We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .0038911, .0015413) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0116812, .0715212) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0127874, .0225181}, {.0124063, .00750025}, {.0521884, .0120901}, ------------------------------------------------------------------------ {.0131118, .0179729}, {.0136388, .0254193}, {.0145248, .0253012}, ------------------------------------------------------------------------ {.0120811, .0144758}, {.0528401, .0135415}, {.0111722, .00952718}, ------------------------------------------------------------------------ {.0152792, .0153639}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0210030125 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .0163710275 o7 : RR (of precision 53) |