linbox
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234]
 CSparseMatrixGeneric< _Field, _Row, VectorCategories::SparseAssociativeVectorTag >::_IndexedIterator< RepIterator, RowIdxIterator, _I_Element >No doc
 CBitVectorBinary constant defined both for 32 and 64 bits
 CBlackboxArchetypeShowing the member functions provided by all blackbox matrix classes
 CBlackboxBlockContainerBase< _Field, _Blackbox, _MatrixDomain >A base class for BlackboxBlockContainer
 CBlackboxBlockContainerBase< _Field, _Blackbox, BlasMatrixDomain< _Field > >
 CBlackboxBlockContainerBase< _Field, _Blackbox, MatrixDomain< _Field > >
 CBlackboxBlockContainerBase< Field, Blackbox, _MatrixDomain >
 CBlackboxContainerBase< Field, Blackbox >A base class for BlackboxContainer
 CBlackboxContainerBase< Field, _Blackbox >
 CBlackboxContainerBase< Field, Vector >
 CBlackboxFactory< Field, Blackbox >A tool for computations with integer and rational matrices
 CBlasMatrix< _Field, _Storage >Dense matrix representation
 CBlasMatrix< _Field >
 CBlasMatrix< _Field, _Rep >
 CBlasMatrix< Domain >
 CBlasMatrix< Field >
 CBlasMatrix< Field, typename LinBox::Vector< Field >::Dense >
 CBlasMatrix< Givaro::Modular< double > >
 CBlasMatrix< Givaro::ZRing< Element > >
 CBlasMatrix< MultiModDouble >No Doc
 CBlasMatrix< typename _Matrix::Field, typename _Matrix::Rep >
 CBlasMatrixDomain< Field_ >Interface for all functionnalities provided for BlasMatrix
 CBlasMatrixDomain< _Field >
 CBlasMatrixDomain< Field >
 CBlasMatrixDomainAddin< Field, Operand1, Operand2 >C += A
 CBlasMatrixDomainMulAdd< BlasVector< Field >, BlasMatrix< Field, _Rep >, BlasVector< Field > >What about subvector/submatrices ?
 CBlasMatrixDomainSubin< Field, Operand1, Operand2 >C -= A
 CBlasPermutation< _UnsignedInt >Lapack-style permutation
 CBlasPermutation< size_t >
 CBlasSubmatrix< _Matrix >Dense Submatrix representation
 CBlasSubmatrix< BlasMatrix< _Field > >
 CBlockBB< _BB >Converts a black box into a block black box
 CBlockCompose< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
 CBlockCoppersmithDomain< _Domain, _Sequence >Compute the linear generator of a sequence of matrices
 CBlockHankelLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _Block >Block Hankel LiftingContianer
 CBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
 CBlockMasseyDomain< _Field, _Sequence >Compute the linear generator of a sequence of matrices
 CBlockMasseyDomain< Field, LinBox::BlackboxBlockContainerRecord >
 CBlockWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Block Wiedemann LiftingContianer
 CBooleanSwitchBoolean switch object
 CButterfly< _Field, Switch >Switching Network based BlackBox Matrix
 CCekstvSwitch< Field >The default butterfly switch object
 CCekstvSwitch< _Field >
 CChineseRemainder< CRABase >No doc
 CChineseRemainderSequential< CRABase >No doc
 CClassifyRing< Field >Default ring category
 CCommentatorGive information to user during runtime
 CCompanion< Field_ >Companion matrix of a monic polynomial
 CCompose< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
 CCompose< _Blackbox, _Blackbox >Specialization for _Blackbox1 = _Blackbox2
 CCompose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > >
 CCompose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > >
 CComposeOwner< _Blackbox1, _Blackbox2 >Blackbox of a product: $C = AB$, i.e $Cx \gets A(Bx)$
 CComposeTraits< IMatrix >Used in ..., for example
 CComposeTraits< BlasMatrix< Field, Rep > >Used in smith-binary, for example
 CBlasSubmatrix< _Matrix >::ConstIndexedIteratorRaw Indexed Iterator (const version)
 CBlasSubmatrix< _Matrix >::ConstIteratorRaw Iterators (const version)
 CContainerCategoriesUsed to separate BLAS2 and BLAS3 operations
 CContainerTraits< Container >Trait for the Category
 CContainerTraits< std::vector< _Rep > >
 CCRABuilderFullMultip< Domain_Type >Chinese remaindering of a vector of elements without early termination
 CCRABuilderSingleBase< Domain_Type >Abstract base class for CRA builders
 CCRAResidue< ResultType, Function >Type information for the residue in a CRA iteration
 CCRAResidue< Integer, Function >Type information for the residue in a CRA iteration
 CCRAResidue< std::vector< Integer >, Function >Type information for the residue in a CRA iteration
 CCSF< _Field >Space efficient representation of sparse matrices
 CDataSeriesThis structure holds a bunch of timings
 CDenseMat< _Element >To be used in standard matrix domain
 CDenseMat< SlicedBase< _Domain::Word_T > >
 CDensePolynomial< Field >Dense Polynomial representation using Givaro
 CDeterministicTagIterator following a deterministic sequence of primes (from the largest one, in decreasing order
 CDiagonal< Field, Trait >Random diagonal matrices are used heavily as preconditioners
 CDiagonal< _Field, VectorCategories::DenseVectorTag >Specialization of Diagonal for application to dense vectors
 CDiagonal< _Field, VectorCategories::SparseAssociativeVectorTag >Specialization of Diagonal for application to sparse associative vectors
 CDiagonal< _Field, VectorCategories::SparseSequenceVectorTag >Specialization of Diagonal for application to sparse sequence vectors
 CDiagonal< Field >
 CDif< _Blackbox1, _Blackbox2 >Blackbox of a difference: C := A - B, i.e Cx = Ax - Bx
 CDiophantineSolver< QSolver >DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions
 CDirectSum< _Blackbox1, _Blackbox2 >If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C
 CDirectSum< BB1, BB2 >
 CDirectSum< Companion< Field_ > >
 CDixonLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >Dixon Lifting Container
 CDotProductDomain< Givaro::Modular< uint16_t, Compute_t > >Specialization of DotProductDomain for unsigned short modular field
 CDotProductDomain< Givaro::Modular< uint32_t, Compute_t > >Specialization of DotProductDomain for uint32_t modular field
 CDotProductDomain< Givaro::Modular< uint64_t, Compute_t > >Specialization of DotProductDomain for uint64_t modular field
 CDotProductDomain< Givaro::Modular< uint8_t, Compute_t > >Specialization of DotProductDomain for unsigned short modular field
 CDotProductDomain< Givaro::ModularBalanced< double > >Specialization of DotProductDomain
 CElementAbstractAbstract element base class, a technicality
 CElementArchetypeField and Ring element interface specification and archetypical instance class
 CEliminator< Field, Matrix >Elimination system
 CEliminator< Field, LinBox::BlasMatrix >
 CExceptionThis is the exception class in LinBox
 CFieldAbstractField base class
 CFieldAXPY< Field >FieldAXPY object
 CFieldAXPY< GF2 >
 CFieldAXPY< Givaro::Modular< double > >
 CFieldAXPY< Givaro::Modular< float > >
 CFieldAXPY< Givaro::Modular< int16_t > >
 CFieldAXPY< Givaro::Modular< int32_t, Compute > >
 CFieldAXPY< Givaro::Modular< int64_t, Compute_t > >
 CFieldAXPY< Givaro::Modular< int8_t > >
 CFieldAXPY< Givaro::Modular< uint16_t, Compute_t > >Specialization of FieldAXPY for uint16_t modular field
 CFieldAXPY< Givaro::Modular< uint32_t, Compute_t > >Specialization of FieldAXPY for unsigned short modular field
 CFieldAXPY< Givaro::Modular< uint64_t, Compute_t > >Specialization of FieldAXPY for unsigned short modular field
 CFieldAXPY< Givaro::Modular< uint8_t, Compute_t > >Specialization of FieldAXPY for uint8_t modular field
 CFieldAXPY< Givaro::ModularBalanced< double > >Specialization of FieldAXPY
 CFieldAXPY< Givaro::ModularBalanced< float > >
 CFieldAXPY< Givaro::ModularBalanced< int32_t > >
 CFieldAXPY< Givaro::ModularBalanced< int64_t > >
 CFieldAXPY< PIR_ntl_ZZ_p >
 CFieldAXPY< PIRModular< int32_t > >
 CFieldDocumentationThis field base class exists solely to aid documentation organization
 CFieldEnvelope< Field >Derived class used to implement the field archetype
 CFieldTraits< Field >FieldTrait
 CGaussDomain< _Field >Repository of functions for rank by elimination on sparse matrices
 CGaussDomain< Field >
 CGenericRandIter< Field >Random field base element generator
 CGenericTagGeneric ring
 CVectorCategories::GenericVectorTagGeneric vector (no assumption is made)
 CGetEntryCategory< BB >GetEntryCategory is specialized for BB classes that offer a local getEntry
 CGivaroRnsFixedCRA< Domain_Type >NO DOC..
 CGmpRandomPrimeGenerating random prime integers, using the gmp library
 CGMPRationalElementElements of GMP_Rationals
 CHeuristicTagIterator sampling randomly (no distribution guaranteed whatsoever) from all primes of given bitsize
 CHilbert_JIT_Entry< _Field >The object needed to build a Hilbert matrix as a JIT matrix
 CHom< Source, Target, Enabled >Map element of source ring(field) to target ring
 CHom< Source, Target >
 CInconsistentSystem< Vector >Exception thrown when the system to be solved is inconsistent
 CindexDomainClass used for permuting indices
 CIndexedCategory< BB >Trait to show whether or not the BB class has a Indexed iterator
 CIndexedCategory< BlasMatrix< Field, _Rep > >
 CZeroOne< GF2 >::IndexedIteratorIndexedIterator
 CBlasSubmatrix< _Matrix >::IndexedIteratorRaw Indexed Iterator
 CBlasMatrix< _Field, _Storage >::IndexedIteratorIndexed Iterator
 CSparseMatrix< _Field, SparseMatrixFormat::CSR >::IndexedIteratorForward iterator
 CZeroOne< _Field >::IndexIteratorIndexIterator
 CInverse< Blackbox >A Blackbox for the inverse
 CInverse< LinBox::Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > >
 CInverse< LinBox::Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > >
 CInvertTextbookDomain< Field >Assumes that Field is a field, not a ring
 CZeroOne< GF2 >::IteratorRaw iterator
 CBlasSubmatrix< _Matrix >::IteratorRaw Iterators
 CZeroOne< _Field >::IteratorRaw iterator
 CJIT_Matrix< _Field, JIT_EntryGenerator >Example of a blackbox that is space efficient, though not time efficient
 CJIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > >
 CPoint::LabelsX
 CLABlockLanczosSolver< Field, Matrix >Biorthogonalising block Lanczos iteration
 CLanczosSolver< Field, Vector >Solve a linear system using the conjugate Lanczos iteration
 CLargeDoubleNO DOC
 CLastInvariantFactor< _Ring, _Solver >This is used in a Smith Form algorithm
 ClatticeMethodNTL methods
 CLinboxErrorBase class for execption handling in LinBox
 CLocal2_32Fast arithmetic mod 2^32, including gcd
 CMasseyDomain< Field, Sequence >Berlekamp/Massey algorithm
 CMatrixArchetype< _Element >Directly-represented matrix archetype
 CMatrixCategoriesFor specializing matrix arithmetic
 CMatrixContainerTrait< Matrix >NODOC
 CMatrixDomain< Field_ >Class of matrix arithmetic functions
 CMatrixDomain< _Field >
 CMatrixDomain< Field >
 CMatrixDomain< GF2 >Specialization of MatrixDomain for GF2
 CMatrixDomain< Givaro::Modular< double > >
 CMatrixDomain< LinBox::MatrixDomain >
 CMatrixDomain< PolynomialRing >
 CMatrixDomain< Ring >
 CMatrixHomTrait< Blackbox, Field >Try to map a blackbox over a homorphic ring The most suitable type
 CMatrixPermutation< _UnsignedInt >Permutation classique
 CMatrixRank< _Ring, _Field, _RandomPrime >Compute the rank of an integer matrix in place over a finite field by Gaussian elimination
 CMatrixStream< Field >MatrixStream
 CMatrixStreamReader< Field >An abstract base class to represent readers for specific formats
 CMatrixTraits< Matrix >NO DOC
 CMetaDataThis is the general metadata class
 CMethodDefine which method to use when working on a system
 CMethodBaseHolds everything a method needs to know about the problem
 CMGBlockLanczosSolver< Field, Matrix >Block Lanczos iteration
 CModularCrookedRandIter< Element >Random field base element generator
 CMoorePenrose< Blackbox >Generalized inverse of a blackbox
 CMVProductDomain< Field >Helper class to allow specializations of certain matrix-vector products
 CMVProductDomain< Givaro::Modular< uint16_t, Compute_t > >Specialization of MVProductDomain for uint16_t modular field
 CMVProductDomain< Givaro::Modular< uint32_t, Compute_t > >Specialization of MVProductDomain for uint32_t modular field
 CMVProductDomain< Givaro::Modular< uint64_t, Compute_t > >Specialization of MVProductDomain for uint64_t modular field
 CMVProductDomain< Givaro::Modular< uint8_t, Compute_t > >Specialization of MVProductDomain for uint8_t modular field
 CnaiveToom-Cook method
 CNoHomErrorError object for attempt to establish a Hom that cannot exist
 CNTL_ZZInteger ring
 CNTL_ZZ_pWrapper of zz_p from NTL
 CNTL_zz_pLong ints modulo a positive integer
 CNTL_ZZ_pEWrapper of ZZ_pE from NTL Define a parameterized class to handle easily Givaro::ZRing<NTL::ZZ_pE> field
 CNTL_zz_pE_InitialiserUse ZZ_pEBak mechanism too ?
 CNTL_zz_pEXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
 CNTL_ZZ_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_ZZ_p (integers mod a wordsize prime)
 CNTL_zz_pXRing (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime)
 CNullMatrixThis is a representation of the 0 by 0 empty matrix which does not occupy memory
 COneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix >Limited doc so far
 COpenCLEnvironContainer for all pertenant information needed to use an OpenCL device, compile kernels for the device, track resource usage, and gain exclusive access to the device
 COpenCLMatrixDomain< Field_ >Interface for all functionnalities provided for BlasMatrix using GPUs
 CPair< I, T >Pair of I and T : struct { column index, value }
 CPlainSubmatrix< MatDom >To be used in reference matrix domain (PlainDomain)
 CPlainSubmatrix< Domain_ >
 CPlotStyle::PlotWhat style of graphic : histogram ? graph ?
 CPlotDataThe raw data to plot
 CPlotGraphThe graph (2D)
 CPlotStyleRepresents a table of values to plot (2D)
 CPLUQMatrix< Field >PLUQ factorisation
 CPoint::PointsNumerical value for x
 CPolynomialBB< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
 CPolynomialBBOwner< Blackbox, Poly >Represent the matrix P(A) where A is a blackbox and P a polynomial
 CPolynomialRing< BaseRing, StorageTag >Polynomials
 CPowerGaussDomainPowerOfTwo< UnsignedIntType >Repository of functions for rank modulo a prime power by elimination on sparse matrices
 CPreconditionFailedA precondition failed
 CPrimeIterator< Trait >Prime Iterator
 CPrimeIterator< IteratorCategories::HeuristicTag >
 CPrimeIterator<>
 CChineseRemainderSequential< CRABase >::PrimeSampler< PrimeIterator, is_unique >Helper class to sample unique primes
 CChineseRemainderSequential< CRABase >::PrimeSampler< PrimeIterator, true >Helper class to sample unique primes
 CPrimeSequence< IteratorT, UniqueTrait >Adaptor class to make a fixed-length sequence behave like a PrimeIterator
 CPrimeStream< Element >Prime number stream
 CRandIterAbstractRandom field element generator
 CRandIterArchetypeRandom field element generator archetype
 CRandIterEnvelope< Field >Random field base element generator
 CRandomDenseMatrix< Randiter, Field >Random Dense Matrix builder
 CRankBuilderRandom method for constructing rank
 CRationalChineseRemainder< RatCRABase >Chinese remainder of rationals
 CRationalChineseRemainderVarPrec< RatCRABase, RatRecon >Chinese remainder of vector of rationals
 CRationalReconstruction< _LiftingContainer, RatRecon >Limited doc so far
 CRationalSolver< Ring, Field, RandomPrime, MethodTraits >Interface for the different specialization of p-adic lifting based solvers
 CRationalSolver< Ring, Field, RandomPrime, Method::BlockHankel >Block Hankel
 CRationalSolver< Ring, Field, RandomPrime, Method::BlockWiedemann >Partial specialization of p-adic based solver with block Wiedemann algorithm
 CRationalSolver< Ring, Field, RandomPrime, Method::Dixon >Partial specialization of p-adic based solver with Dixon algorithm
 CRationalSolver< Ring, Field, RandomPrime, Method::SparseElimination >Sparse LU
 CRationalSolver< Ring, Field, RandomPrime, Method::SymbolicNumericNorm >Solver using a hybrid Numeric/Symbolic computation
 CRationalSolver< Ring, Field, RandomPrime, Method::Wiedemann >Partial specialization of p-adic based solver with Wiedemann algorithm
 CRawVector< Element >Canonical vector types
 CRawVector< Field ::Element >
 CRawVector< Ring::Element >
 CRebind< XXX, U >Used in support of Hom, MatrixHom
 CBlasMatrix< _Field, _Storage >::rebind< _Tp1 >Rebind operator
 CRebind< std::vector< T >, U >Rebind
 CReverseVector< Vector >Reverse vector class This class wraps an existing vector type and reverses its direction
 CRingEnvelope< Ring >Implement the ring archetype to minimize code bloat
 CRingInterfaceThis ring base class exists solely to aid documentation organization
 CRNS< Unsigned >RNS
 CScalarMatrix< Field_ >Blackbox for aI
 CSemiDIteration< Matrix, Field >CRA iteration to get a diagonal with the same signature
 CshowProgressionShow progression on the terminal (helper)
 CSigmaBasis< _Field >Implementation of $\sigma$-basis (minimal basis)
 CSlicedPolynomialMatrixAddin< Field, Operand1, Operand2 >C += A
 CSlicedPolynomialMatrixSubin< Field, Operand1, Operand2 >C -= A
 CSlicedPolynomialVectorAddin< Field, Operand1, Operand2 >C += A
 CSlicedPolynomialVectorSubin< Field, Operand1, Operand2 >C -= A
 CSmithFormBinary< _Ring, _oneInvariantFactor, _Rank >Compute Smith form
 CSmithFormIliopoulosThis is Iliopoulos' algorithm to diagonalize
 CSmithFormLocal< LocalPID >Smith normal form (invariant factors) of a matrix over a local ring
 CSparse_Vector< T, I >Vector< Pair<T,I> > and actualsize
 CSparseLULiftingContainer< _Ring, _Field, _IMatrix, _FMatrix >SparseLULiftingContainer
 CSparseMatrix< _Field, SparseMatrixFormat::COO >Sparse matrix, Coordinate storage
 CSparseMatrix< _Field, SparseMatrixFormat::COO::implicit >Sparse matrix, Coordinate storage
 CSparseMatrix< _Field, SparseMatrixFormat::CSR >Sparse matrix, Coordinate storage
 CSparseMatrix< _Field, SparseMatrixFormat::ELL >Sparse matrix, Coordinate storage
 CSparseMatrix< _Field, SparseMatrixFormat::ELL_R >Sparse matrix, Coordinate storage
 CSparseMatrix< _Field, SparseMatrixFormat::HYB >Sparse matrix, Coordinate storage
 CSparseMatrix< Field_, SparseMatrixFormat::TPL >Sparse Matrix in Triples storage
 CSparseMatrix< Field_, SparseMatrixFormat::TPL_omp >
 CSparseMatrixGeneric< _Field, _Row, Trait >Sparse matrix container This class acts as a generic row-wise container for sparse matrices
 CSparseMatrixGeneric< _Field, _Row >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparseMap >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparseMap, VectorCategories::SparseAssociativeVectorTag >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparsePar >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparsePar, VectorCategories::SparseParallelVectorTag >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq >
 CSparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq, VectorCategories::SparseSequenceVectorTag >
 CSparseMatrixGeneric< Field, Row >
 CSparseMatrixGeneric< Field, Row, Trait >
 CSparseMatrixReadHelper< Matrix >Read helper
 CSparseMatrixWriteHelper< Matrix >Write helper
 CSquarize< Blackbox >Transpose matrix without copying
 CSubiterator< Iterator >Subvector iterator class provides striding iterators
 CSubiterator< _Vector::Rep::iterator >
 CSubiterator< typename Rep::const_iterator >
 CSubiterator< typename Rep::iterator >
 CSubmatrix< Blackbox, Trait >Leading principal minor of existing matrix without copying
 CSubmatrix< Blackbox >
 CSubmatrix< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
 CSubmatrixAdapter< _Matrix >Generic submatrix view adapter used internally in the OpenCLMatrixDomain
 CSubmatrixOwner< Blackbox, VectorCategories::DenseVectorTag >Specialization for dense vectors
 CSubvector< Iterator, ConstIterator >Dense subvector
 CSubvector< Subiterator< _Vector::Rep::iterator > >
 CSubvector< Subiterator< typename Rep::const_iterator > >
 CSubvector< Subiterator< typename Rep::iterator > >
 CSubvector< typename Rep::const_iterator >
 CSubvector< typename Rep::iterator, typename Rep::const_iterator >
 CSum< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
 CSumOwner< _Blackbox1, _Blackbox2 >Blackbox of a matrix sum without copying
 CSylvester< _Field >This is a representation of the Sylvester matrix of two polynomials
 CPlotStyle::TermWhat format the plot should be in?
 CTernaryLatticeNO DOC
 CPoint::TimesY time
 CTimeWatcherHelper
 CToeplitz< _CField, _PRing >This is the blackbox representation of a Toeplitz matrix
 CToeplitz< _Field >
 CToeplitz< typename _PRing::CoeffField, _PRing >Specialization for when the field of matrix elements is the same as the coefficient field of the polynomial field
 CTraceCategory< BB >Trait to show whether or not the BB class has a local trace function
 CTranspose< Blackbox >Transpose matrix without copying
 CTranspose< LinBox::Submatrix< Blackbox > >
 CTransposedBlasMatrix< Matrix >TransposedBlasMatrix
 CTransposeMatrix< Matrix, Trait >Matrix transpose
 CTransposeMatrix< LinBox::BlasMatrix, MatrixCategories::ColMatrixTag >
 CTransposeMatrix< LinBox::BlasMatrix, MatrixCategories::RowColMatrixTag >
 CTransposeMatrix< LinBox::BlasMatrix, MatrixCategories::RowMatrixTag >
 CTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, _Row > >
 CTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseMap > >
 CTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparsePar > >
 CTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< _Field, Vector< _Field >::SparseSeq > >
 CTransposeMatrix< LinBox::Protected::SparseMatrixGeneric< Field, Row > >
 CTransposeOwner< Blackbox >Transpose matrix without copying
 CTriangularBlasMatrix< _Field, _Storage >Triangular BLAS matrix
 CUniformTagIterator sampling uniformly from all primes of given bitsize
 CUniqueSamplingTrait< IteratorTrait >Whether a prime generator generates a sequence with non repeating numbers
 CUnparametricRandIter< NTL::ZZ_p >Constructor for random field element generator
 CPoint::ValuesY
 CVectorCategoriesList of vector categories
 CVectorFraction< Domain >VectorFraction<Domain> is a vector of rational elements with common reduced denominator
 CVectorFraction< LinBox::NTL_zz_pX >
 CVectorFraction< Ring >
 CVectorStream< _Vector >Vector factory
 CVectorStream< BitVector >
 CVectorStream< BlasVector< Field, typename Vector< Field >::Dense > >
 CVectorStream< Sparse_Vector< typename Field::Element > >
 CVectorStream< Vector< GF2 >::Sparse >
 CVectorTraits< Vector >Vector traits template structure
 CWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _FPolynomial >Wiedemann LiftingContianer
 CWiedemannSolver< Field >Linear system solvers based on Wiedemann's method
 CZeroOne< _Field >Time and space efficient representation of sparse {0,1}-matrices
 CZeroOne< GF2 >Time and space efficient representation of sparse matrices over GF2
 CZOQuad< _Field >A class of striped or block-decomposed zero-one matrices