------+--)--------><
 +-name-+ +-,--+--------+--+--------+-+
 +-string-+ +-,start-+

Returns the count of characters remaining after attempting to write string to the character output
stream name. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) If you omit name, characters in string are written to STDOUT (generally the display), which
is the default output stream. The string can be a null string, in which case no characters are written to
the stream, and 0 is always returned.

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. When the language processor completes writing, the write
position is increased by the number of characters written. When the stream is first opened, the write
position is at the end of the stream so that calls to CHAROUT append characters to the end of the
stream.

You can give a start value to specify an explicit write position for a persistent stream. This write
position must be a positive whole number. A value of 1 for start refers to the first character in the
stream.

You can omit the string for persistent streams. In this case, the write position is set to the value of start
that was given, no characters are written to the stream, and 0 is returned. If you do not specify start or
string, the stream is closed and 0 is returned.

Execution of the program usually stops until the output operation is complete.

For example, when data is sent to a printer, the system accepts the data and returns control to
Rexx, even though the output data might not have been printed. Rexx considers this to be complete,

CHARS (Characters Remaining)

455

even though the data has not been printed. If, however, it is impossible for all the characters to be
written, the NOTREADY condition is raised (see Section 14.5, “Errors during Input and Output”) and
CHAROUT returns with the number of characters that could not be written (the residual count).

Here are some examples:

Example 7.21. Builtin function CHAROUT

CHAROUT(myfile,"Hi") -> 0 /* typically */
CHAROUT(myfile,"Hi",5) -> 0 /* typically */
CHAROUT(myfile, ,6) -> 0 /* now at char 6 */
CHAROUT(myfile) -> 0 /* at end of stream */
CHAROUT(,"Hi") -> 0 /* typically */
CHAROUT(,"Hello") -> 2 /* maybe */

Note

This routine is often best called as a subroutine. The residual count is then available in the
variable RESULT.

For example:

Example 7.22. Builtin function CHAROUT

Call CHAROUT myfile,"Hello"
Call CHAROUT myfile,"Hi",6
Call CHAROUT myfile

7.4.16. CHARS (Characters Remaining)

>>-CHARS(--+------+--)---><
 +-name-+

Returns the total number of characters remaining in the character input stream name. The count
includes any line separator characters, if these are defined for the stream. In the case of persistent
streams, it is the count of characters from the current read position. (See Chapter 14, Input and Output
Streams for a discussion of Rexx input and output.) If you omit name, the number of characters
available in the default input stream (STDIN) is returned.

The total number of characters remaining cannot be determined for some streams (for example,
STDIN). For these streams, the CHARS function returns 1 to indicate that data is present, or 0 if no
data is present. For windows devices, CHARS always returns 1.

Chapter 7. Functions

456

Here are some examples:

Example 7.23. Builtin function CHARS

CHARS(myfile) -> 42 /* perhaps */
CHARS(nonfile) -> 0
CHARS() -> 1 /* perhaps */

7.4.17. COMPARE

>>-COMPARE(string1,string2--+------+--)------------------------><
 +-,pad-+

Returns 0 if the strings string1 and string2 are identical. Otherwise, it returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The
default pad character is a blank.

Here are some examples:

Example 7.24. Builtin function COMPARE

COMPARE("abc","abc") -> 0
COMPARE("abc","ak") -> 2
COMPARE("ab ","ab") -> 0
COMPARE("ab ","ab"," ") -> 0
COMPARE("ab ","ab","x") -> 3
COMPARE("ab-- ","ab","-") -> 5

7.4.18. CONDITION

>>-CONDITION(--+--------+--)-----------------------------------><
 +-option-+

Returns the condition information associated with the current trapped condition. (See Chapter 11,
Conditions and Condition Traps for a description of condition traps.) You can request the following
pieces of information:

• The name of the current trapped condition

• Any descriptive string associated with that condition

CONDITION

457

• Any condition-specific information associated with the current trapped condition

• The instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

In addition, you can request a condition object containing all of the preceding information.

To select the information to be returned, use the following options. (Only the capitalized letter is
needed; all characters following it are ignored.)

Additional
returns any additional object information associated with the current trapped condition. See
Section 11.3.2, “Additional Object Information” for a list of possible values. If no additional object
information is available or no condition has been trapped, the language processor returns the Nil
object.

Condition name
returns the name of the current trapped condition. For user conditions, the returned string is
a concatenation of the word USER and the user condition name, separated by a whitespace
character.

Description
returns any descriptive string associated with the current trapped condition. See Section 11.3.1,
“Descriptive Strings” for the list of possible values. If no description is available or no condition has
been trapped, it returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current
condition was trapped. This is the default if you omit option. If no condition has been trapped, it
returns a null string.

Object
returns an object that contains all the information about the current trapped condition. See
Chapter 11, Conditions and Condition Traps for more information. If no condition has been
trapped, it returns the Nil object.

Status
returns the status of the current trapped condition. This can change during processing, and is one
of the following:

• ON - the condition is enabled

• OFF - the condition is disabled

• DELAY - any new occurrence of the condition is delayed or ignored

If no condition has been trapped, a null string is returned.

Here are some examples:

Example 7.25. Builtin function CONDITION

CONDITION() -> "CALL" /* perhaps */

Chapter 7. Functions

458

CONDITION("C") -> "FAILURE"
CONDITION("I") -> "CALL"
CONDITION("D") -> "FailureTest"
CONDITION("S") -> "OFF" /* perhaps */

Note

The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine
called with CALL ON trapname has returned, the current trapped condition reverts to the
condition that was current before the CALL took place (which can be none). CONDITION returns
the values it returned before the condition was trapped.

7.4.19. COPIES

>>-COPIES(string,n)--><

Returns n concatenated copies of string. The n must be a positive whole number or zero.

Here are some examples:

Example 7.26. Builtin function COPIES

COPIES("abc",3) -> "abcabcabc"
COPIES("abc",0) -> ""

7.4.20. COUNTSTR

>>-COUNTSTR(needle,haystack)-----------------------------------><

Returns a count of the occurrences of needle in haystack that do not overlap.

Here are some examples:

Example 7.27. Builtin function COUNTSTR

D2C (Decimal to Character)

459

COUNTSTR("1","101101") -> 4
COUNTSTR("KK","J0KKK0") -> 1

7.4.21. D2C (Decimal to Character)

>>-D2C(wholenumber--+----+--)----------------------------------><
 +-,n-+

Returns a string, in character format, that is the ASCII representation of the decimal number. If you
specify n, it is the length of the final result in characters; leading "00"x (for a positive wholenumber) or
"FF"x (for a negative wholenumber) characters are added to the result string as necessary. n must be
a positive whole number or zero.

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as
needed. Therefore, the returned result has no leading "00"x characters.

Here are some examples:

Example 7.28. Builtin function D2C

D2C(65) -> "A" /* "41"x is an ASCII "A" */
D2C(65,1) -> "A"
D2C(65,2) -> " A" /* the leading character is a "00"x */
D2C(65,5) -> " A" /* the leading characters are "00"x */
D2C(109) -> "m" /* "6D"x is an ASCII "m" */
D2C(-109,1) -> "ô" /* "93"x is an ASCII "ô" */
D2C(76,2) -> " L" /* "4C"x is an ASCII "L" */
D2C(-180,2) -> " L" /* the leading character is a "FF"x */

7.4.22. D2X (Decimal to Hexadecimal)

>>-D2X(wholenumber--+----+--)----------------------------------><
 +-,n-+

Returns a string, in character format, that represents wholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the values A-F and does not include
whitespace characters.

Wholenumber must not have more digits than the current setting of NUMERIC DIGITS.

If you specify n, it is the length of the final result in characters. After conversion the input string is sign-
extended to the required length. If the number is too big to fit n characters, it is truncated on the left. n
must be a positive whole number or zero.

Chapter 7. Functions

460

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

Example 7.29. Builtin function D2X

D2X(9) -> "9"
D2X(129) -> "81"
D2X(129,1) -> "1"
D2X(129,2) -> "81"
D2X(129,4) -> "0081"
D2X(257,2) -> "01"
D2X(-127,2) -> "81"
D2X(-127,4) -> "FF81"
D2X(12,0) -> ""

7.4.23. DATATYPE

>>-DATATYPE(string--+-------+--)-------------------------------><
 +-,type-+

Returns NUM if you specify only string and if string is a valid Rexx number that can be added to 0
without error; returns CHAR if string is not a valid number.

If you specify type, it returns 1 if string matches the type. Otherwise, it returns 0. If string is null, the
function returns 0 (except when the type is X or B, for which DATATYPE returns 1 for a null string).
The following are valid types. (Only the capitalized letter, or the number of the last type listed, is
needed; all characters surrounding it are ignored. Note that for the hexadecimal option, you must
start your string specifying the name of the option with x rather than h.)

Alphanumeric
returns 1 if string contains only characters from the ranges a-z, A-Z, and 0-9.

Binary
returns 1 if string contains only the characters 0 or 1, or whitespace. Whitespace characters can
appear only between groups of 4 binary characters. It also returns 1 if string is a null string, which
is a valid binary string.

Lowercase
returns 1 if string contains only characters from the range a-z.

Mixed case
returns 1 if string contains only characters from the ranges a-z and A-Z.

Number
returns 1 if DATATYPE(string) returns NUM.

lOgical
returns 1 if the string is exactly "0" or "1". Otherwise it returns 0.

DATE

461

Symbol
returns 1 if string is a valid symbol, that is, if SYMBOL(string) does not return BAD. (See
Section 1.10.4.4, “Symbols”.) Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A-Z.

Variable
returns 1 if string could appear on the left-hand side of an assignment without causing a SYNTAX
condition.

Whole number
returns 1 if string is a Rexx whole number under the current setting of NUMERIC DIGITS.

heXadecimal
returns 1 if string contains only characters from the ranges a-f, A-F, 0-9, and whitespace (as
long as the whitespace characters appear only between pairs of hexadecimal characters). It also
returns 1 if string is a null string, which is a valid hexadecimal string.

9 digits
returns 1 if DATATYPE(string,"W") returns 1 when NUMERIC DIGITS is set to 9.

Here are some examples:

Example 7.30. Builtin function DATATYPE

DATATYPE(" 12 ") -> "NUM"
DATATYPE("") -> "CHAR"
DATATYPE("123*") -> "CHAR"
DATATYPE("12.3","N") -> 1
DATATYPE("12.3","W") -> 0
DATATYPE("Fred","M") -> 1
DATATYPE("Fred","U") -> 0
DATATYPE("Fred","L") -> 0
DATATYPE("?20K","s") -> 1
DATATYPE("BCd3","X") -> 1
DATATYPE("BC d3","X") -> 1
DATATYPE("1","O") -> 1
DATATYPE("11,"O") -> 0

Note

The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

7.4.24. DATE

Chapter 7. Functions

462

>>-DATE(-->

>--+---+-->
 +-option--+---+-+
 +-,string--+----------+---------------------------+
 | +-,option2-+ |
 +-+-,--,------------------+--+-,osep------------+-+
 +-,string--+-,option2-+-+ +-+-,osep-+--,isep-+
 +-,--------+ +-,-----+

>--)---><

Returns, by default, the local date in the format: dd mon yyyy (day month year--for example, 13 Nov
1998), with no leading zero or blank on the day. The first three characters of the English name of the
month are used.

You can use the following options to obtain specific formats. (Only the capitalized letter is needed; all
characters following it are ignored.)

Base
returns the number of complete days (that is, not including the current day) since and including
the base date, 1 January 0001, in the format: dddddd (no leading zeros or whitespace). The
expression DATE("B")//7 returns a number in the range 0-6 that corresponds to the current day
of the week, where 0 is Monday and 6 is Sunday.

Note

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

Days
returns the number of days, including the current day, that have passed this year in the format ddd
(no leading zeros or whitespace).

European
returns the date in the format dd/mm/yy.

Full
returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or whitespace).

DATE

463

Notes

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Date('F') can be used to calculate the interval between any two dates.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 18
when performing timestamp arithmetic.

Language
returns the date in an implementation- and language-dependent, or local, date format. The format
is dd month yyyy. The name of the month is according to the national language installed on the
system. If no local date format is available, the default format is returned.

Note

This format is intended to be used as a whole; Rexx programs must not make any
assumptions about the form or content of the returned string.

Month
returns the full English name of the current month, for example, August.

Normal
returns the date in the format dd mon yyyy. This is the default.

Ordered
returns the date in the format yy/mm/dd (suitable for sorting, for example).

Standard
returns the date in the format yyyymmdd (suitable for sorting, for example).

Ticks
returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format:
dddddddddddd (no leading zeros or whitespace).

Chapter 7. Functions

464

Notes

The base date of 1 January 1970 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Date('T') can be used to calculate the interval between any two dates.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 12
when performing timestamp arithmetic.

Date('T') will return a negative number for dates prior to 1 January 1970.

Usa
returns the date in the format mm/dd/yy.

Weekday
returns the English name for the day of the week, in mixed case, for example, Tuesday.

Here are some examples, assuming today is 13 November 1996:

Example 7.31. Builtin function DATE

DATE() -> "13 Nov 1996"
DATE("B") -> 728975
DATE("D") -> 318
DATE("E") -> "13/11/96"
DATE("L") -> "13 November 1996"
DATE("M") -> "November"
DATE("N") -> "13 Nov 1996"
DATE("O") -> "96/11/13"
DATE("S") -> "19961113"
DATE("U") -> "11/13/96"
DATE("W") -> "Wednesday"

Note

The first call to DATE or TIME in one clause causes a time stamp to be made that is then used
for all calls to these functions in that clause. Therefore, several calls to any of the DATE or TIME
functions, or both, in a single expression or clause are consistent with each other.

If you specify string, DATE returns the date corresponding to string in the format option. The string
must be supplied in the format option2. The option2 format must specify day, month, and year (that is,
not "D", "L", "M", or "W"). The default for option2 is "N", so you need to specify option2 if string is not in
the Normal format. Here are some examples:

DATE

465

Example 7.32. Builtin function DATE set

DATE("O","13 Feb 1923") -> "23/02/13"
DATE("O","06/01/50","U") -> "50/06/01"
DATE("N", "63326132161828000", "f") -> "23 Sep 2007"

If you specify an output separator character osep, the days, month, and year returned are separated
by this character. Any nonalphanumeric character or an empty string can be used. A separator
character is only valid for the formats "E", "N", "O", "S", and "U". Here are some examples:

Example 7.33. Builtin function DATE set

DATE("S","13 Feb 1996","N","-") -> "1996-02-13"
DATE("N","13 Feb 1996","N","") -> "13Feb1996"
DATE("N","13 Feb 1996","N","-") -> "13-Feb-1996"
DATE("O","06/01/50","U","") -> "500601"
DATE("E","02/13/96","U",".") -> "13.02.96"
DATE("N", , ,"_") -> "26_Mar_1998" (today)

In this way, formats can be created that are derived from their respective default format, which is the
format associated with option using its default separator character. The default separator character for
each of these formats is:

Option Default separator

European "/"
Normal " "
Ordered "/"
Standard "" (empty string)
Usa "/"

If you specify a string containing a separator that is different from the default separator character of
option2, you must also specify isep to indicate which separator character is valid for string. Basically,
any date format that can be generated with any valid separator character can be used as input date
string as long as its format has the generalized form specified by option2 and its separator character
matches the character specified by isep.

Here are some examples:

Example 7.34. Builtin function DATE set

DATE("S","1996-11-13","S","","-") -> "19961113"
DATE("S","13-Nov-1996","N","","-") -> "19961113"
DATE("O","06*01*50","U","","*") -> "500601"
DATE("U","13.Feb.1996","N", ,".") -> "02/13/96"

You can determine the number of days between two dates; for example:

Chapter 7. Functions

466

Example 7.35. Builtin function DATE days

say date("B","12/25/96","U")-date("B") " shopping days till Christmas!"

If string does not include the century but option defines that the century be returned as part of the
date, the century is determined depending on whether the year to be returned is within the past 50
years or the next 49 years. Assume, for example, that you specify 10/15/43 for string and today's date
is 10/27/1998. In this case, 1943 would be 55 years ago and 2043 would be 45 years in the future. So,
10/15/2043 would be the returned date.

Note

This rule is suitable for dates that are close to today's date. However, when working with birth
dates, it is recommended that you explicitly provide the century.

When requesting dates to be converted to Full format or Ticks format, a time value of
"00:00:00.000000" is used for the conversion. A time stamp for a time and date combination can be
created by combining a value from Time() for the time of day.

Example 7.36. Builtin function DATE timestamp

 numeric digits 18 -- needed to add the timestamps
 timestamp = date('f, '20072301', 'S') + time('f', '08:14:22', 'N')

7.4.25. DELSTR (Delete String)

>>-DELSTR(string,n--+---------+--)-----------------------------><
 +-,length-+

Returns string after deleting the substring that begins at the nth character and is of length characters.
If you omit length, or if length is greater than the number of characters from n to the end of string,
the function deletes the rest of string (including the nth character). The length must be a positive
whole number or zero. n must be a positive whole number. If n is greater than the length of string, the
function returns string unchanged.

Here are some examples:

Example 7.37. Builtin function DELSTR

DELSTR("abcd",3) -> "ab"

DELWORD (Delete Word)

467

DELSTR("abcde",3,2) -> "abe"
DELSTR("abcde",6) -> "abcde"

7.4.26. DELWORD (Delete Word)

>>-DELWORD(string,n--+---------+--)----------------------------><
 +-,length-+

Returns string after deleting the substring that starts at the nth word and is of length whitespace-
delimited words. If you omit length, or if length is greater than the number of words from n to the
end of string, the function deletes the remaining words in string (including the nth word). The length
must be a positive whole number or zero. n must be a positive whole number. If n is greater than the
number of words in string, the function returns string unchanged. The string deleted includes any
whitespace characters following the final word involved but none of the whitespace preceding the first
word involved.

Here are some examples:

Example 7.38. Builtin function DELWORD

DELWORD("Now is the time",2,2) -> "Now time"
DELWORD("Now is the time ",3) -> "Now is "
DELWORD("Now is the time",5) -> "Now is the time"
DELWORD("Now is the time",3,1) -> "Now is time"
DELWORD("Now is the time",2,2) -> "Now time"

7.4.27. DIGITS

>>-DIGITS()--><

Returns the current setting of NUMERIC DIGITS. See Section 2.16, “NUMERIC” for more information.

Here is an example:

Example 7.39. Builtin function DIGITS

DIGITS() -> 9 /* by default */

7.4.28. DIRECTORY

Chapter 7. Functions

468

>>-DIRECTORY(--+--------------+--)-----------------------------><
 +-newdirectory-+

Returns the current directory, changing it to newdirectory if an argument is supplied and the named
directory exists. If newdirectory is not specified, the name of the current directory is returned.
Otherwise, an attempt is made to change to the specified newdirectory. If successful, the name of the
newdirectory is returned; if an error occurred, null is returned.

For example, the following program fragment saves the current directory and switches to a new
directory; it performs an operation there, and then returns to the former directory.

Example 7.40. Builtin function DIRECTORY

/* get current directory */
curdir = directory()
/* go play a game */
newdir = directory("/usr/games") /* Linux type subdirectory */
if newdir = "/usr/games" then
 do
 fortune /* tell a fortune */
/* return to former directory */
 call directory curdir
end
else
 say "Can't find /usr/games"

7.4.29. ENDLOCAL (Linux only)

>>-ENDLOCAL()--><

Restores the directory and environment variables in effect before the last SETLOCAL (Section 7.4.56,
“SETLOCAL (Linux only)” function was run. If ENDLOCAL is not included in a procedure, the initial
environment saved by SETLOCAL is restored upon exiting the procedure.

ENDLOCAL returns a value of 1 if the initial environment is successfully restored and a value of 0 if no
SETLOCAL was issued or the action is otherwise unsuccessful.

Here is an example:

Example 7.41. Builtin function ENDLOCAL

n = SETLOCAL() /* saves the current environment */
 /*
 The program can now change environment variables

ERRORTEXT

469

 (with the VALUE function) and then work in the
 changed environment.
 */
n = ENDLOCAL() /* restores the initial environment */

For additional examples, see Section 7.4.56, “SETLOCAL (Linux only)”.

7.4.30. ERRORTEXT

>>-ERRORTEXT(n)--><

Returns the Rexx error message associated with error number n. n must be in the range 0-99.
It returns the null string if n is in the allowed range but is not a defined Rexx error number. See
Appendix C, Error Numbers and Messages for a complete description of error numbers and
messages.

Here are some examples:

Example 7.42. Builtin function ERRORTEXT

ERRORTEXT(16) -> "Label not found"
ERRORTEXT(60) -> ""

7.4.31. FILESPEC

>>-FILESPEC(option,filespec)-----------------------------------><

Returns a selected element of filespec, given file specification, identified by one of the following option
strings:

Drive
The drive letter of the given filespec. Only available on Windows. On Unix, it returns a null string
("").

Path
The directory path of the given filespec.

Location
The full location portion of the given filespec. On Windows, this will include both the Drive and
Path information. On other platforms, this returns the same result as the Path option.

Name
The file name of the given filespec.

Chapter 7. Functions

470

Extension
The extension portion of the filespec file name.

If filespec cannot find the requested information, then the FILESPEC function returns a null string ("").

Note

Only the initial letter of option is needed.

Here are some Windows examples:

Example 7.43. Builtin function FILESPEC

thisfile = "C:\WINDOWS\UTIL\SYSTEM.INI"
say FILESPEC("drive",thisfile) /* says "C:" */
say FILESPEC("path",thisfile) /* says "\WINDOWS\UTIL\" */
say FILESPEC("location",thisfile) /* says "C:\WINDOWS\UTIL\" */
say FILESPEC("name",thisfile) /* says "SYSTEM.INI" */
say FILESPEC("extension",thisfile) /* says "INI" */
part = "name"
say FILESPEC(part,thisfile) /* says "SYSTEM.INI" */

7.4.32. FORM

>>-FORM()--><

Returns the current setting of NUMERIC FORM. See Section 2.16, “NUMERIC” for more information.

Here is an example:

Example 7.44. Builtin function FORM

FORM() -> "SCIENTIFIC" /* by default */

7.4.33. FORMAT

>>-FORMAT(number-->

>--+---+-->

FORMAT

471

 +-,--+--------+--+--+-+
 +-before-+ +-,--+-------+--+------------------------+-+
 +-after-+ +-,--+------+--+-------+-+
 +-expp-+ +-,expt-+

>--)---><

Returns number, rounded and formatted.

The number is first rounded according to standard Rexx rules, as though the operation number+0 had
been carried out. The result is precisely that of this operation if you specify only number. If you specify
any other options, the number is formatted as described in the following.

The before and after options describe how many characters are used for the integer and decimal parts
of the result, respectively. If you omit either or both of them, the number of characters used for that
part is as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Here are some examples:

Example 7.45. Builtin function FORMAT

FORMAT("3",4) -> " 3"
FORMAT("1.73",4,0) -> " 2"
FORMAT("1.73",4,3) -> " 1.730"
FORMAT("-.76",4,1) -> " -0.8"
FORMAT("3.03",4) -> " 3.03"
FORMAT(" - 12.73", ,4) -> "-12.7300"
FORMAT(" - 12.73") -> "-12.73"
FORMAT("0.000") -> "0"

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. expp sets the number of places for the exponent part; the default is to use as many as
needed (which can be zero). expt specifies when the exponential expression is used. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, the number is not in exponential notation. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
the exponential notation is used. If expt is 0, the exponential notation is always used unless the
exponent would be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when
a nonzero expp is specified, then expp+2 blanks are supplied for the exponent part of the result. If the
exponent would be 0 and expp is not specified, the number is not an exponential expression.

Here are some examples:

Example 7.46. Builtin function FORMAT

Chapter 7. Functions

472

FORMAT("12345.73", , ,2,2) -> "1.234573E+04"
FORMAT("12345.73", ,3, ,0) -> "1.235E+4"
FORMAT("1.234573", ,3, ,0) -> "1.235"
FORMAT("12345.73", , ,3,6) -> "12345.73"
FORMAT("1234567e5", ,3,0) -> "123456700000.000"

7.4.34. FUZZ

>>-FUZZ()--><

Returns the current setting of NUMERIC FUZZ. See Section 2.16, “NUMERIC” for more information.

Here is an example:

Example 7.47. Builtin function FUZZ

FUZZ() -> 0 /* by default */

7.4.35. INSERT

>>-INSERT(new,target-->

>--+---------------------------------------+--)----------------><
 +-,--+---+--+-------------------------+-+
 +-n-+ +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Inserts the string new, padded or truncated to length length, into the string target after the nth
character. The default value for n is 0, which means insertion before the beginning of the string. If
specified, n and length must be positive whole numbers or zero. If n is greater than the length of the
target string, the string new is padded at the beginning. The default value for length is the length of
new. If length is less than the length of the string new, then INSERT truncates new to length length.
The default pad character is a blank.

Here are some examples:

Example 7.48. Builtin function INSERT

INSERT(" ","abcdef",3) -> "abc def"
INSERT("123","abc",5,6) -> "abc 123 "
INSERT("123","abc",5,6,"+") -> "abc++123+++"

LASTPOS (Last Position)

473

INSERT("123","abc") -> "123abc"
INSERT("123","abc", ,5,"-") -> "123--abc"

7.4.36. LASTPOS (Last Position)

>>-LASTPOS(needle,haystack-+---------------------------+--)----------------------><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position of the last occurrence of one string, needle, in another, haystack. (See also
Section 7.4.46, “POS (Position)”.) It returns 0 if needle is a null string or not found. By default,
the search starts at the last character of haystack and scans backward to the beginning of the
string. You can override this by specifying start, the point at which the backward scan starts and
length, the range of characters to scan. The start must be a positive whole number and defaults to
receiving_string~length if larger than that value or omitted. The length must be a non-negative
whole number and defaults to start.

Here are some examples:

Example 7.49. Builtin function LASTPOS

LASTPOS(" ","abc def ghi") -> 8
LASTPOS(" ","abcdefghi") -> 0
LASTPOS("xy","efgxyz") -> 4
LASTPOS(" ","abc def ghi",7) -> 4
LASTPOS(" ","abc def ghi",7,3) -> 0

7.4.37. LEFT

>>-LEFT(string,length--+------+--)-----------------------------><
 +-,pad-+

Returns a string of length length, containing the leftmost length characters of string. The string
returned is padded with pad characters, or truncated, on the right as needed. The default pad
character is a blank. length must be a positive whole number or zero. The LEFT function is exactly
equivalent to:

>>-SUBSTR(string,1,length--+------+--)-------------------------><
 +-,pad-+

Here are some examples:

Chapter 7. Functions

474

Example 7.50. Builtin function LEFT

LEFT("abc d",8) -> "abc d "
LEFT("abc d",8,".") -> "abc d..."
LEFT("abc def",7) -> "abc de"

7.4.38. LENGTH

>>-LENGTH(string)--><

Returns the length of string.

Here are some examples:

Example 7.51. Builtin function LENGTH

LENGTH("abcdefgh") -> 8
LENGTH("abc defg") -> 8
LENGTH("") -> 0

7.4.39. LINEIN (Line Input)

>>-LINEIN(--+------+--+-------------------------+--)-----------><
 +-name-+ +-,--+------+--+--------+-+
 +-line-+ +-,count-+

Returns count lines read from the character input stream name. The count must be 1 or 0 (To
understand the input and output functions, see Chapter 14, Input and Output Streams.) If you omit
name, the line is read from the default input stream, STDIN. The default count is 1.

For persistent streams, a read position is maintained for each stream. Any read from the stream starts
at the current read position by default. Under certain circumstances, a call to LINEIN returns a partial
line. This can happen if the stream has already been read with the CHARIN function, and part but
not all of a line (and its termination, if any) has already been read. When the language processor
completes reading, the read position is moved to the beginning of the next line.

A line number may be given to set the read position to the start of a specified line. This line number
must be positive and within the bounds of the stream, and must not be specified for a transient stream.
The read position can be set to the beginning of the stream by giving line a value of 1.

If you give a count of 0, then no characters are read and a null string is returned.

LINEOUT (Line Output)

475

For transient streams, if a complete line is not available in the stream, then execution of the program
usually stops until the line is complete. If, however, it is impossible for a line to be completed because
of an error or another problem, the NOTREADY condition is raised (see Section 14.5, “Errors during
Input and Output”) and LINEIN returns whatever characters are available.

Here are some examples:

Example 7.52. Builtin function LINEIN

LINEIN() /* Reads one line from the */
 /* default input stream; */
 /* usually this is an entry */
 /* typed at the keyboard */
myfile = "ANYFILE.TXT"
LINEIN(myfile) -> "Current line" /* Reads one line from */
 /* ANYFILE.TXT, beginning */
 /* at the current read */
 /* position. (If first call, */
 /* file is opened and the */
 /* first line is read.) */

LINEIN(myfile,1,1) -> "first line" /* Opens and reads the first */
 /* line of ANYFILE.TXT (if */
 /* the file is already open, */
 /* reads first line); sets */
 /* read position on the */
 /* second line. */

LINEIN(myfile,1,0) -> "" /* No read; opens ANYFILE.TXT */
 /* (if file is already open, */
 /* sets the read position to */
 /* the first line). */

LINEIN(myfile, ,0) -> "" /* No read; opens ANYFILE.TXT */
 /* (no action if the file is */
 /* already open). */

LINEIN("QUEUE:") -> "Queue line" /* Read a line from the queue. */
 /* If the queue is empty, the */
 /* program waits until a line */
 /* is put on the queue. */

Note

If you want to read complete lines from the default input stream, as in a dialog with a user, use
the PULL or PARSE PULL instruction.

The PARSE LINEIN instruction is also useful in certain cases. (See ??? .)

7.4.40. LINEOUT (Line Output)

Chapter 7. Functions

476

>>-LINEOUT(--+------+--+--------------------------+--)---------><
 +-name-+ +-,--+--------+--+-------+-+
 +-string-+ +-,line-+

Returns 0 if successful in writing string to the character output stream name, or 1 if an error occurs
while writing the line. (To understand the input and output functions, see Chapter 14, Input and
Output Streams.) If you omit string but include line, only the write position is repositioned. If string is
a null string, LINEOUT repositions the write position (if you include line) and does a carriage return.
Otherwise, the stream is closed. LINEOUT adds a line-feed and a carriage-return character to the end
of string.

If you omit name, the line is written to the default output stream STDOUT (usually the display).

For persistent streams, a write position is maintained for each stream. Any write to the stream starts
at the current write position by default. (Under certain circumstances the characters written by a call to
LINEOUT can be added to a partial line previously written to the stream with the CHAROUT routine.
LINEOUT stops a line at the end of each call.) When the language processor completes writing, the
write position is set to the beginning of the line following the one just written. When the stream is first
opened, the write position is at the end of the stream, so that calls to LINEOUT append lines to the
end of the stream.

You can specify a line number to set the write position to the start of a particular line in a persistent
stream. This line number must be positive and within the bounds of the stream unless it is a binary
stream (though it can specify the line number immediately after the end of the stream). A value of 1
for line refers to the first line in the stream. Note that, unlike CHAROUT, you cannot specify a position
beyond the end of the stream for non-binary streams.

You can omit the string for persistent streams. If you specify line, the write position is set to the start
of the line that was given, nothing is written to the stream, and the function returns 0. If you specify
neither line nor string, the stream is closed. Again, the function returns 0.

Execution of the program usually stops until the output operation is effectively complete. For example,
when data is sent to a printer, the system accepts the data and returns control to Rexx, even though
the output data might not have been printed. Rexx considers this to be complete, even though the data
has not been printed. If, however, it is impossible for a line to be written, the NOTREADY condition is
raised (see Section 14.5, “Errors during Input and Output”), and LINEOUT returns a result of 1, that is,
the residual count of lines written.

Here are some examples:

Example 7.53. Builtin function LINEOUT

LINEOUT(,"Display this") /* Writes string to the default */
 /* output stream (usually, the */
 /* display); returns 0 if */
 /* successful */

myfile = "ANYFILE.TXT"
LINEOUT(myfile,"A new line") /* Opens the file ANYFILE.TXT and */
 /* appends the string to the end. */
 /* If the file is already open, */
 /* the string is written at the */
 /* current write position. */
 /* Returns 0 if successful. */

LINES (Lines Remaining)

477

LINEOUT(myfile,"A new start",1) /* Opens the file (if not already */
 /* open); overwrites first line */
 /* with a new line. */
 /* Returns 0 if successful. */

LINEOUT(myfile, ,1) /* Opens the file (if not already */
 /* open). No write; sets write */
 /* position at first character. */

LINEOUT(myfile) /* Closes ANYFILE.TXT */

LINEOUT is often most useful when called as a subroutine. The return value is then available in the
variable RESULT. For example:

Example 7.54. Builtin function LINEOUT call

Call LINEOUT "A:rexx.bat","Shell",1
Call LINEOUT ,"Hello"

Note

If the lines are to be written to the default output stream without the possibility of error, use the
SAY instruction instead.

7.4.41. LINES (Lines Remaining)

 +-, Normal-+
>>-LINES(--+------+-----+----------+---)-----------------------><
 +-name-+ +-, Count--+

Returns 1 if any data remains between the current read position and the end of the character input
stream name. It returns 0 if no data remains. In effect, LINES reports whether a read action that
CHARIN (see Section 7.4.14, “CHARIN (Character Input)”) or LINEIN (see Section 7.4.39, “LINEIN
(Line Input)”) performs will succeed. (To understand the input and output functions, see Chapter 14,
Input and Output Streams.)

The ANSI Standard has extended this function to allow an option: "Count". If this option is used,
LINES returns the actual number of complete lines remaining in the stream, irrespective of how long
this operation takes.

The option "Normal" returns 1 if there is at least one complete line remaining in the file or 0 if no lines
remain.

The default is "Normal".

Here are some examples:

Chapter 7. Functions

478

Example 7.55. Builtin function LINES

LINES(myfile) -> 0 /* at end of the file */
LINES() -> 1 /* data remains in the */
 /* default input stream */
 /* STDIN: */

Note

The CHARS function returns the number of characters in a persistent stream or the presence of
data in a transient stream.

7.4.42. LOWER

>>-LOWER(string-+----------------------------+--)--------------><
 +--,--+-----+--+-----------+-+
 +--n--+ +--,length--+

Returns a new string with the characters of string beginning with character n for length characters
converted to lowercase. If n is specified, it must be a positive whole number. If n is not specified, the
case conversion will start with the first character. If length is specified, it must be a non-negative whole
number. If length is not specified, the default is to convert the remainder of the string.

Examples:

Example 7.56. Builtin function LOWER

lower("Albert Einstein") -> "albert einstein"
lower("ABCDEF", 4) -> "ABCdef"
lower("ABCDEF", 3, 2) -> "ABcdEF"

7.4.43. MAX (Maximum)

 +-,------+
 V |
>>-MAX(----number-+--)---><

MIN (Minimum)

479

Returns the largest number of the list specified, formatted according to the current NUMERIC settings.
You can specify any number of numbers.

Here are some examples:

Example 7.57. Builtin function MAX

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) -> 21

7.4.44. MIN (Minimum)

 +-,------+
 V |
>>-MIN(----number-+--)---><

Returns the smallest number of the list specified, formatted according to the current NUMERIC
settings. You can specify any number of numbers.

Here are some examples:

Example 7.58. Builtin function MIN

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1) -> 1

7.4.45. OVERLAY

>>-OVERLAY(new,target--->

>--+---------------------------------------+--)----------------><
 +-,--+---+--+-------------------------+-+
 +-n-+ +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Returns the string target, which, starting at the nth character, is overlaid with the string new, padded or
truncated to length length. The overlay may extend beyond the end of the original target string. If you
specify length, it must be a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, the string new is padded at the beginning. The

Chapter 7. Functions

480

default pad character is a blank, and the default value for n is 1. If you specify n, it must be a positive
whole number.

Here are some examples:

Example 7.59. Builtin function OVERLAY

OVERLAY(" ","abcdef",3) -> "ab def"
OVERLAY(".","abcdef",3,2) -> "ab. ef"
OVERLAY("qq","abcd") -> "qqcd"
OVERLAY("qq","abcd",4) -> "abcqq"
OVERLAY("123","abc",5,6,"+") -> "abc+123+++"

7.4.46. POS (Position)

>>-POS(needle,haystack--+---------------------------+--)--------------------------><
 +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns the position of one string, needle, in another, haystack. (See also Section 7.4.36, “LASTPOS
(Last Position)”.) It returns 0 if needle is a null string or not found or if start is greater than the length of
haystack. By default, the search starts at the first character of the receiving string (that is, the value of
start is 1), and continues to the end of the string. You can override this by specifying start , the point
at which the search starts, and length, the bounding limit for the search. If specified, start must be a
positive whole number and length must be a non-negative whole number.

Here are some examples:

Example 7.60. Builtin function POS

POS("day","Saturday") -> 6
POS("x","abc def ghi") -> 0
POS(" ","abc def ghi") -> 4
POS(" ","abc def ghi",5) -> 8
POS(" ","abc def ghi",5,3) -> 0

7.4.47. QUALIFY

>>-QUALIFY(name)---><

Returns the a fully qualified file name for name. Qualifying merely expands the file name into a name
that includes directory information. The file does not need to exist to generate the full name.

QUEUED

481

7.4.48. QUEUED

>>-QUEUED()--><

Returns the number of lines remaining in the external data queue when the function is called. (See
Chapter 14, Input and Output Streams for a discussion of Rexx input and output.)

Here is an example:

Example 7.61. Builtin function QUEUED

QUEUED() -> 5 /* Perhaps */

7.4.49. RANDOM

>>-RANDOM(--+------------------------------------+--)----------><
 +--max-------------------------------+
 +-+--------+-,-+-------+--+--------+-+
 +--min---+ +--max--+ +--,seed-+

Returns a quasi-random whole number in the range min to max inclusive. If you specify max or
min,max, then max minus min cannot exceed 999999999. min and max default to 0 and 999,
respectively. To start a repeatable sequence of results, use a specific seed as the third argument. This
seed must be a positive whole number from 0 to 999999999.

Here are some examples:

Example 7.62. Builtin function RANDOM

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */
RANDOM(, ,1983) -> 123 /* reproducible */
RANDOM(-5, 5) -> -3

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

Chapter 7. Functions

482

Example 7.63. Builtin function RANDOM with seed

sequence = RANDOM(1,6,12345) /* any number would */
 /* do for a seed */
do 39
sequence = sequence RANDOM(1,6)
end
say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seed almost certainly produces a different sequence. If you do not supply a seed, the first
time RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different
results each time it is run.

2. The random number generator is global for an entire program; the current seed is not saved
across internal routine calls.

7.4.50. REVERSE

>>-REVERSE(string)---><

Returns string reversed.

Here are some examples:

Example 7.64. Builtin function REVERSE

REVERSE("ABc.") -> ".cBA"
REVERSE("XYZ ") -> " ZYX"

7.4.51. RIGHT

>>-RIGHT(string,length--+------+--)----------------------------><
 +-,pad-+

Returns a string of length length containing the rightmost length characters of string. The string
returned is padded with pad character, or truncated, on the left as needed. The default pad character
is a blank. The length must be a positive whole number or zero.

Here are some examples:

RXFUNCADD

483

Example 7.65. Builtin function RIGHT

RIGHT("abc d",8) -> " abc d"
RIGHT("abc def",5) -> "c def"
RIGHT("12",5,"0") -> "00012"

7.4.52. RXFUNCADD

>>-RXFUNCADD(name,module-+------------+-)----------------------><
 +-,procedure-+

Registers the function, making it available to Rexx procedures. The module is the name of an external
library where the native function is located. In some environments, such as Unix-based systems,
the library name is case sensitive. The procedure is the name of the exported procedure inside of
module. If procedure is not specified, it defaults to name. The procedure is generally case-sensitive.
RxFuncAdd will attempt to resolve the procedure address using the name as specified and if that
attempt fails, will retry using an uppercased name.

A return value 0 signifies successful registration and that the registered function has been located in
the specified module. A return value 1 signifies that the function could not be resolved.

Example 7.66. Builtin function RXFUNCADD

rxfuncadd("SysCls","rexxutil", "SysCls") -> 0 /* if SysCls can be located */
 -> 1 /* if SysCls can not be located */

7.4.53. RXFUNCDROP

>>-RXFUNCDROP(name)--><

Removes (deregisters) the function name from the list of available functions. A zero return value
signifies successful removal.

Example 7.67. Builtin function RXFUNCDROP

rxfuncdrop("SysLoadFuncs") -> 0 /* if successfully removed */

Chapter 7. Functions

484

7.4.54. RXFUNCQUERY

>>-RXFUNCQUERY(name)---><

Queries the list of available functions for the function name. It returns a value of 0 if the function is
registered, and a value of 1 if it is not.

Example 7.68. Builtin function RXFUNCQUERY

rxfuncquery("SysLoadFuncs") -> 0 /* if registered */

7.4.55. RXQUEUE

>>-RXQUEUE(-+-"Create"-+------------+-+-)----------------------><
 | +-,queuename-+ |
 +-"Delete",queuename------+
 +-"Get"-------------------+
 +-"Set",newqueuename------+

Creates and deletes external data queues. It also sets and queries their names.

"Create"
creates a queue with the name queuename if you specify queuename and if no queue of that
name exists already. You must not use SESSION as a queuename. If you specify no queuename,
then the language processor provides a name. The name of the queue is returned in either case.

The maximum length of queuename can be 1024 characters.

Many queues can exist at the same time, and most systems have sufficient resources available
to support several hundred queues at a time. If a queue with the specified name exists already,
a queue is still created with a name assigned by the language processor. The assigned name is
then returned to you.

"Delete"
deletes the named queue. It returns 0 if successful or a nonzero number if an error occurs.
Possible return values are:
0

Queue has been deleted.

5
Not a valid queue name or tried to delete queue named "SESSION".

9
Specified queue does not exist.

SETLOCAL (Linux only)

485

10
Queue is busy; wait is active.

12
A memory failure has occurred.

1002
Failure in memory manager.

"Get"
returns the name of the queue currently in use.

"Set"
sets the name of the current queue to newqueuename and returns the previously active queue
name.

The first parameter determines the function. Only the first character of the first parameter is significant.
The parameter can be entered in any case. The syntax for a valid queue name is the same as for a
valid Rexx symbol.

The second parameter specified for Create, Set, and Delete must follow the same syntax rules as the
Rexx variable names. There is no connection, however, between queue names and variable names.
A program can have a variable and a queue with the same name. The actual name of the queue is the
uppercase value of the name requested.

Named queues prevent different Rexx programs that are running in a single session from interfering
with each other. They allow Rexx programs running in different sessions to synchronize execution
and pass data. LINEIN("QUEUE:") is especially useful because the calling program stops running until
another program places a line on the queue.

Example 7.69. Builtin function RXQUEUE

/* default queue */
rxqueue("Get") -> "SESSION"
/* assuming FRED does not already exist */
rxqueue("Create", "Fred") -> "FRED"
/* assuming SESSION had been active */
rxqueue("Set", "Fred") -> "SESSION"
/* assuming FRED exists */
rxqueue("delete", "Fred") -> "0"

7.4.56. SETLOCAL (Linux only)

>>-SETLOCAL()--><

Saves the current working directory and the current values of the environment variables that are local
to the current process.

Chapter 7. Functions

486

For example, SETLOCAL can be used to save the current environment before changing selected
settings with the VALUE function (see Section 7.4.71, “VALUE”). To restore the directory and
environment, use the ENDLOCAL function (see Section 7.4.29, “ENDLOCAL (Linux only)”.

SETLOCAL returns a value of 1 if the initial directory and environment are successfully saved and a
value of 0 if unsuccessful. If SETLOCAL is not followed by an ENDLOCAL function in a procedure, the
initial environment saved by SETLOCAL is restored upon exiting the procedure.

Here is an example:

Example 7.70. Builtin function SETLOCAL

/* Current path is "user/bin" */
n = SETLOCAL() /* saves all environment settings */
/* Now use the VALUE function to change the PATH variable */
p = VALUE("Path","home/user/bin"."ENVIRONMENT")
/* Programs in directory home/user/bin can now be run */
n = ENDLOCAL() /* restores initial environment including */
 /* the changed PATH variable, which is */
 /* "user/bin" */

7.4.57. SIGN

>>-SIGN(number)--><

Returns a number that indicates the sign of number. The number is first rounded according to
standard Rexx rules, as though the operation number+0 had been carried out. It returns -1 if number
is less than 0, 0 if it is 0, and 1 if it is greater than 0.

Here are some examples:

Example 7.71. Builtin function SIGN

SIGN("12.3") -> 1
SIGN(" -0.307") -> -1
SIGN(0.0) -> 0

7.4.58. SOURCELINE

>>-SOURCELINE(--+---+--)---------------------------------------><
 +-n-+

SPACE

487

Returns the line number of the final line in the program if you omit n. If you specify n, returns the nth
line in the program if available at the time of execution. Otherwise, it returns a null string. If specified,
n must be a positive whole number and must not exceed the number that a call to SOURCELINE with
no arguments returns.

If the Rexx program is in tokenized form the this function raises an error for all attempts to retrieve a
line of the program.

Here are some examples:

Example 7.72. Builtin function SOURCELINE

SOURCELINE() -> 10
SOURCELINE(1) -> "/* This is a 10-line Rexx program */"

7.4.59. SPACE

>>-SPACE(string--+--------------------+--)---------------------><
 +-,--+---+--+------+-+
 +-n-+ +-,pad-+

Returns the whitespace-delimited words in string with n pad characters between each word. If you
specify n, it must be a positive whole number or zero. If it is 0, all whitespace characters are removed.
Leading and trailing whitespace characters are always removed. The default for n is 1, and the default
pad character is a blank.

Here are some examples:

Example 7.73. Builtin function SPACE

SPACE("abc def ") -> "abc def"
SPACE(" abc def",3) -> "abc def"
SPACE("abc def ",1) -> "abc def"
SPACE("abc def ",0) -> "abcdef"
SPACE("abc def ",2,"+") -> "abc++def"

7.4.60. STREAM

>>-STREAM(name--+-----------------------------------+--)-------><
 | +-State----------------------+ |
 +-,--+----------------------------+-+
 +-Command--,--stream_command-+

Chapter 7. Functions

488

 +-Description----------------+

Returns a string describing the state of, or the result of an operation upon, the character stream name.
The result may depend on characteristics of the stream that you have specified in other uses of the
STREAM function. (To understand the input and output functions, see Chapter 14, Input and Output
Streams.) This function requests information on the state of an input or output stream or carries out
some specific operation on the stream.

The first argument, name, specifies the stream to be accessed. The second argument can be one of
the following strings that describe the action to be carried out. (Only the capitalized letter is needed; all
characters following it are ignored.)

Command
an operation (specified by the stream_command given as the third argument) is applied to the
selected input or output stream. The string that is returned depends on the command performed
and can be a null string. The possible input strings for the stream_command argument are
described later.

Description
returns any descriptive string associated with the current state of the specified stream. It is
identical to the State operation, except that the returned string is followed by a colon and, if
available, additional information about the ERROR or NOTREADY states.

State
returns a string that indicates the current state of the specified stream. This is the default
operation.

The returned strings are as described in Section 5.2.4.23, “state”.

Note

The state (and operation) of an input or output stream is global to a Rexx program; it is not saved
and restored across internal function and subroutine calls (including those calls that a CALL ON
condition trap causes).

7.4.60.1. Stream Commands

The following stream commands are used to:

• Open a stream for reading, writing, or both.

• Close a stream at the end of an operation.

• Position the read or write position within a persistent stream (for example, a file).

• Get information about a stream (its existence, size, and last edit date).

The streamcommand argument must be used when--and only when--you select the operation C
(command). The syntax is:

STREAM

489

>>-STREAM(name,"C",streamcommand)------------------------------><

In this form, the STREAM function itself returns a string corresponding to the given streamcommand
if the command is successful. If the command is unsuccessful, STREAM returns an error message
string in the same form as the D (Description) operation supplies.

For most error conditions, the additional information is in the form of a numeric return code. This return
code is the value of ERRNO that is set whenever one of the file system primitives returns with a -1.

7.4.60.1.1. Command Strings

The argument streamcommand can be any expression that the language processor evaluates to a
command string that corresponds to the following diagram:

 +-BOTH--| Write Options |--+
>>-+-OPEN--+--------------------------+--+-------------+-+-----><
 | +-READ---------------------+ +-| Options |-+ |
 | +-WRITE--| Write Options |-+ |
 +-CLOSE---+
 +-FLUSH---+
 | +- = -+ +-CHAR-+ |
 +-+-SEEK-----+--+-----+-offset--+-------+--+------+---+
 | +-POSITION-+ +- < -+ +-READ--+ +-LINE-+ |
 | +- + -+ +-WRITE-+ |
 | +- ; -+ |
 +-QUERY--+-DATETIME--------------------------+--------+
 +-EXISTS----------------------------+
 +-HANDLE----------------------------+
 | +-CHAR-+ |
 +-+-SEEK-----+--+-READ--+------+--+-+
 | +-POSITION-+ | +-LINE-+ | |
 | | +-CHAR-+ | |
 | +-WRITE--+------+-+ |
 | | +-LINE-+ | |
 | +-SYS-------------+ |
 +-SIZE------------------------------+
 +-STREAMTYPE------------------------+
 +-TIMESTAMP-------------------------+

Write Options:

|--+---------+--|
 +-APPEND--+
 +-REPLACE-+

Options:

 +-----------------------------------+

Chapter 7. Functions

490

 V |
|--+------------+----+-NOBUFFER----------------------+-+--------|
 +-SHARED-----+ +-BINARY--+-------------------+-+
 +-SHAREREAD--+ +-RECLENGTH--length-+
 +-SHAREWRITE-+

OPEN
opens the named stream. The default for OPEN is to open the stream for both reading and writing
data, for example, "OPEN BOTH".

The STREAM function itself returns a description string similar to the one that the D option
provides, for example, "READY:" if the named stream is successfully opened, or "ERROR:2" if the
named stream is not found.

The following is a description of the options for OPEN:

READ
opens the stream for reading only.

WRITE
opens the stream for writing only.

BOTH
opens the stream for both reading and writing. (This is the default.) Separate read and write
pointers are maintained.

APPEND
positions the write pointer at the end of the stream. The write pointer cannot be moved
anywhere within the extent of the file as it existed when the file was opened.

REPLACE
sets the write pointer to the beginning of the stream and truncates the file. In other words, this
option deletes all data that was in the stream when opened.

SHARED
Enables another process to work with the stream in a shared mode. This mode must be
compatible with the shared mode (SHARED, SHAREREAD, or SHAREWRITE) used by the
process that opened the stream.

SHAREREAD
Enables another process to read the stream in a shared mode.

SHAREWRITE
Enables another process to write the stream in a shared mode.

NOBUFFER
turns off buffering of the stream. Thus, all data written to the stream is flushed immediately
to the operating system for writing. This option can severely affect output performance.
Therefore, use it only when data integrity is a concern, or to force interleaved output to a
stream to appear in the exact order in which it was written.

BINARY
causes the stream to be opened in binary mode. This means that line end characters are
ignored and treated as another byte of data. This is intended to force file operations that are
compatible with other Rexx language processors that run on record-based systems, or to
process binary data using the line operations.

STREAM

491

Note

Specifying the BINARY option for a stream that does not exist but is opened for writing
also requires the RECLENGTH option to be specified. Omitting the RECLENGTH option
in this case raises an error condition.

RECLENGTH length
allows the specification of an exact length for each line in a stream. This allows line operations
on binary-mode streams to operate on individual fixed-length records. Without this option, line
operations on binary-mode files operate on the entire file (for example, as if the RECLENGTH
option were specified with a length equal to that of the file). length must be 1 or greater.

Examples:

Example 7.74. Builtin function STREAM

stream(strout,"c","open")
stream(strout,"c","open write")
stream(strinp,"c","open read")
stream(strinp,"c","open read shared")

CLOSE
closes the named stream. The STREAM function itself returns READY: if the named stream is
successfully closed, or an appropriate error message. If an attempt is made to close an unopened
file, STREAM returns a null string ("").

Example 7.75. Builtin function STREAM on unopened file

stream("STRM.TXT","c","close")

FLUSH
forces any data currently buffered for writing to be written to this stream.

SEEK offset
sets the read or write position within a persistent stream. If the stream is opened for both reading
and writing and no SEEK option is specified, both the read and write positions are set.

Note

See Chapter 14, Input and Output Streams for a discussion of read and write positions in a
persistent stream.

Chapter 7. Functions

492

To use this command, the named stream must first be opened with the OPEN stream command or
implicitly with an input or output operation. One of the following characters can precede the offset
number:

=
explicitly specifies the offset from the beginning of the stream. This is the default if no prefix is
supplied. Line Offset=1 means the beginning of stream.

<
specifies offset from the end of the stream.

+
specifies offset forward from the current read or write position.

-
specifies offset backward from the current read or write position.

The STREAM function itself returns the new position in the stream if the read or write position is
successfully located or an appropriate error message otherwise.

The following is a description of the options for SEEK:

READ
specifies that the read position is to be set by this command.

WRITE
specifies that the write position is to be set by this command.

CHAR
specifies that the positioning is to be done in terms of characters. This is the default.

LINE
specifies that the positioning is to be done in terms of lines. For non-binary streams, this is
an operation that can take a long time to complete, because, in most cases, the file must
be scanned from the top to count line-end characters. However, for binary streams with a
specified record length, this results in a simple multiplication of the new resulting line number
by the record length, and then a simple character positioning. See Section 14.1.5, “Line
versus Character Positioning” for a detailed discussion of this issue.

Note

If you do line positioning in a file open only for writing, you receive an error message.

Example 7.76. Builtin function STREAM examples

stream(name,"c","seek =2 read")
stream(name,"c","seek +15 read")
stream(name,"c","seek -7 write line")
fromend = 125
stream(name,"c","seek <"fromend read)

STREAM

493

POSITION
is a synonym for SEEK.

7.4.60.1.2. QUERY Stream Commands

Used with these stream commands, the STREAM function returns specific information about a stream.
Except for QUERY HANDLE and QUERY POSITION, the language processor returns the query
information even if the stream is not open. The language processor returns UNKNOWN for QUERY
STREAMTYPE and the null string for nonexistent streams.

Note that technically although a directory is persistent, it is not a stream. If the directory exists, the
date / time queries return the time stamp of the directory, QUERY SIZE returns 0, and QUERY
STREAMTYPE returns UNKNOWN. The other commands return the null string.

QUERY DATETIME
returns the date and time stamps of a stream in US format. This is included for compatibility with
OS/2®.

Example 7.77. Builtin function STREAM QUERY examples

stream("..\file.txt","c","query datetime")

A sample output might be:

11-12-98 03:29:12

QUERY EXISTS
returns the full path specification of the named stream, if it exists, or a null string.

Example 7.78. Builtin function STREAM QUERY EXISTS examples

stream("..\file.txt","c","query exists")

A sample output might be:

c:\data\file.txt

QUERY HANDLE
returns the handle associated with the open stream.

Example 7.79. Builtin function STREAM QUERY HANDLE examples

stream("..\file.txt","c","query handle")

A sample output might be:

Chapter 7. Functions

494

3

QUERY POSITION
returns the current read or write position for the stream, as qualified by the following options:
READ

returns the current read position.

WRITE
returns the current write position.

Note

If the stream is open for both reading and writing, the default is to return the read
position. Otherwise, it returns the appropriate position by default.

CHAR
returns the position in terms of characters. This is the default.

LINE
returns the position in terms of lines. For non-binary streams, this operation can take a long
time to complete, because the language processor starts tracking the current line number if
not already doing so. Thus, it might require a scan of the stream from the top to count line-end
characters. See Section 14.1.5, “Line versus Character Positioning” for a detailed discussion
of this issue.

Example 7.80. Builtin function STREAM QUERY POSITION examples

stream("myfile","c","query position write")

A sample output might be:

247

SYS
returns the operating-system stream position in terms of characters.

QUERY SIZE
returns the size, in bytes, of a persistent stream.

Example 7.81. Builtin function STREAM QUERY SIZE examples

stream("..\file.txt","c","query size")

A sample output might be:

STRIP

495

1305

QUERY STREAMTYPE
returns a string indicating whether the stream is PERSISTENT, TRANSIENT, or UNKNOWN.

QUERY TIMESTAMP
returns the date and time stamps of a stream in an international format. This is the preferred
method of getting the date and time because it provides the full 4-digit year.

Example 7.82. Builtin function STREAM QUERY TIMESTAMP examples

stream("..\file.txt","c","query timestamp")

A sample output might be:

1998-11-12 03:29:12

7.4.61. STRIP

>>-STRIP(string--+---------------------------+--)---------------><
 +-,--+--------+--+--------+-+
 +-option-+ +-,chars-+

Returns string with leading characters, trailing characters, or both, removed, based on the option you
specify. The following are valid options. (Only the capitalized letter is needed; all characters following it
are ignored.)

Both
removes both leading and trailing characters from string. This is the default.

Leading
removes leading characters from string.

Trailing
removes trailing characters from string.

The third argument, chars, specifies the set of characters to be removed, and the default is to remove
all whitespace characters (spaces and horizontal tabs). If chars, is a null string, then no characters are
removed. Otherwise, any occurrences of the characters in chars will be removed.

Here are some examples:

Example 7.83. Builtin function STRIP

Chapter 7. Functions

496

STRIP(" ab c ") -> "ab c"
STRIP(" ab c ","L") -> "ab c "
STRIP(" ab c ","t") -> " ab c"
STRIP("12.7000", ,0) -> "12.7"
STRIP("0012.700", ,0) -> "12.7"
STRIP("12.0000", "T", '.0') -> "12"

7.4.62. SUBSTR (Substring)

>>-SUBSTR(string,n--+-------------------------+--)-------------><
 +-,--+--------+--+------+-+
 +-length-+ +-,pad-+

Returns the substring of string that begins at the nth character and is of length length, padded with
pad if necessary. n must be a positive whole number. If n is greater than LENGTH(string), only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Here are some examples:

Example 7.84. Builtin function SUBSTR

SUBSTR("abc",2) -> "bc"
SUBSTR("abc",2,4) -> "bc "
SUBSTR("abc",2,6,".") -> "bc...."

Note

In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string. See
also Section 7.4.37, “LEFT” and Section 7.4.51, “RIGHT”.

7.4.63. SUBWORD

>>-SUBWORD(string,n--+---------+--)----------------------------><
 +-,length-+

Returns the substring of string that starts at the nth word, and is up to length whitespace-delimited
words. n must be a positive whole number. If you omit length, it defaults to the number of remaining

SYMBOL

497

words in string. The returned string never has leading or trailing whitespace, but includes all
whitespace characters between the selected words.

Here are some examples:

Example 7.85. Builtin function SUBWORD

SUBWORD("Now is the time",2,2) -> "is the"
SUBWORD("Now is the time",3) -> "the time"
SUBWORD("Now is the time",5) -> ""

7.4.64. SYMBOL

>>-SYMBOL(name)--><

Returns the state of the symbol named by name. It returns BAD if name is not a valid Rexx symbol. It
returns VAR if it is the name of a variable, that is, a symbol that has been assigned a value. Otherwise,
it returns LIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned
a value, that is, a literal.

As with symbols in Rexx expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note

You should specify name as a literal string, or it should be derived from an expression, to prevent
substitution before it is passed to the function.

Here are some examples:

Example 7.86. Builtin function SYMBOL

/* following: Drop A.3; J=3 */
SYMBOL("J") -> "VAR"
SYMBOL(J) -> "LIT" /* has tested "3" */
SYMBOL("a.j") -> "LIT" /* has tested A.3 */
SYMBOL(2) -> "LIT" /* a constant symbol */
SYMBOL("*") -> "BAD" /* not a valid symbol */

7.4.65. TIME

Chapter 7. Functions

498

>>-TIME(--+-----------------------------------+--)-------------><
 +-option--+-----------------------+-+
 +-,string--+----------+-+
 +-,option2-+

Returns the local time in the 24-hour clock format hh:mm:ss (hours, minutes, and seconds) by default,
for example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized letter is needed; all characters following it are ignored.)

Civil
returns the time in Civil format hh:mmxx. The hours can take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm.
This distinguishes times in the morning (12 midnight through 11:59 a.m.--appearing as 12:00am
through 11:59am) from noon and afternoon (12 noon through 11:59 p.m.--appearing as 12:00pm
through 11:59pm). The hour has no leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset. The returned number has no leading zeros or whitespace,
and the setting of NUMERIC DIGITS does not affect it. The number has always four trailing zeros
in the decimal portion.

The language processor calculates elapsed time by subtracting the time at which the elapsed-
time clock was started or reset from the current time. It is possible to change the system time clock
while the system is running. This means that the calculated elapsed time value might not be a true
elapsed time. If the time is changed so that the system time is earlier than when the Rexx elapsed-
time clock was started (so that the elapsed time would appear negative), the language processor
raises an error and disables the elapsed-time clock. To restart the elapsed-time clock, trap the
error through SIGNAL ON SYNTAX.

The clock can also be changed by programs on the system. Many LAN-attached programs
synchronize the system time clock with the system time clock of the server during startup. This
causes the Rexx elapsed time function to be unreliable during LAN initialization.

Full
returns the number of microseconds since 00:00:00.000000 on 1 January 0001, in the format:
dddddddddddddddddd (no leading zeros or whitespace).

TIME

499

Notes

The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Time('F') can be used to calculate the interval between any two times.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 18
when performing timestamp arithmetic.

Hours
returns up to two characters giving the number of hours since midnight in the format hh (no
leading zeros or whitespace, except for a result of 0).

Long
returns time in the format hh:mm:ss.uuuuuu (where uuuuuu are microseconds).

Minutes
returns up to four characters giving the number of minutes since midnight in the format mmmm (no
leading zeros or whitespace, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss. The hours can have the values 00 through 23,
and minutes and seconds, 00 through 59. There are always two digits. Any fractions of seconds
are ignored (times are never rounded). This is the default.

Offset
returns the offset of the local time from UTC in microseconds. The offset value will be negative for
timezones west of the Prime Meridian and positive for timezones east of Prime Meridian. The local
time('F') value can be converted to UTC by subtracting the time('O') value.

Reset
returns sssssssss.uuuuuu, the number of seconds and microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The returned
number has no leading zeros or whitespace, and the setting of NUMERIC DIGITS does not affect
it. The number always has four trailing zeros in the decimal portion.

See the Elapsed option for more information on resetting the system time clock.

Seconds
returns up to five characters giving the number of seconds since midnight in the format sssss (no
leading zeros or whitespace, except for a result of 0).

Ticks
returns the number of seconds since 00:00:00.000000 on 1 January 1970, in the format:
dddddddddddd (no leading zeros or whitespace).

Chapter 7. Functions

500

Notes

The base date of 1 January 1970 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except
century years that are not divisible by 400). It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

The value returned by Time('T') can be used to calculate the interval between any two times.
Note, however, that values returned generally contain more digits than the default NUMERIC
DIGITS setting. The NUMERIC DIGITS setting should be increased to a minimum value of 12
when performing timestamp arithmetic.

Time('T') will return a negative number for dates prior to 1 January 1970.

Here are some examples, assuming that the time is 4:54 p.m.:

Example 7.87. Builtin function TIME

TIME() -> "16:54:22"
TIME("C") -> "4:54pm"
TIME("H") -> "16"
TIME("L") -> "16:54:22.120000" /* Perhaps */
TIME("M") -> "1014" /* 54 + 60*16 */
TIME("N") -> "16:54:22"
TIME("S") -> "60862" /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program
to TIME("E") or TIME("R"), the elapsed-time clock is started, and either call returns 0. From then
on, calls to TIME("E") and TIME("R") return the elapsed time since that first call or since the last
call to TIME("R").

The clock is saved across internal routine calls, which means that an internal routine inherits the time
clock that its caller started. Any timing the caller is doing is not affected, even if an internal routine
resets the clock. An example of the elapsed-time clock:

Example 7.88. Builtin function TIME elapsed

time("E") -> 0 /* The first call */
 /* pause of one second here */
time("E") -> 1.020000 /* or thereabouts */
 /* pause of one second here */
time("R") -> 2.030000 /* or thereabouts */
 /* pause of one second here */
time("R") -> 1.050000 /* or thereabouts */

TIME

501

Note

The elapsed-time clock is synchronized with the other calls to TIME and DATE, so several calls
to the elapsed-time clock in a single clause always return the same result. For this reason, the
interval between two usual TIME/DATE results can be calculated exactly using the elapsed-time
clock.

If you specify string, TIME returns the time corresponding to string in the format option. The string
must be supplied in the format option2. The default for option2 is "N". So you need to specify option2
only if string is not in the Normal format. option2 must specify the current time, for example, not "E" or
"R". Here are some examples:

Example 7.89. Builtin function TIME formating

time("C","11:27:21") -> 11:27am
time("N","11:27am","C") -> 11:27:00
time("N", "63326132161828000", "F") -> 08:16:01

You can determine the difference between two times; for example:

Example 7.90. Builtin function TIME difference

If TIME("M","5:00pm","C")-TIME("M")<=0
then say "Time to go home"
else say "Keep working"

The TIME returned is the earliest time consistent with string. For example, if the result requires
components that are not specified in the source format, then those components of the result are zero.
If the source has components that the result does not need, then those components of the source are
ignored.

When requesting times be converted to Full or Ticks format, a date value of 1 January 0001 is used
for the conversion. A time stamp for a time and date combination can be created by combining a value
from Date('F') for the time of day.

Example 7.91. Builtin function TIME with F option

 numeric digits 18 -- needed to add the timestamps
 timestamp = date('f, '20072301', 'S') + time('f', '08:14:22', 'N')

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits
(equivalent to over 31.6 years), an error results.

Chapter 7. Functions

502

7.4.66. TRACE

>>-TRACE(--+--------+--)---------------------------------------><
 +-option-+

Returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be the valid prefix ?, one of the alphabetic
character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L, N, O,
or R), or both. (See the TRACE instruction in Section 2.29.1, “Trace Alphabetic Character (Word)
Options” for full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debugging
is active. Also unlike the TRACE instruction, option cannot be a number.

Here are some examples:

Example 7.92. Builtin function TRACE

TRACE() -> "?R" /* maybe */
TRACE("O") -> "?R" /* also sets tracing off */
TRACE("?I") -> "O" /* now in interactive debugging */

7.4.67. TRANSLATE

>>-TRANSLATE(string--->

>--+--+--+-------------------------+-)-><
 +-,--+--------+--+-------------------------+-+ +-,--+-----+--+---------+-+
 +-tableo-+ +-,--+--------+--+------+-+ +-pos-+ +-,length-+
 +-tablei-+ +-,pad-+

Returns string with each character translated to another character or unchanged. You can also use
this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for
each character in string. If the character is found, the corresponding character in tableo is used in the
result string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is
not found, the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither table and omit pad, string is simply translated to
uppercase (that is, lowercase a-z to uppercase A-Z), but, if you include pad, the language processor
translates the entire string to pad characters. tablei defaults to XRANGE("00"x,"FF"x), and tableo
defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

TRUNC (Truncate)

503

pos is the position of the first character of the translated range. The default starting position is 1. length
is the range of characters to be translated. If omitted, length remainder of the string from the starting
position to the end is used.

Here are some examples:

Example 7.93. Builtin function TRANSLATE

TRANSLATE("abcdef") -> "ABCDEF"
TRANSLATE("abcdef", , , , 2, 3) -> "aBCDef"
TRANSLATE("abcdef", "12", "ec") -> "ab2d1f"
TRANSLATE("abcdef", "12", "abcd", ".") -> "12..ef"
TRANSLATE("APQRV", , "PR") -> "A Q V"
TRANSLATE("APQRV", XRANGE("00"X, "Q")) -> "APQ "
TRANSLATE("4123", "abcd", "1234", , 2, 2) -> "4ab3"
TRANSLATE("4123", "abcd", "1234") -> "dabc"

Note

The last example shows how to use the TRANSLATE function to reorder the characters in a
string. The last character of any four-character string specified as the second argument is moved
to the beginning of the string.

7.4.68. TRUNC (Truncate)

>>-TRUNC(number--+----+--)-------------------------------------><
 +-,n-+

Returns the integer part of number and n decimal places. The default n is 0 and returns an integer with
no decimal point. If you specify n, it must be a positive whole number or zero. The number is rounded
according to standard Rexx rules, as though the operation number+0 had been carried out. Then it
is truncated to n decimal places or trailing zeros are added to reach the specified length. The result is
never in exponential form. If there are no nonzero digits in the result, any minus sign is removed.

Here are some examples:

Example 7.94. Builtin function TRUNC

TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Chapter 7. Functions

504

Note

The number is rounded according to the current setting of NUMERIC DIGITS, if necessary,
before the function processes it.

7.4.69. UPPER

>>-UPPER(string-+----------------------------+--)--------------><
 +--,--+-----+--+-----------+-+
 +--n--+ +--,length--+

Returns a new string with the characters of string beginning with character n for length characters
converted to uppercase. If n is specified, it must be a positive whole number. If n is not specified, the
case conversion will start with the first character. If length is specified, it must be a non-negative whole
number. If length is not specified, the default is to convert the remainder of the string.

Example 7.95. Builtin function UPPER

upper("Albert Einstein") -> "ALBERT EINSTEIN"
upper("abcdef", 4) -> "abcDEF"
upper("abcdef", 3, 2) -> "abCDef"

7.4.70. USERID

>>-USERID()--><

The return value is the active user identification.

7.4.71. VALUE

>>-VALUE(name--+--------------------------------+--)-----------><
 +-,--+----------+--+-----------+-+
 +-newvalue-+ +-,selector-+

Returns the value of the symbol that name (often constructed dynamically) represents and optionally
assigns a new value to it. By default, VALUE refers to the current Rexx-variables environment,

VALUE

505

but other, external collections of variables can be selected. If you use the function to refer to Rexx
variables, name must be a valid Rexx symbol. (You can confirm this by using the SYMBOL function.)
Lowercase characters in name are translated to uppercase for the local environment. For the global
environment lowercase characters are not translated because the global environment supports mixed-
case identifiers. Substitution in a compound name (see Section 1.13.5, “Compound Symbols”) occurs
if possible.

If you specify newvalue, the named variable is assigned this new value. This does not affect the result
returned; that is, the function returns the value of name as it was before the new assignment.

Here are some examples:

Example 7.96. Builtin function VALUE

/* After: Drop A3; A33=7; K=3; fred="K"; list.5="Hi" */
VALUE("a"k) -> "A3" /* looks up A3 */
VALUE("a"k||k) -> "7"
VALUE("fred") -> "K" /* looks up FRED */
VALUE(fred) -> "3" /* looks up K */
VALUE(fred,5) -> "3" /* looks up K and */
 /* then sets K=5 */
VALUE(fred) -> "5" /* looks up K */
VALUE("LIST."k) -> "Hi" /* looks up LIST.5 */

To use VALUE to manipulate environment variables, selector must be the string "ENVIRONMENT" or
an expression that evaluates to "ENVIRONMENT". In this case, the variable name need not be a valid
Rexx symbol. Environment variables set by VALUE are not kept after program termination.

Restriction: The values assigned to the variables must not contain any character that is a
hexadecimal zero ("00"X). For example:

Call VALUE "MYVAR", "FIRST" || "00"X || "SECOND", "ENVIRONMENT"

sets MYVAR to "FIRST", truncating "00"x and "SECOND".

Here are some more examples:

Example 7.97. Builtin function VALUE

/* Given that an external variable FRED has a value of 4 */
share = "ENVIRONMENT"
say VALUE("fred",7,share) /* says "4" and assigns */
 /* FRED a new value of 7 */

say VALUE("fred", ,share) /* says "7" */

/* Accessing and changing Windows environment entries given that */
 /* PATH=C:\EDIT\DOCS; */
env = "ENVIRONMENT"
new = "C:\EDIT\DOCS;"
say value("PATH",new,env) /* says "C:\WINDOWS" (perhaps) */
 /* and sets PATH = "C:\EDIT\DOCS;" */

Chapter 7. Functions

506

say value("PATH", ,env) /* says "C:\EDIT\DOCS;" */

To delete an environment variable use the Nil object as the newvalue. To delete the environment
variable "MYVAR" specify: value("MYVAR", .NIL, "ENVIRONMENT"). If you specify an empty
string as the newvalue like in value("MYVAR", "", "ENVIRONMENT") the value of the external
environment variable is set to an empty string which on Windows and *nix is not the same as deleting
the environment variable.

A selector called "WSHENGINE" is also available to the VALUE function when a Rexx script is run in
a Windows Script Host scripting context (running via cscript, wscript or as embedded code in HTML
for the Microsoft Internet Explorer). The only currently supported value is "NAMEDITEMS". Calling
VALUE with these parameters returns an array with the names of the named items that were added at
script start.

Example:

myArray = VALUE("NAMEDITEMS", ,"WSHENGINE")

The value NAMEDITEMS is read-only, writing to it is prohibited.

Object Rexx scripts running via the scripting engine (in WSH context) can now call the default method
of an object as a function call with the object name.

Example:

The SESSION object of ASP (Active Server Pages) has the default method VALUE. The usual (and
recommended) way of using the SESSION object would be to use

SESSION~VALUE("key","value").

Because VALUE is the default method, a function call

SESSION("key","value")
SESSION~VALUE("key","value").

causes an invocation of VALUE with the given arguments. For objects that have the name of a Rexx
function, an explicit call to the default method must be made, because Rexx functions have priority
over this implicit method invocation mechanism.

Note

In contrast to OS/2, the Windows and *nix environments are unchanged after program
termination.

You can use the VALUE function to return a value to the global environment directory. To do so, omit
newvalue and specify selector as the null string. The language processor sends the message name
(without arguments) to the current environment object. The environment returns the object identified

VAR

507

by name. If there is no such object, it returns, by default, the string name with an added initial period
(an environment symbol--see Section 1.13.6, “Environment Symbols”).

Here are some examples:

Example 7.98. Builtin function VALUE

/* Assume the environment name MYNAME identifies the string "Simon" */
name = value("MYNAME", ,"") /* Sends MYNAME message to the environment */
name = .myname /* Same as previous instruction */
say "Hello," name /* Produces: "Hello, Simon" */
/* Assume the environment name NONAME does not exist. */
name = value("NONAME", ,"") /* Sends NONAME message to the environment */
say "Hello," name /* Produces: "Hello, .NONAME" */

You can use the VALUE function to change a value in the Rexx environment directory. Include
a newvalue and specify selector as the null string. The language processor sends the message
name (with = appended) and the single argument newvalue to the current environment object. After
receiving this message, the environment identifies the object newvalue by the name name.

Here is an example:

Example 7.99. Builtin function VALUE

name = value("MYNAME","David","") /* Sends "MYNAME=("David") message */
/* to the environment. */
/* You could also use: */
/* call value "MYNAME","David","" */
say "Hello," .myname /* Produces: "Hello, David" */

Notes:

1. If the VALUE function refers to an uninitialized Rexx variable, the default value of the variable
is always returned. The NOVALUE condition is not raised because a reference to an external
collection of variables never raises NOVALUE.

2. The VALUE function is used when a variable contains the name of another variable, or when
a name is constructed dynamically. If you specify name as a single literal string and omit
newvalue and selector, the symbol is a constant and the string between the quotation marks can
usually replace the whole function call. For example, fred=VALUE("k"); is identical with the
assignment fred=k;, unless the NOVALUE condition is trapped. See Chapter 11, Conditions and
Condition Traps.

7.4.72. VAR

>>-VAR(name)---><

Chapter 7. Functions

508

Returns 1 if name is the name of a variable (that is, a symbol that has been assigned a value), or 0.

Here are some examples:

Example 7.100. Builtin function VAR

/* Following: DROP A.3; J=3 */
VAR("J") -> 1
VAR(J) -> 0 /* has tested "3" */
VAR("a.j") -> 0 /* has tested "A.3" */
VAR(2) -> 0 /* a constant symbol */
VAR("*") -> 0 /* an invalid symbol */

7.4.73. VERIFY

>>-VERIFY(string,reference--+--+--)---><
 +-,--+--------+--+---------------------------+-+
 +-option-+ +-,--+-------+--+---------+-+
 +-start-+ +-,length-+

Returns a number that, by default, indicates whether string is composed only of characters from
reference. It returns 0 if all characters in string are in reference, or returns the position of the first
character in string that is not in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and highlighted letter
is needed. All characters following it are ignored, and it can be in uppercase or lowercase characters.)
If you specify Match, the function returns the position of the first character in the string that is in
reference, or returns 0 if none of the characters are found.

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

The default for length is the length of the string from start to the end of the string. Thus, the search
proceeds to the end of the receiving string. You can override this by specifying a different length,
which must be a non-negative whole number.

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise, the function returns the start value.

Here are some examples:

Example 7.101. Builtin function VERIFY

VERIFY("123","1234567890") -> 0
VERIFY("1Z3","1234567890") -> 2
VERIFY("AB4T","1234567890") -> 1

WORD

509

VERIFY("AB4T","1234567890","M") -> 3
VERIFY("AB4T","1234567890","N") -> 1
VERIFY("1P3Q4","1234567890", ,3) -> 4
VERIFY("123","",N,2) -> 2
VERIFY("ABCDE","", ,3) -> 3
VERIFY("AB3CD5","1234567890","M",4) -> 6
VERIFY("ABCDEF","ABC","N",2,3) -> 4
VERIFY("ABCDEF","ADEF","M",2,3) -> 4

7.4.74. WORD

>>-WORD(string,n)--><

Returns the nth whitespace-delimited word in string or returns the null string if less than n words are in
string. n must be a positive whole number. This function is equal to SUBWORD(string, n,1).

Here are some examples:

Example 7.102. Builtin function WORD

WORD("Now is the time",3) -> "the"
WORD("Now is the time",5) -> ""

7.4.75. WORDINDEX

>>-WORDINDEX(string,n)---><

Returns the position of the first character in the nth whitespace-delimited word in string or returns 0 if
less than n words are in string. n must be a positive whole number.

Here are some examples:

Example 7.103. Builtin function WORDINDEX

WORDINDEX("Now is the time",3) -> 8
WORDINDEX("Now is the time",6) -> 0

7.4.76. WORDLENGTH

Chapter 7. Functions

510

>>-WORDLENGTH(string,n)--><

Returns the length of the nth whitespace-delimited word in the string or returns 0 if less than n words
are in the string. n must be a positive whole number.

Here are some examples:

Example 7.104. Builtin function WORDLENGTH

WORDLENGTH("Now is the time",2) -> 2
WORDLENGTH("Now comes the time",2) -> 5
WORDLENGTH("Now is the time",6) -> 0

7.4.77. WORDPOS (Word Position)

>>-WORDPOS(phrase,string--+--------+--)------------------------><
 +-,start-+

Returns the word number of the first word of phrase found in string or returns 0 if phrase contains
no words or if phrase is not found. Several whitespace characters between words in either phrase or
string are treated as a single blank for the comparison, but otherwise the words must match exactly.

By default, the search starts at the first word in string. You can override this by specifying start (which
must be positive), the word at which to start the search.

Here are some examples:

Example 7.105. Builtin function WORDPOS

WORDPOS("the","now is the time") -> 3
WORDPOS("The","now is the time") -> 0
WORDPOS("is the","now is the time") -> 2
WORDPOS("is the","now is the time") -> 2
WORDPOS("is time ","now is the time") -> 0
WORDPOS("be","To be or not to be") -> 2
WORDPOS("be","To be or not to be",3) -> 6

7.4.78. WORDS

X2B (Hexadecimal to Binary)

511

>>-WORDS(string)---><

Returns the number of whitespace-delimited words in string.

Here are some examples:

Example 7.106. Builtin function WORDS

WORDS("Now is the time") -> 4
WORDS(" ") -> 0

7.4.79. X2B (Hexadecimal to Binary)

>>-X2B(hexstring)--><

Returns a string, in character format, that represents hexstring converted to binary. The hexstring is
a string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted
to a string of 4 binary digits. You can optionally include whitespace characters in hexstring (at byte
boundaries only, not leading or trailing) to improve readability; they are ignored.

The returned string has a length that is a multiple of 4, and does not include any whitespace.

If hexstring is null, the function returns a null string.

Here are some examples:

Example 7.107. Builtin function X2B

X2B("C3") -> "11000011"
X2B("7") -> "0111"
X2B("1 C1") -> "000111000001"

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into
binary form.

Here are some examples:

Example 7.108. Builtin function X2B

X2B(C2X("C3"x)) -> "11000011"
X2B(D2X("129")) -> "10000001"
X2B(D2X("12")) -> "1100"

Chapter 7. Functions

512

7.4.80. X2C (Hexadecimal to Character)

>>-X2C(hexstring)--><

Returns a string, in character format, that represents hexstring converted to character. The returned
string has half as many bytes as the original hexstring. hexstring can be of any length. If necessary, it
is padded with a leading zero to make an even number of hexadecimal digits.

You can optionally include whitespace characters in hexstring (at byte boundaries only, not leading or
trailing) to improve readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

Example 7.109. Builtin function X2C

X2C("4865 6c6c 6f") -> "Hello" /* ASCII */
X2C("3732 73") -> "72s" /* ASCII */

7.4.81. X2D (Hexadecimal to Decimal)

>>-X2D(hexstring--+----+--)------------------------------------><
 +-,n-+

Returns the decimal representation of hexstring. The hexstring is a string of hexadecimal characters. If
the result cannot be expressed as a whole number, an error occurs. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS.

You can optionally include whitespace characters in hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, the hexstring is processed as an unsigned binary number.

Here are some examples:

Example 7.110. Builtin function X2D

X2D("0E") -> 14
X2D("81") -> 129

XRANGE (Hexadecimal Range)

513

X2D("F81") -> 3969
X2D("FF81") -> 65409
X2D("46 30"X) -> 240 /* ASCII */
X2D("66 30"X) -> 240 /* ASCII */

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the
leftmost bit is off, then the number is positive; otherwise, it is a negative number. In both cases it is
converted to a whole number, which can be negative. If n is 0, the function returns 0.

If necessary, hexstring is padded on the left with 0 characters (not "sign-extended"), or truncated on
the left to n characters.

Here are some examples:

Example 7.111. Builtin function X2D

X2D("81",2) -> -127
X2D("81",4) -> 129
X2D("F081",4) -> -3967
X2D("F081",3) -> 129
X2D("F081",2) -> -127
X2D("F081",1) -> 1
X2D("0031",0) -> 0

7.4.82. XRANGE (Hexadecimal Range)

>>-XRANGE(--+-------+--+------+--)-----------------------------><
 +-start-+ +-,end-+

Returns a string of all valid 1-byte encodings (in ascending order) between and including the values
start and end. The default value for start is "00"x, and the default value for end is "FF"x. If start is
greater than end, the values wrap from "FF"x to "00"x. If specified, start and end must be single
characters.

Here are some examples:

Example 7.112. Builtin function XRANGE

XRANGE("a","f") -> "abcdef"
XRANGE("03"x,"07"x) -> "0304050607"x
XRANGE(,"04"x) -> "0001020304"x
XRANGE("FE"x,"02"x) -> "FEFF000102"x
XRANGE("i","j") -> "ij" /* ASCII */

514

Chapter 8.

515

Rexx Utilities (RexxUtil)
RexxUtil is a Dynamic Link Library (DLL) package for Windows and *nix platforms; the package
contains external Rexx functions. These functions:

• Manipulate operating system files and directories

• Manipulate Windows classes and objects

• Perform text screen input and output

All of the RexxUtil functions are registered by the ooRexx interpreter on startup so there is no need to
register the functions either individually or via the SysLoadFuncs function.

8.1. A Note on Error Codes

On Windows, some of the REXXUTIL functions return operating system error codes on failure. The
SysGetErrorText (Section 8.30, “SysGetErrortext”) function can be used retrieve a description of
system error code. In addition, the meaning of these error return codes can be looked up in the
Windows Operating System documentation provided by Microsoft.

The documentation is called the MSDN Library. The library is provided online for anyone to access.
Plus, since May 2006, Microsoft has also provided the ISO images for the library free of charge.
Anyone can download the ISOs, burn them to a CD, and install the library locally on their system.

The information below is provided to help the Rexx programmer locate the MSDN Library. All things on
the Internet change. The URLs listed here are accurate at the time of this writing.

The online MSDN Library is currently located at:

http://msdn2.microsoft.com/en-us/library/default.aspx.

A direct link to the section on the System Error codes is:

http://msdn.microsoft.com/en-us/library/ms681381.aspx

A Google search of MSDN Library will turn up the link to the online MSDN Library. A Google search
of MSDN "System Error Codes" will turn up the section on the error codes.

Directions to the downloadable ISO images of the MSDN Library have been posted on this blog entry:

http://blogs.msdn.com/robcaron/archive/2006/07/26/678897.aspx

A Google search using: "Rob Caron" General Downloads MSDN Library should also turn up
the blog entry.

8.2. List of Rexx Utility Functions

The following table lists all of the REXXUTIL functions and the platforms on which they are available.

Table 8.1. Rexx Utility Library Functions

Exists on PlatformFunction Name

Windows Unix

Remarks

RxMexxageBox (Section 8.3,
“RxMessageBox (Windows only)”)

YES NO

Chapter 8. Rexx Utilities (RexxUtil)

516

Exists on PlatformFunction Name

Windows Unix

Remarks

RxWinExec (Section 8.4, “RxWinExec
(Windows only)”)

YES NO

SysAddRexxMacro (Section 8.5,
“SysAddRexxMacro”)

YES YES

SysBootDrive (Section 8.6,
“SysBootDrive (Windows only)”)

YES NO

SysClearRexxMacroSpace
(Section 8.7,
“SysClearRexxMacroSpace”)

YES YES

SysCloseEventSem (Section 8.8,
“SysCloseEventSem”)

YES YES

SysCloseMutexSem (Section 8.9,
“SysCloseMutexSem”)

YES YES

SysCls (Section 8.10, “SysCls”) YES YES

SysCreateEvenSem (Section 8.11,
“SysCreateEventSem”)

YES YES

SysCreateMutexSem (Section 8.12,
“SysCreateMutexSem”)

YES YES

SysCreatePipe (Section 8.13,
“SysCreatePipe (Unix only)”)

NO Yes

SysCurPos (Section 8.14, “SysCurPos
(Windows only)”)

YES NO

SysCurState (Section 8.15,
“SysCurState (Windows only)”)

YES NO

SysDriveInfo (Section 8.16,
“SysDriveInfo (Windows only)”)

YES NO

SysDriveMap (Section 8.17,
“SysDriveMap (Windows only)”)

YES NO

SysDropFuncs (Section 8.18,
“SysDropFuncs”)

YES YES

SysDropRexxMacro (Section 8.19,
“SysDropRexxMacro”)

YES YES

SysDumpVariables (Section 8.20,
“SysDumpVariables”)

YES YES

SysFileCopy (Section 8.21,
“SysFileCopy”)

YES YES

SysFileDelete (Section 8.22,
“SysFileDelete”)

YES YES

SysFileExists (Section 8.23,
“SysFileExists”)

YES YES

SysFileMove (Section 8.24,
“SysFileMove (Windows only)”)

YES NO

List of Rexx Utility Functions

517

Exists on PlatformFunction Name

Windows Unix

Remarks

SysFileSearch (Section 8.25,
“SysFileSearch”)

YES YES

SysFileSystemType (Section 8.26,
“SysFileSystemType (Windows only)”)

YES NO

SysFileTree (Section 8.27,
“SysFileTree”)

YES YES Works differently

SysFork (Section 8.28, “SysFork (Unix
only)”)

NO YES

SysFromUnicode (Section 8.29,
“SysFromUnicode (Windows only)”)

YES NO

SysGetErrorText (Section 8.30,
“SysGetErrortext”)

YES YES

SysGetFileDateTime (Section 8.31,
“SysGetFileDateTime”)

YES YES

SysGetKey (Section 8.32,
“SysGetKey”)

YES YES

SysGetMessage (Section 8.33,
“SysGetMessage (Unix only)”

NO YES

SysGetMessageX (Section 8.34,
“SysGetMessageX (Unix only)”)

NO YES

SysIni (Section 8.35, “SysIni (Windows
only)”)

YES NO

SysIsFile (Section 8.36, “SysIsFile”) YES YES

SysIsFileCompressed (Section 8.37,
“SysIsFileCompressed (Windows
only)”

YES NO

SysIsFileDirectory (Section 8.38,
“SysIsFileDirectory”)

YES YES

SysIsFileEncrypted (Section 8.39,
“SysIsFileEncrypted (Windows only)”

YES NO

SysIsFileLink (Section 8.40,
“SysIsFileLink”

YES YES

SysIsFileNotContentIndexed
(Section 8.41,
“SysIsFileNotContentIndexed
(Windows only)”)

YES NO

SysIsFileOffline (Section 8.42,
“SysIsFileOffline (Windows only)”)

YES NO

SysIsFileSparse (Section 8.43,
“SysIsFileSparse (Windows only)”)

YES NO

SysIsFileTemporary (Section 8.44,
“SysIsFileTemporary (Windows only)”)

YES NO

Chapter 8. Rexx Utilities (RexxUtil)

518

Exists on PlatformFunction Name

Windows Unix

Remarks

SysLinVer (Section 8.45, “SysLinVer
(Linux Only)”)

NO NO* Linux only*

SysLoadFuncs (Section 8.46,
“SysLoadFuncs”)

YES YES

SysLoadRexxMacroSpace
(Section 8.47,
“SysLoadRexxMacroSpace”)

YES YES

SysMkDir (Section 8.48, “SysMkDir”) YES YES

SysOpenEventSem (Section 8.49,
“SysOpenEventSem”)

YES YES

SysOpenMutexSem (Section 8.50,
“SysOpenMutexSem”)

YES YES

SysPostEventSem (Section 8.51,
“SysPostEventSem”)

YES YES

SysPulseEventSem (Section 8.52,
“SysPulseEventSem (Windows only)”)

YES NO

SysQueryProcess (Section 8.53,
“SysQueryProcess”)

YES YES Works differently

SysQueryRexxMacro (Section 8.54,
“SysQueryRexxMacro”)

YES YES

SysReleaseMutexSem (Section 8.55,
“SysReleaseMutexSem”)

YES YES

SysReorderRexxMacro (Section 8.56,
“SysReorderRexxMacro”)

YES YES

SysRequestMutexSem (Section 8.57,
“SysRequestMutexSem”)

YES YES

SysResetEventSem (Section 8.58,
“SysResetEventSem”)

YES YES

SysRmDir (Section 8.59, “SysRmDir”) YES YES

SysSaveRexxMacroSpace
(Section 8.60,
“SysSaveRexxMacroSpace”)

YES YES

SysSearchPath (Section 8.61,
“SysSearchPath”)

YES YES

SysSetFileDateTime (Section 8.62,
“SysSetFileDateTime”)

YES YES

SysSetPriority (Section 8.63,
“SysSetPriority”)

YES NO

SysShutdownSystem (Section 8.64,
“SysShutdownSystem (Windows only)”

YES NO

SysSleep (Section 8.65, “SysSleep”) YES YES

SysStemCopy (Section 8.66,
“SysStemCopy”)

YES YES

List of Rexx Utility Functions

519

Exists on PlatformFunction Name

Windows Unix

Remarks

SysStemDelete (Section 8.67,
“SysStemDelete”)

YES YES

SysStemInsert (Section 8.68,
“SysStemInsert”)

YES YES

SysStemSort (Section 8.69,
“SysStemSort”)

YES YES

SysSwitchSession (Section 8.70,
“SysSwitchSession (Windows only)”)

YES NO

SysSystemDirectory (Section 8.71,
“SysSystemDirectory (Windows only)”)

YES NO

SysTempFileName (Section 8.72,
“SysTempFileName”)

YES YES

SysTextScreenRead (Section 8.73,
“SysTextScreenRead (Windows only)”)

YES NO

SysTextScreenSize (Section 8.74,
“SysTextScreenSize (Windows only)”)

YES NO

SysToUnicode (Section 8.75,
“SysToUnicode (Windows only)”)

YES NO

SysUtilVersion (Section 8.76,
“SysUtilVersion”)

YES YES

SysVersion (Section 8.77,
“SysVersion”)

YES YES

SysVolumeLabel (Section 8.78,
“SysVolumeLabel (Windows only)”)

YES NO

SysWait (Section 8.79, “SysWait (Unix
only)”)

NO YES

SysWaitEventSem (Section 8.80,
“SysWaitEventSem”)

YES YES

SysWaitNamedPipe (Section 8.81,
“SysWaitNamedPipe (Windows only)”)

YES NO

SysWinDecryptFile (Section 8.82,
“SysWinDecryptFile (Windows only)”)

YES NO

SysWinEncryptFile (Section 8.83,
“SysWinEncryptFile (Windows only)”)

YES NO

SysWinVer (Section 8.87, “SysWinVer
(Windows only)”)

YES NO

SysWinGetPrinters (Section 8.85,
“SysWinGetPrinters (Windows only)”)

YES NO

SysWinGetDefaultPrinter
(Section 8.84,
“SysWinGetDefaultPrinter (Windows
only)”)

YES NO

SysWinSetDefaultPrinter
(Section 8.86,

YES NO

Chapter 8. Rexx Utilities (RexxUtil)

520

Exists on PlatformFunction Name

Windows Unix

Remarks

“SysWinSetDefaultPrinter (Windows
only)”)

8.3. RxMessageBox (Windows only)

>>-RxMessageBox(text-->

>--+--+--)-----------><
 +-,--+-------+--+--------------------------+-+
 +-title-+ +-,--+--------+--+-------+-+
 +-button-+ +-,icon-+

Displays a Windows message box.

RxMessageBox returns the selected message box push button. Possible values are:

1
The OK push button was pressed

2
The CANCEL push button was pressed

3
The ABORT push button was pressed

4
The RETRY push button was pressed

5
The IGNORE push button was pressed

6
The YES push button was pressed

7
The NO push button was pressed

If a message box has a "CANCEL" button, the function returns the 2 value if either the ESC key is
pressed or the "CANCEL" button is selected. If the message box has no "CANCEL" button, pressing
ESC has no effect.

text
The message box text.

title
The message box title. The default title is "Error!".

button
The message box push button style. The allowed styles are:

RxMessageBox (Windows only)

521

"OK"
A single OK push button.

"OKCANCEL"
An OK push button and a CANCEL push button.

"RETRYCANCEL"
A RETRY push button and a CANCEL push button.

"ABORTRETRYIGNORE"
An ABORT push button, a RETRY push button and an IGNORE push button.

"YESNO"
A YES push button and a NO push button.

"YESNOCANCEL"
A YES push button, a NO push button and a CANCEL push button.

The default push button style is OK.

icon
The message box icon style. The allowed styles are:
"NONE"

No icon is displayed.

"HAND"
A hand icon is displayed.

"QUESTION"
A question mark icon is displayed.

"EXCLAMATION"
An exclamation point icon is displayed.

"ASTERISK"
An asterisk icon is displayed.

"INFORMATION"
An information icon is displayed.

"STOP"
A stop icon is displayed.

"QUERY"
A query icon is displayed.

"WARNING"
A warning icon is displayed.

"ERROR"
An error icon is displayed.

Chapter 8. Rexx Utilities (RexxUtil)

522

Example 8.1. RexxUtil - RxMessageBox

/* Give option to quit */
if RxMessageBox("Shall we continue", , "YesNo", "Question") = 7
Then Exit /* quit option given, exit */

8.4. RxWinExec (Windows only)

>>-RxWinExec(-cmdline--+------------+--)-----------------------><
 +-,--cmdshow-+

Starts (executes) the application as specified in cmdline.

Parameters:

cmdline
A string containing a file name and optional parameters for the application to be executed. If the
name of the executable file in cmdline does not contain a directory path, RxWinExec searches for
the executable file in this sequence:
1

The directory from which Object Rexx was loaded.

2
The current directory.

3
The Windows system directory.

4
The Windows directory.

5
The directories listed in the PATH environment variable.

cmdshow
Specifies how a Windows-based application window is to be shown. For a non-Windows-based
application, the PIF file, if any, for the application determines the window state.
SHOWNORMAL

Activates and displays a window.

SHOWNOACTIVATE
Displays the window while the current active window remains active.

SHOWMINNOACTIVE
Displays the window as a minimized window, the current active window remains active.

SHOWMINIMIZED
Activates the window and displays it as a minimized window.

SysAddRexxMacro

523

SHOWMAXIMIZED
Activates the window and displays it as a maximized window.

HIDE
Hides the window and activates another window.

MINIMIZE
Minimizes the specified window and activates the next top-level window in the Z order.

Return codes:

If the application is started successfully, the process id (PID) is returned. If an error occurs the
returned value is less than 32.

Error return codes correspond to a Windows System Error code (Section 8.1, “A Note on Error
Codes”). If the Windows system error code is greater than 32 it is negated. This is to prevent
confusion between a legitimate error code and a PID.

Some common error returns for this function are as follows.

2
The specified file was not found.

3
The specified path was not found.

11
The EXE file is invalid.

-53
The network path is invalid.

8.5. SysAddRexxMacro

>>-SysAddRexxMacro(name,file-+--------+-)----------------------><
 +-,order-+

Adds a routine to the Rexx macrospace. SysAddRexxMacro returns the RexxAddMacro return code.

Parameters:

name
The name of the function added to the macrospace.

file
The file containing the Rexx program.

order
The macrospace search order. The order can be "B" (Before) or "A" (After).

8.6. SysBootDrive (Windows only)

Chapter 8. Rexx Utilities (RexxUtil)

524

>>-SysBootDrive--(--)--><

Returns the drive used to boot Windows, for example, "C:".

8.7. SysClearRexxMacroSpace

>>-SysClearRexxMacroSpace()------------------------------------><

Clears the Rexx macrospace. SysClearRexxMacroSpace returns the RexxClearMacroSpace return
code.

8.8. SysCloseEventSem

>>-SysCloseEventSem(handle)------------------------------------><

Closes an event semaphore.

Parameter:

handle
A handle returned from a previous SysCreateEventSem or SysOpenEventSem call.

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

102
Error semaphore busy.

8.9. SysCloseMutexSem

SysCls

525

>>-SysCloseMutexSem(handle)------------------------------------><

Closes a mutex semaphore.

Parameter:

handle
A handle returned from a previous SysCreateMutexSem call.

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

102
Error semaphore busy.

8.10. SysCls

>>-SysCls()--><

Clears the screen.

Example 8.2. RexxUtil - SysCls

/* Code */
call SysCls

8.11. SysCreateEventSem

>>-SysCreateEventSem(-+------+--+--------------+-)-------------><
 +-name-+ +-manual_reset-+

Creates an event semaphore. It returns an event semaphore handle that can be used with
SysCloseEventSem, SysOpenEventSem, SysResetEventSem, SysPostEventSem, and

Chapter 8. Rexx Utilities (RexxUtil)

526

SysWaitEventSem. SysCreateEventSem returns a null string ("") if the semaphore cannot be created
or already exists.

Parameters:

name
The optional event semaphore name. If you omit name, SysCreateEventSem creates an
unnamed, shared event semaphore. A semaphore name can be MAX_PATH long, and can
contain any character except the backslash (\) path-separator character. Semaphore names are
case-sensitive.

manual_reset
A flag to indicate that the event semaphore must be reset manually by SysResetEventSem. If this
parameter is omitted, the event semaphore is reset automatically by SysWaitEventSem.

8.12. SysCreateMutexSem

>>-SysCreateMutexSem(-+------+-)-------------------------------><
 +-name-+

Creates a mutex semaphore. Returns a mutex semaphore handle that can be used with
SysCloseMutexSem, SysRequestMutexSem, and SysReleaseMutexSem. SysCreateMutexSem
returns a null string ("") if the semaphore cannot be created or already exists.

Parameter:

name
The optional mutex semaphore name. If you omit name, SysCreateMutexSem creates an
unnamed, shared mutex semaphore. If you specify name, The semaphore names cannot be
longer than 63 characters. Semaphore names are case-sensitive.

8.13. SysCreatePipe (Unix only)

>>-SysCreatePipe()---><

Creates an unnamed pipe.

Returns:

Returns a string like "handle handle" where the first handle is for read and the second handle for
write.

8.14. SysCurPos (Windows only)

SysCurState (Windows only)

527

>>-SysCurPos(-+------------+-)---------------------------------><
 +-row,column-+

Returns the cursor position in the form row col and optionally moves the cursor to a new location.

Parameters:

row
The row to move to.

col
The column to move to.

Note

Position (0,0) is the upper left corner.

You can call SysCurPos without a column and row position to obtain the cursor position without
moving the cursor.

Example 8.3. RexxUtil - SysCurpos

/* Code */
call SysCls
parse value SysCurPos() with row col
say "Cursor position is "row", "col

/* Output */
Cursor position is 0, 0

8.15. SysCurState (Windows only)

>>-SysCurState(state)--><

Hides or displays the cursor.

Parameter:

state
The new cursor state. Allowed states are:
"ON"

Display the cursor

Chapter 8. Rexx Utilities (RexxUtil)

528

"OFF"
Hide the cursor

8.16. SysDriveInfo (Windows only)

>>-SysDriveInfo(drive)---><

Returns drive information in the form: drive: free total label.

drive:
is the drive letter identifier.

free
is the drive unused space.

total
is the total size of the drive.

label
is the drive label.

If the drive is not accessible, then SysDriveInfo returns "".

Parameter:

drive
The drive of interest, "C:".

Example 8.4. RexxUtil - SysDriveinfo

/* Code */
say "Disk="SysDriveInfo("C:")
/* Output */
Disk=C: 33392640 83687424 TRIGGER_C

8.17. SysDriveMap (Windows only)

>>-SysDriveMap(-+-------+-+------+-)---------------------------><
 +-drive-+ +-,opt-+

Returns a string listing accessible drives (separated by blanks) in the form: C: D:

Parameters:

SysDropFuncs

529

drive
The first drive letter of the drive map. The default is "C:".

opt
The drivemap option. This can be:
"USED"

returns the drives that are accessible or in use, including all local and remote drives. This is
the default.

"FREE"
returns drives that are free or not in use.

"LOCAL"
returns only local drives.

"REMOTE"
returns only remote drives, such as redirected LAN resources or installable file system (IFS)
attached drives.

"REMOVABLE"
returns removable drives.

"CDROM"
returns CD-ROM drives.

"RAMDISK"
returns drives assigned from RAM.

Example 8.5. RexxUtil - SysDrivemap

/* Code */
say "Used drives include:"
say SysDriveMap("C:", "USED")
/* Output */
Used drives include:
C: D: E: F: W:

8.18. SysDropFuncs

>>-SysDropFuncs--><

From ooRexx 4.0.0 and on this function does nothing.

8.19. SysDropRexxMacro

Chapter 8. Rexx Utilities (RexxUtil)

530

>>-SysDropRexxMacro(name)--------------------------------------><

Removes a routine from the Rexx macrospace. SysDropRexxMacro returns the RexxDropMacro
return code.

Parameter:

name
The name of the function removed from the macrospace.

8.20. SysDumpVariables

>>-SysDumpVariables-+------------+-----------------------------><
 +-(--name--)-+

Dumps all variables in the current scope either to the specified file filename (new data is appended) or
to STDOUT if you omit filename. The format of the data is, with one variable per line:

Name=MYVAR, Value="This is the content of MYVAR"

Parameter:

filename
The name of the file to which variables are appended. The dump is written to STDOUT if you omit
this parameter.

Return codes:

0
Dump completed successfully.

-1
Dump failed.

Example 8.6. RexxUtil - SysDumpvariables

Call SysDumpVariables "MyVars.Lst" /* append vars to file */
Call SysDumpVariables /* list vars on STDOUT */

8.21. SysFileCopy

>>-SysFileCopy(source, target)---------------------------------><

SysFileDelete

531

Copies a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source
The path/name of the file to be copied.

target
The path/name of the target location where the file is to be copied.

Return codes:

0
File copied successfully.

Other
A Windows System Error code (Section 8.1, “A Note on Error Codes”).

Example 8.7. RexxUtil - SysFilecopy

/* Code */
call SysFileCopy "c:\temp\myfile.txt", "d:\myfolder\myCopy.txt"

8.22. SysFileDelete

>>-SysFileDelete(file)---><

Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameter:

file
The name of the file to be deleted.

Return codes:

0
File deleted successfully.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes” is returned. This may be one of the following, but could be others.

2
File not found.

3
Path not found.

Chapter 8. Rexx Utilities (RexxUtil)

532

5
Access denied or busy.

26
Not DOS disk.

32
Sharing violation.

36
Sharing buffer exceeded.

87
Does not exist.

206
File name exceeds range error.

Example 8.8. RexxUtil - SysFiledelete

/* Code */
parse arg InputFile OutputFile
call SysFileDelete OutputFile /* unconditionally erase output file */

8.23. SysFileExists

>>-SysFileExists(filename)---><

Checks for the existence of a file. This function does not support wildcard specifications. Returns true
if any file system entity with the given name exists. In particular, this will return true for both regular
files and directories.

Parameters:

filename
The name of the file to check for the existence of.

Returns:

0
The file does not exist.

1
The file exists.

Example 8.9. RexxUtil - SysFileexists

SysFileMove (Windows only)

533

if SysFileExists(InputFile) then say "File Exists!"
else say "File does not exist."

8.24. SysFileMove (Windows only)

>>-SysFileMove(source, target)---------------------------------><

Moves a file from one location to another. Wildcard file specifications are not allowed.

Parameter:

source
The path/name of the file to be moved.

target
The path of the target location where the file is to be moved. The target must contain a path
component.

Return codes:

0
File copied successfully.

Other
On failure, a Windows System Error code (Section 8.1, “A Note on Error Codes”) is returned.

Example 8.10. RexxUtil - SysFilemove

/* Code */
call SysFileMove "c:\temp\myfile.txt", "d:\myfolder"

8.25. SysFileSearch

>>-SysFileSearch(target,file,stem--+----------+--)-------------><
 +-,options-+

Finds all file lines containing the target string and returns the file lines in a Rexx stem variable
collection.

Parameters:

target
The target search string.

Chapter 8. Rexx Utilities (RexxUtil)

534

file
The searched file.

stem
The result stem variable name. SysFileSearch sets Rexx variable stem.0 to the number of lines
returned and stores the individual lines in variables stem.1 to stem.n.

options
Any combination of the following one-character options:
"C"

Conducts a case-sensitive search.

"N"
Returns the file line numbers.

The default is a case-insensitive search without line numbers.

Return codes:

0
Successful.

2
Not enough memory.

3
Error opening file.

Example 8.11. RexxUtil - SysFilesearch

/* Find DEVICE statements in CONFIG.SYS */
call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file."
do i=1 to file.0
say file.i
end

/* Output */
DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1 H:5
DEVICE=C:\SB16\DRV\CTMMSYS.SYS
rem **** DOS SCSI CDROM device drivers ***
DEVICE=C:\SCSI\ASPI8DOS.SYS /D
DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
rem **** IDE CDROM device drivers
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14
DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
DEVICE=C:\WINDOWS\IFSHLP.SYS

/* Find DEVICE statements in CONFIG.SYS (along with */
/* line numbers) */
call SysFileSearch "DEVICE", "C:\CONFIG.SYS", "file.", "N"
do i=1 to file.0
say file.i
end

/* Output */
1 DEVICE=C:\SB16\DRV\CTSB16.SYS /UNIT=0 /BLASTER=A:240 I:5 D:1

SysFileSystemType (Windows only)

535

H:5
2 DEVICE=C:\SB16\DRV\CTMMSYS.SYS
4 rem **** DOS SCSI CDROM device drivers ***
5 DEVICE=C:\SCSI\ASPI8DOS.SYS /D
6 DEVICE=C:\SCSI\ASPICD.SYS /D:ASPICD0
8 rem **** IDE CDROM device drivers
9 DEVICE=C:\DOS\HIMEM.SYS
10 DEVICE=C:\SBCD\DRV\SBIDE.SYS /V /D:MSCD001 /P:1f0,14
13 DEVICE=C:\DOS\SETVER.EXE
16 DEVICE=C:\WINDOWS\SMARTDRV.EXE /DOUBLE_BUFFER
17 DEVICE=C:\WINDOWS\IFSHLP.SYS

8.26. SysFileSystemType (Windows only)

>>-SysFileSystemType(drive)------------------------------------><

Returns the name of the file system used for a drive. If the drive is not accessible, it returns a null
string ("").

Parameter:

drive
The drive of interest, for example "C:".

Example 8.12. RexxUtil - SysFilesystemtype

/* Code */
say "File System="SysFileSystemType("C:")
/* Output */
File System=NTFS

8.27. SysFileTree

>>-SysFileTree(filespec,stem------------------------------------>

>--+---+---->
 +-,--+---------+--+-----------------------------------+-+
 +-options-+ +-,--+---------+--+---------------+-+
 +-tattrib-+ +-,-+---------+-+
 +-nattrib-+

>--)---><

Finds all files that match a file specification. SysFileTree returns the file descriptions (date, time, size,
attributes, and file specification) space delimited in a Rexx stem variable collection. The default format
for date and time is platform specific.

Chapter 8. Rexx Utilities (RexxUtil)

536

SysFileTree uses operating system APIs to find the files. The found files are placed in the returned
stem in the order they are found by the operating system. This documentation does not attempt to
define what that order might be.

Parameters:

filespec [required]
The search pattern, the search file specification. This can not be the empty string. On Unix-like
systems, filespec must be less than or equal to 255 characters in length.

The search pattern may contain glob characters and full or partial path informattion. E.g., *.bat,
or ../../*.sh, or C:\temp. The search pattern may not contain illegal file name characters. This is
really only significant on Windows. Unix-like file systems typically do not have the concept of illegal
file name characters. On Windows the illegal characters are: ", <, >, |, and : The semicolon is only
legal if it is exactly the second character. On Windows, do not use a double quote in fSpec, it is
not needed and is taken as a character in a file name, which is an illegal character.

stem [required]
The name of a stem variable to be used for storing results. SysFileTree sets Rexx variable stem.0
to the number of files and directories found and stores individual file descriptions into variables
stem.1 to stem.n. Note: stem can be specified as stem or stem. (with or without the trailing period)

options [optional]
A string with any combination of the following. If this argument is omitted, it defaults to B.

"F"
Search only for files.

"D"
Search only for directories.

"B"
Search for both files and directories. This is the default.

"S"
Search subdirectories recursively.

"T"
Return the time and date in the form YY/MM/DD/HH/MM. If the "L" option is also specified
then this option will be ignored.

"L"
Return the time and date in the form YYYY-MM-DD HH:MM:SS.

"I"
Perform a case-insensitive search for file names/directories. This option is only used on
system that support case-sensitive file names and is ignored on systems like Windows where
the file system is case-insensitive by default.

"O"
Return only the fully-qualified file name.

tattrib [optional] [Windows only]
The target attribute mask for file specification matches. Only files that match the target mask
are returned. The default mask is "*****". This returns all files regardless of the settings (clear
or set) of the Archive, Directory, Hidden, Read-Only, and System attributes. The target mask

SysFileTree

537

attributes must appear in the order "ADHRS". This argument is Windows only. It is allowed but
ignored on Unix-like operating systems.

Target Mask Options

*
The file attribute may be any state.

+
The file attribute must be set.

-
The file attribute must be cleared.

Target Mask Examples

"***+*"
Find all files with the Read-Only attribute set.

"+**+*"
Find all files with the Read-Only and Archive attributes set.

"*++**"
Find all hidden subdirectories.

"---+-"
Find all files with only the Read-Only attribute set.

nattrib [optional] [Windows only]
The new attribute mask for setting the attributes of each matching file. The default mask is "*****".
This means not to change the Archive, Directory, Hidden, Read-Only, and System attributes. The
target mask attributes must appear in the order "ADHRS". This argument is Windows only. It is
allowed but ignored on Unix-like operating systems.

New Attribute Mask Options

*
Do not change the file attribute.

+
Set the file attribute.

-
Clear the file attribute.

New Attribute Mask Examples

"***+*"
Set the Read-Only attribute on all files.

"-**+*"
Set the Read-Only attribute and clear the Archive attribute of each file.

"+*+++"
Set all file attributes, except the directory attribute.

Chapter 8. Rexx Utilities (RexxUtil)

538

"-----"
Clear all attributes on all files.

Note

You cannot set the directory attribute on non-directory files. SysFileTree returns the file
attribute settings after the new attribute mask has been applied.

Return codes:

0
Successful.

2
Not enough memory.

2
On Windows, the return code may be any System Error Code returned by the operating system.

Example 8.13. RexxUtil - SysFiletree

/* Find all subdirectories on C: */
call SysFileTree "c:*.*", "file", "SD"

/* Find all executable (.exe) files under Program Files*/
ret = SysFileTree('C:\Program Files*.exe', f, 'FS')

/* Find all Read-Only files */
call SysFileTree "c:*.*", "file", "S", "***+*"

/* Clear Archive and Read-Only attributes of files that have them set */
call SysFileTree "c:*.*", "file", "S", "+**+*", "-**-*"

/****<< Sample Code and Output Example.>>********/

/* Code */
call SysFileTree "c:\win*.", "file", "B"
do i=1 to file.0
say file.i
end

/* Actual Output */
5:24:95 4:59p 0 -D--- C:\WINDOWS

8.28. SysFork (Unix only)

>>-SysFork()---><

SysFork (Unix only)

539

Returns

Returns the process id to the parent process.

Returns 0 to the spawned process.

Example:

This is a complete working example. It can be cut and pasted into a file and executed on a Unix
system.

Example 8.14. RexxUtil - SysFork

/* Example Unix SysFork() and SysWait() */

 pid = SysFork()

 if pid == 0 then do
 say "I am the child."
 code = executeChild()
 say "Child : done with execution, will exit with" code
 exit code
 end
 else do
 say 'I am the parent, child pid is:' pid
 code = executeParent()
 say 'Parent: going to wait for child.'
 code = SysWait()
 say 'Parent: back from waiting. Child exit code:' code
 end

 say 'Operating system version:' SysVersion()

::routine executeChild

 say 'Child : will sleep 1 second.'
 j = SysSleep(1)
 say 'Child : done sleeping 1. Will do some calculations.'

 total = 0
 do 786
 total += 3
 end
 say 'Child : 3 * 786 is:' total

 say 'Child : will sleep 2 seconds.'
 j = SysSleep(2)
 say 'Child : done sleeping 2. Will do some calculations.'

 total = 0
 do 1865
 total += 7
 end
 say 'Child : 7 * 1865 is:' total

 say 'Child : will sleep 2 seconds.'
 j = SysSleep(2)
 say 'Child : done sleeping 2.'
 say 'Child : done executing, will return 0.'
 return 0

::routine executeParent

Chapter 8. Rexx Utilities (RexxUtil)

540

 say 'Parent: 3 * 786 is:' (3 * 786)
 j = SysSleep(2)
 say 'Parent: 7 * 1865 is:' (7 * 1865)
 return 0

8.29. SysFromUnicode (Windows only)

>>-SysFromUnicode--(--string, codepage, mappingflags,----------->

>--, defaultchar, outstem--)-----------------------------------><

Maps a UNICODE character string to an ASCII character string. The new character string and
additional information is returned in the outstem.

Parameters:

string
A string containing the UNICODE characters to be mapped.

codepage
Specifies the code page used to perform the conversion. This parameter can be the value of any
code page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP
ANSI code page.

OEMCP
OEM code page.

SYMBOL
Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread's ANSI code page.

UTF7
Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8
Windows NT 4.0 and Windows 2000: translate using UTF-8. When this is set, mappingflags
must be set.

mappingflags
Specifies the handling of unmapped characters. The function performs more quickly when none of
these flags is set.

The following flags can be used:

SysFromUnicode (Windows only)

541

COMPOSITECHECK
Converts composite characters to precomposed characters.

SEPCHARS
Generates separate characters during conversion. This is the default conversion behavior.

DISCARDNS
Discards nonspacing characters during conversion.

DEFAULTCHAR
Replaces non-convertible characters with the default character during conversion.

When compositecheck is specified, the function converts composite characters to precomposed
characters. A composite character consists of a base character and a nonspacing character,
each having different character values. A precomposed character has a single character value
for a combination of a base and a nonspacing character. In the character è, the "e" is the base
character, and the "grave" accent mark is the nonspacing character.

When compositecheck is specified, it can use the last three flags in this list (discardns,
sepchars, and defaultchar) to customize the conversion to precomposed characters. These
flags determine the function's behavior when there is no precomposed mapping for a combination
of a base and a nonspace character in a Unicode character string. These last three flags can
be used only if the compositecheck flag is set. The function's default behavior is to generate
separate characters (sepchars) for unmapped composite characters.

defaultchar
Character to be used if a Unicode character cannot be represented in the specified code page. If
this parameter is NULL, a system default value is used. The function is faster when defaultchar
is not used.

outstem
The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!USEDDEFAULTchar
This variable will be set to "1" if the defaultchar was used during the conversion and "0" if it
was not.

outstem.!TEXT
This variable will contain the converted string.

Return codes:

0
No errors.

Other
An error occurred. A Windows System Error code (Section 8.1, “A Note on Error Codes”) is
returned. This may be one of the following, but could be others.

87
Incorrect code page or codepage value.

1004
Invalid mapping flags.

Chapter 8. Rexx Utilities (RexxUtil)

542

8.30. SysGetErrortext

>>-SysGetErrortext(errornumber)--------------------------------><

Obtains a string describing the system error identified by the error number.

Returns a string with the description of the error, or an empty string if no description is available.

Example 8.15. RexxUtil - SysGeterrortext (Windows)

err=SysMkDir("c:\temp")
if err \= 0 then
say "Error" err":"SysGetErrortext(err)

Example 8.16. RexxUtil - SysGeterrortext (Unix)

err=SysMkDir("/home/NotKnown/temp")
if err \= 0 then
say "Error" err":"SysGetErrortext(err)

8.31. SysGetFileDateTime

>>-SysGetFileDateTime(filename-+------------+-)----------------><
 +-,--timesel-+

Returns the selected data and time attribute of the file filename provided that this is supported by the
operating and file system. FAT, for example, does not support Create/Access. The selector for the
time to be returned can be abbreviated to the first character.

The filename can also be a directory name.

The file that you want to query must not be opened by another process or must at least allow shared
writes to query the time stamp.

Parameters:

filename
The name of the file to be queried.

timesel
The file time to be queried, namely CREATE, ACCESS, WRITE.

SysGetKey

543

Return codes:

The date and time in the format YYYY-MM-DD HH:MM:SS, or -1 to indicate that the file date and time
query failed

Example:

Example 8.17. RexxUtil - SysGetfiledatetime

Say "File creation time:" SysGetFileDateTime("MyFile.Log", "C")
Say "File last access time:" SysGetFileDateTime("MyFile.Log", "A")
Say "File last update time:" SysGetFileDateTime("MyFile.Log", "W")

Say "Directory creation time:" SysGetFileDateTime("C:\MyDir", "C")
 /* in Windows NT */

8.32. SysGetKey

>>-SysGetKey(-+-----+-)--><
 +-opt-+

Reads and returns the next key from the keyboard buffer. If the keyboard buffer is empty, SysGetKey
waits until a key is pressed. Unlike the CHARIN built-in function, SysGetKey does not wait until the
Enter key is pressed.

Parameter:

opt
An option controlling screen echoing. Allowed values are:
"ECHO"

Echo the pressed key to the screen. This is the default.

"NOECHO"
Do not echo the pressed key.

8.33. SysGetMessage (Unix only)

>>-SysGetMessage(num--+---------------------------------+--)-----><
 +--,--filename--+---------------+-+
 | | +---------+ | |
 | | V | | |
 | +----,--str--+--+ |
 | +---------+ |
 | V | |
 +-----,--str-+--------------------+

Chapter 8. Rexx Utilities (RexxUtil)

544

Retrieves a message from a catalog file and replaces the placeholder %s with the text you specify.
SysGetMessage can replace up to 9 placeholders.

This utility is implemented for Unix only.

To create catalog files, consult your system documentation.

Parameters:

num
The message number.

filename
The name of the catalog file containing the message. The default message catalog is rexx.cat.
SysGetMessage searches along the NLSPATH or uses the absolute path name.

str
The test for a placeholder (%) in the message. The message can contain up to 9 placeholders.
You must specify as many strings as there are placeholders in the message.

Example 8.18. RexxUtil - SysGetmessage

/* sample code segment using SysGetMessage */
msg = SysGetMessage(485, "rexx.cat", foo)
say msg
/*** Output ***/
Class "foo" not found.

8.34. SysGetMessageX (Unix only)

>>-SysGetMessageX(set,num--+---------------------------------+--)-><
 +--,--filename--+---------------+-+
 | | +---------+ | |
 | | V | | |
 | +----,--str--+--+ |
 | +---------+ |
 | V | |
 +-----,--str--+-------------------+

Retrieves a message from a specific set of Unix catalog file and replaces the placeholder %s with the
text you specify. SysGetMessageX can replace up to 9 placeholders.

This utility is implemented for Unix only. Do not use it for platform-independent programs.

To create catalog files, consult your system documentation.

Parameters:

set
The message set.

SysIni (Windows only)

545

num
The message number.

filename
The name of the catalog file containing the message. The default message catalog is rexx.cat.
SysGetMessageX searches along the NLSPATH or uses the absolute path name.

str
The test for a placeholder (%) in the message. The message can contain up to 9 placeholders.
You must specify as many strings as there are placeholders in the message.

Example 8.19. RexxUtil - SysGetmessagex

/* sample code segment using SysGetMessage */
msg = SysGetMessageX(1, 485, "rexx.cat", foo)
say msg
/*** Output ***/
Class "foo" not found.

8.35. SysIni (Windows only)

>>-SysIni(-+---------+-,app,key,val,stem-)---------------------><
 +-inifile-+

Allows limited access to INI file variables. Variables are stored in the INI file under Application
Names and their associated key names or keywords. You can use SysIni to share variables between
applications or as a way of implementing GLOBALV in the Windows operating system. Be careful
when changing application profile information.

Note

SysIni works on all types of data stored in an INI file (text, numeric, or binary).

When SysIni successfully sets or deletes key values, it returns "". For a successful query, it returns the
value of the specified application keyword.

SysIni may return the string ERROR: when an error occurs. Possible error conditions include:

• An attempt was made to query or delete an application/key pair that does not exist.

• An error opening the profile file occurred. You may have specified the current user or system INI file
with a relative file specification. Make sure to use the full file specification (specify drive, path, and
file name).

Chapter 8. Rexx Utilities (RexxUtil)

546

Parameters:

inifile
The name of the INI file with which you would like to work. The default is WIN.INI.

Note

If this argument does not contain a fully qualified file name, the Windows operating system
searches for the file in the Windows directory. Therefore to work with a file outside of the
Windows directory, specify the full path name of the file.

app
The application name or some other meaningful value with which you want to store keywords
(some sort of data).

key
The name of a keyword to hold data.

val
The value to associate with the keyword of the specified application. This can be "DELETE:" or
"ALL:".

stem
The name of a Rexx stem variable collection in which to store the resultant information. SysIni sets
Rexx variable stem.0 to the number of elements returned and stores these elements in stem.1 to
stem.n.

Sysini has six modes. The modes and the syntax variations are as follows:

>>-SysIni(-+---------+-,app,key,val)---------------------------><
 +-inifile-+

Sets a single key value.

>>-SysIni(-+---------+-,app,key)-------------------------------><
 +-inifile-+

Queries a single key value.

>>-SysIni(-+---------+-,app,key--,"DELETE:"-)------------------><
 +-inifile-+

Deletes a single key.

SysIsFile

547

>>-SysIni(-+---------+-,app-+------------+-)-------------------><
 +-inifile-+ +-,"DELETE:"-+

Deletes an application and all associated keys.

>>-SysIni(-+---------+-,app--,"ALL:"--,"stem"-)----------------><
 +-inifile-+

Queries names of all keys associated with a certain application.

>>-SysIni(-+---------+-,"ALL:"--,"stem"-)----------------------><
 +-inifile-+

Queries the names of all applications.

Example 8.20. RexxUtil - SysIni

/*** Save the user entered name under the key "NAME" of *****
**** the application "MYAPP". ****/
pull name .
call SysIni , "MYAPP", "NAME", name /* Save the value */
say SysIni(, "MYAPP", "NAME") /* Query the value */
call SysIni , "MYAPP" /* Delete all MYAPP info */
exit

Example 8.21. RexxUtil - SysIni

/**** Type all WIN.INI file information to the screen *****/
call SysIni "WIN.INI", "All:", "Apps."
if Result \= "ERROR:" then
do i = 1 to Apps.0
call SysIni "WIN.INI", Apps.i, "All:", "Keys"
if Result \= "ERROR:" then
do j=1 to Keys.0
val = SysIni("WIN.INI", Apps.i, Keys.j)
say left(Apps.i, 20) left(Keys.j, 20),
"Len=x"Left(d2x(length(val)),4) left(val, 20)
end
end
exit

8.36. SysIsFile

Chapter 8. Rexx Utilities (RexxUtil)

548

>>-SysIsFile(filename)---><

Checks for the existence of a file. This function does not support wildcard specifications.

On Linux/Unix block devices are also considered to be regular files by this function.

Parameters:

filename
The name of the file to check for the existence of.

Returns:

0
The file does not exist.

1
The file exists.

Example 8.22. RexxUtil - SysIsfile

if SysIsFile(InputFile) then say "File Exists!"
else say "File does not exist."

8.37. SysIsFileCompressed (Windows only)

>>-SysIsFileCompressed(filename)-------------------------------><

Checks if a file is compressed. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not compressed or does not exist.

1
The file is compressed.

Example 8.23. RexxUtil - SysIsfilecompressed

if SysIsFileCompressed(InputFile) then say "File is compressed!"
else say "File is not compressed or does not exist."

SysIsFileDirectory

549

8.38. SysIsFileDirectory

>>-SysIsFileDirectory(dirname)---------------------------------><

Checks for the existence of a subdirectory. This function does not support wildcard specifications.

Parameters:

dirname
The name of the subdirectory to check for the existence of.

Returns:

0
The subdirectory does not exist.

1
The subdirectory exists.

Example 8.24. RexxUtil - SysIsfiledirectory

if SysIsFileDirectory(InputFile) then say "Subdirectory Exists!"
else say "Subdirectory does not exist."

8.39. SysIsFileEncrypted (Windows only)

>>-SysIsFileEncrypted(filename)--------------------------------><

Checks if a file is encrypted. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not encrypted or does not exist.

1
The file is encrypted.

Example 8.25. RexxUtil - SysIsfileencrypted

Chapter 8. Rexx Utilities (RexxUtil)

550

if SysIsFileEncrypted(InputFile) then say "File is encrypted!"
else say "File is not encrypted or does not exist."

8.40. SysIsFileLink

>>-SysIsFileLink(linkname)-------------------------------------><

Checks for the existence of a link. This function does not support wildcard specifications.

Parameters:

linkname
The name of the link to check for the existence of.

Returns:

0
The link does not exist or it is not a link.

1
The link exists.

Example 8.26. RexxUtil - SysIsfilelink

if SysIsFileLink(InputFile) then say "Link Exists!"
else say "Link does not exist."

8.41. SysIsFileNotContentIndexed (Windows only)

>>-SysIsFileNotContentIndexed(filename)------------------------><

Checks if a file is flagged to be indexed by the Index Service. This function does not support wildcard
specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not flagged to be Indexed or does not exist.

1
The file is flagged to be Indexed.

SysIsFileOffline (Windows only)

551

Example 8.27. RexxUtil - SysIsfilenotcontentindexed

if SysIsFileNotContentIndexed(InputFile) then say "File is flagged to be Indexed!"
else say "File is not flagged to be Indexed."

8.42. SysIsFileOffline (Windows only)

>>-SysIsFileOffline(filename)----------------------------------><

Checks if a file is flagged as Offline. This function does not support wildcard specifications.

Parameters:

filename
The name of the file to check.

Returns:

0
The file is not flagged as Offline or does not exist.

1
The file is flagged as Offline.

Example 8.28. RexxUtil - SysIsfileoffline

if SysIsFileOffline(InputFile) then say "File is flagged as Offline!"
else say "File is not flagged as Offline."

8.43. SysIsFileSparse (Windows only)

>>-SysIsFileSparse(filename)-----------------------------------><

Checks if a file is flagged as Sparse. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

0
The file is not flagged as Sparse or does not exist.

Chapter 8. Rexx Utilities (RexxUtil)

552

1
The file is flagged as Sparse.

Example 8.29. RexxUtil - SysIsfilesparse

if SysIsFileSparse(InputFile) then say "File is Sparse!"
else say "File is not Sparse."

8.44. SysIsFileTemporary (Windows only)

>>-SysIsFileTemporary(filename)--------------------------------><

Checks if a file is flagged as Temporary. This function does not support wildcard specifications.

Parameters:

filename
The name of the file, subdirectory or link to check.

Returns:

0
The file is not flagged as Temporary or does not exist.

1
The file is flagged as Temporary.

Example 8.30. RexxUtil - SysIsfiletemporary

if SysIsFileTemporary(InputFile) then say "File is Temporary!"
else say "File is not Temporary."

8.45. SysLinVer (Linux Only)

>>-SysLinVer()---><

Returns a string identifying the Linux system version. The first word of the returned string is "Linux"
and the second word in the string identifies the kernel version. A possible output for a Linux system
might be:

Example 8.31. RexxUtil - SysLinver

SysLoadFuncs

553

Say SysLinVer() -> "Linux 3.8.13.4-desktop-1.mga3"

8.46. SysLoadFuncs

>>-SysLoadFuncs--><

From ooRexx 4.0.0 and on this function does nothing.

8.47. SysLoadRexxMacroSpace

>>-SysLoadRexxMacroSpace(file)---------------------------------><

Loads functions from a saved macrospace file. SysLoadRexxMacroSpace returns the
RexxLoadMacroSpace return code.

Parameter:

file
The file used to load functions into the Rexx macrospace. SysSaveRexxMacroSpace must have
created the file.

8.48. SysMkDir

>>-SysMkDir(dirspec)---><

Creates a specified directory.

Parameter:

dirspec
The directory to be created.

Return codes:

0
Directory creation was successful.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

Chapter 8. Rexx Utilities (RexxUtil)

554

2
File not found.

3
Path not found.

5
Access denied.

26
Not a DOS disk.

87
Invalid parameter.

108
Drive locked.

183
Directory already exists.

206
File name exceeds range.

Example 8.32. RexxUtil - SysMkdir

/* Code */
call SysMkDir "rexx"

8.49. SysOpenEventSem

>>-SysOpenEventSem(name)---------------------------------------><

Opens an event semaphore. SysOpenEventSem returns a handle to the semaphore, or zero if an
error occurred.

Parameter:

name
The name of the event semaphore created by SysCreateEventSem.

8.50. SysOpenMutexSem

>>-SysOpenMutexSem(name)---------------------------------------><

SysPostEventSem

555

Opens a mutex semaphore. SysOpenMutexSem returns a handle to the semaphore, or zero if an error
occurred.

Parameter:

name
The name of the mutex semaphore created by SysCreateMutexSem.

8.51. SysPostEventSem

>>-SysPostEventSem(handle)-------------------------------------><

Posts an event semaphore.

Parameter:

handle
A handle returned from a previous SysCreateEventSem call.

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

8.52. SysPulseEventSem (Windows only)

>>-SysPulseEventSem(handle)------------------------------------><

Posts and immediately resets an event semaphore. It sets the state of the event to signaled
(available), releases any waiting threads, and resets it to nonsignaled (unavailable) automatically. If
the event is manual, all waiting threads are released, the event is set to nonsignaled, and PulseEvent
returns. If the event is automatic, a single thread is released, the event is set to nonsignaled, and
PulseEvent returns. If no threads are waiting, or no threads can be released immediately, PulseEvent
sets the state of the event to nonsignaled and returns.

SysPulseEventSem returns 0 on success and a Windows System Error code (Section 8.1, “A Note on
Error Codes”) is returned on error. .

Chapter 8. Rexx Utilities (RexxUtil)

556

Parameter:

handle
The handle of an event semaphore previously created by SysCreateEventSem.

8.53. SysQueryProcess

Windows

 +-PID---+
>>-SysQueryProcess(" -+-TID---+- ")----------------------------><
 +-PPRIO-+
 +-TPRIO-+
 +-PTIME-+
 +-TTIME-+

Unix

 +-PID------+
>>-SysQueryProcess(" -+----------+- ")-------------------------><
 +-PPID-----+
 +-PPRIO----+
 +-PTIME----+
 +-PMEM-----+
 +-PSWAPS---+
 +-PRCVDSIG-+

Retrieves information about the current process or Windows thread.

Parameter:

info
The kind of information requested:
PID

Returns the process ID of the current process.

PPID
Returns the parent process ID of the current process.

TID
Returns the thread ID of the current thread.

PPRIO
Returns the priority class of the current process.

TPRIO
Returns the relative priority of the current thread.

PTIME
Returns time information on the current process.

SysQueryRexxMacro

557

TTIME
Returns time information on the current thread.

PMEM
Returns the maximum memory (RSS) used by the current process.

PRCVDSIG
Returns the number of signals that have been received by the process.

Return codes:

• For PID, PPID or TID: an ID

• For Windows PPRIO: "IDLE", "NORMAL", "HIGH", "REALTIME", or "UNKNOWN"

• For Unix PPRIO: a number from -20 to +20.

• For TPRIO: "IDLE", "LOWEST", "BELOW_NORMAL", "NORMAL", "ABOVE_NORMAL",
"HIGHEST", "TIME_CRITICAL", or "UNKNOWN"

• For Windows PTIME or TTIME: the creation date and time, the amount of time that the process
executed in kernel mode, and the amount of time that the process executed in user mode

• For Unix PTIME: the summary and the duration that the process executed in kernel mode, and the
duration that the process executed in user mode

8.54. SysQueryRexxMacro

>>-SysQueryRexxMacro(name)-------------------------------------><

Queries the existence of a macrospace function. SysQueryRexxMacro returns the placement order of
the macrospace function or a null string ("") if the function does not exist in the macrospace.

Parameter:

name
The name of a function in the Rexx macrospace.

8.55. SysReleaseMutexSem

>>-SysReleaseMutexSem(handle)----------------------------------><

Releases a mutex semaphore.

Parameter:

handle
A handle returned from a previous SysCreateMutexSem call.

Chapter 8. Rexx Utilities (RexxUtil)

558

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

105
Owner died.

288
Not owner.

8.56. SysReorderRexxMacro

>>-SysReorderRexxMacro(name,order)-----------------------------><

Reorders a routine loaded in the Rexx macrospace. SysReorderRexxMacro returns the
RexxReorderMacro return code.

Parameters:

name
The name of a function in the macrospace.

order
The new macro search order. The order can be "B" (Before) or "A" (After).

8.57. SysRequestMutexSem

>>-SysRequestMutexSem(handle-+----------+-)--------------------><
 +-,timeout-+

Requests a mutex semaphore. SysRequestMutexSem returns the WaitForSingleObject return code.

Parameters:

handle
A handle returned from a previous SysCreateMutexSem call.

timeout
The time, in milliseconds, to wait on the semaphore. The default timeout is an infinite wait.

SysResetEventSem

559

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

103
Too many requests.

121
Error timeout.

8.58. SysResetEventSem

>>-SysResetEventSem(handle)------------------------------------><

Resets an event semaphore..

Parameter:

handle
A handle returned from a previous SysCreateEventSem call.

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

8.59. SysRmDir

>>-SysRmDir(dirspec)---><

Deletes a specified file directory without your confirmation.

Chapter 8. Rexx Utilities (RexxUtil)

560

Parameter:

dirspec
The directory that should be deleted.

Return codes:

0
Directory removal was successful.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

2
File not found.

3
Path not found.

5
Access denied or busy.

16
Current directory.

26
Not a DOS disk.

32
Sharing violation.

108
Drive locked.

123
Invalid name.

145
Directory not empty.

146
Is Subst Path.

147
Is Join Path.

206
File name exceeds range.

Example 8.33. RexxUtil - SysRmdir

/* Code */
call SysRmDir "c:\rexx"

SysSaveRexxMacroSpace

561

8.60. SysSaveRexxMacroSpace

>>-SysSaveRexxMacroSpace(file)---------------------------------><

Saves the Rexx macrospace. SysSaveRexxMacroSpace returns the RexxSaveMacroSpace return
code.

Parameter:

file
The file used to save the functions in the Rexx macrospace.

8.61. SysSearchPath

>>-SysSearchPath(path,filename-+-----------+-)-----------------><
 +-,--option-+

Searches the specified file path for the specified file. If the file is found, the search returns the full file
specification of the first file found within the path, and then stops searching. If the file is not found, the
search returns a null string.

Parameters:

path
An environment variable name. The environment variable must contain a list of file directories.
Examples are "PATH" or "DPATH".

filename
The file for which the path is to be searched.

option
Specifies where the search starts.
"C"

Starts the search at the current directory and then along the specified path. This is the default.

"N"
Starts the search at the path, not at the current directory.

Example 8.34. RexxUtil - SysSearchpath

/* Code */
fspec = SysSearchPath("PATH", "CMD.EXE")
say "CMD.EXE is located at" fspec

Chapter 8. Rexx Utilities (RexxUtil)

562

/* Output */
CMD.EXE is located at C:\WIN\CMD.EXE

8.62. SysSetFileDateTime

>>-SysSetFileDateTime(filename-+--------------------------------+-)-><
 +-,--+---------+--+------------+-+
 +-newdate-+ +-,--newtime-+

Modifies the "Last Modified" date and time of file filename. If no new date or time is specified the file
date or time is set to the current time (TOUCH). If only the date is omitted, the "Last Modified" date
remains unchanged. If only the time is omitted, the "Last Modified" time remains unchanged.

The filename can also be a directory name.

The file that you want to change must not be opened by another process or must at least allow shared
writes to update the time stamp.

Parameters:

filename
The name of the file to be updated.

newdate
The new date for the file, to be specified in the format YYYY-MM-DD, where YYYY > 1800.

newtime
The new time for the file, to be specified in the format HH:MM:SS (24-hour format).

Return codes:

0
The file date and time were updated correctly.

-1
The update of the file date or time failed.

Example 8.35. RexxUtil - SysSetfiledatetime

Call SysSetFileDateTime "MyFile.Log" /* touch file */
 Call SysSetFileDateTime "MyFile.Log", "1998-12-17"
 Call SysSetFileDateTime "MyFile.Log", , "16:37:21"
 Call SysSetFileDateTime "MyFile.Log", "1998-12-17", "16:37:21"

 Call SysSetFileDateTime "C:\MyDir" /* touch dir on Windows NT */

8.63. SysSetPriority

SysShutdownSystem (Windows only)

563

>>-SysSetPriority(class,delta)---------------------------------><

Changes the priority of the current process. A return code of 0 indicates no error.

Parameters:

class
The new process priority class. The allowed classes are:
0 or "IDLE"

Idle time priority

1 or "NORMAL"
Regular priority

2 or "HIGH"
High or time-critical priority

3 or "REALTIME"
Real-time priority

delta
The change applied to the process priority level. delta must be in the range -15 to +15. It can also
be a symbolic name:
• "IDLE" for -15

• "LOWEST" for -2

• "BELOW_NORMAL" for -1

• "NORMAL" for 0

• "ABOVE_NORMAL" for 1

• "HIGHEST" for 2

• "TIME_CRITICAL" for 15

0
No errors.

Other
An error occurred. A Windows System Error code (Section 8.1, “A Note on Error Codes”) is
returned. This may be one of the following, but could be others.

307
Invalid priority class.

8.64. SysShutdownSystem (Windows only)

>>-SysShutdownSystem(-+----------+-+----------+-+----------+-+--------+-+---------+-)---><

Chapter 8. Rexx Utilities (RexxUtil)

564

 +-computer-+ +-,message-+ +-,timeout-+ +-,force-+ +-,reboot-+

Provides an interface to the InitiateSystemShutdown() API on Windows. If the user has
sufficient privileges, this function can be used to shut down the local machine or a remote system. In
general all users have sufficient privileges to shut down the local machine and only Administrators
have sufficient privileges to shut down remote machines.

The user of this function is strongly encouraged to read the Microsoft documentation for
InitiateSystemShutdown() to understand the finer points to using this function. The
documentation is freely available online. A Google search using InitiateSystemShutdown MSDN will
provide a link to the documentation. In particular, this function can be used to force a shut down of a
system while users are logged on and applications have unsaved data.

If the timeout argument is not 0, a shut down dialog is displayed on the machine being shut down,
naming the user who initiated the shut down, a timer counting down the seconds until the machine is
shut down, and prompting the user to log off. This dialog can be moved but it can not be closed and
remains on top of all other windows on the system.

If any open application has unsaved data, the operating system gives the application a chance to
prompt the user to save and close the application. If the force argument is false, the shut down will
be delayed until the user responds, and ultimately the user could cancel the shut down. If the force
argument is true the system will force the application closed whether the data gets saved or not. The
application is still given a chance to prompt the user to save the data, but the user only has a few
seconds to respond before the system forcibly closing the application.

The implications of the preceding two paragraphs are this, if the timeout argument is 0 and the force
argument is true, the system immediately shuts down and any unsaved data is forever lost. This is
why the user of this function is encouraged to fully understand this function before using it.

Parameters:

computer
Indicates which system to shut down. If omitted or the empty string, the local machine is shut
down. Otherwise this should be the network name of the remote machine.

message
An additional message that is added to the shut down dialog. If omitted, no additional message is
added.

timeout
The time, in seconds, before the system is shut down. If this value is 0, the system is immediately
shut down and no shut down dialog is displayed. The shut down can not be aborted. If omitted the
default time out is 30 seconds.

force
If this argument is true, applications with unsaved data will be forced close by the system whether
the data is saved or not. If false, the shut down is delayed until applications with unsaved data
responds. If an application does not respond, the user will be prompted by the system to end the
application. At this point, if the user chooses not to forcibly end the application, the shut down will
be aborted.

Please note some consequences of this argument as described by Microsoft. If this argument is
false, i.e. applications are not forced to close, and an application with unsaved changes is running
on the console session, the shutdown will remain in progress until the user logged into the console

SysSleep

565

session aborts the shutdown, saves changes, closes the application, or forces the application
to close. During this period, the shutdown may not be aborted except by the console user, and
another shutdown may not be initiated. Using true for this argument prevents that situation. But,
using true can also result in unsaved data being lost.

reboot
If this argument is true, the system is rebooted after the shut down. If it is false, the system is shut
down. The default if omitted is false.

Returns:

Returns 0 for success or a Windows System Error code (Section 8.1, “A Note on Error Codes”) for
failure. For instance a return of 1300 would indicate the user does not have sufficient privileges to shut
down the named system. Use SysGetErrorText() (Section 8.30, “SysGetErrortext”) to get a generic
text description for any Windows System Error code. For example, the description for error code 1300
is Not all privileges referenced are assigned to the caller.

8.65. SysSleep

>>-SysSleep(secs)--><

Pauses a Rexx program for a specified time interval.

Parameter:

secs
The number of seconds for which the program is to be paused. You can specify up to seven
decimal places in the number.

Example 8.36. RexxUtil - SysSleep

Say "Now paused for 2 seconds ..."
Call SysSleep 2
Say "Now paused for 0.1234567 seconds ..."
Call SysSleep 0.1234567

Call SysSleep 0.12345678 -- Error 40: Incorrect call to routine

8.66. SysStemCopy

>>-SysStemCopy--(--fromstem--,--tostem-------------------------->

>--+--+--)-><
 +-,--+------+--+---+-+
 +-from-+ +-,--+----+--+----------------------------------+-+

Chapter 8. Rexx Utilities (RexxUtil)

566

 +-to-+ +-,--+-------+--+----------------+-+
 +-count-+ +-,--"--+-I-+--"-+
 +-O-+

Copies items from the source stem to the target stem. Items in the source stem are copied starting at
the from index (default is 1) into the target stem beginning at the to index (default is 1). The number of
items to be copied to the target stem can be specified with the count. The default is to copy all items in
the source stem.

You can also specify that the items are to be inserted into the target stem at the position and the
existing items are shifted to the end.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

fromstem
The name of the source stem.

tostem
The name of the target stem.

from
The first index in the source stem to be copied.

to
The position at which the items are to be inserted in the target stem.

count
The number of items to be copied or inserted.

insert
Either of the following values:
I

Insert items.

O
Overwrite items.

Return codes:

0
The stem was copied successfully.

-1
Copying the stem failed.

Example 8.37. RexxUtil - SysStemcopy

Source.0 = 3
Source.1 = "Hello"
Source.2 = "from"

SysStemDelete

567

Source.3 = "Rexx"
Call SysStemCopy "Source.", "Target."

Call SysStemCopy "Source.", "Target.", 1, 5, 2, "I"

8.67. SysStemDelete

>>-SysStemDelete(stem,startitem-+--------------+-)-------------><
 +-,--itemcount-+

Deletes the specified item at the index startitem in the stem. If more than one item is to be deleted the
itemcount must be specified. After deleting the requested items the stem is compacted, which means
that items following the deleted items are moved to the vacant positions.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

stem
The name of the stem from which the item is to be deleted.

startitem
The index of the item to be deleted.

itemcount
The number of items to be deleted if more than one.

Return codes:

0
Deleting was successful.

-1
Deleting failed.

Example 8.38. RexxUtil - SysStemdelete

Call SysStemDelete "MyStem.", 5
Call SysStemDelete "MyStem.", 5, 4

8.68. SysStemInsert

>>-SysStemInsert(stem,position,value)--------------------------><

Chapter 8. Rexx Utilities (RexxUtil)

568

Inserts a new item at position in the stem. All items in the stem following this position are shifted down
by one position.

This function operates only on stem arrays that specify the number of items in stem.0 and all items
must be numbered from 1 to n without omitting an index.

Parameters:

stem
The name of the stem in which an item is to be inserted.

position
The index at which the new item is to be inserted.

value
The value of the new item.

Return codes:

0
Inserting was successful.

-1
Inserting failed.

Example 8.39. RexxUtil - SysSteminsert

Call SysStemInsert "MyStem.", 5, "New value for item 5"

8.69. SysStemSort

 +-A-+ +-C-+ +-1-----+
>>-SysStemSort--(--stem--,--"--+-D-+--"--,--"--+-I-+--"--,--+-start-+-->

 +-1--------+
>--,--end--,--+-firstcol-+--,--lastcol--)-----------------------------><

Sorts all or the specified items in the stem. The items can be sorted in ascending or descending
order and the case of the strings being compared can be respected or ignored. Sorting can be
further narrowed by specifying the first and last item to be sorted or the columns used as sort keys.
Because the sort uses a quick-sort algorithm, the order of sorted items according to the sort key is
undetermined.

This function operates only on stems that specify the number of items in stem.0 and all items must be
numbered from 1 to n without omitting an index. A value of 0 in stem.0 is also valid but no sort will be
performed.

Parameters:

SysSwitchSession (Windows only)

569

stem
The name of the stem to be sorted.

order
Either "A" for ascending or "D" for descending. The default is "A".

type
The type of comparison: either "C" for case or "I" for ignore. The default is "C".

start
The index at which the sort is to start. The default is 1.

end
The index at which the sort is to end. The default is the last item.

firstcol
The first column to be used as sort key. The default is 1.

lastcol
The last column to be used as sort key. The default is the last column.

Return codes:

0
The sort was successful.

-1
The sort failed.

Example 8.40. RexxUtil - SysStemsort

/* sort all elements descending, use cols 5 to 10 as key */
Call SysStemSort "MyStem.", "D", , , ,5, 10

/* sort all elements ascending, ignore the case */
Call SysStemSort "MyStem.", "A", "I"

/* sort elements 10 to 20 ascending, use cols 1 to 10 as key */
Call SysStemSort "MyStem.", , ,10, 20, 1, 10

8.70. SysSwitchSession (Windows only)

>>-SysSwitchSession(name)--------------------------------------><

Brings the named window to the foreground. Modern versions of Windows do not always allow a
window to be brought to the foreground programmatically. Instead, the icon for the window on the task
bar is set to flashing.

Parameter:

Chapter 8. Rexx Utilities (RexxUtil)

570

name
The name of the window you want to be the foreground window. The name of the window must
exactly match the title of the window, but is not case sensitive. The title of a window is the text
displayed in its title bar.

O is returned on success and a Windows System Error code (Section 8.1, “A Note on Error Codes”)
on failure.

8.71. SysSystemDirectory (Windows only)

>>-SysSystemDirectory()--><

Returns the Windows system directory.

8.72. SysTempFileName

>>-SysTempFileName(template-+---------+-)----------------------><
 +-,filter-+

Returns a unique name for a file or directory that does not currently exist. If an error occurs or
SysTempFileName cannot create a unique name from the template, it returns a null string ("").
SysTempFileName is useful when a program requires a temporary file.

Parameters:

template
The location and base form of the temporary file or directory name. The template is a valid file or
directory specification with up to five filter characters.

SysTempFileName generates the filter character replacements with a random number algorithm. If
the resulting file or directory already exists, SysTempFileName increments the replacement value
until all possibilities have been exhausted.

There are slight differences in how the template works on Windows and Unix/Linux.

On Windows: The file name part of the template can be any length. However, the template must
contain at least 1 filter character or the empty string is returned. The unique name is created solely
by substituting random numbers for the filter character(s). If there is a directory name part of the
template in addition to the file name part, and the directory name part contains a non-existent
directory, the function will succeed. However, the temporary file will not be writable unless the user
first creates the non-existent directory, or directories. When the function succeeds, the result is
always the same length as the template.

On Unix/Linux: Only the first five characters of the file name part of the template are used. Any
characters after the first five in the file name part are ignored. The unique name is generated

SysTextScreenRead (Windows only)

571

by the operating system adding a random string of characaters to the end of the template.
The template does not have to include any filter characters. If the template does include filter
characters, then ooRexx replaces those filter characters with random numbers. Because the
operating system adds a random string to the end of the template, the result will always be
longer than the template. In general, if the template does not contain a directory part, or if the
directory part is not writable by the user, a writable directory part is added by the operating system
(most likely /tmp.) This last behavior may vary depending on the exact version of the Unix/Linux
operating system.

filter
The filter character used in template. SysTempFileName replaces each filter character in template
with a numeric value. The resulting string represents a file or directory that does not exist. The
default filter character is ?.

Example 8.41. RexxUtil - SysTempfilename

/* Windows Code */
say SysTempFileName("C:\TEMP\MYEXEC.???")
say SysTempFileName("C:\TEMP\MYEXEC.tmp") -- produces the empty string.
say SysTempFileName("C:\TEMP\??MYEXEC.???")
say SysTempFileName("C:\MYEXEC@.@@@", "@")

/* Output */
C:\TEMP\MYEXEC.251

C:\TEMP\10MYEXEC.392
C:\MYEXEC6.019

/* Unix/Linux Code. mydir is an existing directory. */

say SysTempFileName("/mydir/MYEXEC.???") -- filter characters are ignored
say SysTempFileName("/mydir/MYEXEC.tmp") -- produces a unique name
say SysTempFileName("/mydir/??MYEXEC.???")
say SysTempFileName("/bogusdir/??MYEXEC.???")
say SysTempFileName("MYEXEC@.@@@", "@")

/* Output */
/mydir/MYEXEYqY2Hd
/mydir/MYEXET4dwdz
/mydir/77MYELnI0IU
/tmp/77MYEzjoweg
/tmp/MYEXEJNj3JB

8.73. SysTextScreenRead (Windows only)

>>-SysTextScreenRead(-row,column--+------+--)------------------><
 +-,len-+

Reads characters from a specified screen location. These include any carriage return and linefeed
characters if the number of character reads spans multiple lines.

Parameters:

Chapter 8. Rexx Utilities (RexxUtil)

572

row
The row from which to start reading.

col
The column from which to start reading.

len
The number of characters to read. The default is to read to the end of the screen.

Note that, on error, a Windows System Error code (Section 8.1, “A Note on Error Codes”) is returned.

Limitations: This function reads in only screen characters and does not consider the color attributes of
each character read. When restoring a character string to the screen with SAY or the CHAROUT built-
in function, the previous color settings are lost.

Example 8.42. RexxUtil - SysTextscreenread

/* Reading the entire screen */
screen = SysTextScreenRead(0, 0)

/* Reading one line */
line = SysTextScreenRead(2, 0, 80)

8.74. SysTextScreenSize (Windows only)

>>-SysTextScreenSize()---><

Returns the size of the screen in the format: row col.

Example 8.43. RexxUtil - SysTextscreensize

/* Code */
call RxFuncAdd "SysTextScreenSize", "RexxUtil", "SysTextScreenSize"
parse value SysTextScreenSize() with row col
say "Rows="row", Columns="col

8.75. SysToUnicode (Windows only)

>>-SysToUnicode--(--string, codepage, translateflags, outstem--)-><

SysToUnicode (Windows only)

573

Maps a character string to a UNICODE string.

Parameters:

string
A string containing the UNICODE characters to be mapped.

codepage
Specifies the code page used to perform the conversion. This parameter can be the value of any
code page that is installed or available in the system. The default is the current original equipment
manufacturer (OEM) code-page identifier for the system.

You can also specify one of the following values:

ACP
ANSI code page.

OEMCP
OEM code page.

SYMBOL
Windows 2000: symbol code page.

THREAD_ACP
Windows 2000: current thread's ANSI code page.

UTF7
Windows NT 4.0 and Windows 2000: translate using UTF-7.

UTF8
Windows NT 4.0 and Windows 2000: translate using UTF-8. When this is set,
translateflags must be set.

translateflags
Indicates whether to translate to precomposed or composite-wide characters (if a composite form
exists), whether to use glyph characters in place of control characters, and how to deal with invalid
characters.

You can specify a combination of the following flags:

PRECOMPOSED
Always use precomposed characters, that is, characters in which a base character and a
nonspacing character have a single character value. This is the default translation option.
Cannot be used with COMPOSITE.

COMPOSITE
Always use composite characters, that is, characters in which a base character and a
nonspacing character have different character values. Cannot be used with PRECOMPOSED.

ERR_INVALID_CHARS
If the function encounters an invalid input character, it fails and returns "1113".

USEGLYPHCHARS
Use glyph characters instead of control characters.

A composite character consists of a base character and a nonspacing character, each having
different character values. A precomposed character has a single character value for a base-

Chapter 8. Rexx Utilities (RexxUtil)

574

nonspacing character combination. In the character è, the "e" is the base character and the
"grave" accent mark is the nonspacing character. The function's default behavior is to translate to
the precomposed form. If a precomposed form does not exist, the function attempts to translate to
a composite form.

The flags PRECOMPOSED and COMPOSITE are mutually exclusive. The USEGLYPHCHARS
flag and the ERR_INVALID_CHARS can be set regardless of the state of the other flags.

outstem
The name of the stem variable that will contain the converted result. If the conversion was
successful the stem will be composed of the following value(s):

outstem.!TEXT
This variable will contain the converted string.

Return codes:

0
No errors.

Other
An error occurred. A Windows System Error code (Section 8.1, “A Note on Error Codes”) is
returned. This may be one of the following, but could be others.

87
Incorrect code page or codepage value.

1004
Invalid translate flags.

1113
No mapping for the Unicode character exists in the target code page.

8.76. SysUtilVersion

>>-SysUtilVersion()--><

Returns a version number that identifies the current level of the Rexx Utilities package. It can be used
to verify the availability of certain functions.

Return code: The REXXUTIL version number in the format n.m.l.

Examples:

Because this function was not part of the original packaging, a sample logic to check for a certain level
of RexxUTIL can look as follows:

Example 8.44. RexxUtil - SysUtilVersion

If RxFuncQuery("SysUtilVersion") = 1 |,

SysVersion

575

 SysUtilVersion() < "2.00" Then
 Say "Your RexxUTIL.DLL is not at the current level"

If a specific function should be used that was added at a later REXXUTIL level a similar check can be
performed by querying this function as follows:

Example 8.45. RexxUtil - RxFuncquery

If RxFuncQuery("SysSetFileDateTime") = 1 Then
 Say "Your REXXUTIL.DLL is not at the current level"

8.77. SysVersion

>>-SysVersion()--><

Returns a string to identify the operating system and version. The first word of the returned string
contains the identifier for the operating system and the rest of the string contains an operating system
specific version string. Something like: WindowsNT x or Linux x.

Some possible output for operating systems supported by ooRexx might be:

Example 8.46. RexxUtil - SysVersion

Say SysVersion() -> "Linux #67~precise1-Ubuntu SMP Wed Nov 13 16:16:57 UTC
 2013.3.5.0-44-generic"
Say SysVersion() -> "WindowsNT 6.01" /* Windows 7 */

Note

This function can be used to replace the operating-system-specific functions SysWinVer(), and
SysLinVer().

8.78. SysVolumeLabel (Windows only)

>>-SysVolumeLabel(--+-------------+--)------------------------------><
 +-driveLetter-+

Returns the volume label for the specified drive.

Chapter 8. Rexx Utilities (RexxUtil)

576

Parameter:

driveLetter
A drive letter in the form 'X:'. If the drive letter is omitted than the current drive is used.

Return codes:

0
Encryption was successful.

2
File not found.

4
Cannot open file.

5
Access denied.

82
Cannot encrypt.

8.79. SysWait (Unix only)

>>-SysWait()---><

Waits for all child processes to end.

Returns:

The exit code from the child process.

Example:

SysFork() (Section 8.28, “SysFork (Unix only)”) has an example that uses wait().

8.80. SysWaitEventSem

>>-SysWaitEventSem(handle-+----------+-)-----------------------><
 +-,timeout-+

Waits on an event semaphore. SysWaitEventSem returns the WaitForSingleObject return code.

Parameters:

handle
A handle returned from a previous SysCreateEventSem call.

SysWaitNamedPipe (Windows only)

577

timeout
The time, in milliseconds, to wait on the semaphore. The default timeout is an infinite wait.

Return codes:

0
No errors.

Other
An error occurred. On Windows, a Windows System Error code (Section 8.1, “A Note on Error
Codes”) is returned. This may be one of the following, but could be others.

6
Invalid handle.

258
Timeout.

8.81. SysWaitNamedPipe (Windows only)

>>-SysWaitNamedPipe(name-+----------+-)------------------------><
 +-,timeout-+

Performs a timed wait on a named pipe and returns the WaitNamedPipe return code.

Parameters:

name
The name of the pipe in the form "\\servername\pipe\pipename."

timeout
The number of microseconds to be waited. If you omit timeout or specify 0, SysWaitNamedPipe
uses the default timeout value. To wait until the pipe is no longer busy, you can use a value of -1.

Returns 0 on success. A Windows System Error code (Section 8.1, “A Note on Error Codes”) is
returned on error.

8.82. SysWinDecryptFile (Windows only)

>>-SysWinDecryptFile(filename)---------------------------------><

Decrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be decrypted.

Chapter 8. Rexx Utilities (RexxUtil)

578

Return codes:

0
Decryption was successful.

Other
A Windows System Error code (Section 8.1, “A Note on Error Codes”). This may be one of the
following, but could be others.

2
File not found.

4
Cannot open file.

5
Access denied.

82
Cannot decrypt.

8.83. SysWinEncryptFile (Windows only)

>>-SysWinEncryptFile(filename)---------------------------------><

Encrypts a given file (Windows 2000 only).

Parameter:

filename
The file to be encrypted.

Return codes:

0
Encryption was successful.

Other
A Windows System Error code (Section 8.1, “A Note on Error Codes”). This may be one of the
following, but could be others.

2
File not found.

4
Cannot open file.

5
Access denied.

82
Cannot encrypt.

SysWinGetDefaultPrinter (Windows only)

579

8.84. SysWinGetDefaultPrinter (Windows only)

>>-SysWinGetDefaultPrinter-------------------------------------><

Returns the current default printer in the form "Printername,Drivername,Portname".

8.85. SysWinGetPrinters (Windows only)

>>-SysWinGetPrinters(stem.)------------------------------------><

Fills a stem with the available printer descriptions.

Parameters:

stem.0
The number of entries

stem.i
Entry

Each entry is of the form "Printername,Drivername,Portname".

Return codes:

0
Success

1
Failure

8.86. SysWinSetDefaultPrinter (Windows only)

>>-SysWinSetDefaultPrinter(description)------------------------><

Sets the default printer.

Parameter:

description
A string identifying the printer. On Windows 2000 or later this string can be just
the printer name. For earlier versions of Windows, the string must have the form
"Printername,Drivername,Portname".

Chapter 8. Rexx Utilities (RexxUtil)

580

Note

For Windows 2000 or later either form of the description string is accepted. However, using
just the printer name is the preferred method. Using the "Printername,Drivername,Portname"
form will invoke an outdated Windows API that Microsoft has deprecated.

Return codes:

0
Success

non-zero
A Windows System Error code (Section 8.1, “A Note on Error Codes”). You can use
SysGetErrortext() to get a description of the error.

Example 8.47. RexxUtil - SysWinGetPrinters and SysWinGetDefaultPrinter

/* set default printer */

default = SysWinGetDefaultPrinter()
parse var default default",".
say 'The Default printer is:' default
say

if SysWinGetPrinters(list.) == 0 then do
 say "List of available printers (* = default):"
 do i=1 to list.0
 parse var list.i pname",".
 if pname == default then
 say i list.i "*"
 else
 say i list.i
 end
 say
 say "Please enter number of new default printer (0 = keep default)"
 pull i

 numberOk = .false

 if i~datatype('W') then do
 if 0 <= i & i <= list.0 then do
 numberOK = .true

 if i > 0 then do
 /* Assumes we are on Windows 2000 or later. */
 parse var list.i pname",".
 ret = SysWinSetDefaultPrinter(pname)
 if ret <> 0 then do
 say "Error setting default printer ("ret"):" SysGetErrorText(ret)
 end
 else do
 say "The new default printer is:" pname
 end
 end

SysWinVer (Windows only)

581

 end
 end

 if \ numberOk then do
 say "You did not enter a valid printer number."
 end
end
else do
 say "Failed to get a list of the available printers."
end

8.87. SysWinVer (Windows only)

>>-SysWinVer()---><

Returns a string specifying the Windows operating system version information in the form WindowsNT
x.xx.

Some possible output might be:

Example 8.48. RexxUtil - SysWinVer

Say SysWinVer() -> "WindowsNT 6.01" /* Windows 7 */

582

Chapter 9.

583

Parsing
The parsing instructions are ARG, PARSE, and PULL (see Section 2.2, “ARG”, Section 2.18,
“PARSE”, and Section 2.20, “PULL”).

The data to be parsed is a source string. Parsing splits the data in a source string and assigns pieces
of it to the variables named in a template. A template is a model specifying how to split the source
string. The simplest kind of template consists of a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into whitespace-delimited words. More complicated
templates contain patterns in addition to variable names:

String patterns
Match the characters in the source string to specify where it is to be split. (See Section 9.2,
“Templates Containing String Patterns” for details.)

Positional patterns
Indicate the character positions at which the source string is to be split. (See Section 9.3,
“Templates Containing Positional (Numeric) Patterns” for details.)

Parsing is essentially a two-step process:

1. Parse the source string into appropriate substrings using patterns.

2. Parse each substring into words.

9.1. Simple Templates for Parsing into Words
Here is a parsing instruction:

Example 9.1. Parsing templates

parse value "time and tide" with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to be parsed is between the keywords
PARSE VALUE and the keyword WITH, the source string time and tide. Parsing divides the source
string into whitespace-delimited words and assigns them to the variables named in the template as
follows:

var1="time"
var2="and"
var3="tide"

In this example, the source string to be parsed is a literal string, time and tide. In the next
example, the source string is a variable.

Chapter 9. Parsing

584

Example 9.2. Parse value

/* PARSE VALUE using a variable as the source string to parse */
string="time and tide"
parse value string with var1 var2 var3 /* same results */

PARSE VALUE does not convert lowercase a-z in the source string to uppercase A-Z. If you want
to convert characters to uppercase, use PARSE UPPER VALUE. See Section 9.5, “Using UPPER,
LOWER, and CASELESS” for a summary of the effect of parsing instructions on the case.

Note that if you specify the CASELESS option on a PARSE instruction, the string comparisons during
the scanning operation are made independently of the alphabetic case. That is, a letter in uppercase is
equal to the same letter in lowercase.

All of the parsing instructions assign the parts of a source string to the variables named in a
template. There are various parsing instructions because of the differences in the nature or origin of
source strings. For a summary of all the parsing instructions, see Section 9.6, “Parsing Instructions
Summary”.

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to be parsed
is always a variable. In PARSE VAR, the name of the variable containing the source string follows
the keywords PARSE VAR. In the next example, the variable stars contains the source string. The
template is star1 star2 star3.

Example 9.3. Parse var

/* PARSE VAR example */
stars="Sirius Polaris Rigil"
parse var stars star1 star2 star3 /* star1="Sirius" */
/* star2="Polaris" */
/* star3="Rigil" */

All variables in a template receive new values. If there are more variables in the template than words
in the source string, the leftover variables receive null (empty) values. This is true for the entire
parsing: for parsing into words with simple templates and for parsing with templates containing
patterns. Here is an example of parsing into words:

/* More variables in template than (words in) the source string */
satellite="moon"
parse var satellite Earth Mercury /* Earth="moon" */
/* Mercury="" */

If there are more words in the source string than variables in the template, the last variable in the
template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites="moon Io Europa Callisto..."
parse var satellites Earth Jupiter /* Earth="moon" */
/* Jupiter="Io Europa Callisto..."*/

Message Term Assignments

585

Parsing into words removes leading and trailing whitespace characters from each word before it
is assigned to a variable. The exception to this is the word or group of words assigned to the last
variable. The last variable in a template receives leftover data, preserving extra leading and trailing
whitespace characters. Here is an example:

Example 9.4. Parse var

/* Preserving extra blanks */
solar5="Mercury Venus Earth Mars Jupiter "
parse var solar5 var1 var2 var3 var4
/* var1 ="Mercury" */
/* var2 ="Venus" */
/* var3 ="Earth" */
/* var4 =" Mars Jupiter " */

In the source string, Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigning var3="Earth". Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five
blanks between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no whitespace characters if the template contains only one variable. For example:

parse value " Pluto " with var1 /* var1=" Pluto "*/

9.1.1. Message Term Assignments
In addition to assigning values to variables, the PARSE instruction also allows any message term
value that can be used on the left side of an assignment instruction (See Section 1.13, “Assignments
and Symbols”). For example:

Example 9.5. Parse var

/* Preserving extra blanks */
solar5="Mercury Venus Earth Mars Jupiter "
d = .directory~new
parse var solar5 d~var1 d~var2 d~var3 d~var4
/* d~var1 ="Mercury" */
/* d~var2 ="Venus" */
/* d~var3 ="Earth" */
/* d~var4 =" Mars Jupiter " */

9.1.2. The Period as a Placeholder

A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It
is useful as a "dummy variable" in a list of variables or to collect unwanted information at the end of a
string. And it saves the overhead of unneeded variables.

The period in the first example is a placeholder. Be sure to separate adjacent periods with whitespace;
otherwise, an error results.

Chapter 9. Parsing

586

Example 9.6. Period placeholder

/* Period as a placeholder */
stars="Arcturus Betelgeuse Sirius Rigil"
parse var stars . . brightest . /* brightest="Sirius" */

/* Alternative to period as placeholder */
stars="Arcturus Betelgeuse Sirius Rigil"
parse var stars drop junk brightest rest /* brightest="Sirius" */

9.2. Templates Containing String Patterns

A string pattern matches characters in the source string to indicate where to split it. A string pattern
can be either of the following:

Literal string pattern
One or more characters within quotation marks.

Variable string pattern
A variable within parentheses with no plus (+), minus (-), or equal sign (=) before the left
parenthesis. (See Section 9.4, “Parsing with Variable Patterns” for details.)

Here are two templates, a simple template and a template containing a literal string pattern:

var1 var2 /* simple template */
var1 ", " var2 /* template with literal string pattern */

The literal string pattern is: ", ". This template puts characters:

• From the start of the source string up to (but not including) the first character of the match (the
comma) into var1

• Starting with the character after the last character of the match (the character after the blank that
follows the comma) and ending with the end of the string into var2

A template with a string pattern can omit some of the data in a source string when assigning data to
variables. The next two examples contrast simple templates with templates containing literal string
patterns.

Example 9.7. Template string patterns

/* Simple template */
name="Smith, John"
parse var name ln fn /* Assigns: ln="Smith," */
/* fn="John" */

Templates Containing Positional (Numeric) Patterns

587

Notice that the comma remains (the variable ln contains "Smith,"). In the next example the
template is ln ", " fn. This removes the comma.

Example 9.8. Template string patterns

/* Template with literal string pattern */
name="Smith, John"
parse var name ln ", " fn /* Assigns: ln="Smith" */
 /* fn="John" */

First, the language processor scans the source string for ", ". It splits the source string at that point.
The variable ln receives data starting with the first character of the source string and ending with the
last character before the match. The variable fn receives data starting with the first character after the
match and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (see Section 9.8.2, “Combining String and Positional Patterns”) in which a template with
a string pattern does not omit matching data in the source string.) The pattern ", " (with a blank)
is used instead of "," (no blank) because, without the blank in the pattern, the variable fn receives
" John" (including a blank).

If the source string does not contain a match for a string pattern, any variables preceding the
unmatched string pattern get all the data in question. Any variables after that pattern receive the null
string.

A null string is never found. It always matches the end of the source string.

9.3. Templates Containing Positional (Numeric) Patterns

A positional pattern is a number that identifies the character position at which the data in the source
string is to be split. The number must be a whole number.

An absolute positional pattern is:

• A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=) preceding it.

• An expression in parentheses with an equal sign before the left parenthesis. (See Section 9.4,
“Parsing with Variable Patterns” for details on variable positional patterns.)

The number specifies the absolute character position at which the source string is to be split.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in
the input string, 21 to the 21st position. This template puts characters:

• 1 through 10 of the source string into variable1

• 11 through 20 into variable2

• 21 to the end into variable3

Chapter 9. Parsing

588

Positional patterns are probably most useful for working with a file of records, such as:

The following example uses this record structure:

Example 9.9. Parsing stems

/* Parsing with absolute positional patterns in template */
record.1="Clemens Samuel Mark Twain "
record.2="Evans Mary Ann George Eliot "
record.3="Munro H.H. Saki "
do n=1 to 3
 parse var record.n lastname 11 firstname 21 pseudonym
 If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end /* Says "By George!" after record 2 */

The source string is split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 to lastname, characters 11 to 20 to firstname, and characters 21 to 40 to
pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no
sign before a number in a template. The number refers to a particular character position in the source
string. These two templates are equal:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
see Section 9.4, “Parsing with Variable Patterns”.

Templates Containing Positional (Numeric) Patterns

589

The number specifies the relative character position at which the source string is to be split. The plus
or minus indicates movement right or left, respectively, from the start of the string (for the first pattern)
or from the position of the last match. The position of the last match is the first character of the last
match. Here is the same example as for absolute positional patterns done with relative positional
patterns:

Example 9.10. Parsing with relative positional patterns

/* Parsing with relative positional patterns in template */
record.1="Clemens Samuel Mark Twain "
record.2="Evans Mary Ann George Eliot "
record.3="Munro H.H. Saki "
do n=1 to 3
 parse var record.n lastname +10 firstname + 10 pseudonym
 If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end /* same results */

Whitespace characters between the sign and the number are insignificant. Therefore, +10 and + 10
have the same meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable except in the special case (see
Section 9.8.2, “Combining String and Positional Patterns”) when a string pattern precedes a variable
name and a positional pattern follows the variable name. The templates from the examples of absolute
and relative positional patterns give the same results.

With positional patterns, a matching operation can back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */
string="astronomers"
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string "study" var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position.
Here is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string="astronomers"
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string "study" var1||var2||var3||var4 /* same results */

Chapter 9. Parsing

590

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the previous two examples are equivalent.

You can use templates with positional patterns to make several assignments:

/* Making several assignments */
books="Silas Marner, Felix Holt, Daniel Deronda, Middlemarch"
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

A length positional pattern is a number with a (>) or (<) preceding it. It can also be an expression
within parentheses, with a (>) or (<) preceding the left parenthesis; for details see Section 9.4,
“Parsing with Variable Patterns”.

The number specifies the length at which the source string is to be split, relative to the current
position.. The > or < indicates movement right or left, respectively, from the start of the string (for the
first pattern) or from the position of the last match. The position of the last match is the first character
of the last match. Here is the same example as for relative positional patterns done with length
positional patterns:

Example 9.11. Parsing with relative positional patterns

/* Parsing with relative positional patterns in template */
record.1="Clemens Samuel Mark Twain "
record.2="Evans Mary Ann George Eliot "
record.3="Munro H.H. Saki "
do n=1 to 3
 parse var record.n lastname >10 firstname >10 pseudonym
 If lastname="Evans" & firstname="Mary Ann" then say "By George!"
end /* same results */

Whitespace characters between the trigger and the number are insignificant. Therefore, >10 and
> 10 have the same meaning. Note that >0 <0 and are valid length positional pattern.

The > length pattern and the + relative positional pattern are interchangeable except in the special
case of the value 0. A >0 pattern will split the string into a null string and leave the match position
unchanged. This is particularly useful for parsing off length-qualified fields from a string.

Example 9.12. Parsing with length patterns

/* Parsing with length patterns in template */
line = "04Mark0005Twain"
parse var line len +2 first >(len) len +2 middle >(len) len +2 last >(len)

Combining Patterns and Parsing into Words

591

say '"'first'" "'middle'" "'last'"' -- displays "Mark" "" "Twain"

/* parsing with relative patterns only */
parse var line len +2 first +(len) len +2 middle +(len) len +2 last +(len)
say '"'first'" "'middle'" "'last'"' -- displays "Mark" "05Twain" "Twain"

The < length pattern will move the position the indicated position to the left, and split the string
between the original position and the movement position. At of the operation, the current position
is returned to the original position. This movement is equivalent to using a negative relative pattern
followed by a positive relative pattern for the same length. This operation allows for easy extraction of
characters that precede a string match.

Example 9.13. Parsing with length patterns

/* Parsing with length patterns in template */
parse value '12345.6789' with '.' digit <1 -- digit -> "5"

/* parsing with relative patterns only */
parse value '12345.6789' with '.' -1 digit +1 -- digit -> "5"

9.3.1. Combining Patterns and Parsing into Words

If a template contains patterns that divide the source string into sections containing several words,
string and positional patterns divide the source string into substrings. The language processor then
applies a section of the template to each substring, following the rules for parsing into words.

Example 9.14. Combining string patterns

/* Combining string pattern and parsing into words */
name=" John Q. Public"
parse var name fn init "." ln /* Assigns: fn="John" */
/* init=" Q" */
/* ln=" Public" */

The pattern divides the template into two sections:

• fn init

• ln

The matching pattern splits the source string into two substrings:

•

" John Q"

•

" Public"

The language processor parses these substrings into words based on the appropriate template
section.

Chapter 9. Parsing

592

John has three leading blanks. All are removed because parsing into words removes leading and
trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because
init is the last variable in that section of the template.

For the substring " Public", parsing assigns the entire string into ln without removing any blanks.
This is because ln is the only variable in this section of the template. (For details about treatment of
whitespace characters, see Section 9.1, “Simple Templates for Parsing into Words”.)

Example 9.15. Combining positional patterns

/* Combining positional patterns with parsing into words */
string="R E X X"
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1="R" */
/* var2="E" */
/* var3=" X" */
/* var4=" X" */

The pattern divides the template into three sections:

• var1 var2

• var3

• var4

The matching patterns split the source string into three substrings that are individually parsed into
words:

• "R E"

• " X"

• " X"

The variable var1 receives "R"; var2 receives "E". Both var3 and var4 receive " X" (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment
of whitespace characters, see Section 9.1, “Simple Templates for Parsing into Words”.)

9.4. Parsing with Variable Patterns

You might want to specify a pattern by using the value of a variable or expression instead of a fixed
string or number. You do this by placing an expression in parentheses. This is a variable reference.
Whitespace characters are not necessary inside or outside the parentheses, but you can add them if
you wish.

The template in the next parsing instruction contains the following literal string pattern ". ".

parse var name fn init ". " ln

Here is how to specify that pattern as a variable string pattern:

Using UPPER, LOWER, and CASELESS

593

strngptrn=". "
parse var name fn init (strngptrn) ln

If no equal, plus sign, minus sign, >, or < precedes the parenthesis that is before the variable name,
the character string value of the variable is then treated as a string pattern. The expression can
reference variables that have been set earlier in the same template.

Example:

Example 9.16. Combining variables in patterns

/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/98 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month="11"; delim="/"; day="15"; year="98" */

If an equal, a plus, a minus sign, > or < precedes the left parenthesis, the value of the expression is
treated as an absolute, relative positional, or length positional pattern. The value of the expression
must be a positive whole number or zero.

The expression can reference variables that have has been set earlier in the same template. In the
following example, the first two fields specify the starting-character positions of the last two fields.

Example:

Example 9.17. Combining variables an positional patterns

/* Using a variable as a positional pattern */
dataline = "12 26Samuel ClemensMark Twain"
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname="Samuel Clemens"; pseudonym="Mark Twain" */

The positional pattern 6 is needed in the template for the following reason: Word parsing occurs
after the language processor divides the source string into substrings using patterns. Therefore, the
positional pattern =(pos1) cannot be correctly interpreted as =12 until after the language processor
has split the string at column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2,
respectively.

9.5. Using UPPER, LOWER, and CASELESS

Specifying UPPER on any of the PARSE instructions converts lowercase a-z to uppercase A-Z before
parsing.

Chapter 9. Parsing

594

The ARG instruction is a short form of PARSE UPPER ARG. The PULL instruction is a short form of
PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG instead of ARG or
PARSE UPPER ARG, and PARSE PULL instead of PULL or PARSE UPPER PULL.

Specifying LOWER on any of the PARSE instructions converts uppercase A-Z to lowercase a-z before
parsing.

Specifying CASELESS means the comparisons during parsing are independent of the case--that is, a
letter in uppercase is equal to the same letter in lowercase.

9.6. Parsing Instructions Summary

All parsing instructions assign parts of the source string to the variables named in the template. The
following table summarizes where the source string comes from.

Table 9.1. Parsing Source Strings

 Instruction Where the source string comes from

ARG Arguments you list when you call the program or
arguments in the call to a subroutine or function.

PARSE ARG Arguments you list when you call the program or
arguments in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL The string at the head of the external data
queue. (If the queue is empty, it uses default
input, typically the terminal.)

PARSE PULL The string at the head of the external data
queue. (If the queue is empty, it uses default
input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about
the executing program.

PARSE VALUE Expression between the keywords VALUE and
WITH in the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language,
language level, and (three-word) date.

9.7. Parsing Instructions Examples

All examples in this section parse source strings into words.

ARG

Example 9.18. ARG with source string named in Rexx program invocation

/* ARG with source string named in Rexx program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1="RED"; var2="BLUE" */
If var1<>"RED" & var1<>"YELLOW" & var1<>"BLUE" then signal err
If var2<>"RED" & var2<>"YELLOW" & var2<>"BLUE" then signal err

Parsing Instructions Examples

595

total=length(var1)+length(var2)
SELECT;
 When total=7 then new="purple"
 When total=9 then new="orange"
 When total=10 then new="green"
Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the
arguments in the CALL to a subroutine is in Section 9.8.1, “Parsing Several Strings”.

PARSE ARG is similar to ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

PARSE LINEIN

Example 9.19. PARSE LINEIN

parse linein "a=" num1 "c=" num2 /* Assume: 8 and 9 */
sum=num1+num2 /* Enter: a=8 b=9 as input */
say sum /* Displays: "17" */

PARSE PULL

Example 9.20. PARSE PULL

PUSH "80 7" /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore="80"; seven="7" */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE

Example 9.21. PARSE SOURCE

parse source sysname .
Say sysname /* Possibly Displays: */
 /* "Windows" */

Section 9.1, “Simple Templates for Parsing into Words” [584].

PARSE VAR examples are throughout the chapter, starting with Chapter 9, Parsing.

PARSE VERSION

Example 9.22. PARSE VERSION

parse version . level .

Chapter 9. Parsing

596

say level /* Displays: "6.02" */

PULL is similar to PARSE PULL except that PULL converts alphabetic characters to uppercase before
parsing.

9.8. Advanced Topics in Parsing

This section includes parsing several strings and flow charts illustrating a conceptual view of parsing.

9.8.1. Parsing Several Strings

Only ARG and PARSE ARG can have more than one source string. To parse several strings, you can
specify several comma-separated templates. Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. For an
ARG instruction, the source strings to be parsed come from arguments you specify when you call a
program or CALL a subroutine or function. Each comma is an instruction to the parser to move on to
the next string.

Example:

Example 9.23. Parsing variable strings

/* Parsing several strings in a subroutine */
num="3"
musketeers="Porthos Athos Aramis D'Artagnan"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnan" */
EXIT

Sub:
 parse arg subtotal, . . . fourth
 total=subtotal+1
 RETURN

Note that when a Rexx program is started as a command, only one argument string is recognized. You
can pass several argument strings for parsing if:

• One Rexx program calls another Rexx program with the CALL instruction or a function call

• Programs written in other languages start a Rexx program

If there are more templates than source strings, each variable in a leftover template receives a null
string. If there are more source strings than templates, the language processor ignores leftover source
strings. If a template is empty (two subsequent commas) or contains no variable names, parsing
proceeds to the next template and source string.

Combining String and Positional Patterns

597

9.8.2. Combining String and Positional Patterns

There is a special case in which absolute and relative positional patterns do not work identically.
Parsing with a template containing a string pattern skips the data in the source string that matches
the pattern (see Section 9.2, “Templates Containing String Patterns”). But a template containing the
sequence string pattern, variable name, and relative position pattern does not skip the matching data.
A relative positional pattern moves relative to the first character matching a string pattern. As a result,
assignment includes the data in the source string that matches the string pattern.

Example 9.24. Combining string and positional patterns

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip any data. */
string="REstructured eXtended eXecutor"
parse var string var1 3 junk "X" var2 +1 junk "X" var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

9.8.3. Conceptual Overview of Parsing

The following figures are to help you understand the concept of parsing.

The figures include the following terms:

string start
is the beginning of the source string (or substring).

string end
is the end of the source string (or substring).

length
is the length of the source string.

match start
is in the source string and is the first character of the match.

Chapter 9. Parsing

598

match end
is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position
is in the source string. For a string pattern, it is the first matching character. For a positional
pattern, it is the position of the matching character.

token
is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value
is the numeric value of a positional pattern. This can be either a constant or the resolved value of
a variable.

Figure 9.1. Conceptual Overview of Parsing

Conceptual Overview of Parsing

599

Figure 9.2. Conceptual View of Finding Next Pattern

Chapter 9. Parsing

600

Figure 9.3. Conceptual View of Word Parsing

Note

The figures do not include error cases.

Chapter 10.

601

Numbers and Arithmetic
This chapter gives an overview of the arithmetic facilities of the Rexx language.

Numbers can be expressed flexibly. Leading and trailing whitespace characters are permitted, and
exponential notation can be used. Valid numbers are, for example:

Example 10.1. Numbers

12 /* a whole number */
"-76" /* a signed whole number */
12.76 /* decimal places */
" + 0.003 " /* blanks around the sign and so forth */
17. /* same as 17 */
.5 /* same as 0.5 */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

Ignoring exponential notation (Section 10.3, “Exponential Notation”), a number in Rexx is defined as
follows:

>>-+------------+--+----------------------+--+-digits--------+---------->
 +-whitespace-+ +-sign--+------------+-+ +-digits.digits-+
 +-whitespace-+ +-.digits-------+
 +-digits.-------+

>--+------------+--><
 +-whitespace-+

whitespace
are one or more blanks or horizontal tab characters.

sign
is either + or -.

digits
are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

The arithmetic operators include addition (+), subtraction (-), multiplication (*), power (**), division
(/), prefix plus (+), and prefix minus (-). In addition, it includes integer divide (%), which divides and
returns the integer part, and remainder (//), which divides and returns the remainder. For examples of
the arithmetic operators, see Section 10.2.4, “Operator Examples”.

The result of an arithmetic operation is formatted as a character string according to specific rules. The
most important rules are:

• Results are calculated up to a maximum number of significant digits. The default is 9, but can be
overridden on a source-file basis with the ::OPTIONS directive (Section 3.5, “::OPTIONS”). The
default setting can be altered with the NUMERIC DIGITS instruction. Thus, with NUMERIC DIGITS
9, if a result requires more than 9 digits, it is rounded to 9 digits. For example, the division of 2 by 3
results in 0.666666667.

Chapter 10. Numbers and Arithmetic

602

• Except for division and power, trailing zeros are preserved. For example:

Example 10.2. Arithmetic

2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

If necessary, you can remove trailing zeros with the STRIP method (see Section 5.1.3.67, “strip”),
the STRIP function (see Section 7.4.61, “STRIP”), or by division by 1.

• A zero result is always expressed as the single digit 0.

• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS.
If the number of places needed before the decimal point exceeds the NUMERIC DIGITS setting,
or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number is
expressed in exponential notation:

Example 10.3. Arithmetic

1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

10.1. Precision

Precision is the maximum number of significant digits that can result from an operation. This is
controlled by the instruction:

>>-NUMERIC DIGITS--+------------+--;---------------------------><
 +-expression-+

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) of a calculation. Results are rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The Rexx standard for the
default precision is 9. The default may be overridden on a source-file basis using the ::OPTIONS
directive (Section 3.5, “::OPTIONS”).

NUMERIC DIGITS can set values smaller than nine. However, use small values with care because the
loss of precision and rounding affects all Rexx computations, including, for example, the computation
of new values for the control variable in DO loops.

10.2. Arithmetic Operators

Rexx arithmetic is performed by the operators +, -, *, /, %, //, and ** (add, subtract, multiply, divide,
integer divide, remainder, and power).

Power

603

Before every arithmetic operation, the terms operated upon have leading zeros removed (noting the
position of any decimal point, and leaving only one zero if all the digits in the number are zeros). They
are then truncated, if necessary, to DIGITS + 1 significant digits before being used in the computation.
The extra digit improves accuracy because it is inspected at the end of an operation, when a number
is rounded to the required precision. When a number is truncated, the LOSTDIGITS condition is raised
if a SIGNAL ON LOSTDIGITS condition trap is active. The operation is then carried out under up to
double that precision. When the operation is completed, the result is rounded, if necessary, to the
precision specified by the NUMERIC DIGITS instruction.

The values are rounded as follows: 5 through 9 are rounded up, and 0 through 4 are rounded down.

10.2.1. Power

The ** (power) operator raises a number to a power, which can be positive, negative, or 0. The power
must be a whole number. The second term in the operation must be a whole number and is rounded
to DIGITS digits, if necessary, as described in Section 10.5, “Limits and Errors when Rexx Uses
Numbers Directly”. If negative, the absolute value of the power is used, and the result is inverted (that
is, the number 1 is divided by the result). For calculating the power, the number is multiplied by itself
for the number of times expressed by the power. Trailing zeros are then removed as though the result
were divided by 1.

10.2.2. Integer Division

The % (integer divide) operator divides two numbers and returns the integer part of the result. The
result is calculated by repeatedly subtracting the divisor from the dividend as long as the dividend is
larger than the divisor. During this subtraction, the absolute values of both the dividend and the divisor
are used: the sign of the final result is the same as that which would result from regular division.

If the result cannot be expressed as a whole number, the operation is in error and fails--that is,
the result must not have more digits than the current setting of NUMERIC DIGITS. For example,
10000000000%3 requires 10 digits for the result (3333333333) and would, therefore, fail if NUMERIC
DIGITS 9 were in effect.

10.2.3. Remainder

The // (remainder) operator returns the remainder from an integer division and is defined to be the
residue of the dividend after integer division. The sign of the remainder, if nonzero, is the same as that
of the original dividend.

This operation fails under the same conditions as integer division, that is, if integer division on the
same two terms fails, the remainder cannot be calculated.

10.2.4. Operator Examples

Example 10.4. Operators

/* With: NUMERIC DIGITS 5 */
12+7.00 -> 19.00

Chapter 10. Numbers and Arithmetic

604

1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

10.3. Exponential Notation

For both large and small numbers, an exponential notation can be useful. For example:

numeric digits 5
say 54321*54321

would display 2950800000 in the long form. Because this is misleading, the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as follows:

>>-+------------+--+----------------------+--+-digits--------+---------->
 +-whitespace-+ +-sign--+------------+-+ +-digits.digits-+
 +-whitespace-+ +-.digits-------+
 +-digits.-------+

>--+---------------------+--+------------+-------------------------><
 +-E--+------+--digits-+ +-whitespace-+
 +-sign-+

The integer following the E represents a power of ten that is to be applied to the number. The E can be
in uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric, such as 0E123
(0 times 10 raised to the power of 123) and 1E342 (1 times 10 raised to the power of 342). Also, a
comparison such as 0E123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems
when comparing nonnumeric strings, use the strict comparison operators.

Here are some examples:

Numeric Comparisons

605

Example 10.5. Exponential notation

12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The results of calculations are returned in either conventional or exponential form, depending on
the setting of NUMERIC DIGITS. If the number of places needed before the decimal point exceeds
DIGITS, or the number of places after the point exceeds twice DIGITS, the exponential form is used.
The exponential form the language processor generates always has a sign following the E to improve
readability. If the exponent is 0, the exponential part is omitted--that is, an exponential part of E+0 is
not generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in the long form,
by using the FORMAT built-in function (see Section 7.4.33, “FORMAT”).

Scientific notation is a form of exponential notation that adjusts the power of ten so that the number
contains only one nonzero digit before the decimal point. Engineering notation is a form of exponential
notation in which up to three digits appear before the decimal point, and the power of ten is always a
multiple of three. The integer part can, therefore, range from 1 through 999. You can control whether
scientific or engineering notation is used with the following instruction:

 +-SCIENTIFIC------------+
>>-NUMERIC FORM--+-----------------------+--;------------------><
 +-ENGINEERING-----------+
 +-+-------+--expression-+
 +-VALUE-+

Scientific notation is the default.

Example 10.6. Scientific notation

/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

10.4. Numeric Comparisons

The comparison operators are listed in Section 1.11.2.3, “Comparison”. You can use any of them for
comparing numeric strings. However, you should not use ==, \==, ¬==, >>, \>>, ¬>>, <<, \<<, and

Chapter 10. Numbers and Arithmetic

606

¬<< for comparing numbers because leading and trailing whitespace characters and leading zeros are
significant with these operators.

Numeric values are compared by subtracting the two numbers (calculating the difference) and then
comparing the result with 0. That is, the operation:

A ? Z

where ? is any numeric comparison operator, is identical with:

(A - Z) ? "0"

It is, therefore, the difference between two numbers, when subtracted under Rexx subtraction rules,
that determines their equality.

Fuzz affects the comparison of two numbers. It controls how much two numbers can differ and still be
considered equal in a comparison. The FUZZ value is set by the following instruction:

>>-NUMERIC FUZZ--+------------+--;-----------------------------><
 +-expression-+

expression must result in a positive whole number or zero. The default is 0.

Fuzz is to temporarily reduce the value of DIGITS. That is, the numbers are subtracted with a
precision of DIGITS minus FUZZ digits during the comparison. The FUZZ setting must always be less
than DIGITS.

If, for example, DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as
though NUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example 10.7. Comparison

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

10.5. Limits and Errors when Rexx Uses Numbers Directly

When Rexx uses numbers directly, that is, numbers that have not been involved in an arithmetic
operation, they are rounded, if necessary, according to the setting of NUMERIC DIGITS. The normal

Limits and Errors when Rexx Uses Numbers Directly

607

whole number limit depends on the default NUMERIC DIGITS setting. The default setting is 9, making
the normal whole number limit 999999999.

The following table shows which numbers must be whole numbers and what their limits are:

Table 10.1. Whole Number Limits

Power values (right-hand operand of the power
operator)

The platform whole number limit.

Values of exprr and exprf in the DO instruction The platform whole number limit

Values given for DIGITS or FUZZ in the
NUMERIC instruction

The platform whole number limits (Note: FUZZ
must always be less than DIGITS.)

Positional patterns in parsing templates The platform whole number limit

Number given for option in the TRACE
instruction

The platform whole number limit

When Rexx uses numbers directly, the following types of errors can occur:

• Overflow or underflow.

This error occurs if the exponential part of a result exceeds the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, you can use exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.

• Insufficient storage.

Storage is needed for calculations and intermediate results, and if an arithmetic operation fails
because of lack of storage. This is considered as a terminating error.

608

Chapter 11.

609

Conditions and Condition Traps
A condition is an event or state that CALL ON or SIGNAL ON can trap. A condition trap can modify
the flow of execution in a Rexx program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see Section 2.3, “CALL” and Section 2.28,
“SIGNAL”).

>>-+-CALL---+--->
 +-SIGNAL-+

>--+-OFF--+-condition-----------+--------------------+--;------><
 | +-USER--usercondition-+ |
 +-ON--+-condition-----------+--+----------------+-+
 +-USER--usercondition-+ +-NAME--trapname-+

condition, usercondition, and trapname are single symbols that are taken as constants. Following one
of these instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting
for all condition traps is OFF.

If a condition trap is enabled and the specified condition or usercondition occurs, control passes to the
routine or label trapname if you have specified trapname. Otherwise, control passes to the routine or
label usercondition or condition. CALL or SIGNAL is used, depending on whether the most recent trap
for the condition was set using CALL ON or SIGNAL ON, respectively.

Note

If you use CALL, the trapname can be an internal label, a built-in function, or an external routine.
If you use SIGNAL, the trapname can only be an internal label.

The conditions and their corresponding events that can be trapped are:

ANY
traps any condition that a more specific condition trap does not trap. For example, if NOVALUE is
raised and there is no NOVALUE trap enabled, but there is a SIGNAL ON ANY trap, the ANY trap
is called for the NOVALUE condition. For example, a CALL ON ANY trap is ignored if NOVALUE
is raised because CALL ON NOVALUE is not allowed.

ERROR
raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and none of the following is active:
• CALL ON FAILURE

• SIGNAL ON FAILURE

• CALL ON ANY

• SIGNAL ON ANY

The condition is raised at the end of the clause that called the command but is ignored if the
ERROR condition trap is already in the delayed state. The delayed state is the state of a condition

Chapter 11. Conditions and Condition Traps

610

trap when the condition has been raised but the trap has not yet been reset to the enabled (ON) or
disabled (OFF) state.

FAILURE
raised if a command indicates a failure condition upon return. The condition is raised at the end of
the clause that called the command but is ignored if the FAILURE condition trap is already in the
delayed state.

An attempt to enter a command to an unknown subcommand environment also raises a FAILURE
condition.

HALT
raised if an external attempt is made to interrupt and end execution of the program. The condition
is usually raised at the end of the clause that was processed when the external interruption
occurred. When a Rexx program is running in a full-screen or command prompt session, the
Ctrl+Break key combination raises the halt condition. However, if Ctrl+Break is pressed while a
command or non-Rexx external function is processing, the command or function ends.

Notes:

1. Application programs that use the Rexx language processor might use the RXHALT exit or the
RexxStart programming interface to halt the execution of a Rexx macro. (See the Open Object
Rexx: Programming Guide for details about exits.)

2. Only SIGNAL ON HALT or CALL ON HALT can trap error 4, described in Appendix C, Error
Numbers and Messages.

LOSTDIGITS
raised if a number used in an arithmetic operation has more digits than the current setting of
NUMERIC DIGITS. Leading zeros are not counted in this comparison. You can specify the
LOSTDIGITS condition only for SIGNAL ON.

NOMETHOD
raised if an object receives a message for which it has no method defined, and the object does not
have an UNKNOWN method. You can specify the NOMETHOD condition only for SIGNAL ON.

NOSTRING
raised when the language processor requires a string value from an object and the object does not
directly provide a string value. See Section 4.2.11, “Required String Values” for more information.
You can specify the NOSTRING condition only for SIGNAL ON.

NOTREADY
raised if an error occurs during an input or output operation. See Section 14.5, “Errors during Input
and Output”. This condition is ignored if the NOTREADY condition trap is already in the delayed
state.

NOVALUE
raised if an uninitialized variable is used as:
• A term in an expression

• The name following the VAR subkeyword of a PARSE instruction

• A variable reference in a parsing template, an EXPOSE instruction, a PROCEDURE instruction,
or a DROP instruction

• A method selection override specifier in a message term

611

Note

SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound
variables.

Example 11.1. NOVALUE no raised for stems

/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say "NOVALUE is not raised."
exit

novalue:
say "NOVALUE is raised."

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language-processing error is detected while the program is running. This includes all
kinds of processing errors:
• True syntax errors

• "Run-time" errors (such as attempting an arithmetic operation on nonnumeric terms)

• Syntax errors propagated from higher call or method invocation levels

• Untrapped HALT conditions

• Untrapped NOMETHOD conditions

You can specify this condition only for SIGNAL ON.

Notes:

1. SIGNAL ON SYNTAX cannot trap the errors 3 and 5.

2. SIGNAL ON SYNTAX can trap the errors 6 and 30 only if they occur during the execution of
an INTERPRET instruction.

For information on these errors, refer to Appendix C, Error Numbers and Messages.

USER
raised if a condition specified on the USER option of CALL ON or SIGNAL ON occurs. USER
conditions are raised by a RAISE instruction that specifies a USER option with the same
usercondition name. The specified usercondition can be any symbol, including those specified as
possible values for condition.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and
any trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT
(and a SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a

Chapter 11. Conditions and Condition Traps

612

new trap name replaces any previous trap name, and any OFF reference disables the trap for CALL or
SIGNAL.

11.1. Action Taken when a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

• For HALT and NOMETHOD, a SYNTAX condition is raised with the appropriate Rexx error number.

• For SYNTAX conditions, the clause in error is terminated, and a SYNTAX condition is propagated
to each CALL instruction, INTERPRET instruction, message instruction, or clause with function or
message invocations active at the time of the error, terminating each instruction if a SYNTAX trap is
not active at the instruction level. If the SYNTAX condition is not trapped at any of the higher levels,
processing stops, and a message (see Appendix C, Error Numbers and Messages) describing the
nature of the event that occurred usually indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

11.2. Action Taken when a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition occurs, a CALL trapname
or SIGNAL trapname instruction is processed automatically. You can specify the trapname after the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not specify a trapname, the
name of the condition itself (for example, ERROR or FAILURE) is used.

For example, the instruction call on error enables the condition trap for the ERROR condition.
If the condition occurred, then a call to the routine identified by the name ERROR is made. The
instruction call on error name commanderror would enable the trap and call the routine
COMMANDERROR if the condition occurred, and the caller usually receives an indication of failure.

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL
or CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the
condition is disabled (set to OFF), and SIGNAL proceeds as usually (see Section 2.28, “SIGNAL”).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction
for the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON
SYNTAX is enabled when a SYNTAX condition occurs, a usual syntax error termination occurs if the
SIGNAL ON SYNTAX label name is not found.

• If the action taken is a CALL, the CALLtrapname proceeds in the usual way (see Section 2.3,
“CALL”) when the instruction completes. The call does not affect the special variable RESULT. If the
routine should RETURN any data, that data is ignored.

When the condition is raised, and before the CALL is made, the condition trap is put into a delayed
state. This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL)
ON (or OFF) is made for the condition. This delayed state prevents a premature condition trap at the
start of the routine called to process a condition trap. When a condition trap is in the delayed state, it
remains enabled, but if the condition is raised again, it is either ignored (for ERROR and FAILURE)
or (for the other conditions) any action (including the updating of the condition information) is
delayed until one of the following events occurs:

Condition Information

613

1. A CALL ON or SIGNAL ON for the delayed condition is processed. In this case, a CALL or
SIGNAL takes place immediately after the new CALL ON or SIGNAL ON instruction has been
processed.

2. A CALL OFF or SIGNAL OFF for the delayed condition is processed. In this case, the condition
trap is disabled and the default action for the condition occurs at the end of the CALL OFF or
SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case, the condition trap is no longer delayed
and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed, that is, the flow is not
affected by the CALL.

Notes:

1. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the
condition, the current instruction is ended, if necessary. Therefore, the instruction during which
an event occurs can only be partly processed. For example, if SYNTAX is raised during the
evaluation of the expression in an assignment, the assignment does not take place. Note that
the CALL for traps for which CALL ON is enabled can only occur at clause boundaries. If these
conditions arise in the middle of an INTERPRET instruction, execution of INTERPRET can be
interrupted and resumed later. Similarly, other instructions, for example DO or SELECT, can be
temporarily interrupted by a CALL at a clause boundary.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to
a subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL
ON, and SIGNAL OFF can be used in a subroutine without affecting the conditions set up by
the caller. See Call (Section 2.3, “CALL”) for details of other information that is saved during a
subroutine call.

3. The state of condition traps is not affected when an external routine is called by a CALL, even if
the external routine is a Rexx program. On entry to any Rexx program, all condition traps have
an initial setting of OFF.

4. While user input is processed during interactive tracing, all condition traps are temporarily
set OFF. This prevents any unexpected transfer of control--for example, should the user
accidentally use an uninitialized variable while SIGNAL ON NOVALUE is active. For the same
reason, a syntax error during interactive tracing does not cause the exit from the program but is
trapped specially and then ignored after a message is given.

5. The system interface detects certain execution errors either before the execution of the program
starts or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of
successive clauses can be labels; therefore, several labels are allowed before another type of
clause.

11.3. Condition Information

When a condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped
condition, and certain condition information associated with it is recorded. You can inspect this
information by using the CONDITION built-in function (see Section 7.4.18, “CONDITION”).

The condition information includes:

Chapter 11. Conditions and Condition Traps

614

• The name of the current trapped condition

• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)

• The status of the trapped condition

• A descriptive string (see Section 11.3.1, “Descriptive Strings”) associated with that condition

• Optional additional object information (see Section 11.3.2, “Additional Object Information”)

The current condition information is replaced when control is passed to a label as the result of
a condition trap (CALL ON or SIGNAL ON). Condition information is saved and restored across
subroutine or function calls, including one because of a CALL ON trap and across method invocations.
Therefore, a routine called by CALL ON can access the appropriate condition information. Any
previous condition information is still available after the routine returns.

11.3.1. Descriptive Strings
The descriptive string varies, depending on the condition trapped:

ERROR
The string that was processed and resulted in the error condition.

FAILURE
The string that was processed and resulted in the failure condition.

HALT
Any string associated with the halt request. This can be the null string if no string was provided.

LOSTDIGITS
The number with excessive digits that caused the LOSTDIGITS condition.

NOMETHOD
The name of the method that could not be found.

NOSTRING
The readable string representation of the object causing the NOSTRING condition.

NOTREADY
The name of the stream being manipulated when the error occurred and the NOTREADY
condition was raised. If the stream was a default stream with no defined name, then the null string
might be returned.

NOVALUE
The derived name of the variable whose attempted reference caused the NOVALUE condition.

SYNTAX
Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on
the nature and position of the processing error. You can enable the SYNTAX condition trap only
by using SIGNAL ON.

USER
Any string specified by the DESCRIPTION option of the RAISE instruction that raised the
condition. If a description string was not specified, a null string is used.

Additional Object Information

615

11.3.2. Additional Object Information
The language processor can provide additional information, depending on the condition trapped:

NOMETHOD
The object that raised the NOMETHOD condition.

NOSTRING
The object that caused the NOSTRING condition.

NOTREADY
The stream object that raised the NOTREADY condition.

SYNTAX
An array containing the objects substituted into the secondary error message (if any) for the
syntax error. If the message did not contain substitution values, a zero element array is used.

USER
Any object specified by an ADDITIONAL or ARRAY option of the RAISE instruction that raised the
condition.

11.3.3. The Special Variable RC

When an ERROR or FAILURE condition is trapped, the Rexx special variable RC is set to the
command return code before control is transferred to the target label (whether by CALL or by
SIGNAL).

Similarly, when SIGNAL ON SYNTAX traps a SYNTAX condition, the special variable RC is set to the
syntax error number before control is transferred to the target label.

11.3.4. The Special Variable SIGL

Following any transfer of control because of a CALL or SIGNAL, the program line number of the
clause causing the transfer of control is stored in the special variable SIGL. If the transfer of control
is because of a condition trap, the line number assigned to SIGL is that of the last clause processed
(at the current subroutine level) before the CALL or SIGNAL took place. The setting of SIGL is
especially useful after a SIGNAL ON SYNTAX trap when the number of the line in error can be used,
for example, to control a text editor. Typically, code following the SYNTAX label can PARSE SOURCE
to find the source of the data and then call an editor to edit the source file, positioned at the line in
error. Note that in this case you might have to run the program again before any changes made in the
editor can take effect.

Alternatively, SIGL can help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:

Example 11.2. SIGL

signal on syntax
a = a + 1 /* This is to create a syntax error */
say "SYNTAX error not raised"
exit

Chapter 11. Conditions and Condition Traps

616

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
say "Rexx error" rc "in line" sigl":" "ERRORTEXT"(rc)
say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in
error, and finally drops into debug mode to let you inspect the values of the variables used at the line
in error.

11.3.5. Condition Objects
A condition object is a directory returned by the Object option of the CONDITION built-in function. This
directory contains all information currently available on a trapped condition. The information varies
with the trapped condition. The Nil object is returned for any entry not available to the condition. The
following entries can be found in a condition object:

ADDITIONAL
The additional information object associated with the condition. This is the same object that the
Additional option of the CONDITION built-in function returns. The ADDITIONAL information may
be specified with the ADDITIONAL or ARRAY options of the RAISE instruction.

DESCRIPTION
The string describing the condition. The Description option of the CONDITION built-in function also
returns this value.

INSTRUCTION
The keyword for the instruction executed when the condition was trapped, either CALL or SIGNAL.
The Instruction option of the CONDITION built-in function also returns this value.

CONDITION
The name of the trapped condition. The Condition name option of the CONDITION built-in function
also returns this value.

RESULT
Any result specified on the RETURN or EXIT options of a RAISE instruction.

RC
The major Rexx error number for a SYNTAX condition. This is the same error number assigned to
the special variable RC.

CODE
The detailed identification of the error that caused a SYNTAX condition. This number is a
nonnegative number in the form nn.nnn. The integer portion is the Rexx major error number (the
same value as the RC entry). The fractional portion is a subcode that gives a precise indication of
the error that occurred.

ERRORTEXT
The primary error message for a SYNTAX condition. This is the same message available from the
ERRORTEXT built-in function.

MESSAGE
The secondary error message for a SYNTAX condition. The message also contains the content of
the ADDITIONAL information.

Condition Objects

617

PACKAGE
The Package object associated with the program where a condition was raised.

POSITION
The line number in source code at which a condition was raised.

PROGRAM
The name of the program where a condition was raised.

STACKFRAMES
A single-index list of StackFrame instances (see Section 5.4.21, “The StackFrame Class”).

TRACEBACK
A single-index list of formatted traceback lines.

PROPAGATED
The value 0 (false) if the condition was raised at the same level as the condition trap or the value
1 (true) if the condition was reraised with RAISE PROPAGATE.

618

Chapter 12.

619

Concurrency
Conceptually, each Rexx object is like a small computer with its own processor to run its methods,
its memory for object and method variables, and its communication links to other objects for sending
and receiving messages. This is object-based concurrency. It lets more than one method run at the
same time. Any number of objects can be active (running) at the same time, exchanging messages to
communicate with, and synchronize, each other.

12.1. Early Reply

Early reply provides concurrent processing. A running method returns control, and possibly a result, to
the point from which it was called; meanwhile it continues running. The following figure illustrates this
concept.

Figure 12.1. Early Reply

Method A includes a call to Method B. Method B contains a REPLY instruction. This returns control
and a result to method A, which continues processing with the line after the call to Method B.
Meanwhile, Method B also continues running.

The chains of execution represented by method A and method B are called activities. An activity is a
thread of execution that can run methods concurrently with methods on other activities.

An activity contains a stack of invocations that represent the Rexx programs running on the activity.
An invocation can be a main program invocation, an internal function or subroutine call, an external
function or subroutine call, an INTERPRET instruction, or a message invocation. An invocation is
activated when an executable unit is invoked and removed (popped) when execution completes. In
Figure 12.1, “Early Reply”, the programs begins with a single activity. The activity contains a single
invocation, method A. When method A invokes method B, a second invocation is added to the activity.

When method B issues a REPLY, a new activity is created (activity 2). Method B's invocation is
removed from activity 1, and pushed on to activity 2. Because activities can execute concurrently, both
method A and method B continue processing. The following figures illustrate this concept.

Chapter 12. Concurrency

620

Figure 12.2. Before REPLY

Figure 12.3. After REPLY

Here is an example of using early reply to run methods concurrently.

Example 12.1. REPLY instruction

/* Example of early reply */

object1 = .example~new
object2 = .example~new

say object1~repeat(10, "Object 1 running")
say object2~repeat(10, "Object 2 running")
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
 say msg

Message Objects

621

end

12.2. Message Objects

A message object (see Section 5.1.7, “The Message Class”) is an intermediary between two objects
that enables concurrent processing. All objects inherit the START method (see the Section 5.1.7,
“The Message Class”) from the object class. To obtain a message object, an object sends a START
message to the object to which the message object will convey a message. The message is an
argument to the START message as in the following example:

a=p~start("REVERSE")

This line of code creates a message object, A, and sends it a start message. The message object
then sends the REVERSE message to object P. Object P receives the message, performs any needed
processing, and returns a result to message object A. Meanwhile the object that obtained message
object A continues its processing. When message object A returns, it does not interrupt the object that
obtained it. It waits until this object requests the information. Here is an example of using a message
object to run methods concurrently.

Example 12.2. Message object usage

/* Example of using a message object */

object1 = .example~new
object2 = .example~new

a = object1~start("REPEAT",10,"Object 1 running")
b = object2~start("REPEAT",10,"Object 2 running")

say a~result
say b~result
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
do reps
 say msg
end
return "Repeated" msg"," reps "times."

12.3. Default Concurrency

The instance methods of a class use the EXPOSE instruction to define a set of object variables. This
collection of variables belonging to an object is called its object variable pool. The methods a class
defines and the variables these methods can access is called a scope. Rexx's default concurrency
exploits the idea of scope. The object variable pool is a set of object subpools, each representing the
set of variables at each scope of the inheritance chain of the class from which the object was created.
Only methods at the same scope can access object variables at any particular scope. This prevents
any name conflicts between classes and subclasses, because the object variables for each class are
in different scopes.

Chapter 12. Concurrency

622

If you do not change the defaults, only one method of a given scope can run on a single object at
a time. Once a method is running on an object, the language processor blocks other methods on
other activities from running in the same object at the same scope until the method that is running
completes. Thus, if different activities send several messages within a single scope to an object the
methods run sequentially.

The next example shows how the default concurrency works.

Example 12.3. Default concurrency for methods

/* Example of default concurrency for methods of different scopes */

object1 = .subexample~new

say object1~repeat(8, "Object 1 running call 1") /* These calls run */
say object1~repeater(8, "Object 1 running call 2") /* concurrently */
say "Main ended."
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
 say msg
end

::class subexample subclass example
::method repeater
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
 say msg
end

The preceding example produces output such as the following:

Repeating Object 1 running call 1, 8 times.
Object 1 running call 1
Repeating Object 1 running call 2, 8 times.
Object 1 running call 1
Object 1 running call 2
Main ended.

Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 1
Object 1 running call 2
Object 1 running call 2

The following example shows that methods of the same scope do not run concurrently by default.

Sending Messages within an Activity

623

Example 12.4. Default concurrency for methods

/* Example of methods with the same scope not running concurrently*/

object1 = .example~new

say object1~repeat(10,"Object 1 running call 1") /* These calls */
say object1~repeat(10,"Object 1 running call 2") /* cannot run */
say "Main ended." /* concurrently. */
exit

::class example
::method repeat
use arg reps,msg
reply "Repeating" msg"," reps "times."
do reps
 say msg
end

The REPEAT method includes a REPLY instruction, but the methods for the two REPEAT messages
in the example cannot run concurrently. This is because REPEAT is called twice at the same scope
and requires exclusive access to the object variable pool. The REPLY instruction causes the first
REPEAT message to transfer its exclusive access to the object variable pool to a new activity and
continue execution. The second REPLY message also requires exclusive access and waits until the
first method completes.

If the original activity has more than one method active (nested method calls) with exclusive variable
access, the first REPLY instruction is unable to transfer its exclusive access to the new activity and
must wait until the exclusive access is again available. This may allow another method on the same
object to run while the first method waits for exclusive access.

12.3.1. Sending Messages within an Activity
Whenever a message is invoked on an object, the activity acquires exclusive access (a lock) for the
object's scope. Other activities that send messages to the same object that required the locked scope
waits until the first activity releases the lock.

Suppose object A is running method Y, which includes:

self~z

Sequential processing does not allow method Z to begin until method Y has completed. However,
method Y cannot complete until method Z runs. A similar situation occurs when a subclass's overriding
method does some processing and passes a message to its superclasses' overriding method. Both
cases require a special provision: If an invocation running on an activity sends another message to the
same object, this method is allowed to run because the activity has already acquired the lock for the
scope. This allows nested, nonconcurrent method invocations on a single activity without causing a
deadlock situation. The language processor regards these additional messages as subroutine calls.

Here is an example showing the special treatment of single activity messages. The REPEATER and
REPEAT methods have the same scope. REPEAT runs on the same object at the same time as the
REPEATER method because a message to SELF runs the REPEAT method. The language processor
treats this as a subroutine call rather than as concurrently running two methods.

Chapter 12. Concurrency

624

Example 12.5. Sending a message to SELF

/* Example of sending message to SELF */

object1 = .example~new
object2 = .example~new

say object1~repeater(10, "Object 1 running")
say object2~repeater(10, "Object 2 running")

say "Main ended."
exit

::class example
::method repeater
use arg reps,msg
reply "Entered repeater."
say self~repeat(reps,msg)
::method repeat
use arg reps,msg
do reps
 say msg
end
return "Repeated" msg"," reps "times."

The activity locking rules also allow indirect object recursion. The following figure illustrates indirect
object recursion.

Figure 12.4. Indirect Object Recursion

Method M in object A sends object B a message to run method N. Method N sends a message to
object A, asking it to run method O. Meanwhile, method M is still running in object A and waiting for
a result from method N. A deadlock would result. Because the methods are all running on the same
activity, no deadlock occurs.

12.4. Using Additional Concurrency Mechanisms
Rexx has additional concurrency mechanisms that can add full concurrency so that more than one
method of a given scope can run in an object at a time:

• The SETUNGUARDED method of the Method class and the UNGUARDED option of the METHOD
directive provide unconditional concurrency

• GUARD OFF and GUARD ON control a method's exclusive access to an object's scope

SETUNGUARDED Method and UNGUARDED Option

625

12.4.1. SETUNGUARDED Method and UNGUARDED Option

The SETUNGUARDED method of the Method class and the UNGUARDED option of the ::METHOD
directive control locking of an object's scope when a method is invoked. Both let a method run even if
another method is active on the same object.

Use the SETUNGUARDED method or UNGUARDED option only for methods that do not need
exclusive use of their object variable pool, that is, methods whose execution can interleave with
another method's execution without affecting the object's integrity. Otherwise, concurrent methods can
produce unexpected results.

To use the SETUNGUARDED method for a method you have created with the NEW method of the
Method class, you specify:

methodname~SETUNGUARDED

(See Section 5.1.4.13, “setUnguarded” for details about SETUNGUARDED.)

Alternately, you can define a method with the ::METHOD directive, specifying the UNGUARDED
option:

::METHOD methodname UNGUARDED

12.4.2. GUARD ON and GUARD OFF

You might not be able to use the SETUNGUARDED method or UNGUARDED option in all cases. A
method might need exclusive use of its object variables, then allow methods on other activities to run,
and perhaps later need exclusive use again. You can use GUARD ON and GUARD OFF to alternate
between exclusive use of an object's scope and allowing other activities to use the scope.

By default, a method must wait until a currently running method is finished before it begins. GUARD
OFF lets another method (running on a different activity) that needs exclusive use of the same object
variables become active on the same object. See Section 2.9, “GUARD” for more information.

12.4.3. Guarded Methods

Concurrency requires the activities of concurrently running methods to be synchronized. Critical data
must be safeguarded so diverse methods on other activities do not perform concurrent updates.
Guarded methods satisfy both these needs.

A guarded method combines the UNGUARDED option of the ::METHOD directive or the
SETUNGUARDED method of the Method class with the GUARD instruction.

The UNGUARDED option and the SETUNGUARDED method both provide unconditional concurrency.
Including a GUARD instruction in a method makes concurrency conditional:

GUARD ON WHEN expression

If the expression on the GUARD instruction evaluates to 1 (true), the method continues to run. If the
expression on the GUARD instruction evaluates to 0 (false), the method does not continue running.

Chapter 12. Concurrency

626

GUARD reevaluates the expression whenever the value of an exposed object variable changes. When
the expression evaluates to 1, the method resumes running. You can use GUARD to block running
any method when proceeding is not safe. (See Section 2.9, “GUARD” for details about GUARD.)

Note

It is important to ensure that you use an expression that can be fulfilled. If the condition
expression cannot be met, GUARD ON WHEN puts the program in a continuous wait condition.
This can occur in particular when several activities run concurrently. In this case, a second
activity can make the condition expression invalid before GUARD ON WHEN can use it.

To avoid this, ensure that the GUARD ON WHEN statement is executed before the condition is set to
true. Keep in mind that the sequence of running activities is not determined by the calling sequence,
so it is important to use a logic that is independent of the activity sequence.

12.4.4. Additional Examples
The following example uses REPLY in a method for a write-back cache.

Example 12.6. Method Write_Back

/* Method Write_Back */
use arg data /* Save data to be written */
reply 0 /* Tell the sender all was OK */
self~disk_write(data) /* Now write the data */

The REPLY instruction returns control to the point at which method Write_Back was called, returning
the result 0. The caller of method Write_Back continues processing from this point; meanwhile,
method Write_Back also continues processing.

The following example uses a message object. It reads a line asynchronously into the variable
nextline:

Example 12.7. Message to INFILE

mymsg = infile~start("READLINE") /* Gets message object to carry */
/* message to INFILE */
/* do other work */
nextline=mymsg~result /* Gets result from message object */

This creates a message object that waits for the read to finish while the sender continues with other
work. When the line is read, the mymsg message object obtains the result and holds it until the sender
requests it.

Semaphores and monitors (bounded buffers) synchronize concurrency processes. Giving readers
and writers concurrent access is a typical concurrency problem. The following sections show how to
use guarded methods to code semaphore and monitor mechanisms and to provide concurrency for
readers and writers.

Additional Examples

627

12.4.4.1. Semaphores

A semaphore is a mechanism that controls access to resources, for example, preventing simultaneous
access. Synchronization often uses semaphores. Here is an example of a semaphore class:

Example 12.8. Example of a Rexx Semaphore Class

/***/
/* A Rexx Semaphore Class. */
/* */
/* This file implements a semaphore class in Rexx. The class is defined to */
/* the Global Rexx Environment. The following methods are defined for */
/* this class: */
/* init - Initializes a new semaphore. Accepts the following positional */
/* parameters: */
/* 'name' - global name for this semaphore */
/* if named default to set name in */
/* the class semDirectory */
/* noshare - do not define named semaphore */
/* in class semDirectory */
/* Initial state (0 or 1) */
/* setInitialState - Allow for subclass to have some post-initialization, */
/* and do setup based on initial state of semaphore */
/* Waiting - Is the number of objects waiting on this semaphore. */
/* Shared - Is this semaphore shared (Global). */
/* Named - Is this semaphore named. */
/* Name - Is the name of a named semaphore. */
/* setSem - Sets the semaphore and returns previous state. */
/* resetSem - Sets state to unSet. */
/* querySem - Returns current state of semaphore. */
/* */
/* SemaphoreMeta - Is the metaclass for the semaphore classes. This class is */
/* set up so that when a namedSemaphore is shared, it maintains these */
/* named/shared semaphores as part of its state. These semaphores are */
/* maintained in a directory, and an UNKNOWN method is installed on the */
/* class to forward unknown messages to the directory. In this way the */
/* class can function as a class and "like" a directory, so [] syntax can */
/* be used to retrieve a semaphore from the class. */
/* */
/* */
/* The following are in the subclass EventSemaphore. */
/* */
/* Post - Posts this semaphore. */
/* Query - Queries the number of posts since the last reset. */
/* Reset - Resets the semaphore. */
/* Wait - Waits on this semaphore. */
/* */
/* */
/* The following are in the subclass MutexSemaphore */
/* */
/* requestMutex - Gets exclusive use of semaphore. */
/* releaseMutex - Releases to allow someone else to use semaphore. */
/* NOTE: Currently anyone can issue a release (need not be the owner). */
/***/
/* == */
/* === Start of Semaphore class. ===== */
/* == */
::class SemaphoreMeta subclass class
::method init
 expose semDict
 /* Be sure to initialize parent */
 .message~new(self, .array~of("INIT", super), "a", arg(1,"a"))~send
 semDict = .directory~new

Chapter 12. Concurrency

628

::method unknown
 expose semDict
 use arg msgName, args
 /* Forward all unknown messages */
 /* to the semaphore dictionary */
 .message~new(semDict, msgName, "a", args)~send
 if var("RESULT") then
 return result
 else
 return

::class Semaphore subclass object metaclass SemaphoreMeta

::method init
 expose sem waits shared name
 use arg semname, shr, state

 waits = 0 /* No one waiting */
 name = "" /* Assume unnamed */
 shared = 0 /* Assume not shared */
 sem = 0 /* Default to not posted */

 if state = 1 Then /* Should initial state be set? */
 sem = 1
 /* Was a name specified? */
 if VAR("SEMNAME") & semname \= "" Then Do
 name = semname /* Yes, so set the name */

 if shr \= "NOSHARE" Then Do /* Do we want to share this sem? */
 shared = 1 /* Yes, mark it shared */
 /* Shared add to semDict */
 self~class[name] = self
 End

 End
 self~setInitialState(sem) /* Initialize initial state */

::method setInitialState
 /* This method intended to be */
nop /* overridden by subclasses */
::method setSem
expose sem
oldState = sem
sem = 1 /* Set new state to 1 */
return oldState

::method resetSem
expose sem
sem = 0
return 0

::method querySem
expose sem
return sem

::method shared
expose shared
return shared /* Return true 1 or false 0 */

::method named
expose name
 /* Does semaphore have a name? */
if name = "" Then return 0 /* No, not named */
Else return 1 /* Yes, it is named */

Additional Examples

629

::method name
expose name
return name /* Return name or "" */

::method incWaits
expose waits
waits = waits + 1 /* One more object waiting */

::method decWaits
expose Waits
waits = waits - 1 /* One object less waiting */

::method Waiting
expose Waits
return waits /* Return number of objects waiting */
/* == */
/* === Start of EventSemaphore class. === */
/* == */

::class EventSemaphore subclass Semaphore public
::method setInitialState
 expose posted posts
 use arg posted

 if posted then posts = 1
 else posts = 0
::method post
 expose posts posted

 self~setSem /* Set semaphore state */
 posted = 1 /* Mark as posted */
 reply
 posts = posts + 1 /* Increase the number of posts */

::method wait
 expose posted

 self~incWaits /* Increment number waiting */
 guard off
 guard on when posted /* Now wait until posted */
 reply /* Return to caller */
 self~decWaits /* Cleanup, 1 less waiting */

::method reset
 expose posts posted

 posted = self~resetSem /* Reset semaphore */
 reply /* Do an early reply */
 posts = 0 /* Reset number of posts */

::method query
 expose posts
 /* Return number of times */
 return posts /* Semaphore has been posted */
/* == */
/* === Start of MutexSemaphore class. === */
/* == */

::class MutexSemaphore subclass Semaphore public

::method setInitialState
 expose owned
 use arg owned

::method requestMutex

Chapter 12. Concurrency

630

 expose Owned

 Do forever /* Do until we get the semaphore */
 owned = self~setSem
 if Owned = 0 /* Was semaphore already set? */
 Then leave /* Wasn't owned; we now have it */
 else Do
 self~incWaits
 guard off /* Turn off guard status to let */
 /* others come in */
 guard on when \Owned /* Wait until not owned and get */
 /* guard */
 self~decWaits /* One less waiting for MUTEX */
 End
 /* Go up and see if we can get it */
 End

::method releaseMutex
 expose owned
 owned = self~resetSem /* Reset semaphore */

Note

There are functions available that use system semaphores. See Section 8.11,
“SysCreateEventSem”, and Section 8.12, “SysCreateMutexSem”.

12.4.4.2. Monitors (Bounded Buffer)

A monitor object consists of a number of client methods, WAIT and SIGNAL methods for client
methods to use, and one or more condition variables. Guarded methods provide the functionality of
monitors. Do not confuse this with the Monitor class (see Section 5.4.14, “The Monitor Class”).

Example 12.9. Example of a Rexx Monitor Class

::method init
/* Initialize the bounded buffer */
expose size in out n
use arg size
in = 1
out = 1
n = 0

::method append unguarded
/* Add to the bounded buffer if not full */
expose n size b. in
guard on when n < size
use arg b.in
in = in//size+1
n = n+1

::method take
/* Remove from the bounded buffer if not empty */
expose n b. out size
guard on when n > 0
reply b.out

Additional Examples

631

out = out//size+1
n = n-1

12.4.4.3. Readers and Writers
The concurrency problem of the readers and writers requires that writers exclude writers and
readers, whereas readers exclude only writers. The UNGUARDED option is required to allow several
concurrent readers.

Example 12.10. Example of a Rexx Readers and Writers

::method init
expose readers writers
readers = 0
writers = 0

::method read unguarded
/* Read if no one is writing */
expose writers readers
guard on when writers = 0
readers = readers + 1
guard off

/* Read the data */
say "Reading (writers:" writers", readers:" readers")."
guard on
readers = readers - 1

::method write unguarded
/* Write if no-one is writing or reading */
expose writers readers
guard on when writers + readers = 0
writers = writers + 1

/* Write the data */
say "Writing (writers:" writers", readers:" readers")."
writers = writers - 1

632

Chapter 13.

633

The Security Manager
The security manager provides a special environment that is safe even if agent programs try to
perform unexpected actions. The security manager is called if an agent program tries to:

• Call an external function

• Use a host command

• Use the ::REQUIRES directive

• Access the .LOCAL directory

• Access the .ENVIRONMENT directory

• Use a stream name in the input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, and STREAM)

13.1. Calls to the Security Manager

When the language processor reaches any of the defined security checkpoints, it sends a message
to the security manager for the particular checkpoint. The message has a single argument, a directory
of information that pertains to the checkpoint. If the security manager chooses to handle the action
instead of the language processor, the security manager uses the checkpoint information directory to
pass information back to the language processor.

Security manager methods must return a value of either 0 or 1 to the language processor. A value
of 0 indicates that the program is authorized to perform the indicated action. In this case, processing
continues as usual. A value of 1 indicates that the security manager performed the action itself. The
security manager sets entries in the information directory to pass results for the action back to the
language processor. The security manager can also use the RAISE instruction to raise a program
error for a prohibited access. Error message 98.948 indicates authorization failures.

The defined checkpoints, with their arguments and return values, are:

CALL
sent for all external function calls. The information directory contains the following entries:
NAME

The name of the invoked function.

ARGUMENTS
An array of the function arguments.

When the CALL method returns 1, indicating that it handled the external call, the security
manager places the function result in the information directory as the entry RESULT.

COMMAND
sent for all host command instructions. The information directory contains the following entries:
COMMAND

The string that represents the host command.

ADDRESS
The name of the target ADDRESS environment for the command.

Chapter 13. The Security Manager

634

When the COMMAND method returns 1, indicating that it handled the command, the security
manager uses the following information directory entries to return the command results:
RC

The command return code. If the entry is not set, a return code of 0 is used.

FAILURE
If a FAILURE entry is added to the information directory, a Rexx FAILURE condition is
raised.

ERROR
If an ERROR entry is added to the information directory, a Rexx ERROR condition is
raised. The ERROR condition is raised only if the FAILURE entry is not set.

REQUIRES
sent whenever a ::REQUIRES directive in the file is processed. The information directory contains
the following entry:
NAME

The name of the file specified on the ::REQUIRES directive.

When the REQUIRES method returns 1, indicating that it handled the request, the entry NAME in
the information directory is replaced with the name of the actual file to load for the request. The
REQUIRES method can also provide a security manager to be used for the program loaded by
the ::REQUIRES directive by setting the information direction entry SECURITYMANAGER into the
desired security manager object.

LOCAL
sent whenever Rexx is going to access an entry in the .LOCAL directory as part of the resolution
of the environment symbol name. The information directory contains the following entry:
NAME

The name of the target directory entry.

When the LOCAL method returns 1, indicating that it handled the request, the information
directory entry RESULT contains the directory entry. When RESULT is not set and the method
returns 1, this is the same as a failure to find an entry in the .LOCAL directory. Rexx continues
with the next step in the name resolution.

ENVIRONMENT
sent whenever Rexx is going to access an entry in the .ENVIRONMENT directory as part of the
resolution of the environment symbol name. The information directory contains the following entry:
NAME

The name of the target directory entry.

When the ENVIRONMENT method returns 1, indicating that it handled the request, the
information directory entry RESULT contains the directory entry. When RESULT is not set and the
method returns 1, this is the same as a failure to find an entry in the .ENVIRONMENT directory.
Rexx continues with the next step in the name resolution.

STREAM
sent whenever one of the Rexx input and output built-in functions (CHARIN, CHAROUT, CHARS,
LINEIN, LINEOUT, LINES, or STREAM) needs to resolve a stream name. The information
directory contains the following entry:
NAME

The name of the target stream.

Example

635

When the STREAM method returns 1, the information directory STREAM must be set to an object
to be used as the stream target. This should be a stream object or another object that supports the
Stream class methods.

METHOD
sent whenever a secure program attempts to send a message for a protected method (see
the ::METHOD directive Section 3.4, “::METHOD”) to an object. The information directory contains
the following entries:
OBJECT

The object the protected method is issued against.

NAME
The name of the protected method.

ARGUMENTS
An array containing the method arguments.

When the METHOD method returns 1, indicating that it handled the external call, the function
result can be placed in the information directory as the method RESULT.

13.1.1. Example
The following agent program includes all the actions for which the security manager defines
checkpoints (for example, by calling an external function).

Example 13.1. Agent Program

/* Agent */
interpret "echo Hello There"
"dir foo.bar"
call rxfuncadd sysloadfuncs, rexxutil, sysloadfuncs
say result
say syssleep(1)
say linein("c:\profile")
say .array
.object~setmethod("SETMETHOD")
::requires agent2.cmd

The following server implements the security manager with three levels of security. For each action the
security manager must check (for example, by calling an external routine):

1. The audit manager (Dumper class) writes a record of the event but then permits the action.

2. The closed cell manager (noWay class) does not permit the action to take place and raises an
error.

3. The replacement execution environment (Replacer class, a subclass of the noWay class) replaces
the prohibited action with a different action.

Example 13.2. Example of Server Implementing Security Manager

/* Server implements security manager */
parse arg program
method = .method~newfile(program)
say "Calling program" program "with an audit manager:"

Chapter 13. The Security Manager

636

pull
method~setSecurityManager(.dumper~new(.output))
.go~new~~run(method)
say "Calling program" program "with a function replacement execution environment:"
pull
method~setSecurityManager(.replacer~new)
.go~new~~run(method)
say "Calling program" program "with a closed cell manager:"
pull
signal on syntax
method~setSecurityManager(.noWay~new)
.go~new~~run(method)
exit

syntax:
 say "Agent program terminated with an authorization failure"
 exit

::class go subclass object

::method run -- this is a NON-PRIVATE method!
 use arg m
 self~run:super(m) -- a PRIVATE method is called here!

::class dumper
::method init
 expose stream /* target stream for output */
 use arg stream /* hook up the output stream */
::method unknown /* generic unknown method */
 expose stream /* need the global stream */
 use arg name, args /* get the message and arguments */
 /* write out the audit event */
 stream~lineout(time() date() "Called for event" name)
 stream~lineout("Arguments are:") /* write out the arguments */
 info = args[1] /* info directory is the first arg */
 do name over info /* dump the info directory */
 stream~lineout("Item" name":" info[name])
 end
return 0 /* allow this to proceed */

::class noWay
::method unknown /* everything trapped by unknown */
 /* and everything is an error */
 raise syntax 98.948 array("You didn't say the magic word!")
::class replacer subclass noWay /* inherit restrictive UNKNOWN method*/
::method command /* issuing commands */
 use arg info /* access the directory */
 info~rc = 1234 /* set the command return code */
 info~failure = .true /* raise a FAILURE condition */
 return 1 /* return "handled" return value */
::method call /* external function/routine call */
 use arg info /* access the directory */
 /* all results are the same */
 info~setentry("RESULT","uh, uh, uh...you didn't say the magic word")
 return 1 /* return "handled" return value */
::method stream /* I/O function stream lookup */
 use arg info /* access the directory */
 /* replace with a different stream */
 info~stream = .stream~new("c:\sample.txt")
return 1
 /* return "handled" return value */
::method local /* .LOCAL variable lookup */
 /* no value returned at all */
 return 1 /* return "handled" return value */
::method environment /* .ENVIRONMENT variable lookup */
 /* no value returned at all */
 return 1 /* return "handled" return value */

Example

637

::method method /* protected method invocation */
 use arg info /* access the directory */
 /* all results are the same */
 info~setentry("RESULT","uh, uh, uh...you didn't say the magic word")
 return 1 /* return "handled" return value */
::method requires /* REQUIRES directive */
 use arg info /* access the directory */
 /* switch to load a different file */
 info~name = "c:\samples\agent.cmd"
 info~securitymanager = self /* load under this authority */
 return 1 /* return "handled" return value */

638

Chapter 14.

639

Input and Output Streams
Rexx defines Stream class methods to handle input and output and maintains the I/O functions for
input and output externals. Using a mixture of Rexx I/O methods and Rexx I/O functions can cause
unpredictable results. For example, using the LINEOUT method and the LINEOUT function on the
same persistent stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor maintains the stream
object. When a Rexx I/O method creates a stream object, it is returned to the program to be
maintained. Because of this, when Rexx I/O methods and Rexx I/O functions referring to the same
stream are in the same program, there are two separate stream objects with different read and write
pointers. The program needs to synchronize the read and write pointers of both stream objects, or
overlays occur.

To obtain a stream object (for example, MYFIL), you could use:

Example 14.1. Obtaining a stream object

MyStream = .stream~new("MYFIL")

You can manipulate stream objects with character or line methods:

Example 14.2. Performing input on a stream object

nextchar = MyStream~charin()
nextline = MyStream~linein()

In addition to stream objects, the language processor defines an external data queue object for
interprogram communication. This queue object understands line functions only.

A stream object can have a variety of sources or destinations including files, serial interfaces, displays,
or networks. It can be transient or dynamic, for example, data sent or received over a serial interface,
or persistent in a static form, for example, a disk file.

Housekeeping for stream objects (opening and closing files, for example) is not explicitly part of
the language definition. However, Rexx provides methods, such as CHARIN and LINEIN, that are
independent of the operating system and include housekeeping. The COMMAND method provides
the stream_command argument for those situations that require more granular access to operating
system interfaces.

14.1. The Input and Output Model

The model of input and output for Rexx consists of the following logically distinct parts:

• One or more input stream objects

• One or more output stream objects

• One or more external data queue objects

Chapter 14. Input and Output Streams

640

The Rexx methods, instructions, and built-in routines manipulate these elements as follows.

14.1.1. Input Streams

Input to Rexx programs is in the form of a serial character stream generated by user interaction or
has the characteristics of one generated this way. You can add characters to the end of some stream
objects asynchronously; other stream objects might be static or synchronous.

The methods and instructions you can use on input stream objects are:

• CHARIN method--reads input stream objects as characters.

• LINEIN method--reads input stream objects as lines.

• PARSE PULL and PULL instructions--read the default input stream object (.INPUT), if the external
data queue is empty. PULL is the same as PARSE UPPER PULL except that uppercase translation
takes place for PULL.

• PARSE LINEIN instruction--reads lines from the default input stream object regardless of the state
of the external data queue. Usually, you can use PULL or PARSE PULL to read the default input
stream object.

In a persistent stream object, the Rexx language processor maintains a current read position. For a
persistent stream:

• The CHARS method returns the number of characters currently available in an input stream object
from the read position through the end of the stream (including any line-end characters).

• The LINES method determines if any data remains between the current read position and the end
of the input stream object.

• You can move the read position to an arbitrary point in the stream object with:
• The SEEK or POSITION method of the Stream class

• The COMMAND method's SEEK or POSITION argument

• The start argument of the CHARIN method

• The line argument of the LINEIN method

When the stream object is opened, this position is the start of the stream.

In a transient stream, no read position is available. For a transient stream:

• The CHARS and LINES methods attempt to determine if data is present in the input stream object.
These methods return the value 1 for a device if data is waiting to be read or a determination cannot
be made. Otherwise, these methods return 0.

• The SEEK and POSITION methods of the Stream class and the COMMAND method's SEEK and
POSITION arguments are not applicable to transient streams.

14.1.2. Output Streams

Output stream methods provide for output from a Rexx program. Output stream methods are:

• SAY instruction--writes to the default output stream object (.OUTPUT).

External Data Queue

641

• CHAROUT method--writes in character form to either the default or a specified output stream
object.

• LINEOUT method--writes in lines to either the default or a specified output stream object.

LINEOUT and SAY write the new-line character at the end of each line. Depending on the operating
system or hardware, other modifications or formatting can be applied; however, the output data
remains a single logical line.

The Rexx language processor maintains the current write position in a stream. It is separate from
the current read position. Write positioning is usually at the end of the stream (for example, when the
stream object is first opened), so that data can be appended to the end of the stream. For persistent
stream objects, you can set the write position to the beginning of the stream to overwrite existing data
by giving a value of 1 for the CHAROUT start argument or the LINEOUT line argument. You can also
use the CHAROUT start argument, the LINEOUT line argument, the SEEK or POSITION method, or
the COMMAND method's SEEK or POSITION stream_command to direct sequential output to some
arbitrary point in the stream.

Note

Once data is in a transient output stream object (for example, a network or serial link), it is no
longer accessible to Rexx.

14.1.3. External Data Queue

Rexx provides queuing services entirely separate from interprocess communications queues.

The external data queue is a list of character strings that only line operations can access. It is external
to Rexx programs in that other Rexx programs can have access to the queue.

The external data queue forms a Rexx-defined channel of communication between programs. Data in
the queue is arbitrary; no characters have any special meaning or effect.

Apart from the explicit Rexx operations described here, no detectable change to the queue occurs
while a Rexx program is running, except when control leaves the program and is manipulated by
external means (such as when an external command or routine is called).

There are two kinds of queues in Rexx. Both kinds are accessed and processed by name.

14.1.3.1. Unnamed Queues

One unnamed queue is automatically provided for each Rexx program in operation. Its name is always
"QUEUE:", and the language processor creates it when Rexx is called and no queue is currently
available. All processes that are children of the process that created the queue can access it as
long as the process that created it is still running. However, other processes cannot share the same
unnamed queue. The queue is deleted when the process that created it ends.

14.1.3.2. Named Queues

Chapter 14. Input and Output Streams

642

Your program creates (and deletes) named queues. You can name the queue yourself or leave the
naming to the language processor. Your program must know the name of the queue to use a named
queue. To obtain the name of the queue, use the RXQUEUE function:

previous_queue=rxqueue("set",newqueuename)

This sets the new queue name and returns the name of the previous queue.

The following Rexx instructions manipulate the queue:

• PULL or PARSE PULL--reads a string from the head of the queue. If the queue is empty, these
instructions take input from .INPUT.

• PUSH--stacks a line on top of the queue (LIFO).

• QUEUE--adds a string to the tail of the queue (FIFO).

Rexx functions that manipulate QUEUE: as a device name are:

• LINEIN("QUEUE:")--reads a string from the head of the queue. If the queue is empty the program
waits for an entry to be placed on the queue.

• LINEOUT("QUEUE:","string")--adds a string to the tail of the queue (FIFO).

• QUEUED--returns the number of items remaining in the queue.

Here is an example of using a queue:

Example 14.3. Sample Rexx Procedure Using a Queue

/* */
/* push/pull WITHOUT multiprogramming support */
/* */
push date() time() /* push date and time */
do 1000 /* let's pass some time */
 nop /* doing nothing */
end /* end of loop */
pull a b /* pull them */
say "Pushed at " a b ", Pulled at " date() time() /* say now and then */

/* */
/* push/pull WITH multiprogramming support */
/* (no error recovery, or unsupported environment tests) */
/* */
newq = RXQUEUE("Create") /* create a unique queue */
oq = RXQUEUE("Set",newq) /* establish new queue */
push date() time() /* push date and time */
do 1000 /* let's spend some time */
 nop /* doing nothing */
end /* end of loop */
pull a b /* get pushed information */
say "Pushed at " a b ", Pulled at " date() time() /* tell user */
call RXQUEUE "Delete",newq /* destroy unique queue created */
call RXQUEUE "Set",oq /* reset to default queue (not required) */

Special considerations:

Default Stream Names

643

• External programs that must communicate with a Rexx procedure through defined data queues
can use the Rexx-provided queue or the queue that QUEUE: references (if the external program
runs in a child process), or they can receive the data queue name through some interprocess
communication technique, including argument passing, placement on a prearranged logical queue,
or the use of usual interprocess communication mechanisms (for example, pipes, shared memory,
or IPC queues).

• Named queues are available across the entire system. Therefore, the names of queues must be
unique within the system. If a queue named anyque exists, using the following function:

newqueue = RXQUEUE("Create", "ANYQUE")

results in an error.

14.1.3.3. Multiprogramming Considerations
The top-level Rexx program in a process tree owns an unnamed queue. However, any child process
can modify the queue at any time. No specific process or user owns a named queue. The operations
that affect the queue are atomic--the subsystem serializes the resource so that no data integrity
problems can occur. However, you are responsible for the synchronization of requests so that two
processes accessing the same queue get the data in the order it was placed on the queue.

A specific process owns (creates) an unnamed queue. When that process ends, the
language processor deletes the queue. Conversely, the named queues created with
RxQueue("Create", queuename) exist until you explicitly delete them. The end of a program or
procedure that created a named queue does not force the deletion of the private queue. When the
process that created a queue ends, any data on the queue remains until the data is read or the queue
is deleted. (The function call RxQueue("Delete", queuename) deletes a queue.)

If a data queue is deleted by its creator, a procedure, or a program, the items in the queue are also
deleted.

14.1.4. Default Stream Names

A stream name can be a file, a queue, a pipe, or any device that supports character-based input and
output. If the stream is a file or device, the name can be any valid file specification.

Windows and *nix define three default streams:

• stdin (file descriptor 0) - standard input

• stdout (file descriptor 1) - standard output

• stderr (file descriptor 2) - standard error (output)

Rexx provides .INPUT and .OUTPUT public objects. They default to the default input and output
streams of the operating system. The appropriate default stream object is used when the call to a
Rexx I/O function includes no stream name. The following Rexx statements write a line to the default
output stream of the operating system:

Lineout(,"Hello World")
.Output~lineout("Hello World")

Chapter 14. Input and Output Streams

644

Rexx reserves the names STDIN, STDOUT, and STDERR to allow Rexx functions to refer to these
stream objects. The checks for these names are not case-sensitive; for example, STDIN, stdin,
and sTdIn all refer to the standard input stream object. If you need to access a file with one of these
names, qualify the name with a directory specification, for example, \stdin.

Rexx also provides access to arbitrary file descriptors that are already open when Rexx is called. The
stream name used to access the stream object is HANDLE:x. x is the number of the file descriptor you
wish to use. You can use HANDLE:x as any other stream name; it can be the receiver of a Stream
class method. If the value of x is not a valid file descriptor, the first I/O operation to that object fails.

Notes:

1. Once you close a HANDLE:x stream object, you cannot reopen it.

2. HANDLE:x is reserved. If you wish to access a file or device with this name, include a directory
specification before the name. For example, \HANDLE:x accesses the file HANDLE:x in the
current directory.

3. Programs that use the .INPUT and .OUTPUT public objects are independent of the operating
environment.

14.1.5. Line versus Character Positioning

Rexx lets you move the read or write position of a persistent stream object to any location within the
stream. You can specify this location in terms of characters or lines.

Character positioning is based upon the view of a stream as a simple collection of bytes of data. No
special meaning is given to any single character. Character positioning alone can move the stream
pointer. For example:

MyStream~charin(10,0)

moves the stream pointer so that the tenth character in MyStream is the next character read. But this
does not return any data. If MyStream is opened for reading or writing, any output that was previously
written but is still buffered is eliminated. Moving the write position always causes any buffered output
to be written.

Line positioning views a stream as a collection of lines of data. There are two ways of positioning by
lines. If you open a stream in binary mode and specify a record length of x on the open, a line break
occurs every x characters. Line positioning in this case is an extension of character positioning. For
example, if you open a stream in binary mode with record length 80, then the following two lines are
exactly equivalent.

MyStream~command(position 5 read line)
MyStream~command(position 321 read char)

Remember that streams and other Rexx objects are indexed starting with one rather than zero.

The second way of positioning by lines is for non-binary streams. New-line characters separate lines
in non-binary streams. Because the line separator is contained within the stream, ensure accurate
line positioning. For example, it is possible to change the line number of the current read position
by writing extra new-line characters ahead of the read position or by overwriting existing new-line
characters. Thus, line positioning in a non-binary stream object has the following characteristics:

Implementation

645

• To do line positioning, it is necessary to read the stream in circumstances such as switching from
character methods to line methods or positioning from the end of the stream.

• If you rewrite a stream at a point prior to the read position, the line number of the current read
position could become inaccurate.

Note that for both character and line positioning, the index starts with one rather than zero. Thus,
character position 1 and line position 1 are equivalent, and both point to the top of the persistent
stream object. The Rexx I/O processing uses certain optimizations for positioning. These require that
no other process is writing to the stream concurrently and no other program uses or manipulates the
same low-level drive, directory specification, and file name that the language processor uses to open
the file. If you need to work with a stream in these circumstances, use the system I/O functions.

14.2. Implementation

Usually, the dialog between a Rexx program and you as the user takes place on a line-by-
line basis and is, therefore, carried out with the SAY, PULL, or PARSE PULL instructions. This
technique considerably enhances the usability of many programs, because they can be converted to
programmable dialogs by using the external data queue to provide the input you generally type. Use
the PARSE LINEIN instruction only when it is necessary to bypass the external data queue.

When a dialog is not on a line-by-line basis, use the serial interfaces the CHARIN and CHAROUT
methods provide. These methods are important for input and output in transient stream objects, such
as keyboards, printers, or network environments.

Opening and closing of persistent stream objects, such as files, is largely automatic. Generally the first
CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, or LINES message sent to a stream object opens
that stream object. It remains open until you explicitly close it with a CHAROUT or LINEOUT or until
the program ends. Using the LINEOUT method with only the name of a stream object (and no output
string or line) closes the named stream object. The Stream class also provides OPEN and CLOSE
methods and the COMMAND method, which can explicitly open or close a stream object.

If you open a stream with the CHARIN, CHAROUT, LINEIN, or LINEOUT methods, it is opened for
both reading and writing, if possible. You can use the OPEN method or the COMMAND method to
open a stream for read-only or write-only operations.

14.3. Operating System Specifics
The COMMAND method of the Stream class determines the state of an input or output stream object
and carries out specific operations (see Section 5.2.4.9, “command”). It allows Rexx programs to open
and close selected stream objects for read-only, write-only, or read and write operations, to move the
read and write position within a stream object, to control the locking and buffering characteristics, and
to obtain information (such as the size and the date of the last update).

14.4. Examples of Input and Output
In most circumstances, communication with a user running a Rexx program uses the default input and
output stream objects. For a question and answer dialog, the recommended technique is to use the
SAY and PULL instructions on the .INPUT and .OUTPUT objects. (You can use PARSE PULL if case-
sensitive input is needed.)

It is generally necessary to write to, or read from, stream objects other than the default. For example,
the following program copies the contents of one stream to another.

Chapter 14. Input and Output Streams

646

Example 14.4. FILECOPY program

/* FILECOPY.CMD */
/* This routine copies, as lines, the stream or */
/* file that the first argument names to the stream */
/* or file the second argument names. It is assumed */
/* that the name is not an object, as it could be */
/* if it is passed from another Rexx program. */

parse arg inputname, outputname

inputobject = .stream~new(inputname)
outputobject = .stream~new(outputname)

signal on notready

do forever
 outputobject~lineout(inputobject~linein)
end
exit

notready:
return

As long as lines remain in the named input stream, a line is read and is then immediately written to the
named output stream. This program is easy to change so that it filters the lines before writing them.

The following example illustrates how character and line operations can be mixed in a communications
program. It converts a character stream into lines.

Example 14.5. COLLECT program

/* COLLECT.CMD */
/* This routine collects characters from the stream */
/* the first argument names until a line is */
/* complete, and then places the line on the */
/* external data queue. */
/* The second argument is a single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar
inputobject = .stream~new(inputname)

buffer="" /* zero-length character accumulator */
do forever
 nextchar=inputobject~charin
 if nextchar=lineendchar then leave
 buffer=buffer||nextchar /* add to buffer */
 end
queue buffer /* place it on the external data queue */

Here each line is built up in a variable called BUFFER. When the line is complete (for example, when
the user presses the Enter key) the loop ends and the language processor places the contents of
BUFFER on the external data queue. The program then ends.

Errors during Input and Output

647

14.5. Errors during Input and Output

The Rexx language offers considerable flexibility in handling errors during input or output. This is
provided in the form of a NOTREADY condition that the CALL ON and SIGNAL ON instructions can
trap. The STATE and DESCRIPTION methods can elicit further information.

When an error occurs during an input or output operation, the function or method called usually
continues without interruption (the output method returns a nonzero count). Depending on the nature
of the operation, a program has the option of raising the NOTREADY condition. The NOTREADY
condition is similar to the ERROR and FAILURE conditions associated with commands in that it does
not cause a terminating error if the condition is raised but is not trapped. After NOTREADY has been
raised, the following possibilities exist:

• If the NOTREADY condition is not trapped, processing continues without interruption. The
NOTREADY condition remains in the OFF state.

• If SIGNAL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised.
Processing of the current clause stops immediately, and the SIGNAL takes place as usual for
condition traps.

• If CALL ON NOTREADY traps the NOTREADY condition, the NOTREADY condition is raised, but
execution of the current clause is not halted. The NOTREADY condition is put into the delayed
state, and processing continues until the end of the current clause. While processing continues,
input methods that refer to the same stream can return the null string and output methods can
return an appropriate count, depending on the form and timing of the error. At the end of the current
clause, the CALL takes place as usual for condition traps.

• If the NOTREADY condition is in the DELAY state (CALL ON NOTREADY traps the NOTREADY
condition, which has already been raised), processing continues, and the NOTREADY condition
remains in the DELAY state.

After the NOTREADY condition has been raised and is in DELAY state, the "O" option of the
CONDITION function returns the stream object being processed when the stream error occurred.

The STATE method of the Stream class returns the stream object state as ERROR, NOTREADY, or
UNKNOWN. You can obtain additional information by using the DESCRIPTION method of the Stream
class.

Note

SAY .OUTPUT and PULL .INPUT never raise the NOTREADY condition. However, the STATE
and DESCRIPTION methods can return NOTREADY.

14.6. Summary of Rexx I/O Instructions and Methods
The following lists Rexx I/O instructions and methods:

• CHARIN (see Section 5.2.4.5, “charIn”)

• CHAROUT (see Section 5.2.4.6, “charOut”)

• CHARS (see Section 5.2.4.7, “chars”)

Chapter 14. Input and Output Streams

648

• CLOSE (see Section 5.2.4.8, “close”)

• COMMAND (see Section 5.2.4.9, “command”)

• DESCRIPTION (see Section 5.2.4.10, “description”)

• FLUSH (see Section 5.2.4.11, “flush”)

• LINEIN (see Section 5.2.4.13, “lineIn”)

• LINEOUT (see Section 5.2.4.14, “lineOut”)

• LINES (see Section 5.2.4.15, “lines”)

• MAKEARRAY (see Section 5.2.4.16, “makeArray”)

• OPEN (see Section 5.2.4.17, “open”)

• PARSE LINEIN (see Section 2.18, “PARSE”)

• PARSE PULL (see Section 2.18, “PARSE”)

• POSITION (see Section 5.2.4.18, “position”)

• PULL (see Section 2.20, “PULL”)

• PUSH (see Section 2.21, “PUSH”)

• QUALIFY (see Section 5.2.4.19, “qualify”)

• QUERY (see Section 5.2.4.20, “query”)

• QUEUE (see Section 2.22, “QUEUE”)

• QUEUED (see Section 7.4.48, “QUEUED”)

• SAY (see Section 2.26, “SAY”)

• SEEK (see Section 5.2.4.22, “seek”)

• STATE (see Section 5.2.4.23, “state”)

Chapter 15.

649

Debugging Aids
In addition to the TRACE instruction described in Section 2.29, “TRACE”, there are the following
debugging aids.

15.1. Interactive Debugging of Programs

The debug facility permits interactively controlled execution of a program. Adding the prefix
character ? to the TRACE instruction, the TRACE function, or TRACE keyword of the ::OPTIONS
directive. For example, TRACE ?I, TRACE(?I), or ::OPTIONS TRACE ?I) turns on interactive
debugging and indicates to the user that interactive debugging is active. Further TRACE instructions
in the program are ignored, and the language processor pauses after nearly all instructions that are
traced at the console (see Section 15.2, “Debugging Aids” for the exceptions). When the language
processor pauses, the following debug actions are available:

• Entering a null line causes the language processor to continue with the execution until the next
pause for debugging input. Repeatedly entering a null line, therefore, steps from pause point to
pause point. For TRACE ?A, for example, this is equivalent to single-stepping through the program.

• Entering an equal sign (=) with no surrounding whitespace causes the language processor to
reexecute the clause last traced. For example, if an IF clause is about to take the wrong branch, you
can change the value of the variables on which it depends, and then reexecute it.

Once the clause has been reexecuted, the language processor pauses again.

• Anything else entered is treated as a line of one or more clauses, and processed immediately
(that is, as though DO; line; END; had been inserted in the program). The same rules apply
as for the INTERPRET instruction (for example, DO-END constructs must be complete). If an
instruction contains a syntax error, a standard message is displayed and you are prompted for input
again. Similarly, all other SIGNAL conditions are disabled while the string is processed to prevent
unintentional transfer of control.

During interpretation of the string, no tracing takes place, except that nonzero return codes from
commands are displayed. The special variable RC and the environment symbol .RS are not set by
commands executed from the string. Once the string has been processed, the language processor
pauses again for further debugging input.

Interactive debug is turned off in either of the following cases:

• A TRACE instruction uses the ? prefix while interactive debug is in effect

• At any time, if TRACE O or TRACE with no options is entered

15.2. Debugging Aids
The numeric form of the TRACE instruction can be used to allow sections of the program to be
executed without pause for debugging input. TRACE n (that is, a positive result) allows execution to
continue, skipping the next n pauses (when interactive debugging is or becomes active). TRACE -n
(that is, a negative result) allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced. The trace action a TRACE instruction selects is saved and
restored across subroutine calls. This means that if you are stepping through a program (for example,
after using TRACE ?R to trace results) and then enter a subroutine in which you have no interest,
you can enter TRACE O to turn off tracing. No further instructions in the subroutine are traced, but on
return to the caller, tracing is restored.

Chapter 15. Debugging Aids

650

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R instruction at its start.
Having traced the routine, the original status of tracing is restored and, if tracing was off on entry to the
subroutine, tracing and interactive debugging are turned off until the next entry to the subroutine.

Because any instructions can be executed in interactive debugging you have considerable control over
the execution.

The following are some examples:

Example 15.1. Character inout and output

Say expr /* displays the result of evaluating the */
 /* expression */

name=expr /* alters the value of a variable */

Trace O /* (or Trace with no options) turns off */
 /* interactive debugging and all tracing */

Trace ?A /* turns off interactive debugging but */
 /* continues tracing all clauses */

exit /* terminates execution of the program */

do i=1 to 10; say stem.i; end
 /* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be reexecuted, and therefore the language processor does
not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses.

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL clauses (but the language processor pauses after the target label is traced).

• Any clause that causes a syntax error. They can be trapped by SIGNAL ON SYNTAX, but cannot be
reexecuted.

A pause occurs after a REPLY instruction, but the REPLY instruction cannot be reexecuted.

15.3. RXTRACE Variable

When the interpreter starts the interpretation of a Rexx procedure it checks the setting of the
special environment variable, RXTRACE. If RXTRACE has been set to ON (not case-sensitive), the
interpreter starts in interactive debug mode as if the Rexx instruction TRACE '?R' had been the first
interpretable instruction. All other settings of RXTRACE are ignored. RXTRACE is only checked when
starting a new Rexx procedure.

Use the SET command to set or query an environment variable or query all environment variables. To
delete an environment variable, use SET variable=.

Chapter 16.

651

Reserved Keywords
Keywords can be used as ordinary symbols in many unambiguous situations. The precise rules are
given in this chapter.

The free syntax of Rexx implies that some symbols are reserved for use by the language processor in
certain contexts.

Within particular instructions, some symbols can be reserved to separate the parts of the instruction.
These symbols are referred to as keywords. Examples of Rexx keywords are the WHILE keyword in a
DO instruction and the THEN keyword, which acts as a clause terminator in this case, following an IF
or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and that are not
followed by an "=" or ":" are checked to see if they are instruction keywords. The symbols can be freely
used elsewhere in clauses without being understood as keywords.

Be careful with host commands or subcommands with the same name as Rexx keywords. To avoid
problems, enclose at least the command or subcommand in quotation marks. For example:

"DELETE" Fn"."Ext

You can then also use the SIGNAL ON NOVALUE condition to check the integrity of an executable.

Alternatively, you can precede such command strings with two adjacent quotation marks to
concatenate the null string to the beginning. For example:

""Erase Fn"."Ext

A third option is to enclose the entire expression, or the first symbol, in parentheses. For example:

(Erase Fn"."Ext)

652

Chapter 17.

653

Special Variables
A special variable can be set automatically during processing of a Rexx program. There are five
special variables:

RC
is set to the return code from any executed command (including those submitted with the
ADDRESS instruction). After the trapping of ERROR or FAILURE conditions, it is also set to the
command return code. When the SYNTAX condition is trapped, RC is set to the syntax error
number (1-99). RC is unchanged when any other condition is trapped.

Note

Commands executed manually during interactive tracing do not change the value of RC.

RESULT
is set by a RETURN instruction in a subroutine that has been called, or a method that was
activated by a message instruction, if the RETURN instruction specifies an expression. (See
Section 2.6, “EXIT”, Section 2.24, “REPLY”, and Section 2.25, “RETURN”.) If the RETURN
instruction has no expression, RESULT is dropped (becomes uninitialized). Note that an EXIT or
REPLY instruction also sets RESULT.

SELF
is set when a method is activated. Its value is the object that forms the execution context for the
method (that is, the receiver object of the activating message). You can use SELF to:
• Run a method in an object in which a method is already running. For example, a Find_Clues

method is running in an object called Mystery_Novel. When Find_Clues finds a clue, it sends a
Read_Last_Page message to Mystery_Novel:

self~Read_Last_Page

• Pass references about an object to the methods of other objects. For example, a Sing method is
running in object Song. The code Singer2~Duet(self) would give the Duet method access
to the same Song.

SIGL
is set to the line number of the last instruction that caused a transfer of control to a label (that is,
any SIGNAL, CALL, internal function call, or trapped condition). See Section 11.3.4, “The Special
Variable SIGL”.

SUPER
is set when a method is activated. Its value is the class object that is the usual starting point for
a superclass method lookup for the SELF object. This is the first immediate superclass of the
class that defined the method currently running. (See Section 1.7, “Classes and Instances”.) If the
current method was defined by a class in the direct inheritance chain, SUPER will always refer to
the immediate superclass that class. If the current method is defined by a mixin class, the SUPER
variable will always be the superclass of the mixin class.

Chapter 17. Special Variables

654

The special variable SUPER lets you call a method in the superclass of an object. For example,
the following Savings class has INIT methods that the Savings class, Account class, and Object
class define.

Example 17.1. Using the SUPER variable

::class Account

::method INIT
expose balance
use arg balance
self~init:super /* Forwards to the Object INIT method */

::method TYPE
return "an account"

::method name attribute

::class Savings subclass Account

::method INIT
expose interest_rate
use arg balance, interest_rate
self~init:super(balance) /* Forwards to the Account INIT method */

::method type
return "a savings account"

When the INIT method of the Savings class is called, the variable SUPER is set to the Account
class object. The instruction:

self~init:super(balance) /* Forwards to the Account INIT method */

calls the INIT method of the Account class rather than recursively calling the INIT method of
the Savings class. When the INIT method of the Account class is called, the variable SUPER is
assigned to the Object class.

Example 17.2. Forwarding an event

self~init:super /* Forwards to the Object INIT method */

calls the INIT method that the Object class defines.

You can alter these variables like any other variable, but the language processor continues to set RC,
RESULT, and SIGL automatically when appropriate. The EXPOSE, PROCEDURE, USE and DROP
instructions also affect these variables.

Rexx also supplies functions that indirectly affect the execution of a program. An example is the name
that the program was called by and the source of the program (which are available using the PARSE
SOURCE instruction). In addition, PARSE VERSION makes available the language version and date
of Rexx implementation that is running. The built-in functions ADDRESS, DIGITS, FUZZ, FORM, and
TRACE return other settings that affect the execution of a program.

Chapter 18.

655

Useful Services
The following section describes useful commands and services.

18.1. Windows Commands
COPY

copies files.

DELETE
deletes files.

DIR
displays disk directories.

ERASE
erases files.

MODE
controls input and output device characteristics.

PATH
defines or displays the search path for commands and Rexx programs. See also Section 7.2.1,
“Search Order”.

SET
displays or changes Windows environment variables. See also Section 7.4.71, “VALUE”.

18.2. Linux Commands
Most Commonly used commands are:

cp
copies files and directories.

mv
moves files and directories.

rm
removes files and directories.

ls
displays files and directories.

echo $path
defines or displays the search path for commands and Rexx programs. See also Section 7.2.1,
“Search Order”.

env
displays or changes Linux environment variables.

Any other Linux command can be used. For a description of these commands, see the respective
Linux documentation (for example, man-pages).

Chapter 18. Useful Services

656

18.3. Subcommand Handler Services
For a complete subcommand handler description, see the Open Object Rexx: Programming Guide.

18.3.1. The RXSUBCOM Command

The RXSUBCOM command registers, drops, and queries Rexx subcommand handlers. A Rexx
procedure or script file can use RXSUBCOM to register dynamic-link library subcommand handlers.
Once the subcommand handler is registered, a Rexx program can send commands to the
subcommand handler with the Rexx ADDRESS instruction. For example, Rexx Dialog Manager
programs use RXSUBCOM to register the ISPCIR subcommand handler.

Example 18.1. Command RXSUBCOM - REGISTER option

"RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR"
Address ispcir

See Section 2.1, “ADDRESS” for details of the ADDRESS instruction.

18.3.1.1. RXSUBCOM REGISTER

RXSUBCOM REGISTER registers a dynamic-link library subcommand handler. This command makes
a command environment available to Rexx.

>>-RXSUBCOM--REGISTER--envname--dllname--procname--------------><

Parameters:

envname
The subcommand handler name. The Rexx ADDRESS instruction uses envname to send
commands to the subcommand handler.

dllname
The name of the dynamic-link library file containing the subcommand handler routine.

procname
The name of the dynamic-link library procedure within dllname that Rexx calls as a subcommand
handler.

Return codes:

0
The command environment has been registered.

10
A duplicate registration has occurred. An envname subcommand handler in a different dynamic-
link library has already been registered. Both the new subcommand handler and the existing
subcommand handler can be used.

The RXSUBCOM Command

657

30
The registration has failed. Subcommand handler envname in library dllname is already
registered.

1002
RXSUBCOM was unable to obtain the memory necessary to register the subcommand handler.

-1
A parameter is missing or incorrectly specified.

18.3.1.2. RXSUBCOM DROP

RXSUBCOM DROP deregisters a subcommand handler.

>>-RXSUBCOM--DROP--envname--+---------+------------------------><
 +-dllname-+

Parameters:

envname
The name of the subcommand handler.

dllname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The subcommand handler was successfully deregistered.

30
The subcommand handler does not exist.

40
The environment was registered by a different process as RXSUBCOM_NONDROP.

-1
A parameter is missing or specified incorrectly.

18.3.1.3. RXSUBCOM QUERY

RXSUBCOM QUERY checks the existence of a subcommand handler. The query result is returned.

>>-RXSUBCOM--QUERY--envname--+---------+-----------------------><
 +-dllname-+

Parameters:

envname
The name of the subcommand handler.

Chapter 18. Useful Services

658

dllname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The subcommand handler is registered.

30
The subcommand handler is not registered.

-1
A parameter is missing or specified incorrectly.

18.3.1.4. RXSUBCOM LOAD

RXSUBCOM LOAD loads a subcommand handler dynamic-link library.

>>-RXSUBCOM--LOAD--envname--+---------+------------------------><
 +-dllname-+

Parameters:

envname
The name of the subcommand handler.

libname
The name of the dynamic-link file containing the subcommand handler routine.

Return codes:

0
The dynamic-link library was located and loaded successfully.

50
The dynamic-link library was not located or could not be loaded.

-1
A parameter is missing or incorrectly specified.

18.3.2. The RXQUEUE Filter

>>-RXQUEUE--+-----------+--+--------+--------------------------><
 +-queuename-+ +-/FIFO--+
 +-/LIFO--+
 +-/CLEAR-+

The RXQUEUE filter usually operates on the default queue named SESSION. However, if an
environment variable named RXQUEUE exists, the RXQUEUE value is used for the queue name.

The RXQUEUE Filter

659

For a full description of Rexx queue services for applications programming, see Section 14.1.3,
“External Data Queue”.

Parameters:

queuename/LIFO
stacks items from STDIN last in, first out (LIFO) on a Rexx queue.

queuename/FIFO
queues items from STDIN first in, first out (FIFO) on a Rexx queue.

queuename/CLEAR
removes all lines from a Rexx queue.

RXQUEUE takes output lines from another program and places them on a Rexx queue. There is
currently a limit of 65472 characters for a single line. If a line contains more characters than the limit,
those characters are discarded.

A Rexx procedure can use RXQUEUE to capture operating system command and program output for
processing. RXQUEUE can direct output to any Rexx queue, either FIFO (first in, first out) or LIFO
(last in, first out).

RXQUEUE uses the environment variable RXQUEUE for the default queue name. When RXQUEUE
does not have a value, RXQUEUE uses SESSION for the queue name.

The following example obtains the Windows version number with RXQUEUE:

Example 18.2. Command RXQUEUE

/* Sample program to show simple use of RXQUEUE */
/* Find out the Windows version number, using the */
/* VER command. VER produces two lines of */
/* output; one blank line, and one line with the*/
/* format "The Windows Version is n.nn" */

"VER |RXQUEUE" /* Put the data on the Queue */
pull . /* Get and discard the blank line */
Pull . "VERSION" number "]" /* The bracket is required for
Windows 95, not for Windows NT */
Say "We are running on Windows Version" number

Note that the syntax of the version string that is returned by Windows can vary, so the parsing syntax
for retrieving the version number may be different.

The following example processes output from the DIR command:

Example 18.3. Command RXQUEUE

/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from a DIR command, */
/* ignoring small files. It displays a list of the */
/* large files, and the total of the sizes of the large */
/* files. */

size_limit = 10000 /* The dividing line */
/* between large and small*/
size_total = 0 /* Sum of large file sizes*/

Chapter 18. Useful Services

660

NUMERIC DIGITS 12 /* Set up to handle very */
/* large numbers */

/* Create a new queue so that this program cannot */
/* interfere with data placed on the queue by another */
/* program. */

queue_name = rxqueue("Create")
Call rxqueue "Set", queue_name

"DIR /N | RXQUEUE" queue_name

/* DIR output starts with five header lines */
Do 5
Pull . /* discard header line */
End

/* Now all the lines are file or directory lines, */
/* except for one at the end. */

Do queued() - 1 /* loop for lines we want */
Parse Pull . . size . name ./* get one name and size */
/* If the size field says "<DIR>", we ignore this */
/* line. */
If size <> "<DIR>" Then
/* Now check size, and display */
If size > size_limit Then Do
Say format(size,12) name
size_total = size_total + size
End
End

Say "The total size of those files is" size_total

/* Now we are done with the queue. We delete it, which */
/* discards the line remaining in it. */

Call rxqueue "DELETE", queue_name

18.4. Distributing Programs without Source

Open Object Rexx comes with a utility called RexxC. You can use this utility to produce versions of
your programs that do not include the original program source. You can use these programs to replace
any Rexx program file that includes the source, with the following restrictions:

1. The SOURCELINE built-in function returns 0 for the number of lines in the program and raises an
error for all attempts to retrieve a line.

2. A sourceless program may not be traced. The TRACE instruction runs without error, but no tracing
of instruction lines, expression results, or intermediate expression values occurs.

The syntax of the RexxC utility is:

>>-RexxC--inputfile--+------------+--+----+--------------------><
 +-outputfile-+ +-/s-+

If you specify the outputfile, the language processor processes the inputfile and writes the executable
version of the program to the outputfile. If the outputfile already exists, it is replaced.

Distributing Programs without Source

661

If the language processor detects a syntax error while processing the program, it reports the error and
stops processing without creating a new output file. If you omit the outputfile, the language processor
performs a syntax check on the program without writing the executable version to a file.

You can use the /s option to suppress the display of the information about the interpreter used.

Note

You can use the in-storage capabilities of the RexxStart programming interface to process the file
image of the output file.

With version 2.1, the tokenized form has changed. All Open Object Rexx editions contain a utility
called RxMigrate that can be used to change old tokenized forms to the new one. The recommended
procedure is to create a new tokenized file from the original source with the new version of Open
Object Rexx. However, if the source code is no longer available, RxMigrate can be used to convert the
old tokenized file. The syntax of the RxMigrate utility is:

>>-RxMigrate--inputfile--outputfile----------------------------><

662

663

Appendix A. Using DO and LOOP
This appendix provides you with additional information about the DO and LOOP keyword instructions.

A.1. Simple DO Group

If you specify neither repetitor nor conditional, the DO construct only groups a number of instructions
together. They are processed once. For example:

Example A.1. Simple DO block

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
 a=a+2
 Say "Smile!"
End

A.2. Repetitive Loops

If a DO or LOOP instruction has a repetitor phrase, a conditional phrase, or both, the group of
instructions forms a repetitive loop. The instructions are processed according to the repetitor phrase,
optionally modified by the conditional phrase. (See Section A.4, “Conditional Phrases (WHILE and
UNTIL)”.)

A.2.1. Simple Repetitive Loops

A simple repetitive loop is a repetitive loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions
is processed until the condition is satisfied or a Rexx instruction ends the loop (for example, LEAVE).

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive
whole number or zero), and the loop is then processed that many times.

Example A.2. Simple LOOP block

/* This displays "Hello" five times */
Loop 5
say "Hello"
end

Note that, similar to the distinction between a command and an assignment, if the first token of exprr is
a symbol and the second token is (or starts with) =, the controlled form of repetitor is expected.

A.2.2. Controlled Repetitive Loops

Appendix A. Using DO and LOOP

664

The controlled form specifies control1, a control variable that is assigned an initial value (the result
of expri, formatted as though 0 had been added) before the first execution of the instruction list. The
variable is then stepped by adding the result of exprb before the second and subsequent times that
the instruction list is processed.

The instruction list is processed repeatedly as long as the end condition (determined by the result
of exprt) is not met. If exprb is positive or 0, the loop is ended when control1 is greater than exprt. If
negative, the loop is ended when control1 is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only once, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs infinitely unless some other condition stops it.

Example A.3. Simple LOOP block with conditions

Loop I=3 to -2 by -1 /* Displays: */
 say i /* 3 */
end /* 2 */
 /* 1 */
 /* 0 */
 /* -1 */
 /* -2 */

The numbers do not have to be whole numbers:

Example A.4. Simple LOOP block with conditions

I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
 say Y /* 1.0 */
end /* 1.7 */
 /* 2.4 */
 /* 3.1 */
 /* 3.8 */

The control variable can be altered within the loop, and this can affect the iteration of the loop. Altering
the value of the control variable is not considered good programming practice, though it can be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). Therefore, if the end condition is met immediately,
the group of instructions can be skipped entirely. Note also that the control variable is referred to by
name. If, for example, the compound name A.I is used for the control variable, altering I within the
loop causes a change in the control variable.

The execution of a controlled loop can be limited further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only once--when the instruction is
first processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Repetitive Loops over Collections

665

Example A.5. Simple LOOP block with limits

Loop Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
 say Y /* 0.3 */
end /* 1.0 */
 /* 1.7 */

In a controlled loop, the control1 name describing the control variable can be specified on the END
clause. This name must match control1 in the DO or LOOP clause in all respects except the case
(note that no substitution for compound variables is carried out). Otherwise, a syntax error results. This
enables the nesting of loops to be checked automatically, with minimal overhead.

Example A.6. Simple LOOP block with limits

Loop K=1 to 10
...
...
End k /* Checks that this is the END for K loop */

Note

The NUMERIC settings can affect the successive values of the control variable because Rexx
arithmetic rules apply to the computation of stepping the control variable.

A.3. Repetitive Loops over Collections

A collection loop specifies a control variable, control2, which receives a different value on each
repetition of the loop. (For more information on control2, see Section 2.4, “DO”.) These different values
are taken from successive values of collection. The collection is any expression that evaluates to
an object that provides a MAKEARRAY method, including stem variables. The collection returned
determines the set of values and their order. Array, List, and Queue items return an array with the
items in the appropriate order, as do Streams. Tables, Stems, Directories, etc. are not ordered so the
items get placed in the array in no particular order.

If the collection is a stem variable, the values are the tail names that have been explicitly assigned to
the given stem. The order of the tail names is unspecified, and a program should not rely on any order.

For other collection objects, the MAKEARRAY method of the specific collection class determines the
values assigned to the control variable.

All values for the loop iteration are obtained at the beginning of the loop. Therefore, changes to the
target collection object do not affect the loop iteration. For example, using DROP to change the set
of tails associated with a stem or using a new value as a tail does not change the number of loop
iterations or the values over which the loop iterates.

As with controlled repetition, you can specify the symbol that describes the control variable on the
END clause. The control variable is referenced by name, and you can change it within the loop

Appendix A. Using DO and LOOP

666

(although this would not usually be useful). You can also specify the control variable name on an
ITERATE or LEAVE instruction.

Example A.7. Simple LOOP block over a collection

Astem.=0
Astem.3="CCC"
Astem.24="XXX"
loop k over Astem.
 say k Astem.k
end k

This example can produce:

3 CCC
24 XXX

or:

24 XXX
3 CCC

See Figure A.1, “Concept of a Loop” for a diagram.

A.4. Conditional Phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive loop. It can cause the termination of a
loop. It can follow any of the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated after each loop using the latest values of
all variables, and the loop is ended if exprw evaluates to 0 or expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop,
the condition is evaluated at the bottom--before the control variable has been stepped.

Example A.8. Simple LOOP block with contitions

Loop I=1 to 10 by 2 until i>6
 say i
end
/* Displays: "1" "3" "5" "7" */

Note

Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

LABEL Phrase

667

A.5. LABEL Phrase
The LABEL phrase may be used to specify a name for the DO or LOOP. The can optionally be used
for

• a LEAVE instruction to identify the block to be left

• an ITERATE instruction to identify the loop to be iterated

• the END clause of the block, for additional checking.

Example A.9. Simple LOOP block with label

Loop label outer I=1 to 10 by 2
 ...
 if i > 5 then do label inner
 ...
 if a = b then leave inner
 ...
 if c = b then iterate outer
 end inner
 ...
 say i
end outer
/* Displays: "1" "3" "5" "7" */

In this example, the LEAVE instruction will exit the inner DO block. The ITERATE instruction will
iterate the out LOOP instruction.

If a LABEL phrase is used on a DO or LOOP, it overrides any name derived from any control variable
name. That is, if label is used, the control variable cannot be used on a LEAVE, ITERATE, or END
instruction to identify the block. Only the label name is valid.

Appendix A. Using DO and LOOP

668

A.6. Conceptual Model of Loops

Figure A.1. Concept of a Loop

Conceptual Model of Loops

669

Figure A.2. Concept of Repetitive Loop over Collection

670

671

Appendix B. Migration
This appendix lists some differences between Object Rexx and earlier versions of Rexx, and between
Object Rexx for OS/2 and Open Object Rexx for Windows NT and *nix environments.

B.1. Error Codes and Return Codes
Some error codes have changed and some have been added. Also, for most errors you now receive
two error messages. The first should be similar or identical to the message you would have seen
previously. The second provides additional and more detailed information. So, for example, where you
formerly received "Invalid Call to Routine", you now get further information on what is wrong with the
call.

Also, the return codes of host commands might be different.

B.2. Error Detection and Reporting
Some errors are now detected earlier. Formerly, Rexx would wait until it encountered an error during
execution to report it to you. Now, some errors are reported before the first instruction in your Rexx
script is executed. In particular, syntax errors are reported after you have invoked the program, but
before it starts execution.

B.3. Environment Variables
Environment variables set within an Object Rexx program by the VALUE function or "SET" are not
kept after the program termination.

B.4. Stems versus Collections
Stems are a general data structure that are powerful but abstract. In earlier releases of Rexx, you
could use stems to create data structures of all types, such as arrays, stacks, and queues. These data
structures were semantically neutral. Because stems were the basis for all of them, the code itself
gave no hint of which structure was implemented and for what purpose.

The best data structure job is not always the most powerful and abstract but the most specific and
restrictive. Object Rexx provides a variety of data structures in the collection classes. This helps
reduce errors because you can select the data structure that best meets your requirements. It also
helps eliminate the misuse of data structures and adds a semantic context that makes programs
easier to maintain.

B.5. Input and Output Using Functions and Methods
Do not use a mixture of methods and functions for input and output because it can cause
unpredictable results. For example, using the LINEOUT method and the LINEOUT function on the
same persistent stream object can cause overlays.

When a Rexx I/O function creates a stream object, the language processor stores the reference to
the stream object in an internal table. When an I/O method creates a stream object, it is returned to
the program to be maintained. Therefore, these two stream objects are separate stream objects with
different read and write pointers. The program needs to synchronize the read and write pointers of
both stream objects. Otherwise, overlays would occur.

Appendix B. Migration

672

B.6. .Environment
The .Environment directory is local and not system-global as in OS/2. This means that there is no
difference between the scope of the .Local and .Environment directories.

B.7. Deleting Environment Variables
Value(envvar,"","ENVIRONMENT") does not delete an environment variable but sets the environment
variable's value to "". Use Value(envvar,.nil,"ENVIRONMENT") to delete an environment variable.

B.8. Trace in Macrospace
Functions in macrospace cannot be traced using the TRACE keyword. These functions are stored
in an optimized format without source code. If you want to trace functions, do not load them into
macrospace.

673

Appendix C. Error Numbers and
Messages
The error numbers produced by syntax errors during the processing of Rexx programs are all in the
range 1 to 99. Errors are raised in response to conditions, for example, SYNTAX, NOMETHOD, and
PROPAGATE. When the condition is SYNTAX, the value of the error number is placed in the variable
RC when SIGNAL ON SYNTAX is trapped.

You can use the ERRORTEXT built-in function to return the text of an error message.

Some errors have associated subcodes. A subcode is a one- to three-digit decimal extension to the
error number, for example, 115 in 40.115. When an error subcode is available, additional information
that further defines the source of the error is given. The ERRORTEXT built-in function cannot retrieve
the secondary message, but it is available from the condition object created when SIGNAL ON
SYNTAX traps an error.

C.1. Error List

C.1.1. Error 3 - Failure during initialization
Explanation:

The REXX program could not be read from the disk.

The associated subcodes are:

001
Failure during initialization: File "filename" is unreadable

900
message

901
Failure during initialization: Program "program" was not found

902
Error writing output file "file"

903
Program "program_name" cannot be run by this version of the REXX interpreter

904
Failure during initialization: Program "program" needs to be tokenized. To run untokenized scripts
you need a full version of Object REXX.

C.1.2. Error 4 - Program interrupted
Explanation:

The system interrupted the execution of your program because of an error or a user request.

The associated subcodes are:

001
Program interrupted with condition condition

Appendix C. Error Numbers and Messages

674

900
message

C.1.3. Error 5 - System resources exhausted
Explanation:

While trying to execute a program, the language processor was unable to get the resources it needed
to continue. For example, it could not get the space needed for its work areas or variables. The
program that called the language processor might itself have already used up most of the available
storage. Or a request for storage might have been for more than the implementation maximum.

The associated subcodes are:

900
message

C.1.4. Error 6 - Unmatched "/*" or quote
Explanation:

A comment or literal string was started but never finished. This could be because the language
processor detected:
• The end of the program (or the end of the string in an INTERPRET instruction) without finding the

ending "*/" for a comment or the ending quotation mark for a literal string

• The end of the line for a literal string.

The associated subcodes are:

001
Unmatched comment delimiter ("/*") on line line_number

002
Unmatched single quote (')

003
Unmatched double quote (")

900
message

C.1.5. Error 7 - WHEN or OTHERWISE expected
Explanation:

At least one WHEN construct (and possibly an OTHERWISE clause) is expected within a SELECT
instruction. This message is issued if any other instruction is found or there is no WHEN construct
before the OTHERWISE or all WHEN expressions are false and an OTHERWISE is not present. A
common cause of this error is if you forget the DO and END around the list of instructions following a
WHEN. For example:

WRONG RIGHT

Select Select
When a=c then When a=c then DO

Error 8 - Unexpected THEN or ELSE

675

Say 'A equals C' Say 'A equals C'
exit exit
Otherwise nop end
end Otherwise nop
end

The associated subcodes are:

001
SELECT on line line_number requires WHEN

002
SELECT on line line_number requires WHEN, OTHERWISE, or END

003
All WHEN expressions of SELECT are false; OTHERWISE expected

C.1.6. Error 8 - Unexpected THEN or ELSE
Explanation:

A THEN or an ELSE clause was found that does not match a corresponding IF or WHEN clause. This
often occurs because of a missing END or DO...END in the THEN part of a complex IF...THEN...ELSE
construction. For example:

WRONG RIGHT

If a=c then do; If a=c then do;
Say EQUALS Say EQUALS
exit exit
else end
Say NOT EQUALS else
Say NOT EQUALS

The associated subcodes are:

001
THEN has no corresponding IF or WHEN clause

002
ELSE has no corresponding THEN clause

C.1.7. Error 9 - Unexpected WHEN or OTHERWISE
Explanation:

A WHEN or OTHERWISE was found outside of a SELECT construction. You might have accidentally
enclosed the instruction in a DO...END construction by leaving out an END, or you might have tried to
branch to it with a SIGNAL instruction (which does not work because the SELECT is then ended).

The associated subcodes are:

001
WHEN has no corresponding SELECT

002
OTHERWISE has no corresponding SELECT

Appendix C. Error Numbers and Messages

676

C.1.8. Error 10 - Unexpected or unmatched END
Explanation:

More ENDs were found in your program than DO, LOOP, or SELECT instructions, or the ENDs did not
match the DO, LOOP, or SELECT instructions. This message also occurs if you try to transfer control
into the middle of a loop using SIGNAL. In this case, the language processor does not expect the END
because it did not process the previous DO instruction. Remember also that SIGNAL deactivates any
current loops, so it cannot transfer control from one place inside a loop to another.

Another cause for this message is placing an END immediately after a THEN or ELSE subkeyword or
specifying a name on the END keyword that does not match the name following DO or LOOP. Putting
the name of the control variable on ENDs that close repetitive loops can also help locate this kind of
error.

The associated subcodes are:

001
END has no corresponding DO, LOOP, or SELECT

002
Symbol following END ("symbol") must match block specification name ("control_variable") on line
line_number or be omitted

003
END corresponding to block on line symbol must not have a symbol following it because there is
no LABEL or control variable; found "line_number"

004
Symbol following END ("symbol") must match LABEL of SELECT specification ("control_variable")
on line line_number or be omitted

005
END must not immediately follow THEN

006
END must not immediately follow ELSE

007
END corresponding to SELECT on line symbol must not have a symbol following it because there
is no LABEL; found "line_number"

C.1.9. Error 11 - Control stack full
Explanation:

Your program exceeds the nesting level limit for control structures (for example, DO...END and
IF...THEN...ELSE). This could be because of a looping INTERPRET instruction, such as:

 line='INTERPRET line'
 INTERPRET line

These lines loop until they exceed the nesting level limit and the language processor issues this
message. Similarly, a recursive subroutine or internal function that does not end correctly can loop
until it causes this message.

Error 13 - Invalid character in program

677

The associated subcodes are:

001
Insufficient control stack space; cannot continue execution

900
message

C.1.10. Error 13 - Invalid character in program
Explanation:

A character was found outside a literal (quoted) string that is not a whitespace character or one of the
valid alphanumeric and special characters.

The associated subcodes are:

001
Incorrect character in program "character" ('hex_character'X)

900
message

C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF
Explanation:

At the end of the program or the string for an INTERPRET instruction, a DO, LOOP, or SELECT
instruction was found without a matching END or an IF clause that is not followed by a THEN clause.
Putting the name of the control variable on each END closing a controlled loop can help locate this
kind of error.

The associated subcodes are:

001
DO instruction on line line_number requires matching END

002
SELECT instruction on line line_number requires matching END

003
THEN on line line_number must be followed by an instruction

004
ELSE on line line_number must be followed by an instruction

005
LOOP instruction on line line_number requires matching END

901
OTHERWISE on line line_number requires matching END

C.1.12. Error 15 - Invalid hexadecimal or binary string
Explanation:

Appendix C. Error Numbers and Messages

678

Hexadecimal strings must not have leading or trailing whitespace characters and whitespace can
only be embedded at byte boundaries. Only the digits 0-9 and the letters a-f and A-F are allowed. The
following are valid hexadecimal strings:

 '13'x
 'A3C2 1c34'x
 '1de8'x

Binary strings can have whitespace only at the boundaries of groups of four binary digits. Only the
digits 0 and 1 are allowed. These are valid binary strings:

 '1011'b
 '110 1101'b
 '101101 11010011'b

You might have mistyped one of the digits, for example, typing a letter O instead of the number 0. Or
you might have used the one-character symbol X or B (the name of the variable X or B, respectively)
after a literal string when the string is not intended as a hexadecimal or binary specification. In this
case, use the explicit concatenation operator (||) to concatenate the string to the value of the symbol.

The associated subcodes are:

001
Incorrect location of whitespace character in position position in hexadecimal string

002
Incorrect location of whitespace character in position position in binary string

003
Only 0-9, a-f, A-F, and whitespace characters are valid in a hexadecimal string; found "character"

004
Only 0, 1, and whitespace characters are valid in a binary string; found "character"

C.1.13. Error 16 - Label not found
Explanation:

A SIGNAL instruction has been executed or an event for which a trap was set with SIGNAL ON has
occurred, and the language processor could not find the label specified. You might have mistyped the
label or forgotten to include it.

The associated subcodes are:

001
Label "label_name" not found

C.1.14. Error 17 - Unexpected PROCEDURE
Explanation:

Error 18 - THEN expected

679

A PROCEDURE instruction was encountered at an incorrect position. This could occur because
no internal routines are active or because the PROCEDURE instruction was not the first instruction
processed after the CALL instruction or function call. One cause for this error is dropping through to an
internal routine, rather than calling it with a CALL instruction or a function call.

The associated subcodes are:

001
PROCEDURE is valid only when it is the first instruction executed after an internal CALL or
function invocation

901
INTERPRET data must not contain PROCEDURE

C.1.15. Error 18 - THEN expected
Explanation:

A THEN clause must follow each REXX IF or WHEN clause. The language processor found another
clause before it found a THEN clause.

The associated subcodes are:

001
IF instruction on line line_number requires matching THEN clause

002
WHEN instruction on line line_number requires matching THEN clause

C.1.16. Error 19 - String or symbol expected
Explanation:

A symbol or string was expected after the CALL or SIGNAL keywords but none was found. You might
have omitted the string or symbol or inserted a special character (such as a parenthesis).

The associated subcodes are:

001
String or symbol expected after ADDRESS keyword

002
String or symbol expected after CALL keyword

003
String or symbol expected after NAME keyword

004
String or symbol expected after SIGNAL keyword

006
String or symbol expected after TRACE keyword

007
String or symbol expected after PARSE keyword

900
message

Appendix C. Error Numbers and Messages

680

901
String or symbol expected after ::CLASS keyword

902
String or symbol expected after ::METHOD keyword

903
String or symbol expected after ::ROUTINE keyword

904
String or symbol expected after ::REQUIRES keyword

905
String expected after EXTERNAL keyword

906
String or symbol expected after METACLASS keyword

907
String or symbol expected after SUBCLASS keyword

908
String or symbol expected after INHERIT keyword

909
String or symbol expected after tilde (~)

911
String or symbol expected after superclass colon (:)

912
String or symbol expected after STREAM keyword

913
String or symbol expected after MIXINCLASS keyword

914
String or symbol expected as ::ATTRIBUTE directive name

915
String or symbol expected as ::CONSTANT directive name

916
String or symbol expected as ::CONSTANT value

917
String or symbol expected as DIGITS value

918
String or symbol expected as FUZZ value

919
String or symbol expected as TRACE value

Error 20 - Symbol expected

681

C.1.17. Error 20 - Symbol expected
Explanation:

A symbol is expected after CALL ON, CALL OFF, END, ITERATE, LEAVE, NUMERIC, PARSE,
SIGNAL ON, or SIGNAL OFF. Also, a list of symbols or variable references is expected after DROP,
EXPOSE, and PROCEDURE EXPOSE. Either there was no symbol when one was required or the
language processor found another token.

The associated subcodes are:

900
message

901
Symbol expected after DROP keyword

902
Symbol expected after EXPOSE keyword

903
Symbol expected after PARSE keyword

904
Symbol expected after PARSE VAR

905
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "symbol"

906
Symbol expected after "(" of a variable reference

907
Symbol expected after LEAVE keyword

908
Symbol expected after ITERATE keyword

909
Symbol expected after END keyword

911
Symbol expected after ON keyword

912
Symbol expected after OFF keyword

913
Symbol expected after USE ARG

914
Symbol expected after RAISE keyword

915
Symbol expected after USER keyword

Appendix C. Error Numbers and Messages

682

916
Symbol expected after ::

917
Symbol expected after superclass colon (:)

918
Symbol expected after LABEL keyword

C.1.18. Error 21 - Invalid data on end of clause
Explanation:

A clause such as SELECT or NOP is followed by a token other than a comment.

The associated subcodes are:

900
message

901
Data must not follow the NOP keyword; found "data"

902
Data must not follow the SELECT keyword; found "data"

903
Data must not follow the NAME keyword; found "data"

904
Data must not follow the condition name; found "data"

905
Data must not follow the SIGNAL label name; found "data"

906
Data must not follow the TRACE setting; found "data"

907
Data must not follow the LEAVE control variable name; found "data"

908
Data must not follow the ITERATE control variable name; found "data"

909
Data must not follow the END control variable name; found "data"

911
Data must not follow the NUMERIC FORM specification; found "data"

912
Data must not follow the GUARD OFF specification; found "data"

913
Data must not follow the ::CONSTANT value; found "data"

Error 22 - Invalid character string

683

C.1.19. Error 22 - Invalid character string
Explanation:

A literal string contains character codes that are not valid. This might be because some characters
are not possible, or because the character set is extended and certain character combinations are not
allowed.

The associated subcodes are:

001
Incorrect character string "character_string" ('hex_string'X)

900
message

901
Incorrect double-byte character

C.1.20. Error 23 - Invalid data string
Explanation:

A data string (that is, the result of an expression) contains character codes that are not valid. This
might be because some characters are not possible, or because the character set is extended and
certain character combinations are not allowed.

The associated subcodes are:

001
Incorrect data string "string" ('hex_string'X)

900
message

C.1.21. Error 24 - Invalid TRACE request
Explanation:

This message is issued when:
• The option on a TRACE instruction or the argument to the built-in function does not start with A, C,

E, F, I, L, N, O, or R.

• In interactive debugging, you entered a number that is not a whole number.

The associated subcodes are:

001
TRACE request letter must be one of "ACEFILNOR"; found "value"

901
Numeric TRACE requests are valid only from interactive debugging

C.1.22. Error 25 - Invalid subkeyword found
Explanation:

Appendix C. Error Numbers and Messages

684

An unexpected token was found at his position of an instruction where a particular subkeyword was
expected. For example, in a NUMERIC instruction, the second token must be DIGITS, FUZZ, or
FORM.

The associated subcodes are:

001
CALL ON must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word"

002
CALL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, NOTREADY,
USER, or ANY; found "word"

003
SIGNAL ON must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word"

004
SIGNAL OFF must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOTREADY, NOMETHOD, NOSTRING, NOVALUE, SYNTAX, USER, or ANY; found "word"

011
NUMERIC FORM must be followed by one of the keywords SCIENTIFIC or ENGINEERING; found
"word"

012
PARSE must be followed by one of the keywords ARG, LINEIN, PULL, SOURCE, VALUE, VAR,
or VERSION; found "word"

015
NUMERIC must be followed by one of the keywords DIGITS, FORM, or FUZZ; found "word"

017
PROCEDURE must be followed by the keyword EXPOSE or nothing; found "word"

900
message

901
Unknown keyword on ::CLASS directive; found "word"

902
Unknown keyword on ::METHOD directive; found "word"

903
Unknown keyword on ::ROUTINE directive; found "word"

904
Unknown keyword on ::REQUIRES directive; found "word"

905
USE must be followed by the keyword ARG; found "word"

Error 25 - Invalid subkeyword found

685

906
RAISE must be followed by one of the keywords ERROR, FAILURE, HALT, LOSTDIGITS,
NOMETHOD, NOSTRING, NOTREADY, NOVALUE, SYNTAX, or USER; found "word"

907
Unknown keyword on RAISE instruction; found "word"

908
Duplicate DESCRIPTION keyword found

909
Duplicate ADDITIONAL or ARRAY keyword found

911
Duplicate RETURN or EXIT keyword found

912
GUARD ON or GUARD OFF must be followed by the keyword WHEN; found "word"

913
GUARD must be followed by the keyword ON or OFF; found "word"

914
CALL ON condition must be followed by the keyword NAME; found "word"

915
SIGNAL ON condition must be followed by the keyword NAME; found "word"

916
Unknown keyword on FORWARD instruction; found "keyword"

917
Duplicate TO keyword found

918
Duplicate ARGUMENTS or ARRAY keyword found

919
Duplicate RETURN or CONTINUE keyword found

921
Duplicate CLASS keyword found

922
Duplicate MESSAGE keyword found

923
SELECT must be followed by the keyword LABEL; found "word"

924
Unknown keyword on ::OPTIONS directive; found "word"

925
Unknown keyword on ::ATTRIBUTE directive; found "word"

Appendix C. Error Numbers and Messages

686

C.1.23. Error 26 - Invalid whole number
Explanation:

An expression was found that did not evaluate to a whole number or is greater than the limit (the
default is 999,999,999 for 32-bit system and 999,999,999,999,999,999 for 64-bit systems):
• The positional patterns in parsing templates (including variable positional patterns)

• The operand to the right of the power operator

• The values of exprr and exprf in the DO instruction

• The values given for DIGITS or FUZZ in the NUMERIC instruction

• The number used in the option of the TRACE setting This error is also raised if the value is not
permitted (for example, a negative repetition count in a DO instruction), or the division performed
during an integer divide or remainder operation does not result in a whole number.

The associated subcodes are:

002
Value of repetition count expression in DO instruction must be zero or a positive whole number;
found "value"

003
Value of FOR expression in DO instruction must be zero or a positive whole number; found "value"

004
Positional pattern of PARSE template must be a whole number; found "value"

005
DIGITS value must be a positive whole number; found "value"

006
FUZZ value must be zero or a positive whole number; found "value"

007
Number used in TRACE setting must be a whole number; found "value"

008
Operand to the right of the power operator (**) must be a whole number; found "value"

011
Result of % operation did not result in a whole number

012
Result of // operation did not result in a whole number

900
message

901
Result of a method call did not result in a whole number; found "value"

902
Result of a COMPARETO method call did not result in a whole number; found "value"

Error 27 - Invalid DO syntax

687

903
Result of a COMPARE method call did not result in a whole number; found "value"

C.1.24. Error 27 - Invalid DO syntax
Explanation:

A syntax error was found in the DO instruction. You probably used BY, TO, FOR, WHILE, or UNTIL
twice, used a WHILE and an UNTIL, or used BY, TO, or FOR when there is no control variable
specified.

The associated subcodes are:

001
WHILE and UNTIL keywords cannot be used on the same DO loop

901
Incorrect data following FOREVER keyword on the DO loop; found "data"

902
DO keyword keyword can be specified only once

C.1.25. Error 28 - Invalid LEAVE or ITERATE
Explanation:

A LEAVE or ITERATE instruction was found at an incorrect position. Either no loop was active, or
the name specified on the instruction did not match the control variable of any active loop. Note that
internal routine calls and the INTERPRET instruction protect DO loops by making them inactive.
Therefore, for example, a LEAVE instruction in a subroutine cannot affect a DO loop in the calling
routine. You probably tried to use the SIGNAL instruction to transfer control within or into a loop.
Because a SIGNAL instruction ends all active loops, any ITERATE or LEAVE instruction causes this
message.

The associated subcodes are:

001
LEAVE is valid only within a repetitive loop or labeled block instruction

002
ITERATE is valid only within a repetitive loop

003
Symbol following LEAVE ("symbol") must either match the label of a current loop or block
instruction.

004
Symbol following ITERATE ("symbol") must either match the label of a current loop or be omitted

005
Symbol following ITERATE ("symbol") does not match a repetitive block instruction

C.1.26. Error 29 - Environment name too long
Explanation:

Appendix C. Error Numbers and Messages

688

The environment name specified on the ADDRESS instruction is longer than permitted for the system
under which the interpreter is running.

The associated subcodes are:

001
Environment name exceeds limit characters; found "environment_name"

C.1.27. Error 30 - Name or string too long
Explanation:

A variable name, label name, literal (quoted) string has exceeded the allowed limit of 250 characters.
The limit for names includes any substitutions. A possible cause of this error is if you use a period (.) in
a name, causing an unexpected substitution. Leaving off an ending quotation mark for a literal string,
or putting a single quotation mark in a string, can cause this error because several clauses can be
included in the string. For example, write the string 'don't' as 'don't' or "don't".

The associated subcodes are:

001
Name exceeds 250 characters: "name"

002
Literal string exceeds 250 characters: "string"

900
message

901
Hexadecimal literal string exceeds 250 characters "string"

902
Binary literal string exceeds 250 characters "string"

C.1.28. Error 31 - Name starts with number or "."
Explanation:

A variable was found whose name begins with a numeric digit or a period. You cannot assign a value
to such a variable because you could then redefine numeric constants.

The associated subcodes are:

001
A value cannot be assigned to a number; found "number"

002
Variable symbol must not start with a number; found "symbol"

003
Variable symbol must not start with a "."; found "symbol"

900
message

Error 33 - Invalid expression result

689

C.1.29. Error 33 - Invalid expression result
Explanation:

The result of an expression was found not to be valid in the context in which it was used.

The associated subcodes are:

001
Value of NUMERIC DIGITS ("value") must exceed value of NUMERIC FUZZ ("value")

002
Value of NUMERIC DIGITS ("value") must not exceed value

900
message

901
Incorrect expression result following VALUE keyword of ADDRESS instruction

902
Incorrect expression result following VALUE keyword of SIGNAL instruction

903
Incorrect expression result following VALUE keyword of TRACE instruction

904
Incorrect expression result following SYNTAX keyword of RAISE instruction

C.1.30. Error 34 - Logical value not 0 or 1
Explanation:

An expression was found in an IF, WHEN, DO WHILE, or DO UNTIL phrase that did not result in a 0
or 1. Any value operated on by a logical operator must result in a 0 or 1. For example, the phrase If
result then exit rc fails if result has a value other than 0 or 1.

The associated subcodes are:

001
Value of expression following IF keyword must be exactly "0" or "1"; found "value"

002
Value of expression following WHEN keyword must be exactly "0" or "1"; found "value"

003
Value of expression following WHILE keyword must be exactly "0" or "1"; found "value"

004
Value of expression following UNTIL keyword must be exactly "0" or "1"; found "value"

005
Value of expression to the left of the logical operator "operator" must be exactly "0" or "1"; found
"value"

006
Value of logical list expression element must be exactly "0" or "1"; found "value"

Appendix C. Error Numbers and Messages

690

900
message

901
Logical value must be exactly "0" or "1"; found "value"

902
Value of expression following GUARD keyword must be exactly "0" or "1"; found "value"

903
Authorization return value must be exactly "0" or "1"; found "value"

904
Property logical value must be exactly "0", "1", "true", or "false"; found "value"

C.1.31. Error 35 - Invalid expression
Explanation:

An expression contains a grammatical error. Possible causes:
• An expression is missing when one is required

• You ended an expression with an operator

• You specified, in an expression, two operators next to one another with nothing in between them

• You did not specify a right parenthesis when one was required

• You used special characters (such as operators) in an intended character expression without
enclosing them in quotation marks

The associated subcodes are:

001
Incorrect expression detected at "token"

900
message

901
Prefix operator "operator" is not followed by an expression term

902
Missing conditional expression following IF keyword

903
Missing conditional expression following WHEN keyword

904
Missing initial expression for DO control variable

905
Missing expression following BY keyword

906
Missing expression following TO keyword

Error 35 - Invalid expression

691

907
Missing expression following FOR keyword

908
Missing expression following WHILE keyword

909
Missing expression following UNTIL keyword

911
Missing expression following OVER keyword

912
Missing expression following INTERPRET keyword

913
Missing expression following OPTIONS keyword

914
Missing expression following VALUE keyword of an ADDRESS instruction

915
Missing expression following VALUE keyword of a SIGNAL instruction

916
Missing expression following VALUE keyword of a TRACE instruction

917
Missing expression following VALUE keyword of a NUMERIC FORM instruction

918
Missing expression following assignment instruction

919
Operator "operator" is not followed by an expression term

921
Missing expression following GUARD keyword

922
Missing expression following DESCRIPTION keyword of a RAISE instruction

923
Missing expression following ADDITIONAL keyword of a RAISE instruction

924
Missing "(" on expression list of the ARRAY keyword

925
Missing expression following TO keyword of a FORWARD instruction

926
Missing expression following ARGUMENTS keyword of a FORWARD instruction

927
Missing expression following MESSAGE keyword of a FORWARD instruction

Appendix C. Error Numbers and Messages

692

928
Missing expression following CLASS keyword of a FORWARD instruction

929
Missing expression in logical expression list

930
Missing expression following "=" token of a USE STRICT ARG instruction

931
Missing expression following (of parse template

932
Missing expression for calculated CALL name

C.1.32. Error 36 - Unmatched "(" or "[" in expression
Explanation:

A matched parenthesis or bracket was found within an expression. There are more left parentheses
than right parentheses or more left brackets than right brackets. To include a single parenthesis in a
command, enclose it in quotation marks.

The associated subcodes are:

900
message

901
Left parenthesis "(" in position position on line line_number requires a corresponding right
parenthesis ")"

902
Square bracket "[" in position position on line line_number requires a corresponding right square
bracket "]"

C.1.33. Error 37 - Unexpected ",", ")", or "]"
Explanation:

Either a comma was found outside a function invocation, or there are too many right parentheses or
right square brackets in an expression. To include a comma in a character expression, enclose it in
quotation marks. For example, write the instruction:

 Say Enter A, B, or C

as follows:

 Say 'Enter A, B, or C'

The associated subcodes are:

001
Unexpected ","

Error 38 - Invalid template or pattern

693

002
Unmatched ")" in expression

900
message

901
Unexpected "]"

C.1.34. Error 38 - Invalid template or pattern
Explanation:

A special character that is not allowed within a parsing template (for example, "%") has been found, or
the syntax of a variable pattern is incorrect (that is, no symbol was found after a left parenthesis). This
message is also issued if you omit the WITH subkeyword in a PARSE VALUE instruction.

The associated subcodes are:

001
Incorrect PARSE template detected at "column_position"

002
Incorrect PARSE position detected at "column_position"

003
PARSE VALUE instruction requires WITH keyword

900
message

901
Missing PARSE relative position

C.1.35. Error 39 - Evaluation stack overflow
Explanation:

The expression is too complex to be evaluated by the language processor.

C.1.36. Error 40 - Incorrect call to routine
Explanation:

An incorrect call to a routine was found. Possible causes:
• You passed incorrect data (arguments) to the built-in or external routine.

• You passed too many arguments to the built-in, external, or internal routine.

• The external routine called was not compatible with the language processor.

If you did not try to call a routine, you might have a symbol or a string adjacent to a "(" when you
meant it to be separated by a blank or other operator. The language processor would treat this as a
function call. For example, write TIME(4+5) as follows: TIME*(4+5)

The associated subcodes are:

Appendix C. Error Numbers and Messages

694

001
External routine "routine" failed

003
Not enough arguments in invocation of routine; minimum expected is number

004
Too many arguments in invocation of routine; maximum expected is number

005
Missing argument in invocation of routine; argument argument_number is required

011
function_name argument argument_number must be a number; found "value"

012
function_name argument argument_number must be a whole number; found "value"

013
function_name argument argument_number must be zero or positive; found "value"

014
function_name argument argument_number must be positive; found "value"

019
function_name argument 2, "value", is not in the format described by argument 3, "value"

021
function_name argument argument_number must not be a null string

022
function_name argument argument_number must be a single character or null; found "value"

023
function_name argument argument_number must be a single character; found "value"

024
function_name argument argument_number must be a binary string; found "value"

025
function_name argument argument_number must be a hexadecimal string; found "value"

026
function_name argument argument_number must be a valid symbol; found "value"

027
function_name argument 1 must be a valid stream name; found "value"

029
function_name conversion to format "value" is not allowed

032
RANDOM difference between argument 1 ("value") and argument 2 ("value") must not exceed
999,999,999

Error 40 - Incorrect call to routine

695

033
RANDOM argument 1 ("argument") must be less than or equal to argument 2 ("argument")

034
SOURCELINE argument 1 ("argument") must be less than or equal to the number of lines in the
program (argument)

035
X2D argument 1 cannot be expressed as a whole number; found "value"

043
function_name argument number must be a single non-alphanumeric character or the null string;
found "value"

044
function_name argument number, "value", is a format incompatible with the separator specified in
argument number

900
message

901
Result returned by routine is longer than length: "value"

902
function_name argument argument_number must not exceed the whole number limit.

903
function_name argument argument_number must be in the range 0-99; found "value"

904
function_name argument argument_number must be one of values; found "value"

905
TRACE setting letter must be one of "ACEFILNOR"; found "value"

912
function_name argument argument_number must be a single-dimensional array; found "value"

913
function_name argument argument_number must have a string value; found "value"

914
Unknown VALUE function variable environment selector; found "value"

915
function_name cannot be used with QUEUE:

916
Cannot read from a write-only property.

917
Cannot write to a read-only property or typelib element.

918
Invalid native function signature specification

Appendix C. Error Numbers and Messages

696

919
Argument argument must have a stem object or stem name value; found "value"

C.1.37. Error 41 - Bad arithmetic conversion
Explanation:

A term in an arithmetic expression is not a valid number or has an exponent outside the allowed range
of whole number range.

You might have mistyped a variable name, or included an arithmetic operator in a character
expression without putting it in quotation marks.

The associated subcodes are:

001
Nonnumeric value ("value") used in arithmetic operation

003
Nonnumeric value ("value") used with prefix operator

004
Value of TO expression of DO instruction must be numeric; found "value"

005
Value of BY expression of DO instruction must be numeric; found "value"

006
Value of control variable expression of DO instruction must be numeric; found "value"

007
Exponent exceeds number digits; found "value"

900
message

901
Value of RAISE instruction SYNTAX expression must be numeric; found "value"

C.1.38. Error 42 - Arithmetic overflow/underflow
Explanation:

The result of an arithmetic operation requires an exponent that is greater than the platform limit of nine
digits.

This error can occur during the evaluation of an expression (often as a result of trying to divide a
number by 0) or while stepping a DO loop control variable.

The associated subcodes are:

001
Arithmetic overflow detected at: "valueoperatorvalue"

002
Arithmetic underflow detected at: "valueoperatorvalue"

Error 43 - Routine not found

697

003
Arithmetic overflow; divisor must not be zero

900
message

901
Arithmetic overflow; exponent ("exponent") exceeds number digits

902
Arithmetic underflow; exponent ("exponent") exceeds number digits

903
Arithmetic underflow; zero raised to a negative power

C.1.39. Error 43 - Routine not found
Explanation:

A function has been invoked within an expression or a subroutine has been invoked by a CALL, but it
cannot be found. Possible reasons:
• The specified label is not in the program

• It is not the name of a built-in function

• The language processor could not locate it externally

Check if you mistyped the name.

If you did not try to call a routine, you might have put a symbol or string adjacent to a "(" when you
meant it to be separated by a blank or another operator. The language processor then treats it as a
function call. For example, write the string 3(4+5) as 3*(4+5).

The associated subcodes are:

001
Could not find routine "routine"

900
message

901
Could not find routine "routine" for ::REQUIRES

C.1.40. Error 44 - Function or message did not return data
Explanation:

The language processor called an external routine within an expression. The routine seemed to end
without error, but it did not return data for use in the expression.

You might have specified the name of a program that is not intended for use as a REXX function. Call
it as a command or subroutine instead.

The associated subcodes are:

001
No data returned from function "function"

Appendix C. Error Numbers and Messages

698

900
message

C.1.41. Error 45 - No data specified on function RETURN
Explanation:

A REXX program has been called as a function, but returned without passing back any data.

The associated subcodes are:

001
Data expected on RETURN instruction because routine "routine" was called as a function

C.1.42. Error 46 - Invalid variable reference
Explanation:

Within an ARG, DROP, EXPOSE, PARSE, PULL, or PROCEDURE instruction, the syntax of a
variable reference (a variable whose value is to be used, indicated by its name being enclosed in
parentheses) is incorrect. The right parenthesis that must immediately follow the variable name might
be missing or the variable name might be misspelled.

The associated subcodes are:

001
Extra token ("token") found in variable reference list; ")" expected

900
message

901
Missing ")" in variable reference

902
Extra token ("token") found in USE ARG variable reference; "," or end of instruction expected

C.1.43. Error 47 - Unexpected label
Explanation:

A label was used in the expression being evaluated for an INTERPRET instruction or in an expression
entered during interactive debugging.

The associated subcodes are:

001
INTERPRET data must not contain labels; found "label"

C.1.44. Error 48 - Failure in system service
Explanation:

The language processor stopped processing the program because a system service, such as stream
input or output or the manipulation of the external data queue, has failed to work correctly.

The associated subcodes are:

Error 49 - Interpretation error

699

001
Failure in system service: service

900
message

C.1.45. Error 49 - Interpretation error
Explanation:

A severe error was detected in the language processor or execution process during internal self-
consistency checks.

The associated subcodes are:

001
Interpretation error: unexpected failure initializing the interpreter

900
message

C.1.46. Error 88 - Invalid argument
Explanation:

An argument passed to a method, function, or routine was not valid.

The associated subcodes are:

900
message

901
Missing argument; argument argument is required

902
Argument argument must be a number; found "value"

903
Argument argument must be a whole number; found "value"

904
Argument argument must be zero or a positive whole number; found "value"

905
Argument argument must be a positive whole number; found "value"

906
Argument argument must not exceed limit; found "value"

907
Argument argument must be in the range min to max; found "value"

908
Argument argument must not be a null string

909
Argument argument must have a string value

Appendix C. Error Numbers and Messages

700

910
Argument argument is an incorrect pad or character argument; found "value"

911
Argument argument is an incorrect length argument; found "value"

912
Argument argument is an incorrect position argument; found "value"

913
Argument argument must have a single-dimensional array value

914
Argument argument must be of the class class

915
Argument argument could not be converted to type type

916
Argument argument must be one of values; found "value"

917
Argument argument reason

918
Argument argument is not in a valid format; found "value"

919
Argument argument is not in valid pointer format; found "value"

920
Argument argument must have a stem object or stem name value; found "value"

921
Argument argument must be a valid double value; found "value"

922
Too many arguments in invocation; number expected

C.1.47. Error 89 - Variable or message term expected
Explanation:

An instruction was expecting either a single Rexx variable symbol or a message term to be used for an
assignment.

The associated subcodes are:

001
The USE instruction requires a comma-separated list of variables or assignment message terms

002
The PARSE was expecting a variable or a message term.

C.1.48. Error 90 - External name not found
Explanation:

Error 91 - No result object

701

An external class, method, or routine (specified with the EXTERNAL option on a ::CLASS, ::METHOD,
or ::ROUTINE directive, or as a second argument on a NEW message to the Method class) cannot be
found.

The associated subcodes are:

900
message

997
Unable to find external class "class"

998
Unable to find external method "method"

999
Unable to find external routine "routine"

C.1.49. Error 91 - No result object
Explanation:

A message term requires a result object, but the method did not return one.

The associated subcodes are:

900
message

999
Message "message" did not return a result

C.1.50. Error 92 - OLE error
The associated subcodes are:

900
message

901
An unknown OLE error occurred (HRESULT=hresult).

902
Cannot convert OLE VARIANT to REXX object: The conversion of the VARIANT type varianttype
into a REXX object failed.

903
Cannot convert REXX object to OLE VARIANT: The conversion of rexx_object into a VARIANT
failed.

904
The number of elements provided to the method or property is different from the number of
parameters accepted by it.

905
One of the parameters is not a valid VARIANT type.

Appendix C. Error Numbers and Messages

702

906
OLE exception: exc_name

907
The requested method does not exist, or you tried to set the value of a read-only property.

908
One of the parameters could not be coerced to the desired type.

909
One or more of the parameters could not be coerced to the desired type. The first parameter with
incorrect type is argument index.

910
A required parameter was omitted.

911
Could not create OLE instance.

912
The object invoked has disconnected from its clients.

C.1.51. Error 93 - Incorrect call to method
Explanation:

The specified method, built-in function, or external routine exists, but you used it incorrectly.

The associated subcodes are:

900
message

901
Not enough arguments for method; number expected

902
Too many arguments in invocation of method; number expected

903
Missing argument in method; argument argument is required

904
Method argument argument must be a number; found "value"

905
Method argument argument must be a whole number; found "value"

906
Method argument argument must be zero or a positive whole number; found "value"

907
Method argument argument must be a positive whole number; found "value"

908
Method argument argument must not exceed limit; found "value"

Error 93 - Incorrect call to method

703

909
Method argument argument must be in the range 0-99; found "value"

911
Method argument argument must not be null

912
Method argument argument must be a hexadecimal string; found "value"

913
Method argument argument must be a valid symbol; found "value"

914
Method argument argument must be one of arguments; found "value"

915
Method option must be one of "arguments"; found "value"

916
Method argument argument must have a string value

917
Method method does not exist

918
Incorrect list index "index"

919
Incorrect array position "position"

921
Argument missing on binary operator

922
Incorrect pad or character argument specified; found "value"

923
Incorrect length argument specified; found "value"

924
Incorrect position argument specified; found "value"

925
Not enough subscripts for array; number expected

926
Too many subscripts for array; number expected

927
Length must be specified to convert a negative value

928
D2X value must be a valid whole number; found "value"

929
D2C value must be a valid whole number; found "value"

Appendix C. Error Numbers and Messages

704

931
Incorrect location of whitespace character in position position in hexadecimal string

932
Incorrect location of whitespace character in position position in binary string

933
Only 0-9, a-f, A-F, and whitespace characters are valid in a hexadecimal string; character found
"character"

934
Only 0, 1, and whitespace characters are valid in a binary string; character found "character"

935
X2D result is not a valid whole number with NUMERIC DIGITS digits

936
C2D result is not a valid whole number with NUMERIC DIGITS digits

937
No more supplier items available

938
Method argument argument must have a string value

939
Method argument argument must have a single-dimensional array value

941
Exponent "exponent" is too large for number spaces

942
Integer part "integer" is too large for number spaces

943
method method target must be a number; found "value"

944
Method argument argument must be a message object

945
Missing argument in message array; argument argument is required

946
A message array must be a single-dimensional array with 2 elements

947
Method SECTION can be used only on single-dimensional arrays

948
Method argument argument must be of the class class

949
The index and value objects must be the same for PUT to an index-only collection

Error 93 - Incorrect call to method

705

951
Incorrect alarm time; found "time"

952
Method argument argument is an array and does not contain all string values

953
Method argument argument could not be converted to type type

954
Method "method" can be used only on a single-dimensional array

956
Element element of the array must be a string

957
Element element of the array must be a subclass of the target object

958
Positioning of transient streams is not valid

959
An array cannot contain more than 99,999,999 elements

961
Method argument argument must have a string value or an array value

962
Invalid Base 64 encoded string.

963
Call to unsupported or unimplemented method

964
Application error: message

965
Method name is ABSTRACT and cannot be directly invoked

966
Incorrect queue index "index"

967
NEW method is not supported for the name class

968
Invalid native method signature specification

969
Method argument argument must have a stem object value; found "value"

970
COPY method is not supported for object object

971
Method argument argument cannot have more than a single dimension

Appendix C. Error Numbers and Messages

706

C.1.52. Error 97 - Object method not found
Explanation:

The object does not have a method with the given name. A frequent cause of this error is an
uninitialized variable.

The associated subcodes are:

001
Object "object" does not understand message "message"

900
message

C.1.53. Error 98 - Execution error
Explanation:

The language processor detected a specific error during execution. The associated error gives the
reason for the error.

The associated subcodes are:

900
message

902
Unable to convert object "object" to a double-float value

903
Unable to load library "name"

904
Abnormal termination occurred

905
Deadlock detected on a guarded method

906
Incorrect object reference detected

907
Object of type "type" was required

908
Metaclass "metaclass" not found

909
Class "class" not found

911
Cyclic inheritance in program "program"

913
Unable to convert object "object" to a single-dimensional array value

Error 98 - Execution error

707

914
Unable to convert object "object" to a string value

915
A message object cannot be sent more than one SEND or START message

916
Message object "object" received an error from message "message"

917
Incorrect condition object received for RAISE OBJECT; found "value"

918
No active condition available for PROPAGATE

919
Unable to convert object "object" to a method

935
REPLY can be issued only once per method invocation

936
RETURN cannot return a value after a REPLY

937
EXIT cannot return a value after a REPLY

938
Message search overrides can be used only from methods of the target object

939
Additional information for SYNTAX errors must be a single-dimensional array of values

941
Unknown error number specified on RAISE SYNTAX; found "number"

942
Class "class" must be a MIXINCLASS for INHERIT

943
Class "class" is not a subclass of "class" base class "class"

944
Class "class" cannot inherit from itself, a superclass, or a subclass ("class")

945
Class "class" has not inherited class "class"

946
FORWARD arguments must be a single-dimensional array of values

947
FORWARD can only be issued in an object method invocation

948
Authorization failure: value

Appendix C. Error Numbers and Messages

708

951
Concurrency not supported

975
Missing array element at position position

976
Stem object default value cannot be another stem object

978
Unable to load method "name" from library "library"

979
Unable to load routine "name" from library "library"

980
Unable to load native routine "name"

981
Target RexxContext is no longer active

982
Library "name" is not compatible with current interpreter version.

983
Execution thread does not match API thread context.

C.1.54. Error 99 - Translation error
Explanation:

An error was detected in the language syntax. The associated error subcode identifies the syntax
error.

The associated subcodes are:

900
message

901
Duplicate ::CLASS directive instruction

902
Duplicate ::METHOD directive instruction

903
Duplicate ::ROUTINE directive instruction

904
Duplicate ::REQUIRES directive instruction

905
CLASS keyword on ::METHOD directive requires a matching ::CLASS directive

907
EXPOSE must be the first instruction executed after a method invocation

Error 99 - Translation error

709

908
INTERPRET data must not contain EXPOSE

909
GUARD must be the first instruction executed after EXPOSE or USE

911
GUARD can only be issued in an object method invocation

912
INTERPRET data must not contain GUARD

913
GUARD instruction did not include references to exposed variables

914
INTERPRET data must not contain directive instructions

915
INTERPRET data must not contain USE

916
Unrecognized directive instruction

917
Incorrect external directive name "method"

918
USE ARG requires a "," between variable names; found "token"

919
REPLY can only be issued in an object method invocation

921
Incorrect program line in method source array

922
::REQUIRES directives must appear before other directive instructions

923
INTERPRET data must not contain FORWARD

924
INTERPRET data must not contain REPLY

925
An ATTRIBUTE method name must be a valid variable name; found "name"

926
Incorrect class external; too many parameters

927
"classname" is not a valid metaclass

928
Incorrect class external; class name missing or invalid

Appendix C. Error Numbers and Messages

710

929
Incorrect class external; invalid class server "servername"

930
The "..." argument marker can only appear at the end of the argument list

931
Duplicate ::ATTRIBUTE directive instruction

932
Duplicate ::CONSTANT directive instruction

933
Abstract methods cannot have a method body

934
Attribute methods cannot have a method body

935
External attributes cannot have a method body

936
External methods cannot have a method body

937
Attribute methods without a SET or GET designation cannot have a method body

938
Constant methods cannot have a method body

939
External routines cannot have a method body

940
Abstract attributes cannot have a method body

C.2. RXSUBCOM Utility Program
RXSUBCOM issues the following errors:

C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is
incorrect.
Explanation:

RXSUBCOM REGISTER requires the following parameters:

RXSUBCOM REGISTER Environment_Name Dll_Name Procedure_Name
 Environment_Name

is the name of the subcommand handler.

 . Dll_Name
is the name of the file containing the subcommand handler routine.

 . Procedure_Name
is the name of the procedure that REXX calls as a subcommand handler.

Error 117 - The RXSUBCOM parameter DROP is incorrect.

711

C.2.2. Error 117 - The RXSUBCOM parameter DROP is incorrect.
Explanation:

RXSUBCOM DROP requires that the subcommand handler name be specified.

RXSUBCOM DROP Environment_Name [Dll_Name]
 Environment_Name

is the name of the subcommand handler.

 . Dll_Name
is the name of the file containing the subcommand handler routine (optional).

C.2.3. Error 118 - The RXSUBCOM parameter LOAD is incorrect.
Explanation:

RXSUBCOM LOAD requires that the subcommand handler name be specified.

RXSUBCOM LOAD Environment_Name [Dll_Name]
 Environment_Name

is the name of the subcommand handler.

 . Dll_Name
is the name of the file containing the subcommand handler routine (optional).

C.2.4. Error 125 - The RXSUBCOM parameter QUERY is incorrect.
Explanation:

RXSUBCOM QUERY requires the environment name be specified.

RXSUBCOM QUERY Environment_Name [Dll_Name]
 Environment_Name

is the name of the subcommand handler.

 . Dll_Name
is the name of the file containing the subcommand handler routine (optional).

C.3. RXQUEUE Utility Program
RXQUEUE issues the following errors:

C.3.1. Error 119 - The REXX queuing system is not initialized.
Explanation:

The queuing system requires a housekeeping program to run. This program usually runs under the
Presentation Manager shell. The program is not running.

C.3.2. Error 120 - The size of the data is incorrect.
Explanation:

The data supplied to the RXQUEUE command is too long. The RXQUEUE program accepts data
records containing 0 - 65472 bytes. A record exceeded the allowable limits.

Appendix C. Error Numbers and Messages

712

C.3.3. Error 121 - Storage for data queues is exhausted.
Explanation:

The queuing system is out of memory. No more storage is available to store queued data.

C.3.4. Error 122 - The name %1 is not a valid queue name.
Explanation:

The queue name contains an invalid character. Only the following characters can appear in queue
names:

 'A' .. 'Z', '0' .. '9', '.', '!', '?', '_'

C.3.5. Error 123 - The queue access mode is not correct.
Explanation:

An internal error occurred in RXQUEUE. The RXQUEUE program tried to access a queue with an
incorrect access mode. Correct access modes are LIFO and FIFO.

C.3.6. Error 124 - The queue %1 does not exist.
Explanation:

The command attempted to access a nonexistent queue.

C.3.7. Error 131 - The syntax of the command is incorrect

C.3.8. Error 132 - System error occurred while processing the
command

C.4. RexxC Utility Program
When RexxC encounters a syntax error in a Rexx program while tokenizing or syntax checking it,
RexxC returns the negated ooRexx error code. In addition, RexxC issues the following errors:

C.4.1. Error 127 - The REXXC command parameters are incorrect.
Explanation:

The REXXC utility was invoked with zero or more than three parameters. REXXC accepts the
following parameters:
• To check the syntax of a REXX program: REXXC Program_name [-s]

• To convert a REXX program into a sourceless executable file: REXXC Program_name
Output_file_name [-s]

• The -s option will suppress the copyright banner.

Error 128 - Output file name must be different from input file name.

713

C.4.2. Error 128 - Output file name must be different from input file
name.

C.4.3. Error 129 - SYNTAX: REXXC InProgramName
[OutProgramName] [/S]

C.4.4. Error 130 - Without OutProgramName REXXC only performs a
syntax check

C.4.5. Error 133 - SYNTAX: REXXC InProgramName
[OutProgramName] [-s]

714

715

Appendix D. Notices
Any reference to a non-open source product, program, or service is not intended to state or imply that
only non-open source product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any Rexx Language Association (RexxLA) intellectual
property right may be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-open source product, program, or service.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-open source products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. RexxLA has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims related to
non-RexxLA packages. Questions on the capabilities of non-RexxLA packages should be addressed
to the suppliers of those products.

All statements regarding RexxLA's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

D.1. Trademarks
Open Object Rexx™ and ooRexx™ are trademarks of the Rexx Language Association.

The following terms are trademarks of the IBM Corporation in the United States, other countries, or
both:

1-2-3
AIX
IBM
Lotus
OS/2
S/390
VisualAge

AMD is a trademark of Advance Micro Devices, Inc.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the Unites States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Appendix D. Notices

716

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

D.2. Source Code For This Document
The source code for this document is available under the terms of the Common Public License v1.0
which accompanies this distribution and is available in the appendix Appendix E, Common Public
License Version 1.0. The source code itself is available at http://sourceforge.net/project/
showfiles.php?group_id=119701.

The source code for this document is maintained in DocBook SGML/XML format.

717

Appendix E. Common Public License
Version 1.0
THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COMMON
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

E.1. Definitions
"Contribution" means:

1. in the case of the initial Contributor, the initial code and documentation distributed under this
Agreement, and

2. in the case of each subsequent Contributor:
a. changes to the Program, and

b. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by that
particular Contributor. A Contribution 'originates' from a Contributor if it was added to the Program
by such Contributor itself or anyone acting on such Contributor's behalf. Contributions do not include
additions to the Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents " mean patent claims licensable by a Contributor which are necessarily infringed by
the use or sale of its Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance with this Agreement.

"Recipient" means anyone who receives the Program under this Agreement, including all Contributors.

E.2. Grant of Rights
1. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,

worldwide, royalty-free copyright license to reproduce, prepare derivative works of, publicly
display, publicly perform, distribute and sublicense the Contribution of such Contributor, if any, and
such derivative works, in source code and object code form.

2. Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive,
worldwide, royalty-free patent license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of the Contribution and
the Program if, at the time the Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution. No hardware per se is
licensed hereunder.

3. Recipient understands that although each Contributor grants the licenses to its Contributions
set forth herein, no assurances are provided by any Contributor that the Program does not
infringe the patent or other intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other entity based on infringement

Appendix E. Common Public License Version 1.0

718

of intellectual property rights or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to secure any other
intellectual property rights needed, if any. For example, if a third party patent license is required
to allow Recipient to distribute the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

4. Each Contributor represents that to its knowledge it has sufficient copyright rights in its
Contribution, if any, to grant the copyright license set forth in this Agreement.

E.3. Requirements
A Contributor may choose to distribute the Program in object code form under its own license
agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and

2. its license agreement:

a. effectively disclaims on behalf of all Contributors all warranties and conditions, express and
implied, including warranties or conditions of title and non-infringement, and implied warranties
or conditions of merchantability and fitness for a particular purpose;

b. effectively excludes on behalf of all Contributors all liability for damages, including direct,
indirect, special, incidental and consequential damages, such as lost profits;

c. states that any provisions which differ from this Agreement are offered by that Contributor
alone and not by any other party; and

d. states that source code for the Program is available from such Contributor, and informs
licensees how to obtain it in a reasonable manner on or through a medium customarily used
for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and

2. a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that
reasonably allows subsequent Recipients to identify the originator of the Contribution.

E.4. Commercial Distribution
Commercial distributors of software may accept certain responsibilities with respect to end users,
business partners and the like. While this license is intended to facilitate the commercial use of the
Program, the Contributor who includes the Program in a commercial product offering should do so
in a manner which does not create potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor ("Commercial Contributor")
hereby agrees to defend and indemnify every other Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from claims, lawsuits and other legal
actions brought by a third party against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Contributor in connection with its distribution of the Program in
a commercial product offering. The obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In order to qualify, an Indemnified

No Warranty

719

Contributor must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow
the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the defense
and any related settlement negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product
X. That Contributor is then a Commercial Contributor. If that Commercial Contributor then makes
performance claims, or offers warranties related to Product X, those performance claims and
warranties are such Commercial Contributor's responsibility alone. Under this section, the Commercial
Contributor would have to defend claims against the other Contributors related to those performance
claims and warranties, and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

E.5. No Warranty
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON
AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF
TITLE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Each Recipient is solely responsible for determining the appropriateness of using and distributing the
Program and assumes all risks associated with its exercise of rights under this Agreement, including
but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or
loss of data, programs or equipment, and unavailability or interruption of operations.

E.6. Disclaimer of Liability
EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE
OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

E.7. General
If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect
the validity or enforceability of the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum extent necessary to make such
provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent applicable to
software (including a cross-claim or counterclaim in a lawsuit), then any patent licenses granted by
that Contributor to such Recipient under this Agreement shall terminate as of the date such litigation
is filed. In addition, if Recipient institutes patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program with
other software or hardware) infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to comply with any of the material
terms or conditions of this Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as reasonably practicable.

Appendix E. Common Public License Version 1.0

720

However, Recipient's obligations under this Agreement and any licenses granted by Recipient relating
to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid
inconsistency the Agreement is copyrighted and may only be modified in the following manner.
The Agreement Steward reserves the right to publish new versions (including revisions) of this
Agreement from time to time. No one other than the Agreement Steward has the right to modify
this Agreement. IBM is the initial Agreement Steward. IBM may assign the responsibility to serve
as the Agreement Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including Contributions) may always be
distributed subject to the version of the Agreement under which it was received. In addition, after a
new version of the Agreement is published, Contributor may elect to distribute the Program (including
its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property of any Contributor under this
Agreement, whether expressly, by implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of
the United States of America. No party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives its rights to a jury trial in any
resulting litigation.

721

Appendix F. Revision History
Revision 0-0 Tue Aug 7 2012 David Ashley

Initial creation of book by publican

722

723

Index

Symbols
% (integer division operator), 20, 602
% method, 144, 360
& (AND logical operator) operator, 21
& method, 146
&& (exclusive OR operator), 21
&& method, 147
* (multiplication operator), 20, 602
* method, 144, 360
** (power operator), 602
** method, 144
- tracing flag, 83
+ (addition operator), 20, 602
+ method, 144, 342, 360
+++ tracing flag, 83
, (comma)

as a special character, 15
as continuation character, 17
in CALL instruction, 45
in function calls, 437
in parsing template list, 44, 596
separator of arguments, 45, 437

- (subtraction operator), 20, 602
- method, 144, 342, 360
. (period)

as placeholder in parsing, 585
causing substitution in variable names, 32
in numbers, 601

.CONTEXT, 434

.DEBUGINPUT object, 433

.ENDOFLINE object, 431

.ENVIRONMENT object, 431

.ERROR object, 433

.FALSE object, 431

.INPUT object, 433

.LINE object, 434

.LOCAL object, 432

.METHODS Directory, 434

.Nil object, 431

.OUTPUT object, 433

.ROUTINES Directory, 435

.RS (return code)
not set during interactive debug, 649

.RS object, 435

.STDERR object, 433

.STDIN object, 434

.STDOUT object, 434

.STDQUE object, 434

.TRACEOUTPUT object, 433

.TRUE object, 431
/ (division operator), 20, 602

/ method, 144, 360
// (remainder operator), 602
// method, 144, 360
: (colon)

as a special character, 15
in a label, 26

:: ATTRIBUTE directive, 89
:: METHOD directive, 94
:: REQUIRES directive, 98
:: ROUTINE directive, 99
::CLASS directive, 91
::CONSTANT directive, 93
::OPTIONS directive, 96

DIGITS option, 97
FORM option, 97
FUZZ option, 97
TRACE option, 97

; semicolon
as a special character, 15

< (less than operator), 20
< method, 145, 367
<< (strictly less than operator), 20, 21
<< method, 146, 367
<<= (strictly less than or equal operator), 21
<<= method, 146, 368
<= (less than or equal operator), 21
<= method, 145, 367
<> (less than or greater than operator), 21
<> method

of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

= (equal sign)
assignment operator, 28
equal operator, 20
immediate debug command, 649
in DO instruction, 48
in LOOP instruction, 61
in parsing template, 588

= method
of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

== (strictly equal operator), 20, 21, 605
== method

of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 146

> (greater than operator), 20
> method, 145, 367
>.> tracing flag, 83

Index

724

>< (greater than or less than operator), 20
>< method

of Object class, 121
of Orderable class, 367, 367
of Pointer class, 417
of String class, 145, 145

>= (greater than or equal operator), 21
>= method, 145, 367
>=> tracing flag, 83
>> (strictly greater than operator), 20, 21
>> method, 146, 367
>>= (strictly greater than or equal operator), 21
>>= method, 146, 368
>>> tracing flag, 83
>A> tracing flag, 83
>E> tracing flag, 84
>F> tracing flag, 84
>I> tracing flag, 83
>L> tracing flag, 84
>M> tracing flag, 84
>O> tracing flag, 84
>P> tracing flag, 84
>V> tracing flag, 84
? prefix on TRACE option, 82
[] method

of Array class, 249
of Collection class, 233
of Directory class, 275
of IdentityTable class, 325
of List class, 283
of Queue class, 295
of Relation class, 303
of Stem class, 315
of Table class, 320

[]= method
of Array class, 249
of Bag class, 264
of Collection class, 234
of Directory class, 276
of IdentityTable class, 325
of List class, 283
of Properties class, 291
of Queue class, 295
of Relation class, 304
of Set class, 311
of Stem class, 315
of Table class, 321

\ (NOT operator), 21
\ method, 146
\< (not less than operator), 21
\< method, 145, 367
\<< (strictly not less than operator), 21
\<< method, 146, 368
\= (not equal operator), 20

\= method
of Object class, 121
of Pointer class, 417

\== (not strictly equal operator), 20, 21, 605
\== method, 146, 367

of Object class, 121
of Pointer class, 417

\> (not greater than operator), 21
\> method, 145, 367
\>> (strictly not greater than operator), 21
\>> method, 146, 368
| inclusive OR operator, 21
| method, 147
|| concatenation operator, 19
|| method, 121, 147
~ (tilde or twiddle), 4, 25
~~, 25
¬ (NOT operator), 21
¬< (not less than operator), 21
¬<< (strictly not less than operator), 21
¬= (not equal operator), 20
¬== (not strictly equal operator), 20, 21, 605
¬> (not greater than operator), 21
¬>> (strictly not greater than operator), 21

A
ABBREV function

description, 444
example, 444
using to select a default, 445

abbrev method
of String class, 147

abbreviations with ABBREV function, 444
ABS function

description, 445
example, 445

abs method
of String class, 148

absolute value
finding using the ABS function, 445
finding using the abs method, 148
used with power, 603

absoluteFile method
of File class, 420

absolutePath method
of File class, 421

abstract class, definition, 104
ABSTRACT subkeyword

in an ATTRIBUTE directive, 89
abuttal, 19
action taken when a condition is not trapped, 612
action taken when a condition is trapped, 609,
612
activate method

725

of Class class, 132
active blocks, 60
activity, 619
add external function, 483
addClass method

of Package class, 195
addDays method

of DateTime class, 346
of TimeSpan class, 364

addHours method
of DateTime class, 346
of TimeSpan class, 364

addition operator, 20
ADDITIONAL subkeyword

in a RAISE instruction, 72
addMicroseconds method

of DateTime class, 347
of TimeSpan class, 365

addMinutes method
of DateTime class, 346
of TimeSpan class, 364

addPackage method
of Package class, 195

addPublicClass method
of Package class, 196

addPublicRoutine method
of Package class, 196

ADDRESS function
description, 445
determining current environment, 445
example, 446

ADDRESS instruction
description, 41
example, 42
issuing commands to, 41
settings saved during subroutine calls, 47

address setting, 43, 47
addRoutine method

of Package class, 196
addSeconds method

of DateTime class, 347
of TimeSpan class, 364

addWeeks method
of DateTime class, 346
of TimeSpan class, 363

addYears method
of DateTime class, 345

Alarm class, 354
algebraic precedence, 21
allAt method

of Relation class, 304
allIndex method

of Relation class, 304
allIndexes method

of Array class, 249
of Collection class, 234
of Directory class, 276
of IdentityTable class, 325
of List class, 284
of Queue class, 295
of Relation class, 304
of Stem class, 316
of Supplier class, 404
of Table class, 321

allItems method
of Array class, 250
of Collection class, 234
of Directory class, 276
of IdentityTable class, 326
of List class, 284
of Queue class, 296
of Relation class, 304
of Stem class, 316
of Supplier class, 404
of Table class, 321

alphabetical character word options in TRACE,
81
alphabetics

checking with dataType, 163
checking with DATATYPE, 460
used in symbols, 13

alphanumerics
checking with DATATYPE, 460

alphnumerics
checking with dataType, 163

altering
flow within a repetitive loop, 59
special variables, 37
TRACE setting, 502

alternating exclusive scope access, 625
AND, logical operator, 21
ANDing character strings, 149, 449
ANY subkeyword

in a CALL instruction, 44, 609
in a SIGNAL instruction, 78, 609

append method
of Array class, 250
of CircularQueue class, 269
of List class, 284
of MutableBuffer class, 380
of OrderedCollection class, 240
of Queue class, 296

appendAll method
of OrderedCollection class, 240

ARG function
description, 446
example, 446

ARG instruction

Index

726

description, 43
example, 43

ARG option of PARSE instruction, 65
ARG subkeyword

in a PARSE instruction, 43, 64, 594
in a USE instruction, 84

args method
of RexxContext class, 409

arguments
checking with ARG function, 446
of functions, 43, 437
of programs, 43
of subroutines, 43
passing in messages, 25
passing to functions, 437, 438
retrieving with ARG function, 446
retrieving with ARG instruction, 43
retrieving with PARSE ARG instruction, 65

arguments method
of Message class, 202
of StackFrame class, 412

ARGUMENTS subkeyword
in a FORWARD instruction, 52

arithmetic
basic operator examples, 603
comparisons, 605
errors, 606
exponential notation, 604

examples, 604
numeric comparisons example

examples, 606
NUMERIC setting, 63
operator examples, 603
operators, 18, 601, 602
overflow, 607
precision, 602
underflow, 607

array
initialization, 29
setting up, 32

Array class, 245
ARRAY subkeyword

in a FORWARD instruction, 52
in a RAISE instruction, 72

arrayIn method
of InputStream class, 207
of Stream class, 212

arrayOut method
of OutputStream class, 209
of Stream class, 213

assigning data to variables, 65
assignment

description, 27, 28
indicator (=), 28

of compound variables, 32
of stems variables, 29
several assignments, 592

associative storage, 32
at method

of Array class, 250
of Collection class, 234
of Directory class, 276
of IdentityTable class, 326
of List class, 284
of Queue class, 296
of Relation class, 305
of Stem class, 316
of Table class, 321

attribute
creation, 89, 93

ATTRIBUTE subkeyword
in a METHOD directive, 94

available method
of StreamSupplier class, 407
of Supplier class, 404

B
B2X function

description, 447
example, 448

b2x method
of String class, 149

backslash, use of, 15, 21
Bag class, 263
base class for mixins, 104
Base option of DATE function, 462
base64

decodeBase64 method, 165
encodeBase64 method, 166

baseClass method
of Class class, 132

baseDate method
of DateTime class, 348

bash command environment, 42
basic operator examples, 603
BEEP function

description, 448
example, 448

binary
digits, 12
strings

description, 12
implementation maximum, 13
nibbles, 12

to hexadecimal conversion, 149, 447
BITAND function

description, 449
example, 449

727

bitAnd method
of String class, 149

BITOR function
description, 449
example, 450

bitOr method
of String class, 150

bits checked using DATATYPE function, 460
bits checked using dataType method, 163
BITXOR function

description, 450
example, 450

bitXor method
of String class, 150

blanks, 19
adjacent to special character, 8
in parsing, treatment of, 585
removal with STRIP function, 495
removal with strip method, 178

boolean operations, 21
bottom of program reached during execution , 51
bounded buffer, 630
Buffer class, 417
built-in functions

ABBREV, 444
ABS, 445
ADDRESS, 445
ARG, 446
B2X, 447
BEEP, 448
BITAND, 449
BITOR, 449
BITXOR, 450
C2D, 450
C2X, 451
calling, 45
CENTER, 452
CENTRE, 452
CHANGESTR, 452
CHARIN, 453
CHAROUT, 454
CHARS, 455
COMPARE, 456
CONDITION, 456
COPIES, 458
COUNTSTR, 458
D2C, 459
D2X, 459
DATATYPE, 460
DATE, 461
definition, 45
DELSTR, 466
DELWORD, 467
DIGITS, 467

DIRECTORY, 467
ENDLOCAL, 468
ERRORTEXT, 469
FILESPEC, 469
FORM, 470
FORMAT, 470
FUZZ, 472
INSERT, 472
LASTPOS, 473
LEFT, 473
LENGTH, 474
LINEIN, 474
LINEOUT, 475
LINES, 477
LOWER, 478
MAX, 478
MIN, 479
OVERLAY, 479
POS, 480
QUALIFY, 480
QUEUED, 481
RANDOM, 481
REVERSE, 482
RIGHT, 482
RXFUNCADD, 483
RXFUNCDROP, 483
RXFUNCQUERY, 484
RXQUEUE, 484
SETLOCAL, 485
SIGN, 486
SOURCELINE, 486
SPACE, 487
STREAM, 487
STRIP, 495
SUBSTR, 496
SUBWORD, 496
SYMBOL, 497
TIME, 497
TRACE, 502
TRANSLATE, 502
TRUNC, 503
UPPER, 504
USERID, 504
VALUE, 504
VAR, 507
VERIFY, 508
WORD, 509
WORDINDEX, 509
WORDLENGTH, 509
WORDPOS, 510
WORDS, 510
X2B, 511
X2C, 512
X2D, 512

Index

728

XRANGE, 513
built-in object

.CONTEXT object, 434

.DEBUGINPUT object, 433

.ENDOFLINE object, 431

.ENVIRONMENT object, 431

.ERROR object, 433

.FALSE object, 431

.INPUT object, 433

.LINE object, 434

.LOCAL object, 432

.METHODS object, 434

.Nil object, 431

.OUTPUT object, 433

.ROUTINES object, 435

.RS object, 435

.STDERR object, 433

.STDIN object, 434

.STDOUT object, 434

.STDQUE object, 434

.TRACEOUTPUT object, 433

.TRUE object, 431
BY phrase of DO instruction, 48
BY phrase of LOOP instruction, 61
BY subkeyword

in a DO instruction, 47, 663
in a LOOP instruction, 60, 663

C
C2D function

description, 450
example, 451

c2d method
of String class, 151

C2X function
description, 451
example, 452

c2x method
of String class, 152

CALL instruction
description, 44
example, 46

call method
of Routine class, 193

call, recursive, 46
calls to the Security Manager, 633
callWith method

of Routine class, 193
cancel method

of Alarm class, 355
canRead method

of File class, 421
canWrite method

of File class, 422

CASELESS subkeyword
in a PARSE instruction, 64, 593

caselessAbbrev method
of String class, 152

caselessChangeStr method
of MutableBuffer class, 380
of String class, 153

CaselessColumnComparator class, 371
CaselessComparator class, 369
caselessCompare method

of String class, 154
caselessCompareTo method

of String class, 154, 154
caselessCountStr method

of MutableBuffer class, 381, 381
of String class, 155, 155

CaselessDescendingComparator class, 373
caselessEquals method

of String class, 155, 155
caselessLastPos method

of MutableBuffer class, 381, 381
of String class, 156, 156

caselessMatch method
of MutableBuffer class, 381, 381
of String class, 156, 156

caselessMatchChar method
of MutableBuffer class, 382, 382
of String class, 157, 157

caselessPos method
of MutableBuffer class, 382, 382
of String class, 157, 157

caselessWordPos method
of MutableBuffer class, 382
of String class, 158

ceiling method
of String class, 158

CENTER function
description, 452
example, 452

center method
of String class, 159

centering a string
CENTER, 452
CENTRE, 452

CENTRE function
description, 452
example, 452

centre method
of String class, 159

CHANGESTR function
description, 452
example, 453

changeStr method
of MutableBuffer class, 383

729

of String class, 160
changing destination of commands, 41
changing the search order for methods, 111
character

definition, 8
lowercasing using LOWER function, 478
removal with STRIP function, 496
removal with strip method, 178
strings, ANDing, 149, 449
strings, exclusive-ORing, 150, 450
strings, ORing, 150, 449
to decimal conversion, 151, 450
to hexadecimal conversion, 152, 451
uppercasing using UPPER function, 504

character input and output, 639, 650
character input streams, 640
character output streams, 640
CHARIN function

description, 453
example, 453

charIn method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 213

CHARIN method
role in input and output, 640

CHAROUT function
description, 454
example, 455

charOut method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 213

CHAROUT method
role in input and output, 641

CHARS function
description, 455
example, 456

chars method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 214

CHARS method
role in input and output, 640

checking arguments with ARG function, 446
CircularQueue class, 266
civilTime method

of DateTime class, 350
class

Alarm class, 354
Array class, 245
Bag class, 263
Buffer class, 417
CaselessColumnComparator class, 371

CaselessComparator class, 369
CaselessDescendingComparator class, 373
CircularQueue class, 266
Class class, 131
ColumnComparator class, 370
Comparable class, 365
Comparator class, 368
DateTime class, 336
definition, 5
DescendingComparator class, 372
Directory class, 274
File class, 418
IdentityTable class, 324
InputOutputStream class, 210
InputStream class, 206
InvertingComparator class, 375
List class, 281
Message class, 201
Method class, 187
Monitor class, 377
MutableBuffer class, 379
NumericComparator class, 376
Object class, 119
Orderable class, 366
OutputStream class, 208
Package class, 194
Pointer class, 415
Properties class, 289
Queue class, 293
RegularExpression class, 392
Relation class, 302
RexxContext class, 408
RexxQueue class, 398
Routine class, 191
Set class, 310
StackFrame class, 411
Stem class, 313
Stream class, 211
StreamSupplier class, 406
String class, 141
subclasses, 7
superclasses, 7
Supplier class, 403
Table class, 319
TimeSpan class, 356
types

abstract, 104
metaclass, 104
mixin, 104
object, 103

WeakReference class, 414
Class class, 131
class method

of Object class, 121

Index

730

class methods, 103
CLASS subkeyword

in a FORWARD instruction, 52
in a METHOD directive, 94
in an ATTRIBUTE directive, 89

classes method
of Package class, 196

clauses
assignment, 27, 27
commands, 27
continuation of, 17
description, 8, 27, 28
directives, 26
extended assignment, 28
instructions, 26
keyword instructions, 27
labels, 26
message instructions, 27
null, 26

close method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 214

CMD command environment, 42
code page, 8
codes, error, 673
collating sequence using XRANGE, 513
Collection class, 233

organization, 232
Collection classes, 231
COLLECTOR example program, 646
colon

as a special character, 15
as label terminators, 26
in a label, 26

ColumnComparator class, 370
combining string and positional patterns, 597
comma

as a special character, 15
as continuation character, 17
in CALL instruction, 45
in function calls, 437
in parsing template list, 44, 596
separator of arguments, 45, 437

command
alternative destinations, 36
clause, 27
destination of, 41
errors, trapping, 609
issuing to host, 36

command method
of Stream class, 214

COMMAND method, 639
comments, 9

line comment, 9
standard comment, 9

Common Public License, 717
Comparable class, 365
Comparator class, 368
COMPARE function

description, 456
example, 456

compare method
of CaselessColumnComparator class, 372
of CaselessComparator class, 370
of CaselessDescendingComparator class, 374
of ColumnComparator class, 371
of Comparator class, 368
of DescendingComparator class, 373
of InvertingComparator class, 375
of NumericComparator class, 377
of String class, 160

compareTo method
of Comparable class, 366
of DateTime class, 343
of File class, 422
of String class, 160
of TimeSpan class, 361

comparisons
description, 20
numeric, example, 606
of numbers, 20, 605
of strings, 20, 154, 160, 160, 456

completed method
of Message class, 203

compound
symbols, 32
variable

description, 32
setting new value, 30

concatenation
abuttal, 19
as concatenation operator, 19
blank, 19
of strings, 19
operator

||, 15, 19
conceptual overview of parsing, 583
concurrency

alternating exclusive scope access, 625
conditional, 625
default, 621
early reply, 619
GUARD instruction, 54, 625
guarded methods, 625
isGuarded method, 189
message objects, 621
object based, 619

731

setGuarded method, 190
setUnguarded method, 191
SETUNGUARDED method, 625
UNGUARDED option, 625

condition
action taken when not trapped, 612
action taken when trapped, 612
ANY, 609
definition, 609
ERROR, 609
FAILURE, 610
HALT, 610
information, 47

described, 613
LOSTDIGITS, 610
NOMETHOD, 610
NOSTRING, 610
NOTREADY, 610
NOVALUE, 610
saved, 47
saved during subroutine calls, 47
SYNTAX, 611
trap information using CONDITION, 456
trapping of, 609
traps, notes, 611
USER, 611

CONDITION function
description, 456
example, 457

condition method
of RexxContext class, 409

conditional
loops, 48, 61
phrase, 666

conditional concurrency, 625
conditions

raising of, 72
console

reading from with PULL, 70
writing to with SAY, 76

constant symbols, 29
content addressable storage, 32
continuation

character, 17
clauses, 17
example, 17
of data for display, 76

CONTINUE subkeyword
in a FORWARD instruction, 52

control variable, 664
controlled loops, 663
conversion

binary to hexadecimal, 149, 447
character to decimal, 151, 450

character to hexadecimal, 152, 451
conversion functions, 443
decimal to character, 162, 459
decimal to hexadecimal, 162, 459
formatting numbers, 167, 470
hexadecimal to binary, 185, 511
hexadecimal to character, 186, 512
hexadecimal to decimal, 186, 512

COPIES function
description, 458
example, 458

copies method
of String class, 161

copy method
of Object class, 122

copying a string using copies, 161
copying a string using COPIES, 458
count from stream, 454
counting

words in a mutable buffer, 392
words in a string, 185, 510

COUNTSTR function
description, 458
example, 458

countStr method
of MutableBuffer class, 383
of String class, 161

CPL, 717
cr method

of String class, 143
create external data queue, 484
create method

of RexxQueue class, 399
current method

of Monitor class, 378

D
D2C function

description, 459
example, 459

d2c method
of String class, 162

D2X function
description, 459
example, 460

d2x method
of String class, 162

data
abstraction, 7
encapsulation, 4
modularization, 1
objects, 17
terms, 17

DATATYPE function

Index

732

description, 460
example, 461

dataType method
of String class, 163

date and version of the language processor, 67
DATE function

description, 461
example, 464

date method
of DateTime class, 352

DateTime class, 336
day method

of DateTime class, 343
dayMicroseconds method

of DateTime class, 345
dayMinutes method

of DateTime class, 344
dayName method

of DateTime class, 349
days method

of TimeSpan class, 361
Days option of DATE function, 462
daySeconds method

of DateTime class, 345
daysInMonth method

of DateTime class, 353
daysInYear method

of DateTime class, 354
debug input object, 433
debug interactive, 79
decimal

integer, 601
to character conversion, 162, 459
to hexadecimal conversion, 162, 459

decodeBase64 method
of String class, 165

default
character streams, 639
concurrency, 621
environment, 36
search order for methods, 110
selecting with ABBREV function, 444
selecting with abbrev method, 147
selecting with caselessAbbrev method, 152

defaultName method
of Class class, 132
of Object class, 122

define method
of Class class, 133

definedMethods method
of Package class, 197

delayed state
description, 609
of NOTREADY condition, 647

delete class method
of RexxQueue class, 399

delete method
of Array class, 251
of Class class, 133
of File class, 422
of List class, 284
of MutableBuffer class, 383
of OrderedCollection class, 240
of Queue class, 296
of RexxQueue class, 400

deleting
part of a string, 165, 466
words from a mutablebuffer, 384
words from a string, 166, 467

DELSTR function
description, 466
example, 466

delStr method
of String class, 165

delstr method
of MutableBuffer class, 383

DELWORD function
description, 467
example, 467

delWord method
of MutableBuffer class, 384
of String class, 166

derived names of variables, 32
DescendingComparator class, 372
description method

of Stream class, 221
DESCRIPTION subkeyword

in a RAISE instruction, 72
destination method

of Monitor class, 378
difference method

of Bag class, 265
of Collection class, 235
of IdentityTable class, 326
of OrderedCollection class, 240
of Table class, 321

differencemethod
of Relation class, 305

DIGITS function
description, 467
example, 467

digits method
of Package class, 197
of RexxContext class, 409

DIGITS option of NUMERIC instruction, 601
DIGITS subkeyword

in a NUMERIC instruction, 63, 602
dimension method

733

of Array class, 251
dimensions method

of Array class, 252
directives

::ATTRIBUTE, 89
::CLASS, 91
::CONSTANT, 93
::METHOD, 94
::OPTIONS, 96
::REQUIRES, 98
::ROUTINE, 99

Directory class, 274
DIRECTORY function

description, 467
example, 468

disjoint method
of Collection class, 235

division operator, 20
dllfunctions, 515
DO instruction

description, 47
example, 663

drop external function, 483
DROP instruction

description, 49
example, 49

DROP keyword
in a RXSUBCOM command, 657

duration method
of TimeSpan class, 361

dyadic operators, 18
dynamic link library (RexxUtil), 515

E
early reply, 74, 619
elapsed method

of DateTime class, 353
elapsed-time clock

measuring intervals with, 497
saved during subroutine calls, 47

ELSE
as free standing clause, 41

ELSE subkeyword
in an IF instruction, 55

empty method
of Array class, 252
of Directory class, 277
of List class, 285
of Queue class, 297
of Relation class, 305
of RexxQueue class, 400
of Stem class, 316

encapsulation of data, 4
encodeBase64 method

of String class, 166
END

as free standing clause, 41
END clause

specifying control variable, 664
END subkeyword

in a DO instruction, 47
in a LOOP instruction, 60
in a SELECT instruction, 76

ENDLOCAL function
description, 468
example, 468

engineering notation, 605
ENGINEERING subkeyword

in a NUMERIC instruction, 63
enhanced method

of Class class, 134
entry method

of Directory class, 277
environment, 41

addressing of, 42
default, 43
determining current using ADDRESS function,
445

equal
operator, 20
sign

in parsing templates, 587, 588
to indicate assignment, 15, 27

equality, testing of, 20
equals method

of String class, 166
equivalent method

of Collection class, 235
error

definition, 37
during execution of functions, 442
during stream input and output, 647
from commands, 37
messages

list, 673
retrieving with ERRORTEXT, 673

syntax, 673
traceback after, 81
trapping, 609

error codes, 673
error messages and codes, 673
ERROR subkeyword

in a CALL instruction, 44, 609, 614
in a RAISE instruction, 72
in a SIGNAL instruction, 78, 609, 614

errorCondition method
of Message class, 203

ERRORTEXT function

Index

734

description, 469
example, 469

European option of DATE function, 462
europeanDate method

of DateTime class, 348
evaluation of expressions, 18
examples

::ATTRIBUTE directive
EXTERNAL option, 90

::CLASS directive, 92
::METHOD directive, 95

EXTERNAL option, 95
::ROUTINE directive, 99

EXTERNAL option, 100
ABBREV function, 444
abbrev method, 148, 153
ABS function, 445
abs method, 148
ADDRESS function, 446
ADDRESS instruction, 42
allIndexes method, 249
allItems method, 250
append method, 250
ARG function, 446
ARG instruction, 43
arithmetic methods of DateTime class, 343,
361
arithmetic methods of String class, 144
at method, 251
B2X function, 448
b2x method, 149
basic operator examples, 603
BEEP function, 448
BITAND function, 449
bitAnd method, 150
BITOR function, 450
bitOr method, 150
BITXOR function, 450
bitXor method, 151
C2D function, 451
c2d method, 151
C2X function, 452
c2x method, 152
CALL instruction, 46
caselessChangeStr method, 154
caselessCompareTo method, 155
caselessEquals method, 155
caselessLastPos method, 156
caselessMatch method, 157
caselessMatchChar method, 157
caselessPos method, 157
ceiling method, 158
CENTER function, 452
center method, 159

CENTRE function, 452
centre method, 159
CHANGESTR function, 453
changeStr method, 160
CHARIN function, 453
CHAROUT function, 455
CHARS function, 456
COLLECTOR program, 646
combining positional pattern and parsing into
words, 592
combining string and positional patterns, 597
combining string pattern and parsing into
words, 591
command method

OPEN option, 217
QUERY DATETIME option, 218
QUERY EXISTS option, 219
QUERY HANDLE option, 219
SEEK option, 218

COMPARE function, 456
compare method, 154, 160
compareTo method, 161
comparison methods of String class, 145
concatenation methods of String class, 147
CONDITION function, 457
continuation, 17
COPIES function, 458
copies method, 161
copy method, 122
COUNTSTR function, 458
countStr method, 155, 162
D2C function, 459
d2c method, 162
D2X function, 460
d2x method, 163
DATATYPE function, 461
dataType method, 164
DATE function, 464
decodeBase64 method, 165
defaultName method, 133
define method, 133
delete method, 134, 251, 296
DELSTR function, 466
delStr method, 165
DELWORD function, 467
delWord method, 166, 166
DIGITS function, 467
dimension method, 251
DIRECTORY function, 468
DO instruction, 663
DROP instruction, 49
empty method, 252
encodeBase64 method, 166
ENDLOCAL function, 468

735

enhanced method, 134
equals method, 167
ERRORTEXT function, 469
EXIT instruction, 50
exponential notation, 604
EXPOSE instruction, 51
expressions, 22
FILECOPY program, 646
FILESPEC function, 470
fill method, 252
first method, 253, 253
floor method, 167
FORM function, 470
FORMAT function, 471
format method, 168
FORWARD instruction, 53
FUZZ function, 472
GUARD instruction, 54
hasIndex method, 254
hasItem method, 254
id method, 135
IF instruction, 55
index method, 255
inherit method, 135
INSERT function, 472
insert method

of Array class, 247
of List class, 286
of Queue class, 298
of String class, 169

INTERPRET instruction, 57, 57
isEmpty method, 255
items method, 255
ITERATE instruction, 59
last method, 256
LASTPOS function, 473
lastPos method, 170, 385
LEAVE instruction, 60
LEFT function, 474
left method, 170
LENGTH function, 474
length method, 171
line comments, 9
LINEIN function, 475
LINEOUT function, 476
LINES function, 478
logical methods of String class, 147
LOOP instruction, 663
lower function, 478
lower method, 171
makeArray method, 256
match method, 172
matchChar method, 173
MAX function, 479

max method, 173
message instructions, 35
metaclass, 105
method method, 136
methods method, 137
MIN function, 479
min method, 174
mixinClass method, 138
new method, 138
next method, 257
NOP instruction, 62
notify method, 204
numeric comparisons, 606
objectName= method, 125
of Alarm class, 355
of Array class, 262
of Bag class, 266
of CircularQueue class, 273
of Directory class, 281
of Message class, 205
of method, 248, 248
of Monitor class, 379
of program, 646
of Relation class, 309
of Supplier class, 405
open method, 225
operator examples, 603
OVERLAY function, 480
overlay method, 174
PARSE instruction, 67
parsing instructions, 594
parsing multiple strings in a subroutine, 596
period as a placeholder, 585
POS function, 480
pos method, 175, 387
previous method, 258
PROCEDURE instruction, 68
PULL instruction, 70
PUSH instruction, 71
put method, 258
query method, 226
QUEUE instruction, 71
QUEUED function, 481
RAISE instruction, 73
RANDOM function, 481
RegularExpression class, 393, 396, 396, 397
remove method, 259
removeItem method, 259
replaceAt method, 175
REPLY instruction, 74
REVERSE function, 482
reverse method, 176
RIGHT function, 483
right method, 176

Index

736

round method, 176
RXFUNCADD function, 483
RXFUNCDROP function, 483
RXFUNCQUERY function, 484
RXFUNCQUEUE function, 485
RxMessageBox, 521
SAY instruction, 76
section method, 260
seek method, 230
SELECT instruction, 77
set operations

concepts, 331
eliminating duplicates, 332
principals, 332
with duplicates, 334

SETLOCAL function, 486
SIGL, special variable, 615
SIGN function, 486
sign method, 177
SIGNAL instruction, 79
simple templates, parsing, 583
SOURCELINE function, 487
SPACE function, 487
space method, 177
special characters, 16
standard comments, 9
start method, 205
STREAM function, 491, 492
STRIP function, 495
strip method, 178
subClass method, 139
SUBSTR function, 496
subStr method, 179
SUBWORD function, 497
subWord method, 179
subWords method, 180
superClass method, 140
superClasses method, 140
supplier method, 261
SYMBOL function, 497
SysCurPos, 527
SysDriveInfo, 528
SysDriveMap, 529
SysDumpVariables, 530
SysFileCopy, 531
SysFileDelete, 532
SysFileMove, 533
SysFileSearch, 534
SysFileSystemType, 535
SysFileTree, 538
SysGetErrortext, 542
SysGetFileDateTime, 543
SysGetMessage, 544
SysGetMessageX, 545

SysIni, 547
SysMkDir, 554
SysRmDir, 560
SysSearchPath, 561
SysSetDefaultPrinter, 580
SysSetFileDateTime, 562
SysSleep, 565
SysStemCopy, 566
SysStemDelete, 567
SysStemSort, 569
SysTempFileName, 571
SysTextScreenRead, 572
SysTextScreenSize, 572
SysWinGetDefaultPrinter, 580
SysWinGetPrinters, 580
templates containing positional patterns, 588
templates containing string patterns, 586
TIME function, 500, 500
toString method, 262
TRACE function, 502
TRACE instruction, 83
TRANSLATE function, 503
translate method, 181
TRUNC function, 503
trunc method, 181
uninherit method, 141
upper function, 504
upper method, 182
USE instruction, 85
using a variable as a string pattern, 593
using an expression as a positional pattern,
593
VALUE function, 505, 507
VAR function, 508
VERIFY function, 508
verify method, 183, 391
WORD function, 509
word method, 183
WORDINDEX function, 509
wordIndex method, 184
WORDLENGTH function, 510
wordLength method, 184
WORDPOS function, 510
wordPos method, 158, 184
WORDS function, 511
words method, 185
X2B function, 511
x2b method, 185
X2C function, 512
x2c method, 186
X2D function, 512, 513
x2d method, 187
XRANGE function, 513

737

exception conditions saved during subroutine
calls , 47
exclusive OR operator, 21
exclusive-ORing character strings together, 150,
450
executable method

of RexxContext class, 409
of StackFrame class, 412

execution
by language processor, 1
of data, 57

exists method
of File class, 422
of RexxQueue class, 399

EXIT instruction
description, 50
example, 50

EXIT subkeyword
in a RAISE instruction, 72

exponential notation
description, 604
example, 14, 604

exponentiation
description, 604
operator, 20

EXPOSE instruction
description, 51
example, 51

EXPOSE option of PROCEDURE instruction, 68
EXPOSE subkeyword

in a PROCEDURE instruction, 67
exposed variable, 68
expressions

evaluation, 18
examples, 22
parsing of, 66
results of, 18
tracing results of, 81

extended assignments, 28
external character streams, 639
external data queue

counting lines in, 481
creating and deleting queues, 484
description, 641
naming and querying queues, 484
reading from with PULL, 70
RXQUEUE function, 484
writing to with PUSH, 71
writing to with QUEUE, 71

external functions
description, 438
functions

description, 438
search order, 438

external routine, 45
EXTERNAL subkeyword

in a ROUTINE directive, 99
LIBRARY routine, 99
REGISTERED routine, 99

external subroutines, 438
external variables

access with VALUE function, 504
extracting

substring, 179, 496
word from a mutable buffer, 391
word from a string, 183, 509
words from a mutable buffer, 392
words from a string, 185, 510

extracting words with subWord, 179, 389
extracting words with subWords, 180, 389

F
FAILURE subkeyword

in a CALL instruction, 44, 610, 614
in a RAISE instruction, 72
in a SIGNAL instruction, 78, 610, 614

failure, definition, 37
FIFO (first-in/first-out) stacking, 71
File class, 418
file name, extension, path of program, 66
FILECOPY example program, 646
files, 639
FILESPEC function

description, 469
example, 470

fill method
of Array class, 252

findClass method
of Package class, 197

finding
mismatch using caselessCompare, 154
mismatch using compare, 160
mismatch using COMPARE, 456
mismatch using compareTo, 160
string in a MutableBuffer, 387
string in another string, 174, 480
string length, 170, 474
word length, 184, 391, 509

findRoutine method
of Package class, 197

first method
of Array class, 253
of List class, 285
of OrderedCollection class, 241
of Queue class, 297

firstItem method
of Array class, 253
of List class, 285

Index

738

of OrderedCollection class, 241
of Queue class, 297

flag, tracing
-, 83
+++, 83
>.>, 83
>=>, 83
>>>, 83
>A>, 83
>E>, 84
>F>, 84
>I>, 83
>L>, 84
>M>, 84
>O>, 84
>P>, 84
>V>, 84

floor method
of String class, 167

flow of control
unusual, with CALL, 609
unusual, with SIGNAL, 609
with CALL and RETURN construct, 44
with DO construct, 47
with IF construct, 55
with LOOP construct, 60
with SELECT construct, 76

flush method
of Stream class, 221

FOR phrase of DO instruction, 48
FOR phrase of LOOP instruction, 61
FOR subkeyword

in a DO instruction, 47
in a LOOP instruction, 60

FOREVER phrase of DO instruction, 48
FOREVER phrase of LOOP instruction, 61
FOREVER repetitor on DO instruction, 48, 62
FOREVER subkeyword

in a DO instruction, 47, 663, 666
in a LOOP instruction, 60, 663, 666

FORM function
description, 470
example, 470

form method
of Package class, 197
of RexxContext class, 409

FORM option of NUMERIC instruction, 63
FORM subkeyword

in a NUMERIC instruction, 63, 605
FORMAT function

description, 470
example, 471

format method
of String class, 167

formatting
numbers for display, 167, 470
numbers with ceiling, 158
numbers with floor, 167
numbers with round, 176
numbers with trunc, 181
numbers with TRUNC, 503
of output during tracing, 83
text centering, 159, 452
text left justification, 170, 473
text right justification, 176, 482
text spacing, 177, 388, 487

FORWARD instruction
description, 52
example, 53

fromBaseDate method
of DateTime class, 340

fromCivilTime method
of DateTime class, 340
of TimeSpan class, 358

fromDays method
of TimeSpan class, 357

fromEuropeanDate method
of DateTime class, 338

fromHours method
of TimeSpan class, 357

fromIsoDate method
of DateTime class, 341

fromLongTime method
of DateTime class, 340
of TimeSpan class, 359

fromMicroseconds method
of TimeSpan class, 358

fromMinutes method
of TimeSpan class, 358

fromNormalDate method
of DateTime class, 337

fromNormalTime method
of DateTime class, 339
of TimeSpan class, 358

fromOrderedDate method
of DateTime class, 338

fromSeconds method
of TimeSpan class, 358

fromStandardDate method
of DateTime class, 339

fromStringFormat method
of TimeSpan class, 359

fromTicks method
of DateTime class, 340

fromUsaDate method
of DateTime class, 339

fromUTCIsoDate method
of DateTime class, 341

739

Full option of DATE function, 462
Full option of Time function, 498
fullDate method

of DateTime class, 351
functions, 437

ABBREV, 444
ABS, 445
ADDRESS, 445
ARG, 446
B2X, 447
BEEP, 448
BITAND, 449
BITOR, 449
BITXOR, 450
built-in, 443
built-in, description, 444
C2D, 450
C2X, 451
call, definition, 437
calling, 437
CENTER, 452
CENTRE, 452
CHANGESTR, 452
CHARIN, 453
CHAROUT, 454
CHARS, 455
COMPARE, 456
CONDITION, 456
COPIES, 458
COUNTSTR, 458
D2C, 459
D2X, 459
DATATYPE, 460
DATE, 461
definition, 437
DELSTR, 466
DELWORD, 467
description, 437
DIGITS, 467
DIRECTORY, 467
ENDLOCAL, 468
ERRORTEXT, 469
external, 438
FILESPEC, 469
forcing built-in or external reference, 438
FORM, 470
FORMAT, 470
FUZZ, 472
INSERT, 472
internal, 438
LASTPOS, 473
LEFT, 473
LENGTH, 474
LINEIN, 474

LINEOUT, 475
LINES, 477
logical bit operations, 449, 449, 450
LOWER, 478
MAX, 478
MIN, 479
numeric arguments of, 607
OVERLAY, 479
POS, 480
QUALIFY, 480
QUEUED, 481
RANDOM, 481
return from, 75
REVERSE, 482
RIGHT, 482
RXFUNCADD, 483
RXFUNCDROP, 483
RXFUNCQUERY, 484
RXQUEUE, 484
SETLOCAL, 485
SIGN, 486
SOURCELINE, 486
SPACE, 487
STREAM, 487
STRIP, 495
SUBSTR, 496
SUBWORD, 496
SYMBOL, 497
TIME, 497
TRACE, 502
TRANSLATE, 502
TRUNC, 503
UPPER, 504
USERID, 504
VALUE, 504
VAR, 507
variables in, 67
VERIFY, 508
WORD, 509
WORDINDEX, 509
WORDLENGTH, 509
WORDPOS, 510
WORDS, 510
X2B, 511
X2C, 512
X2D, 512
XRANGE, 513

FUZZ
controlling numeric comparison, 606
instruction, 64, 606

FUZZ function
description, 472
example, 472

fuzz method

Index

740

of Package class, 198
of RexxContext class, 410

FUZZ subkeyword
in a NUMERIC instruction, 63, 606

G
general concepts, 1, 41
get method

of RexxQueue class, 400
GET subkeyword

in an ATTRIBUTE directive, 89
getBufferSize method

of MutableBuffer class, 384
getLogical method

of Properties class, 291
getProperty method

of Properties class, 291
getting value with VALUE, 504
getWhole method

of Properties class, 292
global variables

access with VALUE function, 505
GOTO, unusual, 609
greater than operator, 20
greater than operator (>), 20
greater than or equal operator, 21
greater than or equal to operator (>=), 21
greater than or less than operator, 20
greater than or less than operator (><), 20
group, DO, 663
grouping instructions to run repetitively, 47, 60
GUARD instruction

description, 54
example, 54

guarded methods, 625
GUARDED subkeyword

in a METHOD directive, 94
in an ATTRIBUTE directive, 89

H
HALT subkeyword

in a CALL instruction, 44, 610, 614
in a SIGNAL instruction, 78, 610, 614

halt, trapping, 610
hasEntry method

of Directory class, 277
hasError method

of Message class, 203
hashCode method

of DateTime class, 345
of File class, 423
of Object class, 122
of String class, 169

of TimeSpan class, 363
hasIndex method

of Array class, 254
of Bag class, 265
of Collection class, 235
of Directory class, 277
of IdentityTable class, 326
of List class, 285
of Queue class, 297
of Relation class, 305
of Stem class, 316
of Table class, 322

hasItem method
of Array class, 254
of Collection class, 235
of Directory class, 277
of IdentityTable class, 326
of List class, 285
of Queue class, 297
of Relation class, 305
of Set class, 311
of Stem class, 317
of Table class, 322

hasMethod method
of Object class, 123

hexadecimal
checking with dataType, 163
checking with DATATYPE, 460
digits, 12
strings

description, 12
implementation maximum, 12

to binary, converting with X2B, 185, 511
to character, converting with X2C, 186, 512
to decimal, converting with X2D, 186, 512

host commands
issuing commands to underlying operating
system, 36

hours calculated from midnight, 499
hours method

of DateTime class, 344
of TimeSpan class, 361

I
id method

of Class class, 135
identityHash method

of Object class, 123
IdentityTable class, 324
IF instruction

description, 55
example, 55

implementation maximum
binary strings, 13

741

hexadecimal strings, 12
literal strings, 12
numbers, 15
TIME function, 501

implied semicolons, 16
importedClasses method

of Package class, 198
importedPackages method

of Package class, 198
importedRoutines method

of Package class, 198
imprecise numeric comparison, 605
inclusive OR operator, 21
indentation during tracing, 83
index method

of Array class, 254
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 286
of Queue class, 298
of Relation class, 306
of Stem class, 317
of StreamSupplier class, 407
of Supplier class, 404
of Table class, 322

indirect evaluation of data, 57
inequality, testing of, 20
infinite loops, 47, 60, 663
information hiding, 4
inherit method

of Class class, 135
INHERIT subkeyword

in a CLASS directive, 91
inheritance, 7
init method

of Alarm class, 355
of CaselessColumnComparator class, 372
of CircularQueue class, 268
of ColumnComparator class, 371
of DateTime class, 341
of File class, 423
of InvertingComparator class, 376
of Monitor class, 378
of NumericComparator class, 377
of Object class, 123
of RegularExpression class, 394
of RexxQueue class, 400
of Stream class, 221
of StreamSupplier class, 407
of Supplier class, 405
of TimeSpan class, 359

initialization
of arrays, 30

of compound variables, 30
input and output

functions
CHARIN, 453
CHAROUT, 454
CHARS, 455
LINEIN, 474
LINEOUT, 475
LINES, 477
STREAM, 487

model, 639
streams, 639

input from the user, 639
input object, 433
input streams, 640
input to PULL from STDIN, 70
input to PULL from the keyboard, 70
input, errors during, 647
InputOutputStream class, 210
InputStream class, 206
INSERT function

description, 472
example, 472

insert method
of Array class, 247
of CircularQueue class, 269
of List class, 286
of MutableBuffer class, 384
of OrderedCollection class, 241
of Queue class, 298
of String class, 169

inserting a string into another, 169, 472
instance methods, 103
instanceMethod method

of Object class, 124
instanceMethods method

of Object class, 124
instances

definition, 5
instructions

ADDRESS, 41
ARG, 43
CALL, 44
definition, 26
DO, 47
DROP, 49
EXIT, 50
EXPOSE, 51
FORWARD, 52
GUARD, 54, 625
IF, 55
INTERPRET, 57
ITERATE, 59
keyword, 27

Index

742

description, 41
LEAVE, 59
LOOP, 60
message, 27, 35
NOP, 62
NUMERIC, 63
OPTIONS, 64
PARSE, 64
parsing, summary, 594
PROCEDURE, 67
PULL, 70
PUSH, 71
QUEUE, 71
RAISE, 72
REPLY, 74
RETURN, 75
SAY, 76
SELECT, 76
SIGNAL, 78
TRACE, 79
USE, 84

integer
arithmetic, 601
division

description>, 601, 603
integer division operator, 20
interactive debug, 79
internal

functions
return from, 75
variables in, 67

routine, 44
INTERPRET instruction

description, 57
example, 57, 57

interpretive execution of data, 57
intersection method

of Bag class, 265
of CircularQueue class, 269
of Collection class, 236
of OrderedCollection class, 241
of Relation class, 306
of Set class, 311

InvertingComparator class, 375
invoking

built-in functions, 44
routines, 44

isA method
of Object class, 124

isCaseSensitive method
of File class, 419, 423

isDirectory method
of File class, 424

isEmpty method

of Array class, 255
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of Queue class, 299
of Relation class, 306
of Stem class, 317
of Table class, 322

isFile method
of File class, 424

isGuarded method
of Method class, 189

isHidden method
of File class, 424

isInstanceOf method
of Object class, 124

isLeapYear method
of DateTime class, 353

isNull method
of Pointer class, 417

isoDate method
of DateTime class, 347

isPrivate method
of Method class, 189

isProtected method
of Method class, 189

isSubclassOf method
of Class class, 136

item method
of StreamSupplier class, 407
of Supplier class, 405

items method
of Array class, 255
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of Queue class, 299
of Relation class, 306
of Stem class, 317
of Table class, 322

ITERATE instruction
description, 59
example, 59

J
justification, text right, RIGHT function, 482
justification, text right, RIGHT method, 176

K
keyword

conflict with commands, 651
description, 41

743

mixed case, 41
reservation of, 651

L
label

as target of CALL, 44
as target of SIGNAL, 78
description, 26
duplicate, 79
in INTERPRET instruction, 57
search algorithm, 78

language
processor date and version, 67
processor execution, 1
structure and syntax, 8

Language (local) option of DATE function, 463
languageDate method

of DateTime class, 349
last method

of Array class, 256
of List class, 287
of OrderedCollection class, 242
of Queue class, 299

lastItem method
of Array class, 256
of List class, 287
of OrderedCollection class, 242
of Queue class, 299

lastModified attribute
of File class, 425

LASTPOS function
description, 473
example, 473

lastPos method
of MutableBuffer class, 384
of String class, 169

leading
leading whitespace removal with STRIP
function, 495
whitespace removal with strip method, 178
zeros

adding with RIGHT function, 482
adding with right method, 176
removing with STRIP function, 495
removing with strip method, 178

LEAVE instruction
description, 59
example, 60

leaving your program, 50, 50
LEFT function

description, 473
example, 474

left method
of String class, 170

LENGTH function
description, 474
example, 474

length method
of File class, 425
of MutableBuffer class, 385
of String class, 170

length positional pattern
positional patterns

length, 590
less than operator (<), 20
less than or equal to operator (<=), 21
less than or greater than operator (<>), 21
LIBRARY subkeyword

in a REQUIRES directive, 98
License, Common Public, 717
License, Open Object Rexx, 717
LIFO (last-in, first-out) stacking, 71
line input and output, 639
line method

of RexxContext class, 410
of StackFrame class, 412

LINEIN function
description, 474
example, 475

lineIn method
of InputStream class, 207
of OutputStream class, 209
of RexxQueue class, 401
of Stream class, 221

LINEIN method
role in input and output, 640

LINEIN option of PARSE instruction, 65
LINEIN subkeyword

in a PARSE instruction, 64, 594
LINEOUT function

description, 475
example, 476

lineOut method
of InputStream class, 208
of OutputStream class, 209
of RexxQueue class, 401
of Stream class, 222

LINEOUT method
role in input and output, 641

lines
from a program retrieved with SOURCELINE,
486
from stream, 65

LINES function
description, 477
example, 478
from stream, 474
remaining in stream, 477

Index

744

lines method
of InputStream class, 208
of OutputStream class, 209
of Stream class, 222

LINES method
role in input and output, 640

List class, 281
list method

of File class, 426
listFiles method

of File class, 426
listRoots method

of File class, 419
literal

description, 11
implementation maximum, 12
patterns, 586

LOAD keyword
in a RXSUBCOM command, 658

load method
of Properties class, 290, 292

loadExternalMethod method
of Method class, 188

loadExternalRoutine method
of Routine class, 192

loadLibrary method
of Package class, 198

loadPackage method
of Package class, 199

locating
string in a MutableBuffer, 387
string in another string, 174, 480
word in another mutable buffer, 391
word in another string, 183, 509

logical
operations, 21

logical bit operations
BITAND, 449
BITOR, 449
BITXOR, 450

logical NOT character, 15
logical OR operator, 15
longTime method

of DateTime class, 351
LOOP instruction

description, 60
example, 663

loops
active, 59
execution model, 668, 669
modification of, 59
over collections, 665
repetitive, 663
termination of, 59

LOSTDIGITS subkeyword
in a CALL instruction, 614
in a SIGNAL instruction, 78, 610, 614

LOWER function
description, 478

lower method
of MutableBuffer class, 385
of String class, 171

LOWER subkeyword
in a PARSE instruction, 64, 593

lowercase translation
with PARSE LOWER, 65

M
makeArray method

of Array class, 256
of CircularQueue class, 269
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of MapCollection class, 239
of MutableBuffer class, 385
of Queue class, 300
of Relation class, 307
of RexxQueue class, 401
of Stem class, 317
of Stream class, 223
of String class, 171
of Table class, 323

makeDir method
of File class, 427

makeDirs method
of File class, 427

makeString method
of Array class, 257
of StackFrame class, 413
of String class, 172

Map Collection classes
Directory class, 274
IdentityTable class, 324
Properties class, 289
Relation class, 302
Stem class, 313
Table class, 319

MapCollection class, 238
match method

of MutableBuffer class, 386
of RegularExpression class, 395
of String class, 172

matchChar method
of MutableBuffer class, 386
of String class, 173

MAX function

745

description, 478
example, 479

max method
of String class, 173

maxDate method
of DateTime class, 337

Message class, 201
message instructions, 27, 35
message sequence instructions, 35
MESSAGE subkeyword

in a FORWARD instruction, 52
message-send operator (~), 4
messageName method

of Message class, 203
messages, 4
messages to objects

operator as message, 18
~, using, 25
~~, using, 25

messages, error, 673
metaClass method

of Class class, 136
METACLASS subkeyword

in a CLASS directive, 91
metaclasses, 104
method

%, 144, 360
&, 146
&&, 147
*, 144, 360
**, 144
+, 144, 342, 360
-, 144, 342, 360
/, 144, 360
//, 144, 360
<, 145, 367
<<, 146, 367
<<=, 146, 368
<=, 145, 367
<>

of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

=
of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

==
of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 146

>, 145, 367
><

of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

>=, 145, 367
>>, 146, 367
>>=, 146, 368
abbrev method

of String class, 147
abs method

of String class, 148
absoluteFile method

of File class, 420
absolutePath method

of File class, 421
activate method

of Class class, 132
addClass method

of Package class, 195
addDays method

of DateTime class, 346
of TimeSpan class, 364

addHours method
of DateTime class, 346
of TimeSpan class, 364

addMicroseconds method
of DateTime class, 347
of TimeSpan class, 365

addMinutes method
of DateTime class, 346
of TimeSpan class, 364

addPackage method
of Package class, 195

addPublicClass method
of Package class, 196

addPublicRoutine method
of Package class, 196

addRoutine method
of Package class, 196

addSeconds method
of DateTime class, 347
of TimeSpan class, 364

addWeeks method
of DateTime class, 346
of TimeSpan class, 363

addYears method
of DateTime class, 345

allAt method
of Relation class, 304

allIndex method
of Relation class, 304

allIndexes method

Index

746

of Array class, 249
of Collection class, 234
of Directory class, 276
of IdentityTable class, 325
of List class, 284
of Queue class, 295
of Relation class, 304
of Stem class, 316
of Supplier class, 404
of Table class, 321

allItems method
of Array class, 250
of Collection class, 234
of Directory class, 276
of IdentityTable class, 326
of List class, 284
of Queue class, 296
of Relation class, 304
of Stem class, 316
of Supplier class, 404
of Table class, 321

append method
of Array class, 250
of CircularQueue class, 269
of List class, 284
of MutableBuffer class, 380
of OrderedCollection class, 240
of Queue class, 296

appendAll method
of OrderedCollection class, 240

args method
of RexxContext class, 409

arguments method
of Message class, 202
of StackFrame class, 412

arithmetic methods
of DateTime class, 342
of String class, 143
of TimeSpan class, 360

arrayIn method
of InputStream class, 207
of Stream class, 212

arrayOut method
of OutputStream class, 209
of Stream class, 213

at method
of Array class, 250
of Collection class, 234
of Directory class, 276
of IdentityTable class, 326
of List class, 284
of Queue class, 296
of Relation class, 305
of Stem class, 316

of Table class, 321
available method

of StreamSupplier class, 407
of Supplier class, 404

b2x method
of String class, 149

baseClass method
of Class class, 132

baseDate method
of DateTime class, 348

bitAnd method
of String class, 149

bitOr method
of String class, 150

bitXor method
of String class, 150

c2d method
of String class, 151

c2x method
of String class, 152

call method
of Routine class, 193

callWith method
of Routine class, 193

cancel method
of Alarm class, 355

canRead method
of File class, 421

canWrite method
of File class, 422

caselessAbbrev method
of String class, 152

caselessChangeStr method
of MutableBuffer class, 380
of String class, 153

caselessCompareTo method
of String class, 154, 154

caselessCountStr method
of MutableBuffer class, 381, 381
of String class, 155, 155

caselessEquals method
of String class, 155, 155

caselessLastPos method
of MutableBuffer class, 381, 381
of String class, 156, 156

caselessMatch method
of MutableBuffer class, 381, 381
of String class, 156, 156

caselessMatchChar method
of MutableBuffer class, 382, 382
of String class, 157, 157

caselessPos method
of MutableBuffer class, 382, 382
of String class, 157, 157

747

ceiling method
of String class, 158

center method
of String class, 159

centre method
of String class, 159

changeStr method
of MutableBuffer class, 383
of String class, 160

charIn method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 213

charOut method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 213

chars method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 214

civilTime method
of DateTime class, 350

class method
of Object class, 121

classes method
of Package class, 196

close method
of InputStream class, 207
of OutputStream class, 209
of Stream class, 214

command method
of Stream class, 214

compare method
of CaselessColumnComparator class, 372
of CaselessComparator class, 370
of CaselessDescendingComparator class,
374
of ColumnComparator class, 371
of Comparator class, 368
of DescendingComparator class, 373
of InvertingComparator class, 375
of NumericComparator class, 377
of String class, 154, 160

compareTo method
of Comparable class, 366
of DateTime class, 343
of File class, 422
of String class, 160
of TimeSpan class, 361

comparison methods
of Orderable class, 367
of String class, 144

completed method

of Message class, 203
concatenation methods

of Object class, 121
of String class, 147

condition method
of RexxContext class, 409

copies method
of String class, 161

copy method
of Object class, 122

countStr method
of MutableBuffer class, 383
of String class, 161

cr method
of String class, 143

create method
of RexxQueue class, 399

creation, 94
current method

of Monitor class, 378
d2c method

of String class, 162
d2x method

of String class, 162
dataType method

of String class, 163
date method

of DateTime class, 352
day method

of DateTime class, 343
dayMicroseconds method

of DateTime class, 345
dayMinutes method

of DateTime class, 344
dayName method

of DateTime class, 349
days method

of TimeSpan class, 361
daySeconds method

of DateTime class, 345
daysInMonth method

of DateTime class, 353
daysInYear method

of DateTime class, 354
decodeBase64 method

of String class, 165
defaultName method

of Class class, 132
of Object class, 122

define method
of Class class, 133

definedMethods method
of Package class, 197

definition, 4

Index

748

delete class method
of RexxQueue class, 399

delete method
of Array class, 251
of Class class, 133
of File class, 422
of List class, 284
of MutableBuffer class, 383
of OrderedCollection class, 240
of Queue class, 296
of RexxQueue class, 400

delStr method
of String class, 165

delstr method
of MutableBuffer class, 383

delWord method
of MutableBuffer class, 384
of String class, 166

description method
of Stream class, 221

destination method
of Monitor class, 378

difference method
of Bag class, 265
of Collection class, 235
of OrderedCollection class, 240
of Relation class, 305

digits method
of Package class, 197
of RexxContext class, 409

dimension method
of Array class, 251

dimensions method
of Array class, 252

disjoint method
of Collection class, 235

duration method
of TimeSpan class, 361

elapsed method
of DateTime class, 353

empty method
of Array class, 252
of Directory class, 277
of IdentityTable class, 326
of List class, 285
of Queue class, 297
of Relation class, 305
of RexxQueue class, 400
of Stem class, 316
of Table class, 321

encodeBase64 method
of String class, 166

enhanced method
of Class class, 134

entry method
of Directory class, 277

equals method
of String class, 166

equivalent method
of Collection class, 235

errorCondition method
of Message class, 203

europeanDate method
of DateTime class, 348

executable method
of RexxContext class, 409
of StackFrame class, 412

exists method
of File class, 422
of RexxQueue class, 399

fill method
of Array class, 252

findClass method
of Package class, 197

findRoutine method
of Package class, 197

first method
of Array class, 253
of List class, 285
of OrderedCollection class, 241
of Queue class, 297

firstItem method
of Array class, 253
of List class, 285
of OrderedCollection class, 241
of Queue class, 297

floor method
of String class, 167

flush method
of Stream class, 221

form method
of Package class, 197
of RexxContext class, 409

format method
of String class, 167

fromBaseDate method
of DateTime class, 340

fromCivilTime method
of DateTime class, 340
of TimeSpan class, 358

fromDays method
of TimeSpan class, 357

fromEuropeanDate method
of DateTime class, 338

fromHours method
of TimeSpan class, 357

fromIsoDate method
of DateTime class, 341

749

fromLongTime method
of DateTime class, 340
of TimeSpan class, 359

fromMicroseconds method
of TimeSpan class, 358

fromMinutes method
of TimeSpan class, 358

fromNormalDate method
of DateTime class, 337

fromNormalTime method
of DateTime class, 339
of TimeSpan class, 358

fromOrderedDate method
of DateTime class, 338

fromSeconds method
of TimeSpan class, 358

fromStandardDate method
of DateTime class, 339

fromStringFormat method
of TimeSpan class, 359

fromTicks method
of DateTime class, 340

fromUsaDate method
of DateTime class, 339

fromUTCIsoDate method
of DateTime class, 341

fullDate method
of DateTime class, 351

fuzz method
of Package class, 198
of RexxContext class, 410

get method
of RexxQueue class, 400

getBufferSizemethod
of MutableBuffer class, 384

getLogical method
of Properties class, 291

getProperty method
of Properties class, 291

getWhole method
of Properties class, 292

hasEntry method
of Directory class, 277

hasError method
of Message class, 203

hashCode method
of DateTime class, 345
of File class, 423
of Object class, 122
of String class, 169
of TimeSpan class, 363

hasIndex method
of Array class, 254
of Bag class, 265

of Collection class, 235
of Directory class, 277
of IdentityTable class, 326
of List class, 285
of Queue class, 297
of Relation class, 305
of Stem class, 316
of Table class, 322

hasItem method
of Array class, 254
of Collection class, 235
of Directory class, 277
of IdentityTable class, 326
of List class, 285
of Queue class, 297
of Relation class, 305
of Set class, 311
of Stem class, 317
of Table class, 322

hasMethod method
of Object class, 123

hours method
of DateTime class, 344
of TimeSpan class, 361

id method
of Class class, 135

identityHash method
of Object class, 123

importedClasses method
of Package class, 198

importedPackages method
of Package class, 198

importedRoutines method
of Package class, 198

index method
of Array class, 254
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 286
of Queue class, 298
of Relation class, 306
of Stem class, 317
of StreamSupplier class, 407
of Supplier class, 404
of Table class, 322

inherit method
of Class class, 135

init method
of Alarm class, 355
of CaselessColumnComparator class, 372
of CircularQueue class, 268
of ColumnComparator class, 371
of DateTime class, 341

Index

750

of File class, 423
of InvertingComparator class, 376
of Monitor class, 378
of NumericComparator class, 377
of Object class, 123
of RegularExpression class, 394
of RexxQueue class, 400
of Stream class, 221
of StreamSupplier class, 407
of Supplier class, 405
of TimeSpan class, 359

insert method
of Array class, 247
of CircularQueue class, 269
of List class, 286
of MutableBuffer class, 384
of OrderedCollection class, 241
of Queue class, 298
of String class, 169

instanceMethod method
of Object class, 124

instanceMethods method
of Object class, 124

intersection method
of Bag class, 265
of CircularQueue class, 269
of Collection class, 236
of OrderedCollection class, 241
of Relation class, 306
of Set class, 311

isA method
of Object class, 124

isCaseSensitive method
of File class, 419, 423

isDirectory method
of File class, 424

isEmpty method
of Array class, 255
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of Queue class, 299
of Relation class, 306
of Stem class, 317
of Table class, 322

isFile method
of File class, 424

isGuarded method
of Method class, 189

isHidden method
of File class, 424

isInstanceOf method
of Object class, 124

isLeapYear method

of DateTime class, 353
isNull method

of Pointer class, 417
isoDate method

of DateTime class, 347
isPrivate method

of Method class, 189
isProtected method

of Method class, 189
isSubclassOf method

of Class class, 136
item method

of StreamSupplier class, 407
of Supplier class, 405

items method
of Array class, 255
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of Queue class, 299
of Relation class, 306
of Stem class, 317
of Table class, 322

languageDate method
of DateTime class, 349

last method
of Array class, 256
of List class, 287
of OrderedCollection class, 242
of Queue class, 299

lastItem method
of Array class, 256
of List class, 287
of OrderedCollection class, 242
of Queue class, 299

lastModified method
of File class, 425

lastPos method
of MutableBuffer class, 384
of String class, 169

left method
of String class, 170

length method
of File class, 425
of MutableBuffer class, 385
of String class, 170

line method
of RexxContext class, 410
of StackFrame class, 412

lineIn method
of InputStream class, 207
of OutputStream class, 209
of RexxQueue class, 401

751

of Stream class, 221
lineOut method

of InputStream class, 208
of OutputStream class, 209
of RexxQueue class, 401
of Stream class, 222

lines method
of InputStream class, 208
of OutputStream class, 209
of Stream class, 222

list method
of File class, 426

listFiles method
of File class, 426

listRoots method
of File class, 419

load method
of Properties class, 290, 292

loadExternalMethod method
of Method class, 188

loadExternalRoutine method
of Routine class, 192

loadLibrary method
of Package class, 198

loadPackage method
of Package class, 199

logical methods
of String class, 146

longTime method
of DateTime class, 351

lower method
of MutableBuffer class, 385
of String class, 171

makeArray method
of Array class, 256
of CircularQueue class, 269
of Collection class, 236
of Directory class, 278
of IdentityTable class, 327
of List class, 287
of MapCollection class, 239
of MutableBuffer class, 385
of Queue class, 300
of Relation class, 307
of RexxQueue class, 401
of Stem class, 317
of Stream class, 223
of String class, 171
of Table class, 323

makeDir method
of File class, 427

makeDirs method
of File class, 427

makeString method

of Array class, 257
of StackFrame class, 413
of String class, 172

match method
of MutableBuffer class, 386
of RegularExpression class, 395
of String class, 172

matchChar method
of MutableBuffer class, 386
of String class, 173

max method
of String class, 173

maxDate method
of DateTime class, 337

messageName method
of Message class, 203

metaClass method
of Class class, 136

method method
of Class class, 136

methods method
of Class class, 137

microseconds method
of DateTime class, 344
of TimeSpan class, 362

min method
of String class, 173

minDate method
of DateTime class, 337

minutes method
of DateTime class, 344
of TimeSpan class, 362

mixinClass method
of Class class, 137

month method
of DateTime class, 343

monthName method
of DateTime class, 349

name method
of File class, 427
of Package class, 199
of RexxContext class, 410
of StackFrame class, 413

new method
of Array class, 248
of Buffer class, 418
of Class class, 138
of Directory class, 275
of IdentityTable class, 325
of List class, 283
of Message class, 202
of Method class, 188
of MutableBuffer class, 380
of Object class, 120

Index

752

of Package class, 195
of Pointer class, 416
of Properties class, 291
of Queue class, 295
of Relation class, 303
of Routine class, 192
of Stem class, 315
of Stream class, 212
of String class, 142
of Supplier class, 403
of Table class, 320
of WeakReference class, 415

newFile method
of Method class, 188
of Routine class, 192

next method
of Array class, 257
of List class, 288
of OrderedCollection class, 242
of Queue class, 300
of StreamSupplier class, 408
of Supplier class, 405

nl method
of String class, 143

normalDate method
of DateTime class, 349

normalTime method
of DateTime class, 351

notify method
of Message class, 203

null method
of String class, 143

objectName method
of Object class, 125

objectName= method
of Object class, 125

of method
of Array class, 248
of Bag class, 264
of CircularQueue class, 268
of List class, 283
of Queue class, 295
of Set class, 311

offset method
of DateTime class, 352

open method
of InputStream class, 208
of OutputStream class, 210
of RexxQueue class, 400
of Stream class, 223

orderedDate method
of DateTime class, 350

overlay method
of MutableBuffer class, 386

of String class, 174
package method

of Method class, 189
of RexxContext class, 410
of Routine class, 193

parent method
of File class, 428

parentFile method
of File class, 428

parse method
of RegularExpression class, 395

path method
of File class, 428

pathSeparator method
of File class, 420, 429

peek method
of Queue class, 300

pos method
of MutableBuffer class, 387
of RegularExpression class, 397
of String class, 174

position method
of InputStream class, 208
of OutputStream class, 210
of RegularExpression class, 398
of Stream class, 225

prefix +, 144, 343, 361
prefix -, 144, 343, 361
previous method

of Array class, 257
of List class, 288
of OrderedCollection class, 242
of Queue class, 300

private, 111
public, 111
publicClasses method

of Package class, 199
publicRoutines method

of Package class, 199
pull method

of Queue class, 300
of RexxQueue class, 401

push method
of CircularQueue class, 270
of Queue class, 301
of RexxQueue class, 402

put method
of Array class, 258
of Bag class, 265
of Collection class, 237
of Directory class, 278
of IdentityTable class, 327
of List class, 288
of Properties class, 292

753

of Queue class, 301
of Relation class, 307
of Set class, 312
of Stem class, 318
of Table class, 323

putAll method
of Bag class, 265
of MapCollection class, 239
of Set class, 312

qualify method
of Stream class, 225

query
of Stream class, 226

queryMixinClass method
of Class class, 139

queue method
of CircularQueue class, 270
of Queue class, 301
of RexxQueue class, 402

queued method
of RexxQueue class, 402

remove method
of Array class, 258
of Directory class, 279
of IdentityTable class, 328
of List class, 288
of Queue class, 301
of Relation class, 307
of Stem class, 318
of Table class, 323

removeAll method
of Relation class, 307

removeItem method
of Array class, 259
of Directory class, 279
of IdentityTable class, 328
of List class, 288
of Queue class, 301
of Relation class, 307
of Stem class, 318
of Table class, 323

renameTo method
of File class, 429

replaceAt method
of MutableBuffer class, 387
of String class, 175

request method
of Object class, 125
of Stem class, 318

resize method
of CircularQueue class, 270

result method
of Message class, 204

reverse method

of String class, 175
right method

of String class, 176
round method

of String class, 176
routines method

of Package class, 200
rs method

of RexxContext class, 411
run method

of Object class, 126
save method

of Properties class, 292
say method

of RexxQueue class, 402
of Stream class, 228

scope, 109
search order

changing, 110
seconds method

of DateTime class, 344
of TimeSpan class, 362

section method
of Array class, 259
of CircularQueue class, 271
of List class, 289
of OrderedCollection class, 242
of Queue class, 302

seek method
of Stream class, 228

selection
search order, 110

send method
of Message class, 205
of Object class, 127

sendWith method
of Object class, 127

separator method
of File class, 420, 429

set method
of RexxQueue class, 402

setBufferSizemethod
of MutableBuffer class, 387

setEntry method
of Directory class, 279

setGuarded method
of Method class, 190

setLogical method
of Properties class, 293

setMethod method
of Directory class, 279
of Object class, 128

setPrivate method
of Method class, 190

Index

754

setProperty method
of Properties class, 293

setProtected method
of Method class, 190

setReadOnly method
of File class, 429

setSecurityManager method
of Method class, 190
of Package class, 200
of Routine class, 194

setUnguarded method
of Method class, 191

setWhole method
of Properties class, 293

sign method
of String class, 177
of TimeSpan class, 365

size method
of Array class, 260
of CircularQueue class, 271

sort method
of Array class, 260
of OrderedCollection class, 243

sortWith method
of Array class, 260
of OrderedCollection class, 243

source method
of Method class, 191
of Package class, 200
of Routine class, 194

sourceLine method
of Package class, 200

sourceSize method
of Package class, 200

space method
of MutableBuffer class, 388
of String class, 177

stableSort method
of Array class, 260
of OrderedCollection class, 243

stableSortWith method
of Array class, 261
of OrderedCollection class, 243

stackFrames method
of RexxContext class, 411

standardDate method
of DateTime class, 350

start method
of Message class, 205
of Object class, 129

startWith method
of Object class, 129

state method
of Stream class, 230

string method
of CircularQueue class, 272
of DateTime class, 354
of File class, 430
of MutableBuffer class, 388
of Object class, 130
of StackFrame class, 413
of Stream class, 231
of TimeSpan class, 365

strip method
of String class, 178

subchar method
of String, 178

subChar method
of MutableBuffer class, 388

subclass method
of Class class, 139

subclasses method
of Class class, 140

subset method
of Bag class, 266
of Collection class, 237
of OrderedCollection class, 243
of Relation class, 308
of Set class, 312

substr method
of MutableBuffer class, 388
of String class, 179

subWord method
of MutableBuffer class, 389
of String class, 179

subWords method
of MutableBuffer class, 389
of String class, 180

superClass method
of Class class, 140

superClasses method
of Class class, 140

supplier method
of Array class, 261
of CircularQueue class, 272
of Collection class, 237
of Directory class, 280
of IdentityTable class, 328
of List class, 289
of Queue class, 302
of Relation class, 308
of Stem class, 319
of Stream class, 231
of Supplier class, 406
of Table class, 323

tab method
of String class, 143

target method

755

of Message class, 206
of StackFrame class, 413

ticks method
of DateTime class, 352

timeOfDay method
of DateTime class, 353

today method
of DateTime class, 337

toDirectory method
of Stem class, 319

toLocalTime method
of DateTime class, 351

toString method
of Array class, 261

totalDays method
of TimeSpan class, 362

totalHours method
of TimeSpan class, 362

totalMicroseconds method
of TimeSpan class, 363

totalMinutes method
of TimeSpan class, 363

totalSeconds method
of TimeSpan class, 363

toTimeZone method
of DateTime class, 352

toUtcTime method
of DateTime class, 352

trace method
of Package class, 201

traceLine method
of StackFrame class, 414

translate method
of MutableBuffer class, 389
of String class, 180

trunc method
of String class, 181

type method
of StackFrame class, 414

uninherit method
of Class class, 141

uninit method
of Stream class, 231

union method
of Bag class, 266
of CircularQueue class, 272
of Collection class, 237
of OrderedCollection class, 244
of Relation class, 308
of Set class, 312

uniqueIndexes method
of Relation class, 308

unknown method
of Directory class, 280

of Monitor class, 379
of Stem class, 319

unsetMethod method
of Directory class, 280
of Object class, 131

upper method
of MutableBuffer class, 390
of String class, 182

usaDate method
of DateTime class, 350

utcDate method
of DateTime class, 351

utcIsoDate method
of DateTime class, 347

value method
of WeakReference class, 415

variables method
of RexxContext class, 411

verify method
of MutableBuffer class, 390
of String class, 182

weekDay method
of DateTime class, 348

word method
of MutableBuffer class, 391
of String class, 183

wordIndex method
of MutableBuffer class, 391
of String class, 183

wordLength method
of MutableBuffer class, 391
of String class, 184

wordPos method
of MutableBuffer class, 382, 391
of String class, 158, 184

words method
of MutableBuffer class, 392
of String class, 185

x2b method
of String class, 185

x2c method
of String class, 186

x2d method
of String class, 186

xor method
of Bag class, 266
of CircularQueue class, 273
of Collection class, 238
of Directory class, 280
of OrderedCollection class, 244
of Relation class, 309
of Set class, 313

year method
of DateTime class, 343

Index

756

yearDay method
of DateTime class, 348

[] method
of Array class, 249
of Collection class, 233
of Directory class, 275
of IdentityTable class, 325
of List class, 283
of Queue class, 295
of Relation class, 303
of Stem class, 315
of Table class, 320

[]= method
of Array class, 249
of Bag class, 264
of Collection class, 234
of Directory class, 276
of IdentityTable class, 325
of List class, 283
of Properties class, 291
of Queue class, 295
of Relation class, 304
of Set class, 311
of Stem class, 315
of Table class, 321

\, 147
\<, 145, 367
\<<, 146, 368
\=

of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 145

\==
of Object class, 121
of Orderable class, 367
of Pointer class, 417
of String class, 146

\>, 145, 367
\>>, 146, 368
|, 147
||, 121, 147

Method class, 187
method method

of Class class, 136
methods method

of Class class, 137
microseconds method

of DateTime class, 344
of TimeSpan class, 362

MIN function
description, 479
example, 479

min method

of String class, 173
minDate method

of DateTime class, 337
minutes calculated from midnight, 499
minutes method

of DateTime class, 344
of TimeSpan class, 362

mixin classes, 104
mixinClass method

of Class class, 137
MIXINCLASS subkeyword

in a CLASS directive, 91
model of input and output, 639
modularizing data, 1
monitor, 630
Monitor class, 377
month method

of DateTime class, 343
Month option of DATE function, 463
monthName method

of DateTime class, 349
multiple inheritance, 7
multiplication operator, 20
MutableBuffer class, 379

N
name method

of File class, 427
of Package class, 199
of RexxContext class, 410
of StackFrame class, 413

NAME subkeyword
in a CALL instruction, 44
in a SIGNAL instruction, 78

name, definition, 41
names

of functions, 437
of programs, 66
of subroutines, 44
of variables, 13

negation
of logical values, 21

new method
of Array class, 248
of Buffer class, 418
of Class class, 138
of Directory class, 275
of IdentityTable class, 325
of List class, 283
of Message class, 202
of Method class, 188
of MutableBuffer class, 380
of Object class, 120
of Package class, 195

757

of Pointer class, 416
of Properties class, 291
of Queue class, 295
of Relation class, 303
of Routine class, 192
of Stem class, 315
of Stream class, 212
of String class, 142
of Supplier class, 403
of Table class, 320
of WeakReference class, 415

newFile method
of Method class, 188
of Routine class, 192

next method
of Array class, 257
of List class, 288
of OrderedCollection class, 242
of Queue class, 300
of StreamSupplier class, 408
of Supplier class, 405

nibbles, 12
nl method

of String class, 143
NOMETHOD subkeyword

in a SIGNAL instruction, 78, 610, 614
NOP instruction

description, 62
example, 62

Normal option of DATE function, 463
normalDate method

of DateTime class, 349
normalTime method

of DateTime class, 351
NOSTRING subkeyword

in a SIGNAL instruction, 78, 610, 614
not equal operator, 20
not greater than operator, 21
not less than operator, 21
NOT operator, 15, 21
notation

engineering, 604
exponential, example, 604
scientific, 604

Notices, 715
notify method

of Message class, 203
NOTREADY condition

condition trapping, 647
raised by stream errors, 647

NOTREADY subkeyword
in a CALL instruction, 44, 614
in a SIGNAL instruction, 78, 610, 614

NOVALUE condition

not raised by VALUE function, 507
use of, 651

NOVALUE subkeyword
in a SIGNAL instruction, 78, 610, 614

null
clauses, 26
strings, 11

null method
of String class, 143

numbers
arithmetic on, 19, 601, 602
checking with dataType, 163
checking with DATATYPE, 460
comparison of, 20, 605
description, 14, 601
formatting for display, 167, 470
implementation maximum, 15
in DO instruction, 48
in LOOP instruction, 61
truncating, 181, 503
use in the language, 606

numbers for display, 167, 470
numeric

comparisons, example, 606
options in TRACE, 82

NUMERIC instruction
description, 63, 63
DIGITS option, 63
FORM option, 63, 605
FUZZ option, 64
settings saved during subroutine calls, 46

NumericComparator class, 376

O
object, 17

as data value, 18
definition, 3
kinds of, 3

Object class, 119
object classes, 7, 103
object method, 103
object variable pool, 51, 621
object-based concurrency, 619
object-oriented programming, 1
objectName method

of Object class, 125
objectName= method

of Object class, 125
of method

of Array class, 248
of Bag class, 264
of CircularQueue class, 268
of List class, 283
of Queue class, 295

Index

758

of Set class, 311
OFF subkeyword

in a CALL instruction, 44
in a SIGNAL instruction, 78
in an GUARD instruction, 54

offset method
of DateTime class, 352

ON subkeyword
in a CALL instruction, 44
in a SIGNAL instruction, 78
in an GUARD instruction, 54

ooRexx License, 717
open method

of InputStream class, 208
of OutputStream class, 210
of RexxQueue class, 400
of Stream class, 223

Open Object Rexx License, 717
operations

tracing results, 79
operator

arithmetic
description, 18, 601, 602
list, 19

as message, 18
as special characters, 15
characters, 15
comparison, 19, 605
concatenation, 19
examples, 604
logical, 21
precedence (priorities) of, 21

options
alphabetical character word options, 81
numeric in TRACE, 82

OPTIONS instruction
description, 64

OR, logical, 21
Orderable class, 366
Ordered collection classes

Array class, 245
CircularQueue class, 266
List class, 281
Queue class, 293

Ordered option of DATE function, 463
OrderedCollection class, 239
orderedDate method

of DateTime class, 350
ORing character together, 150, 449
OTHERWISE

as free standing clause, 41
OTHERWISE subkeyword

in a SELECT instruction, 76
output

errors during, 647
object, 433
to the user, 639

OutputStream class, 208
OVER subkeyword

in a DO instruction, 47, 665
in a LOOP instruction, 60, 665

overflow, arithmetic, 607
OVERLAY function

description, 479
example, 480

overlay method
of MutableBuffer class, 386
of String class, 174

overlaying a string onto another, 174, 479
overview of parsing, 598

P
Package class, 194
package method

of Method class, 189
of RexxContext class, 410
of Routine class, 193

packing a string with X2C, 186, 512
pad character, definition, 444
page, code, 8
parent method

of File class, 428
parentFile method

of File class, 428
parentheses

adjacent to whitespace, 16
in expressions, 21
in function calls, 437
in parsing templates, 593

PARSE instruction
description, 64
example, 67

PARSE LINEIN method
role in input and output, 640

parse method
of RegularExpression class, 395

PARSE PULL method
role in input and output, 640

parsing, 588, 590
advanced topics, 596
combining patterns and parsing into words

string, 591
combining string and positional patterns, 597
conceptual overview, 597
description, 583, 598
equal sign, 588
examples

759

combining positional patterns with parsing
into words, 592
combining string and positional patterns,
597
combining string pattern and parsing into
words, 591
parsing instructions, 594
parsing multiple strings in a subroutine, 596
period as a placeholder, 585
simple template, 583
templates containing positional patterns,
588
templates containing string patterns, 586
using a variable as a string pattern, 593
using an expression as a positional pattern,
593

into words, 583
patterns

positional, 583, 587
string, 583, 586
word parsing, conceptual overview, 600

period as placeholder, 585
positional patterns, 583

absolute, 587
variable, 593

selecting words, 583
several assignments, 592
several strings, 596
source string, 583
special case, 597
steps, 598
string patterns, 583

literal string patterns, 585
variable string patterns, 592

summary of instructions, 594
templates

in ARG instruction, 43
in PARSE instruction, 65
in PULL instruction, 70

treatment of blanks, 585
treatment of whitespace, 585
UPPER, use of, 593
variable patterns

string, 593
word parsing

conceptual overview, 600
description and examples, 583

path method
of File class, 428

pathSeparator method
of File class, 420, 429

patterns in parsing
combined with parsing into words, 591
conceptual overview, 598, 599, 600

positional, 583, 587
string, 583, 586

peek method
of Queue class, 300

period
as placeholder in parsing, 585
causing substitution in variable names, 32
in numbers, 601

permanent command destination change, 41
persistent input and output, 639
Pointer class, 415
polymorphism, 5
POS function

description, 480
example, 480

pos method
of MutableBuffer class, 387
of RegularExpression class, 397
of String class, 174

position
last occurrence of a string, 169, 384, 473

position method
of InputStream class, 208
of OutputStream class, 210
of RegularExpression class, 398
of Stream class, 225

positional patterns
absolute, 586
description, 583
length, 590
relative, 588
variable, 593

power operator, 20
powers of ten in numbers, 14
precedence of operators, 21
prefix + method, 147
prefix + operator, 20
prefix - method, 147
prefix - operator, 20
prefix \ operator, 20, 21
presumed command destinations, 41
previous method

of Array class, 257
of List class, 288
of OrderedCollection class, 242
of Queue class, 300

private method, 111
PRIVATE subkeyword

in a CLASS directive, 91
in a METHOD directive, 94
in a ROUTINE directive, 99
in an ATTRIBUTE directive, 89

PROCEDURE instruction
description, 67

Index

760

example, 68
programming restrictions, 1
programs

arguments to, 43
examples, 646
retrieving lines with SOURCELINE, 486
retrieving name of, 66

programs without source, 660
PROPAGATE subkeyword

in a RAISE instruction, 72
Properties class, 289
PROTECTED subkeyword

in a METHOD directive, 94
in an ATTRIBUTE directive, 89

protecting variables, 67
pseudo random number RANDOM function, 481
public method, 111
public object

.CONTEXT object, 434

.DEBUGINPUT object, 433

.ENDOFLINE object, 431

.ERROR object, 433

.FALSE object, 431

.INPUT object, 433

.LINE object, 434

.LOCAL object, 432

.METHODS object, 434

.Nil object, 431

.OUTPUT object, 433

.ROUTINES object, 435

.RS object, 435

.STDERR object, 433

.STDIN object, 434

.STDOUT object, 434

.STDQUE object, 434

.TRACEOUPUT object, 433

.TRUE object, 431
PUBLIC subkeyword

in a CLASS directive, 91
in a METHOD directive, 94
in a ROUTINE directive, 99
in an ATTRIBUTE directive, 89

publicClasses method
of Package class, 199

publicRoutines method
of Package class, 199

PULL instruction
description, 70
example, 70

pull method
of Queue class, 300
of RexxQueue class, 401

PULL method
role in input and output, 640

PULL option of PARSE instruction, 66
PULL subkeyword

in a PARSE instruction, 64, 594
in an PARSE instruction, 70

PUSH instruction
description, 71
example, 71

push method
of CircularQueue class, 270
of Queue class, 301
of RexxQueue class, 402

put method
of Array class, 258
of Bag class, 265
of Collection class, 237
of Directory class, 278
of IdentityTable class, 327
of List class, 288
of Properties class, 292
of Queue class, 301
of Relation class, 307
of Set class, 312
of Stem class, 318
of Table class, 323

putAll method
of Bag class, 265
of MapCollection class, 239
of Set class, 312, 312

Q
QUALIFY function

description, 480
qualify method

of Stream class, 225
query external function, 484
QUERY keyword

in a RXSUBCOM command, 657
query method

of Stream class, 226
queryMixinClass method

of Class class, 139
queue

creating and deleting queues, 484
named, 641
naming and querying, 484
RXQUEUE function, 484
session, 641
unnamed, 641

Queue class, 293
QUEUE instruction

description, 71
example, 71
role in input and output, 641

Queue interface from Rexx programs, 484

761

queue method
of CircularQueue class, 270
of Queue class, 301
of RexxQueue class, 402

QUEUED function
description, 481
example, 481
role in input and output, 642

queued method
of RexxQueue class, 402

R
RAISE instruction

description, 72
example, 73

RANDOM function
description, 481
example, 481

random number RANDOM function, 481
RC (return code)

not set during interactive debug, 649
set by commands, 37
special variable, 616, 653

RC special variable
description, 653

read position in a stream, 640
recursive call, 46, 438
register external functions, 483
REGISTER keyword

in a RXSUBCOM command, 656
RegularExpression class, 392
Relation class, 302
relative positional pattern

positional patterns
relative, 588

remainder
description>, 603

remainder operator, 20
remove method

of Array class, 258
of Directory class, 279
of IdentityTable class, 328
of List class, 288
of Queue class, 301
of Relation class, 307
of Stem class, 318
of Table class, 323

removeAll method
of Relation class, 307

removeItem method
of Array class, 259
of Directory class, 279
of IdentityTable class, 328
of List class, 288

of Queue class, 301
of Relation class, 307
of Stem class, 318
of Table class, 323

renameTo method
of File class, 429

reordering data, 180, 389, 502
repeating s string with copies, 161
repeating s string with COPIES, 458
repetitive loops

altering flow, 59
controlled repetitive loops, 664
exiting, 59
simple DO group, 663

replaceAt method
of MutableBuffer class, 387
of String class, 175

replacing characters within a string, 175, 387
REPLY instruction

description, 74
example, 74

request method
of Object class, 125
of Stem class, 318

reservation of keywords, 651
resize method

of CircularQueue class, 270
restrictions

embedded in numbers, 14
first character of variable name, 27
in programming, 1

result method
of Message class, 204

RESULT special variable
description, 653
return value from a routine, 442
set by RETURN instruction, 46, 75

retrieving
argument strings with ARG, 43
arguments with ARG function, 446
lines with SOURCELINE, 486

return
code

as set by commands, 37
setting on exit, 50

string
setting on exit, 50

RETURN instruction
description, 75

RETURN subkeyword
in a RAISE instruction, 72

returning control from Rexx program, 75
REVERSE function

description, 482

Index

762

example, 482
reverse method

of String class, 175
RexxContext class, 408
RexxQueue class, 398
rexxutil functions, 515

RxMessageBox, 520
example, 521

RxWinExec, 522
SysAddRexxMacro, 523
SysBootDrive, 523
SysClearRexxMacroSpace, 524
SysCloseEventSem, 524
SysCloseMutexSem, 524
SysCls, 525
SysCreateEventSem, 525
SysCreateMutexSem, 526
SysCreatePipe, 526
SysCurPos, 526

example, 527
SysCurState, 527
SysDriveInfo, 528

example, 528
SysDriveMap, 528

example, 529
SysDropFuncs, 529
SysDropRexxMacro, 529
SysDumpVariables, 530

example, 530
SysFileCopy, 530

example, 531
SysFileDelete, 531

example, 532
SysFileExists, 532
SysFileMove, 533

example, 533
SysFileSearch, 533

example, 534
SysFileSystemType, 535

example, 535
SysFileTree, 535

example, 538
SysFork, 538
SysFromUnicode, 540
SysGetErrortext, 542

example, 542
SysGetFileDateTime, 542

example, 543
SysGetKey, 543
SysGetMessage, 543

example, 544
SysGetMessageX, 544

example, 545
SysIni, 545

example, 547
SysIsFile, 547
SysIsFileCompressed, 548
SysIsFileDirectory, 549
SysIsFileEncrypted, 549
SysIsFileLink, 550
SysIsFileNotContentIndexed, 550
SysIsFileOffline, 551
SysIsFileSparse, 551
SysIsFileTemporary, 552
SysLinVer, 552
SysLoadFuncs, 553
SysLoadRexxMacroSpace, 553
SysMkDir, 553

example, 554
SysOpenEventSem, 554
SysOpenMutexSem, 554
SysPostEventSem, 555
SysPulseEventSem, 555
SysQueryProcess, 556
SysQueryRexxMacro, 557
SysReleaseMutexSem, 557
SysReorderRexxMacro, 558
SysRequestMutexSem, 558
SysResetEventSem, 559
SysRmDir, 559

example, 560
SysSaveRexxMacroSpace, 561
SysSearchPath, 561

example, 561
SysSetFileDateTime, 562

example, 562
SysSetPriority, 562
SysShutdownSystem, 563
SysSleep, 565

example, 565
SysStemCopy, 565

example, 566
SysStemDelete, 567

example, 567
SysStemInsert, 567
SysStemSort, 568

example, 569
SysSwitchSession, 569
SysSystemDirectory, 570
SysTempFileName, 570

example, 571
SysTextScreenRead, 571

example, 572
SysTextScreenSize, 572

example, 572
SysToUnicode, 572
SysUtilVersion, 574
SysVersion, 575

763

SysVolumeLabel, 575
SysWait, 576
SysWaitEventSem, 576
SysWaitNamedPipe, 577
SysWinDecryptFile, 577
SysWinEncryptFile, 578
SysWinGetDefaultPrinter, 579

example, 580
SysWinGetPrinters, 579

example, 580
SysWinSetDefaultPrinter, 579

example, 580
SysWinVer, 581

RIGHT function
description, 482
example, 483

right method
of String class, 176

round method
of String class, 176

rounding
using a character string as a number, 14

Routine class, 191
routines method

of Package class, 200
rs method

of RexxContext class, 411
run method

of Object class, 126
running off the end of a program, 75
RXFUNCADD function

description, 483
example, 483

RXFUNCDROP function
description, 483
example, 483

RXFUNCQUERY function
description, 484
example, 484

RXFUNCQUEUE function
example, 485

RxMessageBox, 520
example, 521

RXQUEUE filter, 658
RXQUEUE function

description, 484
RXSUBCOM command, 656
RXTRACE environment variable, 650
RxWinExec, 522

S
save method

of Properties class, 292
SAY instruction

description, 76
displaying data, 76
example, 76
role in output, 640

say method
of RexxQueue class, 402
of Stream class, 228

scientific notation, 604
SCIENTIFIC subkeyword

in a NUMERIC instruction, 63
scope

alternating exclusive access, 625
description, 109

search order
external functions, 438
for functions, 438
for methods

changing, 111
default, 110

for subroutines, 45
seconds calculated from midnight, 499
seconds method

of DateTime class, 344
of TimeSpan class, 362

section method
of Array class, 259
of CircularQueue class, 271
of List class, 289
of OrderedCollection class, 242
of Queue class, 302

Security Manager, 633
calls to, 633

seek method
of Stream class, 228

SELECT instruction
description, 76
example, 77

selecting a default with ABBREV function, 444
selecting a default with abbrev method, 147
selecting a default with caselessAbbrev method,
152
SELF special variable

description, 653
semaphore, 627
semicolons

implied, 16
omission of, 41
within a clause, 8

send method
of Message class, 205
of Object class, 127

sendWith method
of Object class, 127

separator method

Index

764

of File class, 420, 429
sequence, collating using XRANGE, 513
serial input and output, 639
Set class, 310
Set Collection classes

Bag class, 263
Set class, 310

set method
of RexxQueue class, 402

SET subkeyword
in an ATTRIBUTE directive, 89

set-operator methods, 331
setBufferSize method

of MutableBuffer class, 387
SetCollection class, 244
setEntry method

of Directory class, 279
setGuarded method

of Method class, 190
SETLOCAL function

description, 485
example, 486

setLogical method
of Properties class, 293

setMethod method
of Directory class, 279
of Object class, 128

setPrivate method
of Method class, 190

setProperty method
of Properties class, 293

setProtected method
of Method class, 190

setReadOnly method
of File class, 429

setSecurityManager method
of Method class, 190
of Package class, 200
of Routine class, 194

setUnguarded method
of Method class, 191

SETUNGUARDED method, 625
setWhole method

of Properties class, 293
shared library (RexxUtil), 515
SIGL

in CALL instruction, 46
in condition trapping, 615
in SIGNAL instruction, 79

SIGL special variable
description, 653

SIGN function
description, 486
example, 486

sign method
of String class, 177
of TimeSpan class, 365

SIGNAL instruction
description, 78
example, 79
execution of in subroutines, 47

significant digits in arithmetic, 602
simple

repetitive loops, 663
symbols, 29

size method
of Array class, 260
of CircularQueue class, 271

sort method
of Array class, 260
of OrderedCollection class, 243

sortWith method
of Array class, 260
of OrderedCollection class, 243

source
of program and retrieval of information, 66
string, 583

source method
of Method class, 191
of Package class, 200
of Routine class, 194

SOURCE option of PARSE instruction, 66
SOURCE subkeyword

in a PARSE instruction, 64, 594
sourceless programs, 660
SOURCELINE function

description, 486
example, 487

sourceLine method
of Package class, 200

sourceSize method
of Package class, 200

SPACE function
description, 487
example, 487

space method
of MutableBuffer class, 388
of String class, 177

spacing, formatting, SPACE function, 487
spacing, formatting, space method, 177, 388
special

characters and example, 15
parsing case, 597
variable

RC, 653
RESULT, 46, 75, 442, 653
SELF, 653
SIGL, 46, 653

765

SUPER, 653
variables

RC, 36, 615, 653
RESULT, 75, 442, 653
SELF, 653
SIGL, 615, 653
SUPER, 653

stableSort method
of Array class, 260
of OrderedCollection class, 243

stableSortWith method
of Array class, 261
of OrderedCollection class, 243

StackFrame class, 411
stackFrames method

of RexxContext class, 411
standard input and output, 643
Standard option of DATE function, 463
standardDate method

of DateTime class, 350
start method

of Message class, 205
of Object class, 129

startWith method
of Object class, 129

state method
of Stream class, 230

State method, 647
Stem class, 313
stem of a variable

assignment to, 30
description, 32
used in DROP instruction, 50
used in PROCEDURE instruction, 69

steps in parsing, 597
stream, 639

character positioning, 644
function overview, 645
line positioning, 644

Stream class, 211
stream errors, 647
STREAM function

command options, 488
command strings, 489
description, 487
example, 491, 492
options, 489
query options, 493
write options, 489

StreamSupplier class, 406
strict comparison, 20, 20
STRICT subkeyword

in a USE instruction, 84
strictly equal operator, 20, 21

strictly greater than operator, 20, 21
strictly greater than or equal operator, 21
strictly less than operator, 20, 21
strictly not equal operator, 20, 21
strictly not greater than operator, 21
strictly not less than operator, 21
string

as literal constant, 11
as name of function, 11
as name of subroutine, 44
binary specification of, 12
centering using center function, 159
centering using CENTER method, 452
centering using centre function, 159
centering using CENTRE method, 452
comparison of, 20
concatenation of, 19
copying using copies, 161
copying using COPIES, 458
decodeBase64 method, 165
deleting part, DELSTR function, 466
deleting part, delStr method, 165
description, 11
encodeBase64 method, 166
extracting using SUBSTR function, 496
extracting using substr method, 179
extracting words with SUBWORD, 496
from stream, 453
hexidecimal specification of, 12
interpretation of, 57
lowercasing using LOWER function, 478
null, 11
patterns

description, 583
literal, 586
variable, 592

quotations marks in, 11
reapting using COPIES, 458
repeating using copies, 161
uppercasing using UPPER function, 504
verifying contents of, 182, 390, 508

String class, 141
string method

of CircularQueue class, 272
of daysInMonth class, 354, 365
of File class, 430
of MutableBuffer class, 388
of Object class, 130
of StackFrame class, 413
of Stream class, 231

STRIP function
description, 495
example, 495

strip method

Index

766

of String class, 178
structure and syntax, 8
subchar method

of String class, 178
subChar method

of MutableBuffer class, 388
subclass method

of Class class, 139
SUBCLASS subkeyword

in a CLASS directive, 91
subclasses, 7
subclasses method

of Class class, 140
subexpression, 18
subkeyword, 27
subroutines

calling of, 44
definition, 437
forcing built-in or external reference, 45
naming of, 44
passing back values from, 75
return from, 75
use of labels, 44
variables in, 67

subset method
of Bag class, 266
of Collection class, 237
of OrderedCollection class, 243
of Relation class, 308

subsidiary list, 49, 51, 68
substitution

in variable names, 32
SUBSTR function

description, 496
example, 496

substr method
of MutableBuffer class, 388
of String class, 179

subtraction operator, 20
SUBWORD function

description, 496
example, 497

subWord method
of MutableBuffer class, 389
of String class, 179

subWords method
of MutableBuffer class, 389
of String class, 180

summary
parsing instructions, 594

SUPER special variable
description, 653

superClass method
of Class class, 140

superclasses, 7
superClasses method

of Class class, 140
Supplier class, 403
supplier method

of Array class, 261
of CircularQueue class, 272
of Collection class, 237
of Directory class, 280
of IdentityTable class, 328
of List class, 289
of Queue class, 302
of Relation class, 308
of Stem class, 319
of Stream class, 231
of Supplier class, 406
of Table class, 323

symbol
assigning values to, 27, 28
classifying, 28
compound, 32
constant, 28
description, 13
simple, 27
uppercase translation, 13
use of, 27, 28
valid names, 13

SYMBOL function
description, 497
example, 497

symbols
environment, 34

syntax
error

traceback after, 84
trapping with SIGNAL instruction, 609

general, 8
SYNTAX subkeyword

in a RAISE instruction, 72
in a SIGNAL instruction, 78, 611, 614

SysAddBootDrive, 523
SysAddRexxMacro, 523
SysClearRexxMacroSpace, 524
SysCloseEventSem, 524
SysCloseMutexSem, 524
SysCls, 525
SysCreateEventSem, 525
SysCreateMutexSem, 526
SysCreatePipe, 526
SysCurPos, 526

example, 527
SysCurState, 527
SysDriveInfo, 528

example, 528

767

SysDriveMap, 528
example, 529

SysDropFuncs, 529
SysDropRexxMacro, 529
SysDumpVariables, 530

example, 530
SysFileCopy, 530

example, 531
SysFileDelete, 531

example, 532
SysFileExists, 532
SysFileMove, 533

example, 533
SysFileSearch, 533

example, 534
SysFileSystemType, 535

example, 535
SysFileTree, 535

example, 538
SysFork, 538
SysFromUnicode, 540
SysGetErrortext, 542

example, 542
SysGetFileDateTime, 542

example, 543
SysGetKey, 543
SysGetMessage, 543

example, 544
SysGetMessageX, 544

example, 545
SysIni, 545

example, 547
SysIsFile, 547
SysIsFileCompressed, 548
SysIsFileDirectory, 549
SysIsFileEncrypted, 549
SysIsFileLink, 550
SysIsFileNotContentIndexed, 550
SysIsFileOffline, 551
SysIsFileSparse, 551
SysIsFileTemporary, 552
SysLinVer, 552
SysLoadFuncs, 553
SysLoadRexxMacroSpace, 553
SysMkDir, 553

example, 554
SysOpenEventSem, 554
SysOpenMutexSem, 554
SysPostEventSem, 555
SysPulseEventSem, 555
SysQueryProcess, 556
SysQueryRexxMacro, 557
SysReleaseMutexSem, 557
SysReorderRexxmacro, 558

SysRequestMutexSem, 558
SysResetEventSem, 559
SysRmDir, 559

example, 560
SysSaveRexxMacroSpace, 561
SysSearchPath, 561

example, 561
SysSetFileDateTime, 562

example, 562
SysSetPriority, 562
SysShutdownSystem, 563
SysSleep, 565

example, 565
SysStemCopy, 565

example, 566
SysStemDelete, 567

example, 567
SysStemInsert, 567
SysStemSort, 568

example, 569
SysSwitchSession, 569
SysSystemDirectory, 570
SysTempFileName, 570

example, 571
SysTextScreenRead, 571

example, 572
SysTextScreenSize, 572

example, 572
SysToUnicode, 572
SysUtilVersion, 574
SysVersion, 575
SysVolumeLabel, 575
SysWait, 576
SysWaitEventSem, 576
SysWaitNamedPipe, 577
SysWinDecryptFile, 577
SysWinEncryptFile, 578
SysWinGetDefaultPrinter, 579

example, 580
SysWinGetPrinters, 579

example, 580
SysWinSetDefaultPrinter, 579

example, 580
SysWinVer, 581

T
tab method

of String class, 143
Table class, 319
tail, 32
target method

of Message class, 206
of StackFrame class, 413

template

Index

768

definition, 583
list

ARG instruction, 43
PARSE instruction, 64
PULL instruction, 70

temporary change of, 41
temporary command destination change, 41
ten, powers of, 604
terminal

reading from with PULL, 70
writing to with SAY, 76

terms and data, 17
testing, 444, 497

abbreviations with abbrev method, 147
abbreviations with caselessAbbrev method,
152

THEN
as free standing clause, 41
following IF clause, 55
following WHEN clause, 76

THEN subkeyword
in a SELECT instruction, 76
in an IF instruction, 55

thread, 540, 555, 556, 573, 619
ticks method

of DateTime class, 352
Ticks option of DATE function, 463
Ticks option of Time function, 499
tilde (~), 4
TIME function

description, 497
example, 500, 500
implementation maximum, 501

timeOfDay method
of DateTime class, 353

TimeSpan class, 356
tips, tracing, 82
TO phrase of DO instruction, 48
TO phrase of LOOP instruction, 61
TO subkeyword

in a DO instruction, 47, 663
in a LOOP instruction, 60, 663

today method
of DateTime class, 337

toDirectory method
of Stem class, 319

tokens
binary strings, 12
description, 11
hexadecimal strings, 12
literal strings, 11
numbers, 14
operator characters, 15
special characters, 15

symbols, 13
toLocalTime method

of DateTime class, 351
toString method

of Array class, 261
totalDays method

of TimeSpan class, 362
totalHours method

of TimeSpan class, 362
totalMicroseconds method

of TimeSpan class, 363
totalMinutes method

of TimeSpan class, 363
totalSeconds method

of TimeSpan class, 363
toTimeZone method

of DateTime class, 352
toUtcTime method

of DateTime class, 352
TRACE function

description, 502
example, 502

TRACE instruction
alphabetical character word options, 81
description, 79
example, 83

trace method
of Package class, 201

TRACE setting
altering with TRACE function, 502
altering with TRACE instruction, 79
querying, 502

traceback, on syntax error, 84
traceLine method

of StackFrame class, 414
tracing

action saved during subroutine calls, 47
by interactive debug, 649
data identifiers, 83
execution of programs, 79
tips, 82

tracing flag
-, 83
+++, 83
=>>, 83
>.>, 83
>>>, 83
>A>, 83
>E>, 84
>F>, 84
>I>, 83
>L>, 84
>M>, 84
>O>, 84

769

>P>, 84
>V>, 84

trailing
whitespace removed using STRIP function,
495
whitespace removed using strip method, 178

transient input and output, 639
TRANSLATE function

description, 502
example, 503

translate method
of MutableBuffer class, 389
of String class, 180

translation
with TRANSLATE function, 502
with translate method, 180, 389

trap conditions
explanation, 609
how to, 609
information about trapped conditions, 456
using CONDITION function, 456

trapname, 611
TRUNC function

description, 503
example, 503

trunc method
of String class, 181

truncating numbers, 181, 503
twiddle (~), 4
type method

of StackFrame class, 414
type of data, checking with DataType, 163
type of data, checking with DATATYPE, 460
typewriter input and output, 639

U
unassigning variables, 49
unconditionally leaving your program, 50
underflow, arithmetic, 607
UNGUARDED option of ::ATTRIBUTE, 91
UNGUARDED option of ::METHOD, 96, 625
UNGUARDED subkeyword

in a METHOD directive, 94
in an ATTRIBUTE directive, 89

uninherit method
of Class class, 141

uninit method
of Stream class, 231

uninitialized variable, 28
union method

of Bag class, 266
of CircularQueue class, 272
of Collection class, 237
of OrderedCollection class, 244

of Relation class, 308
of Set class, 312

uniqueIndexes method
of Relation class, 308

unknown method
of Directory class, 280
of Monitor class, 379
of Stem class, 319

unpacking a string
with b2x, 149
with B2X, 447
with c2x, 152
with C2X, 451

UNPROTECTED subkeyword
in a METHOD directive, 94
in an ATTRIBUTE directive, 89

unsetMethod method
of Directory class, 280
of Object class, 131

UNTIL phrase of DO instruction, 48
UNTIL phrase of LOOP instruction, 61
UNTIL subkeyword

in a DO instruction, 47, 666
in a LOOP instruction, 60, 666

unusual change in flow of control, 609
UPPER function

description, 504
upper method

of MutableBuffer class, 390
of String class, 182

UPPER subkeyword
in a PARSE instruction, 43, 64, 593
in an PARSE instruction, 70

uppercase translation
during ARG instruction, 43
during PULL instruction, 70
of symbols, 13
with PARSE UPPER, 65
with TRANSLATE function, 502
with translate method, 180, 389

Usa option of DATE function, 464
usaDate method

of DateTime class, 350
USE instruction

description, 84
example, 85

user input and output, 639, 649
USER subkeyword

in a CALL instruction, 44, 611, 614
in a RAISE instruction, 72
in a SIGNAL instruction, 78, 611, 614

USERID function
description, 504

utcDate method

Index

770

of DateTime class, 351
utcIsoDate method

of DateTime class, 347

V
value, 17
VALUE function

description, 504
example, 505, 507

value method
of WeakReference class, 415

VALUE option of PARSE instruction, 66
VALUE subkeyword

in a NUMERIC instruction, 63
in a PARSE instruction, 64, 594
in a SIGNAL instruction, 78
in a TRACE instruction, 79
in an ADDRESS instruction, 41

VAR function
description, 507
example, 508

VAR option of PARSE instruction, 67
VAR subkeyword

in a PARSE instruction, 64, 594
variable

access with VALUE function, 504
checking name, 507
compound, 32
controlling loops, 664
description, 27, 28
dropping of, 49
exposing to caller, 67
external collections, 505
global, 505
in internal functions, 67
in subroutines, 67
names, 13
new level of, 67
parsing of, 67
patterns, parsing with

string, 592
patterns, parsing with positional, 593
positional patterns, 593
reference, 592
resetting of, 49
setting a new value, 27, 28
SIGL, 615
simple, 29
special

RC, 37
SIGL, 46, 615

string patterns, 592
testing for initialization, 497
valid names, 27

variable initialization, 497
variables

aquiring, 5, 8
in objects, 4

variables method
of RexxContext class, 411

VERIFY function
description, 508
example, 508

verify method
of MutableBuffer class, 390
of String class, 182

verifying contents of a buffer, 390
verifying contents of a string, 182, 508
VERSION option of PARSE instruction, 67
VERSION subkeyword

in a PARSE instruction, 64, 594

W
WeakReference class, 414
weekDay method

of DateTime class, 348
Weekday option of DATE function, 464
WHEN

as free standing clause, 41
WHEN subkeyword

in a SELECT instruction, 76
in an GUARD instruction, 54

WHILE phrase of DO instruction, 48
WHILE phrase of LOOP instruction, 61
WHILE subkeyword

in a DO instruction, 47, 666
in a LOOP instruction, 60, 666

whitespace, 9
adjacent to special character, 8
in parsing, treatment of, 585
removal with STRIP function, 495
removal with strip method, 178

whole numbers
checking with dataType, 163
checking with DATATYPE, 460
description, 15

Windows OS Error Codes, 515
WITH subkeyword

in a PARSE instruction, 64
word

alphabetical character options in TRACE, 81
counting in a mutable buffer, 392
counting in a string, 185, 510
deleting from a mutablebuffer, 384
deleting from a string, 166, 467
extracting from a mutable buffer, 392
extracting from a string, 179, 180, 185, 389,
389, 496, 510

771

finding length of, 170, 474
in parsing, 583
locating in a mutable buffer, 391
locating in a string, 158, 184, 382, 510
parsing

conceptual view, 600
examples, 583

WORD function
description, 509
example, 509

word method
of MutableBuffer class, 391
of String class, 183

WORDINDEX function
description, 509
example, 509

wordIndex method
of MutableBuffer class, 391
of String class, 183

WORDLENGTH function
description, 509
example, 510

wordLength method
of MutableBuffer class, 391
of String class, 184

WORDPOS function
description, 510
example, 510

wordPos method
of MutableBuffer class, 391
of String class, 184

WORDS function
description, 510
example, 511

words method
of MutableBuffer class, 392
of String class, 185

writ position in a stream, 640
writing to external data queue

with PUSH, 71
with QUEUE, 71

X
X2B function

description, 511
example, 511

x2b method
of String class, 185

X2C function
description, 512
example, 512

x2c method
of String class, 186

X2D function

description, 512
example, 512, 513

x2d method
of String class, 186

xor method
of Bag class, 266
of CircularQueue class, 273
of Collection class, 238
of Directory class, 280
of OrderedCollection class, 244
of Relation class, 309
of Set class, 313

XOR, logical, 21
XORing character strings together, 150, 450
XRANGE function

description, 513
example, 513

Y
year method

of DateTime class, 343
yearDay method

of DateTime class, 348
YO subkeyword

in a FORWARD instruction, 52

Z
zeros

added on left with RIGHT function, 482
added on left with right method, 176
removal with STRIP function, 495
removal with strip method, 178

772

	Open Object Rexx™
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. How to Read the Syntax Diagrams
	3. Getting Help and Submitting Feedback
	3.1. The Open Object Rexx SourceForge Site
	3.2. The Rexx Language Association Mailing List
	3.3. comp.lang.rexx Newsgroup

	4. Related Information

	Chapter 1. Open Object Rexx General Concepts
	1.1. What Is Object-Oriented Programming?
	1.2. Modularizing Data
	1.3. Modeling Objects
	1.4. How Objects Interact
	1.5. Methods
	1.6. Polymorphism
	1.7. Classes and Instances
	1.8. Data Abstraction
	1.9. Subclasses, Superclasses, and Inheritance
	1.10. Structure and General Syntax
	1.10.1. Characters
	1.10.2. Whitespace
	1.10.3. Comments
	1.10.4. Tokens
	1.10.4.1. Literal Strings
	1.10.4.2. Hexadecimal Strings
	1.10.4.3. Binary Strings
	1.10.4.4. Symbols
	1.10.4.5. Numbers
	1.10.4.6. Operator Characters
	1.10.4.7. Special Characters
	1.10.4.8. Example

	1.10.5. Implied Semicolons
	1.10.6. Continuations

	1.11. Terms, Expressions, and Operators
	1.11.1. Terms and Expressions
	1.11.2. Operators
	1.11.2.1. String Concatenation
	1.11.2.2. Arithmetic
	1.11.2.3. Comparison
	1.11.2.4. Logical (Boolean)

	1.11.3. Parentheses and Operator Precedence
	1.11.4. Message Terms
	1.11.5. Message Sequences

	1.12. Clauses and Instructions
	1.12.1. Null Clauses
	1.12.2. Directives
	1.12.3. Labels
	1.12.4. Instructions
	1.12.5. Assignments
	1.12.5.1. Extended Assignments
	1.12.5.2. Message Instructions
	1.12.5.3. Keyword Instructions

	1.12.6. Commands

	1.13. Assignments and Symbols
	1.13.1. Extended Assignments
	1.13.2. Constant Symbols
	1.13.3. Simple Symbols
	1.13.4. Stems
	1.13.5. Compound Symbols
	1.13.5.1. Evaluated Compound Variables

	1.13.6. Environment Symbols

	1.14. Message Instructions
	1.15. Commands to External Environments
	1.15.1. Environment
	1.15.2. Commands

	1.16. Using Rexx on Windows and Unix

	Chapter 2. Keyword Instructions
	2.1. ADDRESS
	2.2. ARG
	2.3. CALL
	2.4. DO
	2.5. DROP
	2.6. EXIT
	2.7. EXPOSE
	2.8. FORWARD
	2.9. GUARD
	2.10. IF
	2.11. INTERPRET
	2.12. ITERATE
	2.13. LEAVE
	2.14. LOOP
	2.15. NOP
	2.16. NUMERIC
	2.17. OPTIONS
	2.18. PARSE
	2.19. PROCEDURE
	2.20. PULL
	2.21. PUSH
	2.22. QUEUE
	2.23. RAISE
	2.24. REPLY
	2.25. RETURN
	2.26. SAY
	2.27. SELECT
	2.28. SIGNAL
	2.29. TRACE
	2.29.1. Trace Alphabetic Character (Word) Options
	2.29.2. Prefix Option
	2.29.3. Numeric Options
	2.29.4. Tracing Tips
	2.29.5. The Format of Trace Output

	2.30. USE

	Chapter 3. Directives
	3.1. ::ATTRIBUTE
	3.2. ::CLASS
	3.3. ::CONSTANT
	3.4. ::METHOD
	3.5. ::OPTIONS
	3.6. ::REQUIRES
	3.7. ::ROUTINE

	Chapter 4. Objects and Classes
	4.1. Types of Classes
	4.1.1. Object Classes
	4.1.2. Mixin Classes
	4.1.3. Abstract Classes
	4.1.4. Metaclasses

	4.2. Creating and Using Classes and Methods
	4.2.1. Using Classes
	4.2.2. Scope
	4.2.3. Defining Instance Methods with SETMETHOD or ENHANCED
	4.2.4. Method Names
	4.2.5. Default Search Order for Method Selection
	4.2.6. Defining an UNKNOWN Method
	4.2.7. Changing the Search Order for Methods
	4.2.8. Public and Private Methods
	4.2.9. Initialization
	4.2.10. Object Destruction and Uninitialization
	4.2.11. Required String Values
	4.2.12. Concurrency

	4.3. Overview of Classes Provided by Rexx
	4.3.1. The Class Hierarchy
	4.3.2. Class Library Notes

	Chapter 5. The Builtin Classes
	5.1. The Fundamental Classes
	5.1.1. The Object Class
	5.1.1.1. new (Class Method)
	5.1.1.2. Operator Methods
	5.1.1.3. Concatenation Methods
	5.1.1.4. class
	5.1.1.5. copy
	5.1.1.6. defaultName
	5.1.1.7. hashCode
	5.1.1.8. hasMethod
	5.1.1.9. identityHash
	5.1.1.10. init
	5.1.1.11. instanceMethod
	5.1.1.12. instanceMethods
	5.1.1.13. isA
	5.1.1.14. isInstanceOf
	5.1.1.15. objectName
	5.1.1.16. objectName=
	5.1.1.17. request
	5.1.1.18. run
	5.1.1.19. send
	5.1.1.20. sendWith
	5.1.1.21. setMethod
	5.1.1.22. start
	5.1.1.23. startWith
	5.1.1.24. string
	5.1.1.25. unsetMethod

	5.1.2. The Class Class
	5.1.2.1. Inherited Methods
	5.1.2.2. activate
	5.1.2.3. baseClass
	5.1.2.4. defaultName
	5.1.2.5. define
	5.1.2.6. delete
	5.1.2.7. enhanced
	5.1.2.8. id
	5.1.2.9. inherit
	5.1.2.10. isSubClassOf
	5.1.2.11. metaClass
	5.1.2.12. method
	5.1.2.13. methods
	5.1.2.14. mixinClass
	5.1.2.15. new
	5.1.2.16. queryMixinClass
	5.1.2.17. subclass
	5.1.2.18. subclasses
	5.1.2.19. superClass
	5.1.2.20. superClasses
	5.1.2.21. uninherit

	5.1.3. The String Class
	5.1.3.1. Inherited Methods
	5.1.3.2. new (Class Method)
	5.1.3.3. nl (Class Method)
	5.1.3.4. cr Class Method)
	5.1.3.5. null Class Method)
	5.1.3.6. tab Class Method)
	5.1.3.7. Arithmetic Methods
	5.1.3.8. Comparison Methods
	5.1.3.9. Logical Methods
	5.1.3.10. Concatenation Methods
	5.1.3.11. abbrev
	5.1.3.12. abs
	5.1.3.13. b2x
	5.1.3.14. bitAnd
	5.1.3.15. bitOr
	5.1.3.16. bitXor
	5.1.3.17. c2d
	5.1.3.18. c2x
	5.1.3.19. caselessAbbrev
	5.1.3.20. caselessChangeStr
	5.1.3.21. caselessCompare
	5.1.3.22. caselessCompareTo
	5.1.3.23. caselessCountStr
	5.1.3.24. caselessEquals
	5.1.3.25. caselessLastPos
	5.1.3.26. caselessMatch
	5.1.3.27. caselessMatchChar
	5.1.3.28. caselessPos
	5.1.3.29. caselessWordPos
	5.1.3.30. ceiling
	5.1.3.31. center/centre
	5.1.3.32. changeStr
	5.1.3.33. compare
	5.1.3.34. compareTo
	5.1.3.35. copies
	5.1.3.36. countStr
	5.1.3.37. d2c
	5.1.3.38. d2x
	5.1.3.39. dataType
	5.1.3.40. decodeBase64
	5.1.3.41. delStr
	5.1.3.42. delWord
	5.1.3.43. encodeBase64
	5.1.3.44. equals
	5.1.3.45. floor
	5.1.3.46. format
	5.1.3.47. hashCode
	5.1.3.48. insert
	5.1.3.49. lastPos
	5.1.3.50. left
	5.1.3.51. length
	5.1.3.52. lower
	5.1.3.53. makeArray
	5.1.3.54. makeString
	5.1.3.55. match
	5.1.3.56. matchChar
	5.1.3.57. max
	5.1.3.58. min
	5.1.3.59. overlay
	5.1.3.60. pos
	5.1.3.61. replaceAt
	5.1.3.62. reverse
	5.1.3.63. right
	5.1.3.64. round
	5.1.3.65. sign
	5.1.3.66. space
	5.1.3.67. strip
	5.1.3.68. subchar
	5.1.3.69. substr
	5.1.3.70. subWord
	5.1.3.71. subWords
	5.1.3.72. translate
	5.1.3.73. trunc
	5.1.3.74. upper
	5.1.3.75. verify
	5.1.3.76. word
	5.1.3.77. wordIndex
	5.1.3.78. wordLength
	5.1.3.79. wordPos
	5.1.3.80. words
	5.1.3.81. x2b
	5.1.3.82. x2c
	5.1.3.83. x2d

	5.1.4. The Method Class
	5.1.4.1. Inherited Methods
	5.1.4.2. new (Class Method)
	5.1.4.3. newFile (Class Method)
	5.1.4.4. loadExternalMethod (Class Method)
	5.1.4.5. isGuarded
	5.1.4.6. isPrivate
	5.1.4.7. isProtected
	5.1.4.8. package
	5.1.4.9. setGuarded
	5.1.4.10. setPrivate
	5.1.4.11. setProtected
	5.1.4.12. setSecurityManager
	5.1.4.13. setUnguarded
	5.1.4.14. source

	5.1.5. The Routine Class
	5.1.5.1. Inherited Methods
	5.1.5.2. new (Class Method)
	5.1.5.3. newFile (Class Method)
	5.1.5.4. loadExternalRoutine (Class method)
	5.1.5.5. call
	5.1.5.6. callWith
	5.1.5.7. package
	5.1.5.8. setSecurityManager
	5.1.5.9. source

	5.1.6. The Package Class
	5.1.6.1. Inherited Methods
	5.1.6.2. new (Class Method)
	5.1.6.3. addClass
	5.1.6.4. addPackage
	5.1.6.5. addPublicClass
	5.1.6.6. addPublicRoutine
	5.1.6.7. addRoutine
	5.1.6.8. classes
	5.1.6.9. definedMethods
	5.1.6.10. digits
	5.1.6.11. findClass
	5.1.6.12. findRoutine
	5.1.6.13. form
	5.1.6.14. fuzz
	5.1.6.15. importedClasses
	5.1.6.16. importedPackages
	5.1.6.17. importedRoutines
	5.1.6.18. loadLibrary
	5.1.6.19. loadPackage
	5.1.6.20. name
	5.1.6.21. publicClasses
	5.1.6.22. publicRoutines
	5.1.6.23. routines
	5.1.6.24. setSecurityManager
	5.1.6.25. source
	5.1.6.26. sourceLine
	5.1.6.27. sourceSize
	5.1.6.28. trace

	5.1.7. The Message Class
	5.1.7.1. Inherited Methods
	5.1.7.2. new (Class Method)
	5.1.7.3. arguments
	5.1.7.4. completed
	5.1.7.5. errorCondition
	5.1.7.6. hasError
	5.1.7.7. messageName
	5.1.7.8. notify
	5.1.7.9. result
	5.1.7.10. send
	5.1.7.11. start
	5.1.7.12. target

	5.2. The Stream Classes
	5.2.1. The InputStream Class
	5.2.1.1. Inherited Methods
	5.2.1.2. arrayIn
	5.2.1.3. charIn
	5.2.1.4. charOut
	5.2.1.5. chars
	5.2.1.6. close
	5.2.1.7. lineIn
	5.2.1.8. lineOut
	5.2.1.9. lines
	5.2.1.10. open
	5.2.1.11. position

	5.2.2. The OutputStream Class
	5.2.2.1. Inherited Methods
	5.2.2.2. arrayOut
	5.2.2.3. charIn
	5.2.2.4. charOut
	5.2.2.5. chars
	5.2.2.6. close
	5.2.2.7. lineIn
	5.2.2.8. lineOut
	5.2.2.9. lines
	5.2.2.10. open
	5.2.2.11. position

	5.2.3. The InputOutputStream Class
	5.2.3.1. Inherited Methods

	5.2.4. The Stream Class
	5.2.4.1. Inherited Methods
	5.2.4.2. new (Inherited Class Method)
	5.2.4.3. arrayIn
	5.2.4.4. arrayOut
	5.2.4.5. charIn
	5.2.4.6. charOut
	5.2.4.7. chars
	5.2.4.8. close
	5.2.4.9. command
	5.2.4.9.1. Command Strings

	5.2.4.10. description
	5.2.4.11. flush
	5.2.4.12. init
	5.2.4.13. lineIn
	5.2.4.14. lineOut
	5.2.4.15. lines
	5.2.4.16. makeArray
	5.2.4.17. open
	5.2.4.18. position
	5.2.4.19. qualify
	5.2.4.20. query
	5.2.4.21. say
	5.2.4.22. seek
	5.2.4.23. state
	5.2.4.24. string
	5.2.4.25. supplier
	5.2.4.26. uninit

	5.3. The Collection Classes
	5.3.1. Organization of the Collection Classes
	5.3.2. The Collection Class
	5.3.2.1. []
	5.3.2.2. []=
	5.3.2.3. allIndexes
	5.3.2.4. allItems
	5.3.2.5. at
	5.3.2.6. difference
	5.3.2.7. disjoint
	5.3.2.8. equivalent
	5.3.2.9. hasIndex
	5.3.2.10. hasItem
	5.3.2.11. index
	5.3.2.12. intersection
	5.3.2.13. items
	5.3.2.14. makeArray
	5.3.2.15. put
	5.3.2.16. subset
	5.3.2.17. supplier
	5.3.2.18. union
	5.3.2.19. xor

	5.3.3. The MapCollection Class
	5.3.3.1. Inherited Methods
	5.3.3.2. makeArray
	5.3.3.3. putAll

	5.3.4. The OrderedCollection Class
	5.3.4.1. append
	5.3.4.2. appendAll
	5.3.4.3. delete
	5.3.4.4. difference
	5.3.4.5. first
	5.3.4.6. firstItem
	5.3.4.7. insert
	5.3.4.8. intersection
	5.3.4.9. last
	5.3.4.10. lastItem
	5.3.4.11. next
	5.3.4.12. previous
	5.3.4.13. section
	5.3.4.14. sort
	5.3.4.15. sortWith
	5.3.4.16. stableSort
	5.3.4.17. stableSortWith
	5.3.4.18. subset
	5.3.4.19. union
	5.3.4.20. xor

	5.3.5. The SetCollection Class
	5.3.5.1. Inherited Methods

	5.3.6. The Array Class
	5.3.6.1. Inherited Methods
	5.3.6.2. insert
	5.3.6.3. new (Class Method)
	5.3.6.4. of (Class Method)
	5.3.6.5. []
	5.3.6.6. []=
	5.3.6.7. allIndexes
	5.3.6.8. allItems
	5.3.6.9. append
	5.3.6.10. at
	5.3.6.11. delete
	5.3.6.12. dimension
	5.3.6.13. dimensions
	5.3.6.14. empty
	5.3.6.15. fill
	5.3.6.16. first
	5.3.6.17. firstItem
	5.3.6.18. hasIndex
	5.3.6.19. hasItem
	5.3.6.20. index
	5.3.6.21. isEmpty
	5.3.6.22. items
	5.3.6.23. last
	5.3.6.24. lastItem
	5.3.6.25. makeArray
	5.3.6.26. makeString
	5.3.6.27. next
	5.3.6.28. previous
	5.3.6.29. put
	5.3.6.30. remove
	5.3.6.31. removeItem
	5.3.6.32. section
	5.3.6.33. size
	5.3.6.34. sort
	5.3.6.35. sortWith
	5.3.6.36. stableSort
	5.3.6.37. stableSortWith
	5.3.6.38. supplier
	5.3.6.39. toString
	5.3.6.40. Examples

	5.3.7. The Bag Class
	5.3.7.1. Inherited Methods
	5.3.7.2. of (Class Method)
	5.3.7.3. []=
	5.3.7.4. difference
	5.3.7.5. hasIndex
	5.3.7.6. intersection
	5.3.7.7. put
	5.3.7.8. putAll
	5.3.7.9. subset
	5.3.7.10. union
	5.3.7.11. xor
	5.3.7.12. Examples

	5.3.8. The CircularQueue Class
	5.3.8.1. Inherited Methods
	5.3.8.2. of (Class Method)
	5.3.8.3. init
	5.3.8.4. append
	5.3.8.5. insert
	5.3.8.6. intersection
	5.3.8.7. makeArray
	5.3.8.8. push
	5.3.8.9. queue
	5.3.8.10. resize
	5.3.8.11. section
	5.3.8.12. size
	5.3.8.13. string
	5.3.8.14. supplier
	5.3.8.15. union
	5.3.8.16. xor
	5.3.8.17. Example

	5.3.9. The Directory Class
	5.3.9.1. Inherited Methods
	5.3.9.2. new (Class Method)
	5.3.9.3. []
	5.3.9.4. []=
	5.3.9.5. allIndexes
	5.3.9.6. allItems
	5.3.9.7. at
	5.3.9.8. empty
	5.3.9.9. entry
	5.3.9.10. hasEntry
	5.3.9.11. hasIndex
	5.3.9.12. hasItem
	5.3.9.13. index
	5.3.9.14. isEmpty
	5.3.9.15. items
	5.3.9.16. makeArray
	5.3.9.17. put
	5.3.9.18. remove
	5.3.9.19. removeItem
	5.3.9.20. setEntry
	5.3.9.21. setMethod
	5.3.9.22. supplier
	5.3.9.23. unknown
	5.3.9.24. unsetMethod
	5.3.9.25. xor
	5.3.9.26. Examples

	5.3.10. The List Class
	5.3.10.1. Inherited Methods
	5.3.10.2. new (Class Method)
	5.3.10.3. of (Class Method)
	5.3.10.4. []
	5.3.10.5. []=
	5.3.10.6. allIndexes
	5.3.10.7. allItems
	5.3.10.8. append
	5.3.10.9. at
	5.3.10.10. delete
	5.3.10.11. empty
	5.3.10.12. first
	5.3.10.13. firstItem
	5.3.10.14. hasIndex
	5.3.10.15. hasItem
	5.3.10.16. index
	5.3.10.17. insert
	5.3.10.18. isEmpty
	5.3.10.19. items
	5.3.10.20. last
	5.3.10.21. lastItem
	5.3.10.22. makeArray
	5.3.10.23. next
	5.3.10.24. previous
	5.3.10.25. put
	5.3.10.26. remove
	5.3.10.27. removeItem
	5.3.10.28. section
	5.3.10.29. supplier

	5.3.11. The Properties Class
	5.3.11.1. Inherited Methods
	5.3.11.2. load (Class method)
	5.3.11.3. new (Class method)
	5.3.11.4. []=
	5.3.11.5. getLogical
	5.3.11.6. getProperty
	5.3.11.7. getWhole
	5.3.11.8. load
	5.3.11.9. put
	5.3.11.10. save
	5.3.11.11. setLogical
	5.3.11.12. setProperty
	5.3.11.13. setWhole

	5.3.12. The Queue Class
	5.3.12.1. Inherited Methods
	5.3.12.2. new (Class Method)
	5.3.12.3. of (Class Method)
	5.3.12.4. []
	5.3.12.5. []=
	5.3.12.6. allIndexes
	5.3.12.7. allItems
	5.3.12.8. append
	5.3.12.9. at
	5.3.12.10. delete
	5.3.12.11. empty
	5.3.12.12. first
	5.3.12.13. firstItem
	5.3.12.14. hasIndex
	5.3.12.15. hasItem
	5.3.12.16. index
	5.3.12.17. insert
	5.3.12.18. isEmpty
	5.3.12.19. items
	5.3.12.20. last
	5.3.12.21. lastItem
	5.3.12.22. makeArray
	5.3.12.23. next
	5.3.12.24. peek
	5.3.12.25. previous
	5.3.12.26. pull
	5.3.12.27. push
	5.3.12.28. put
	5.3.12.29. queue
	5.3.12.30. remove
	5.3.12.31. removeItem
	5.3.12.32. section
	5.3.12.33. supplier

	5.3.13. The Relation Class
	5.3.13.1. Inherited Methods
	5.3.13.2. new (Class Method)
	5.3.13.3. []
	5.3.13.4. []=
	5.3.13.5. allAt
	5.3.13.6. allIndex
	5.3.13.7. allIndexes
	5.3.13.8. allItems
	5.3.13.9. at
	5.3.13.10. difference
	5.3.13.11. empty
	5.3.13.12. hasIndex
	5.3.13.13. hasItem
	5.3.13.14. index
	5.3.13.15. intersection
	5.3.13.16. isEmpty
	5.3.13.17. items
	5.3.13.18. makeArray
	5.3.13.19. put
	5.3.13.20. remove
	5.3.13.21. removeAll
	5.3.13.22. removeItem
	5.3.13.23. subset
	5.3.13.24. supplier
	5.3.13.25. union
	5.3.13.26. uniqueIndexes
	5.3.13.27. xor
	5.3.13.28. Examples

	5.3.14. The Set Class
	5.3.14.1. Inherited Methods
	5.3.14.2. of (Class Method)
	5.3.14.3. []=
	5.3.14.4. hasItem
	5.3.14.5. intersection
	5.3.14.6. put
	5.3.14.7. putAll
	5.3.14.8. subset
	5.3.14.9. union
	5.3.14.10. xor

	5.3.15. The Stem Class
	5.3.15.1. Inherited Methods
	5.3.15.2. new (Class Method)
	5.3.15.3. []
	5.3.15.4. []=
	5.3.15.5. allIndexes
	5.3.15.6. allItems
	5.3.15.7. at
	5.3.15.8. empty
	5.3.15.9. hasIndex
	5.3.15.10. hasItem
	5.3.15.11. index
	5.3.15.12. isEmpty
	5.3.15.13. items
	5.3.15.14. makeArray
	5.3.15.15. put
	5.3.15.16. remove
	5.3.15.17. removeItem
	5.3.15.18. request
	5.3.15.19. supplier
	5.3.15.20. toDirectory
	5.3.15.21. unknown

	5.3.16. The Table Class
	5.3.16.1. Inherited Methods
	5.3.16.2. new (Class Method)
	5.3.16.3. []
	5.3.16.4. []=
	5.3.16.5. allIndexes
	5.3.16.6. allItems
	5.3.16.7. at
	5.3.16.8. empty
	5.3.16.9. hasIndex
	5.3.16.10. hasItem
	5.3.16.11. index
	5.3.16.12. isEmpty
	5.3.16.13. items
	5.3.16.14. makeArray
	5.3.16.15. put
	5.3.16.16. remove
	5.3.16.17. removeItem
	5.3.16.18. supplier

	5.3.17. The IdentityTable Class
	5.3.17.1. Inherited Methods
	5.3.17.2. new (Class Method)
	5.3.17.3. []
	5.3.17.4. []=
	5.3.17.5. allIndexes
	5.3.17.6. allItems
	5.3.17.7. at
	5.3.17.8. empty
	5.3.17.9. hasIndex
	5.3.17.10. hasItem
	5.3.17.11. index
	5.3.17.12. isEmpty
	5.3.17.13. items
	5.3.17.14. makeArray
	5.3.17.15. put
	5.3.17.16. remove
	5.3.17.17. removeItem
	5.3.17.18. supplier

	5.3.18. Sorting Ordered Collections
	5.3.18.1. Sorting non-strings
	5.3.18.2. Sorting with more than one order
	5.3.18.3. Builtin Comparators
	5.3.18.4. Stable and Unstable Sorts

	5.3.19. The Concept of Set Operations
	5.3.19.1. The Principles of Operation
	5.3.19.2. Set Operations on Collections without Duplicates
	5.3.19.3. Set-Like Operations on Collections with Duplicates
	5.3.19.4. Determining the Identity of an Item

	5.4. The Utility Classes
	5.4.1. The DateTime Class
	5.4.1.1. Inherited Methods
	5.4.1.2. minDate (Class Method)
	5.4.1.3. maxDate (Class Method)
	5.4.1.4. today (Class Method)
	5.4.1.5. fromNormalDate (Class Method)
	5.4.1.6. fromEuropeanDate (Class Method)
	5.4.1.7. fromOrderedDate (Class Method)
	5.4.1.8. fromStandardDate (Class Method)
	5.4.1.9. fromUsaDate (Class Method)
	5.4.1.10. fromNormalTime (Class Method)
	5.4.1.11. fromCivilTime (Class Method)
	5.4.1.12. fromLongTime (Class Method)
	5.4.1.13. fromBaseDate (Class Method)
	5.4.1.14. fromTicks (Class Method)
	5.4.1.15. fromIsoDate (Class Method)
	5.4.1.16. fromUTCIsoDate (Class Method)
	5.4.1.17. init
	5.4.1.18. Arithmetic Methods
	5.4.1.19. compareTo
	5.4.1.20. year
	5.4.1.21. month
	5.4.1.22. day
	5.4.1.23. hours
	5.4.1.24. minutes
	5.4.1.25. seconds
	5.4.1.26. microseconds
	5.4.1.27. dayMinutes
	5.4.1.28. daySeconds
	5.4.1.29. dayMicroseconds
	5.4.1.30. hashCode
	5.4.1.31. addYears
	5.4.1.32. addWeeks
	5.4.1.33. addDays
	5.4.1.34. addHours
	5.4.1.35. addMinutes
	5.4.1.36. addSeconds
	5.4.1.37. addMicroseconds
	5.4.1.38. isoDate
	5.4.1.39. utcIsoDate
	5.4.1.40. baseDate
	5.4.1.41. yearDay
	5.4.1.42. weekDay
	5.4.1.43. europeanDate
	5.4.1.44. languageDate
	5.4.1.45. monthName
	5.4.1.46. dayName
	5.4.1.47. normalDate
	5.4.1.48. orderedDate
	5.4.1.49. standardDate
	5.4.1.50. usaDate
	5.4.1.51. civilTime
	5.4.1.52. normalTime
	5.4.1.53. longTime
	5.4.1.54. fullDate
	5.4.1.55. utcDate
	5.4.1.56. toLocalTime
	5.4.1.57. toUtcTime
	5.4.1.58. toTimeZone
	5.4.1.59. ticks
	5.4.1.60. offset
	5.4.1.61. date
	5.4.1.62. timeOfDay
	5.4.1.63. elapsed
	5.4.1.64. isLeapYear
	5.4.1.65. daysInMonth
	5.4.1.66. daysInYear
	5.4.1.67. string

	5.4.2. The Alarm Class
	5.4.2.1. Inherited Methods
	5.4.2.2. cancel
	5.4.2.3. init

	5.4.3. The TimeSpan Class
	5.4.3.1. Inherited Methods
	5.4.3.2. fromDays (Class Method)
	5.4.3.3. fromHours (Class Method)
	5.4.3.4. fromMinutes (Class Method)
	5.4.3.5. fromSeconds (Class Method)
	5.4.3.6. fromMicroseconds (Class Method)
	5.4.3.7. fromNormalTime (Class Method)
	5.4.3.8. fromCivilTime (Class Method)
	5.4.3.9. fromLongTime (Class Method)
	5.4.3.10. fromStringFormat (Class Method)
	5.4.3.11. init
	5.4.3.12. Arithmetic Methods
	5.4.3.13. compareTo
	5.4.3.14. duration
	5.4.3.15. days
	5.4.3.16. hours
	5.4.3.17. minutes
	5.4.3.18. seconds
	5.4.3.19. microseconds
	5.4.3.20. totalDays
	5.4.3.21. totalHours
	5.4.3.22. totalMinutes
	5.4.3.23. totalSeconds
	5.4.3.24. totalMicroseconds
	5.4.3.25. hashCode
	5.4.3.26. addWeeks
	5.4.3.27. addDays
	5.4.3.28. addHours
	5.4.3.29. addMinutes
	5.4.3.30. addSeconds
	5.4.3.31. addMicroseconds
	5.4.3.32. sign
	5.4.3.33. string

	5.4.4. The Comparable Class
	5.4.4.1. Inherited Methods
	5.4.4.2. compareTo

	5.4.5. The Orderable Class
	5.4.5.1. Inherited Methods
	5.4.5.2. Comparison Methods

	5.4.6. The Comparator Class
	5.4.6.1. Inherited Methods
	5.4.6.2. compare

	5.4.7. The CaselessComparator Class
	5.4.7.1. Inherited Methods
	5.4.7.2. compare

	5.4.8. The ColumnComparator Class
	5.4.8.1. Inherited Methods
	5.4.8.2. compare
	5.4.8.3. init

	5.4.9. The CaselessColumnComparator Class
	5.4.9.1. Inherited Methods
	5.4.9.2. compare
	5.4.9.3. init

	5.4.10. The DescendingComparator Class
	5.4.10.1. Inherited Methods
	5.4.10.2. compare

	5.4.11. The CaselessDescendingComparator Class
	5.4.11.1. Inherited Methods
	5.4.11.2. compare

	5.4.12. The InvertingComparator Class
	5.4.12.1. Inherited Methods
	5.4.12.2. compare
	5.4.12.3. init

	5.4.13. The NumericComparator Class
	5.4.13.1. Inherited Methods
	5.4.13.2. compare
	5.4.13.3. init

	5.4.14. The Monitor Class
	5.4.14.1. Inherited Methods
	5.4.14.2. current
	5.4.14.3. destination
	5.4.14.4. init
	5.4.14.5. unknown
	5.4.14.6. Examples

	5.4.15. The MutableBuffer Class
	5.4.15.1. Inherited Methods
	5.4.15.2. new
	5.4.15.3. append
	5.4.15.4. caselessChangeStr
	5.4.15.5. caselessCountStr
	5.4.15.6. caselessLastPos
	5.4.15.7. caselessMatch
	5.4.15.8. caselessMatchChar
	5.4.15.9. caselessPos
	5.4.15.10. caselessWordPos
	5.4.15.11. changeStr
	5.4.15.12. countStr
	5.4.15.13. delete
	5.4.15.14. delstr
	5.4.15.15. delWord
	5.4.15.16. getBufferSize
	5.4.15.17. insert
	5.4.15.18. lastPos
	5.4.15.19. length
	5.4.15.20. lower
	5.4.15.21. makeArray
	5.4.15.22. match
	5.4.15.23. matchChar
	5.4.15.24. overlay
	5.4.15.25. pos
	5.4.15.26. replaceAt
	5.4.15.27. setBufferSize
	5.4.15.28. space
	5.4.15.29. string
	5.4.15.30. subChar
	5.4.15.31. substr
	5.4.15.32. subWord
	5.4.15.33. subWords
	5.4.15.34. translate
	5.4.15.35. upper
	5.4.15.36. verify
	5.4.15.37. word
	5.4.15.38. wordIndex
	5.4.15.39. wordLength
	5.4.15.40. wordPos
	5.4.15.41. words

	5.4.16. The RegularExpression Class
	5.4.16.1. Inherited Methods
	5.4.16.2. init
	5.4.16.3. match
	5.4.16.4. parse
	5.4.16.5. pos
	5.4.16.6. position

	5.4.17. The RexxQueue Class
	5.4.17.1. Inherited Methods
	5.4.17.2. create (Class Method)
	5.4.17.3. delete (Class Method)
	5.4.17.4. exists (Class Method)
	5.4.17.5. open (Class Method)
	5.4.17.6. delete
	5.4.17.7. empty
	5.4.17.8. get
	5.4.17.9. init
	5.4.17.10. lineIn
	5.4.17.11. lineOut
	5.4.17.12. makeArray
	5.4.17.13. pull
	5.4.17.14. push
	5.4.17.15. queue
	5.4.17.16. queued
	5.4.17.17. say
	5.4.17.18. set

	5.4.18. The Supplier Class
	5.4.18.1. Inherited Methods
	5.4.18.2. new (Class Method)
	5.4.18.3. allIndexes
	5.4.18.4. allItems
	5.4.18.5. available
	5.4.18.6. index
	5.4.18.7. init
	5.4.18.8. item
	5.4.18.9. next
	5.4.18.10. Examples
	5.4.18.11. supplier

	5.4.19. The StreamSupplier Class
	5.4.19.1. Inherited Methods
	5.4.19.2. available
	5.4.19.3. index
	5.4.19.4. init
	5.4.19.5. item
	5.4.19.6. next

	5.4.20. The RexxContext Class
	5.4.20.1. Inherited Methods
	5.4.20.2. args
	5.4.20.3. condition
	5.4.20.4. digits
	5.4.20.5. executable
	5.4.20.6. form
	5.4.20.7. fuzz
	5.4.20.8. line
	5.4.20.9. name
	5.4.20.10. package
	5.4.20.11. rs
	5.4.20.12. stackFrames
	5.4.20.13. variables

	5.4.21. The StackFrame Class
	5.4.21.1. Inherited Methods
	5.4.21.2. arguments
	5.4.21.3. executable
	5.4.21.4. line
	5.4.21.5. makeString
	5.4.21.6. name
	5.4.21.7. string
	5.4.21.8. target
	5.4.21.9. traceLine
	5.4.21.10. type

	5.4.22. The WeakReference Class
	5.4.22.1. Inherited Methods
	5.4.22.2. new (Class Method)
	5.4.22.3. value

	5.4.23. The Pointer Class
	5.4.23.1. Inherited Methods
	5.4.23.2. new (Class Method)
	5.4.23.3. Operator Methods
	5.4.23.4. isNull

	5.4.24. The Buffer Class
	5.4.24.1. Inherited Methods
	5.4.24.2. new (Class Method)

	5.4.25. The File Class
	5.4.25.1. Inherited Methods
	5.4.25.2. isCaseSensitive (Class Method)
	5.4.25.3. listRoots (Class Method)
	5.4.25.4. pathSeparator (Class Method)
	5.4.25.5. separator (Class Method)
	5.4.25.6. absoluteFile
	5.4.25.7. absolutePath
	5.4.25.8. canRead
	5.4.25.9. canWrite
	5.4.25.10. compareTo
	5.4.25.11. delete
	5.4.25.12. exists
	5.4.25.13. hashCode
	5.4.25.14. init
	5.4.25.15. isCaseSensitive
	5.4.25.16. isDirectory
	5.4.25.17. isFile
	5.4.25.18. isHidden
	5.4.25.19. lastModified (Attribute)
	5.4.25.20. length
	5.4.25.21. list
	5.4.25.22. listFiles
	5.4.25.23. makeDir
	5.4.25.24. makeDirs
	5.4.25.25. name
	5.4.25.26. parent
	5.4.25.27. parentFile
	5.4.25.28. path
	5.4.25.29. pathSeparator
	5.4.25.30. renameTo
	5.4.25.31. separator
	5.4.25.32. setReadOnly
	5.4.25.33. string

	Chapter 6. Rexx Runtime Objects
	6.1. The Environment Directory (.ENVIRONMENT)
	6.1.1. The ENDOFLINE Constant (.ENDOFLINE)
	6.1.2. The FALSE Constant (.FALSE)
	6.1.3. The NIL Object (.NIL)
	6.1.4. The TRUE Constant (.TRUE)

	6.2. The Local Directory (.LOCAL)
	6.3. The Debug Input Monitor (.DEBUGINPUT)
	6.4. The Error Monitor (.ERROR)
	6.5. The Input Monitor (.INPUT)
	6.6. The Output Monitor (.OUTPUT)
	6.7. The Trace Output Monitor (.TRACEOUTPUT)
	6.8. The STDERR Stream (.STDERR)
	6.9. The STDIN Stream (.STDIN)
	6.10. The STDOUT Stream (.STDOUT)
	6.11. The STDQUE Queue (.STDQUE)
	6.12. The Rexx Context (.CONTEXT)
	6.13. The Line Number (.LINE)
	6.14. The METHODS Directory (.METHODS)
	6.15. The ROUTINES Directory (.ROUTINES)
	6.16. The Return Status (.RS)

	Chapter 7. Functions
	7.1. Syntax
	7.2. Functions and Subroutines
	7.2.1. Search Order
	7.2.1.1. Locating External Rexx Files

	7.2.2. Errors during Execution

	7.3. Return Values
	7.4. Built-in Functions
	7.4.1. ABBREV (Abbreviation)
	7.4.2. ABS (Absolute Value)
	7.4.3. ADDRESS
	7.4.4. ARG (Argument)
	7.4.5. B2X (Binary to Hexadecimal)
	7.4.6. BEEP
	7.4.7. BITAND (Bit by Bit AND)
	7.4.8. BITOR (Bit by Bit OR)
	7.4.9. BITXOR (Bit by Bit Exclusive OR)
	7.4.10. C2D (Character to Decimal)
	7.4.11. C2X (Character to Hexadecimal)
	7.4.12. CENTER (or CENTRE)
	7.4.13. CHANGESTR
	7.4.14. CHARIN (Character Input)
	7.4.15. CHAROUT (Character Output)
	7.4.16. CHARS (Characters Remaining)
	7.4.17. COMPARE
	7.4.18. CONDITION
	7.4.19. COPIES
	7.4.20. COUNTSTR
	7.4.21. D2C (Decimal to Character)
	7.4.22. D2X (Decimal to Hexadecimal)
	7.4.23. DATATYPE
	7.4.24. DATE
	7.4.25. DELSTR (Delete String)
	7.4.26. DELWORD (Delete Word)
	7.4.27. DIGITS
	7.4.28. DIRECTORY
	7.4.29. ENDLOCAL (Linux only)
	7.4.30. ERRORTEXT
	7.4.31. FILESPEC
	7.4.32. FORM
	7.4.33. FORMAT
	7.4.34. FUZZ
	7.4.35. INSERT
	7.4.36. LASTPOS (Last Position)
	7.4.37. LEFT
	7.4.38. LENGTH
	7.4.39. LINEIN (Line Input)
	7.4.40. LINEOUT (Line Output)
	7.4.41. LINES (Lines Remaining)
	7.4.42. LOWER
	7.4.43. MAX (Maximum)
	7.4.44. MIN (Minimum)
	7.4.45. OVERLAY
	7.4.46. POS (Position)
	7.4.47. QUALIFY
	7.4.48. QUEUED
	7.4.49. RANDOM
	7.4.50. REVERSE
	7.4.51. RIGHT
	7.4.52. RXFUNCADD
	7.4.53. RXFUNCDROP
	7.4.54. RXFUNCQUERY
	7.4.55. RXQUEUE
	7.4.56. SETLOCAL (Linux only)
	7.4.57. SIGN
	7.4.58. SOURCELINE
	7.4.59. SPACE
	7.4.60. STREAM
	7.4.60.1. Stream Commands
	7.4.60.1.1. Command Strings
	7.4.60.1.2. QUERY Stream Commands

	7.4.61. STRIP
	7.4.62. SUBSTR (Substring)
	7.4.63. SUBWORD
	7.4.64. SYMBOL
	7.4.65. TIME
	7.4.66. TRACE
	7.4.67. TRANSLATE
	7.4.68. TRUNC (Truncate)
	7.4.69. UPPER
	7.4.70. USERID
	7.4.71. VALUE
	7.4.72. VAR
	7.4.73. VERIFY
	7.4.74. WORD
	7.4.75. WORDINDEX
	7.4.76. WORDLENGTH
	7.4.77. WORDPOS (Word Position)
	7.4.78. WORDS
	7.4.79. X2B (Hexadecimal to Binary)
	7.4.80. X2C (Hexadecimal to Character)
	7.4.81. X2D (Hexadecimal to Decimal)
	7.4.82. XRANGE (Hexadecimal Range)

	Chapter 8. Rexx Utilities (RexxUtil)
	8.1. A Note on Error Codes
	8.2. List of Rexx Utility Functions
	8.3. RxMessageBox (Windows only)
	8.4. RxWinExec (Windows only)
	8.5. SysAddRexxMacro
	8.6. SysBootDrive (Windows only)
	8.7. SysClearRexxMacroSpace
	8.8. SysCloseEventSem
	8.9. SysCloseMutexSem
	8.10. SysCls
	8.11. SysCreateEventSem
	8.12. SysCreateMutexSem
	8.13. SysCreatePipe (Unix only)
	8.14. SysCurPos (Windows only)
	8.15. SysCurState (Windows only)
	8.16. SysDriveInfo (Windows only)
	8.17. SysDriveMap (Windows only)
	8.18. SysDropFuncs
	8.19. SysDropRexxMacro
	8.20. SysDumpVariables
	8.21. SysFileCopy
	8.22. SysFileDelete
	8.23. SysFileExists
	8.24. SysFileMove (Windows only)
	8.25. SysFileSearch
	8.26. SysFileSystemType (Windows only)
	8.27. SysFileTree
	8.28. SysFork (Unix only)
	8.29. SysFromUnicode (Windows only)
	8.30. SysGetErrortext
	8.31. SysGetFileDateTime
	8.32. SysGetKey
	8.33. SysGetMessage (Unix only)
	8.34. SysGetMessageX (Unix only)
	8.35. SysIni (Windows only)
	8.36. SysIsFile
	8.37. SysIsFileCompressed (Windows only)
	8.38. SysIsFileDirectory
	8.39. SysIsFileEncrypted (Windows only)
	8.40. SysIsFileLink
	8.41. SysIsFileNotContentIndexed (Windows only)
	8.42. SysIsFileOffline (Windows only)
	8.43. SysIsFileSparse (Windows only)
	8.44. SysIsFileTemporary (Windows only)
	8.45. SysLinVer (Linux Only)
	8.46. SysLoadFuncs
	8.47. SysLoadRexxMacroSpace
	8.48. SysMkDir
	8.49. SysOpenEventSem
	8.50. SysOpenMutexSem
	8.51. SysPostEventSem
	8.52. SysPulseEventSem (Windows only)
	8.53. SysQueryProcess
	8.54. SysQueryRexxMacro
	8.55. SysReleaseMutexSem
	8.56. SysReorderRexxMacro
	8.57. SysRequestMutexSem
	8.58. SysResetEventSem
	8.59. SysRmDir
	8.60. SysSaveRexxMacroSpace
	8.61. SysSearchPath
	8.62. SysSetFileDateTime
	8.63. SysSetPriority
	8.64. SysShutdownSystem (Windows only)
	8.65. SysSleep
	8.66. SysStemCopy
	8.67. SysStemDelete
	8.68. SysStemInsert
	8.69. SysStemSort
	8.70. SysSwitchSession (Windows only)
	8.71. SysSystemDirectory (Windows only)
	8.72. SysTempFileName
	8.73. SysTextScreenRead (Windows only)
	8.74. SysTextScreenSize (Windows only)
	8.75. SysToUnicode (Windows only)
	8.76. SysUtilVersion
	8.77. SysVersion
	8.78. SysVolumeLabel (Windows only)
	8.79. SysWait (Unix only)
	8.80. SysWaitEventSem
	8.81. SysWaitNamedPipe (Windows only)
	8.82. SysWinDecryptFile (Windows only)
	8.83. SysWinEncryptFile (Windows only)
	8.84. SysWinGetDefaultPrinter (Windows only)
	8.85. SysWinGetPrinters (Windows only)
	8.86. SysWinSetDefaultPrinter (Windows only)
	8.87. SysWinVer (Windows only)

	Chapter 9. Parsing
	9.1. Simple Templates for Parsing into Words
	9.1.1. Message Term Assignments
	9.1.2. The Period as a Placeholder

	9.2. Templates Containing String Patterns
	9.3. Templates Containing Positional (Numeric) Patterns
	9.3.1. Combining Patterns and Parsing into Words

	9.4. Parsing with Variable Patterns
	9.5. Using UPPER, LOWER, and CASELESS
	9.6. Parsing Instructions Summary
	9.7. Parsing Instructions Examples
	9.8. Advanced Topics in Parsing
	9.8.1. Parsing Several Strings
	9.8.2. Combining String and Positional Patterns
	9.8.3. Conceptual Overview of Parsing

	Chapter 10. Numbers and Arithmetic
	10.1. Precision
	10.2. Arithmetic Operators
	10.2.1. Power
	10.2.2. Integer Division
	10.2.3. Remainder
	10.2.4. Operator Examples

	10.3. Exponential Notation
	10.4. Numeric Comparisons
	10.5. Limits and Errors when Rexx Uses Numbers Directly

	Chapter 11. Conditions and Condition Traps
	11.1. Action Taken when a Condition Is Not Trapped
	11.2. Action Taken when a Condition Is Trapped
	11.3. Condition Information
	11.3.1. Descriptive Strings
	11.3.2. Additional Object Information
	11.3.3. The Special Variable RC
	11.3.4. The Special Variable SIGL
	11.3.5. Condition Objects

	Chapter 12. Concurrency
	12.1. Early Reply
	12.2. Message Objects
	12.3. Default Concurrency
	12.3.1. Sending Messages within an Activity

	12.4. Using Additional Concurrency Mechanisms
	12.4.1. SETUNGUARDED Method and UNGUARDED Option
	12.4.2. GUARD ON and GUARD OFF
	12.4.3. Guarded Methods
	12.4.4. Additional Examples
	12.4.4.1. Semaphores
	12.4.4.2. Monitors (Bounded Buffer)
	12.4.4.3. Readers and Writers

	Chapter 13. The Security Manager
	13.1. Calls to the Security Manager
	13.1.1. Example

	Chapter 14. Input and Output Streams
	14.1. The Input and Output Model
	14.1.1. Input Streams
	14.1.2. Output Streams
	14.1.3. External Data Queue
	14.1.3.1. Unnamed Queues
	14.1.3.2. Named Queues
	14.1.3.3. Multiprogramming Considerations

	14.1.4. Default Stream Names
	14.1.5. Line versus Character Positioning

	14.2. Implementation
	14.3. Operating System Specifics
	14.4. Examples of Input and Output
	14.5. Errors during Input and Output
	14.6. Summary of Rexx I/O Instructions and Methods

	Chapter 15. Debugging Aids
	15.1. Interactive Debugging of Programs
	15.2. Debugging Aids
	15.3. RXTRACE Variable

	Chapter 16. Reserved Keywords
	Chapter 17. Special Variables
	Chapter 18. Useful Services
	18.1. Windows Commands
	18.2. Linux Commands
	18.3. Subcommand Handler Services
	18.3.1. The RXSUBCOM Command
	18.3.1.1. RXSUBCOM REGISTER
	18.3.1.2. RXSUBCOM DROP
	18.3.1.3. RXSUBCOM QUERY
	18.3.1.4. RXSUBCOM LOAD

	18.3.2. The RXQUEUE Filter

	18.4. Distributing Programs without Source

	Appendix A. Using DO and LOOP
	A.1. Simple DO Group
	A.2. Repetitive Loops
	A.2.1. Simple Repetitive Loops
	A.2.2. Controlled Repetitive Loops

	A.3. Repetitive Loops over Collections
	A.4. Conditional Phrases (WHILE and UNTIL)
	A.5. LABEL Phrase
	A.6. Conceptual Model of Loops

	Appendix B. Migration
	B.1. Error Codes and Return Codes
	B.2. Error Detection and Reporting
	B.3. Environment Variables
	B.4. Stems versus Collections
	B.5. Input and Output Using Functions and Methods
	B.6. .Environment
	B.7. Deleting Environment Variables
	B.8. Trace in Macrospace

	Appendix C. Error Numbers and Messages
	C.1. Error List
	C.1.1. Error 3 - Failure during initialization
	C.1.2. Error 4 - Program interrupted
	C.1.3. Error 5 - System resources exhausted
	C.1.4. Error 6 - Unmatched "/*" or quote
	C.1.5. Error 7 - WHEN or OTHERWISE expected
	C.1.6. Error 8 - Unexpected THEN or ELSE
	C.1.7. Error 9 - Unexpected WHEN or OTHERWISE
	C.1.8. Error 10 - Unexpected or unmatched END
	C.1.9. Error 11 - Control stack full
	C.1.10. Error 13 - Invalid character in program
	C.1.11. Error 14 - Incomplete DO/LOOP/SELECT/IF
	C.1.12. Error 15 - Invalid hexadecimal or binary string
	C.1.13. Error 16 - Label not found
	C.1.14. Error 17 - Unexpected PROCEDURE
	C.1.15. Error 18 - THEN expected
	C.1.16. Error 19 - String or symbol expected
	C.1.17. Error 20 - Symbol expected
	C.1.18. Error 21 - Invalid data on end of clause
	C.1.19. Error 22 - Invalid character string
	C.1.20. Error 23 - Invalid data string
	C.1.21. Error 24 - Invalid TRACE request
	C.1.22. Error 25 - Invalid subkeyword found
	C.1.23. Error 26 - Invalid whole number
	C.1.24. Error 27 - Invalid DO syntax
	C.1.25. Error 28 - Invalid LEAVE or ITERATE
	C.1.26. Error 29 - Environment name too long
	C.1.27. Error 30 - Name or string too long
	C.1.28. Error 31 - Name starts with number or "."
	C.1.29. Error 33 - Invalid expression result
	C.1.30. Error 34 - Logical value not 0 or 1
	C.1.31. Error 35 - Invalid expression
	C.1.32. Error 36 - Unmatched "(" or "[" in expression
	C.1.33. Error 37 - Unexpected ",", ")", or "]"
	C.1.34. Error 38 - Invalid template or pattern
	C.1.35. Error 39 - Evaluation stack overflow
	C.1.36. Error 40 - Incorrect call to routine
	C.1.37. Error 41 - Bad arithmetic conversion
	C.1.38. Error 42 - Arithmetic overflow/underflow
	C.1.39. Error 43 - Routine not found
	C.1.40. Error 44 - Function or message did not return data
	C.1.41. Error 45 - No data specified on function RETURN
	C.1.42. Error 46 - Invalid variable reference
	C.1.43. Error 47 - Unexpected label
	C.1.44. Error 48 - Failure in system service
	C.1.45. Error 49 - Interpretation error
	C.1.46. Error 88 - Invalid argument
	C.1.47. Error 89 - Variable or message term expected
	C.1.48. Error 90 - External name not found
	C.1.49. Error 91 - No result object
	C.1.50. Error 92 - OLE error
	C.1.51. Error 93 - Incorrect call to method
	C.1.52. Error 97 - Object method not found
	C.1.53. Error 98 - Execution error
	C.1.54. Error 99 - Translation error

	C.2. RXSUBCOM Utility Program
	C.2.1. Error 116 - The RXSUBCOM parameter REGISTER is incorrect.
	C.2.2. Error 117 - The RXSUBCOM parameter DROP is incorrect.
	C.2.3. Error 118 - The RXSUBCOM parameter LOAD is incorrect.
	C.2.4. Error 125 - The RXSUBCOM parameter QUERY is incorrect.

	C.3. RXQUEUE Utility Program
	C.3.1. Error 119 - The REXX queuing system is not initialized.
	C.3.2. Error 120 - The size of the data is incorrect.
	C.3.3. Error 121 - Storage for data queues is exhausted.
	C.3.4. Error 122 - The name %1 is not a valid queue name.
	C.3.5. Error 123 - The queue access mode is not correct.
	C.3.6. Error 124 - The queue %1 does not exist.
	C.3.7. Error 131 - The syntax of the command is incorrect
	C.3.8. Error 132 - System error occurred while processing the command

	C.4. RexxC Utility Program
	C.4.1. Error 127 - The REXXC command parameters are incorrect.
	C.4.2. Error 128 - Output file name must be different from input file name.
	C.4.3. Error 129 - SYNTAX: REXXC InProgramName [OutProgramName] [/S]
	C.4.4. Error 130 - Without OutProgramName REXXC only performs a syntax check
	C.4.5. Error 133 - SYNTAX: REXXC InProgramName [OutProgramName] [-s]

	Appendix D. Notices
	D.1. Trademarks
	D.2. Source Code For This Document

	Appendix E. Common Public License Version 1.0
	E.1. Definitions
	E.2. Grant of Rights
	E.3. Requirements
	E.4. Commercial Distribution
	E.5. No Warranty
	E.6. Disclaimer of Liability
	E.7. General

	Appendix F. Revision History
	Index

