VirtualResolutions : Index
- Attempt -- limit number of attempts for randomCurveP1P2
- curveFromP3toP1P2 -- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
- curveFromP3toP1P2(..., PreserveDegree => ...) -- Determines if curve is disjoint from base loci
- curveFromP3toP1P2(Ideal) -- creates the ideal of a curve in P^1xP^2 from the ideal of a curve in P^3
- findGensUpToIrrelevance -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
- findGensUpToIrrelevance(..., GeneralElements => ...) -- combines generators of same degree into a general linear combination
- findGensUpToIrrelevance(ZZ,Ideal,Ideal) -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
- findGensUpToIrrelevance(ZZ,Ideal,NormalToricVariety) -- creates a list of subsets of the minimal generators that generate a given ideal up to saturation
- GeneralElements -- combines generators of same degree into a general linear combination
- isVirtual -- checks if a chain complex is a virtual resolution of a given module
- isVirtual(..., Strategy => ...) -- changes strategy from computing homology to computing minors of boundary maps
- isVirtual(Ideal,Ideal,ChainComplex) -- checks if a chain complex is a virtual resolution of a given module
- isVirtual(Ideal,NormalToricVariety,ChainComplex) -- checks if a chain complex is a virtual resolution of a given module
- isVirtual(Module,Ideal,ChainComplex) -- checks if a chain complex is a virtual resolution of a given module
- isVirtual(Module,NormalToricVariety,ChainComplex) -- checks if a chain complex is a virtual resolution of a given module
- multigradedRegularity -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
- multigradedRegularity(NormalToricVariety,Module) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
- multigradedRegularity(Ring,Module) -- computes the minimal elements of the multigraded regularity of a module over a multigraded ring
- PreserveDegree -- Determines if curve is disjoint from base loci
- randomCurveP1P2 -- creates the ideal of a random curve in P^1xP^2
- randomCurveP1P2(..., Attempt => ...) -- limit number of attempts for randomCurveP1P2
- randomCurveP1P2(ZZ,ZZ) -- creates the ideal of a random curve in P^1xP^2
- randomCurveP1P2(ZZ,ZZ,Ring) -- creates the ideal of a random curve in P^1xP^2
- randomMonomialCurve -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
- randomMonomialCurve(ZZ,ZZ) -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
- randomMonomialCurve(ZZ,ZZ,Ring) -- creates the ideal of a random monomial curve of degree (d,e) in P^1xP^2
- randomRationalCurve -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
- randomRationalCurve(ZZ,ZZ) -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
- randomRationalCurve(ZZ,ZZ,Ring) -- creates the ideal of a random rational curve of degree (d,e) in P^1xP^2
- resolveViaFatPoint -- returns a virtual resolution of a zero-dimensional scheme
- resolveViaFatPoint(Ideal,Ideal,List) -- returns a virtual resolution of a zero-dimensional scheme
- virtualOfPair -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
- virtualOfPair(ChainComplex,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
- virtualOfPair(Ideal,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
- virtualOfPair(Module,List) -- creates a virtual resolution from a free resolution by keeping only summands of specified degrees
- VirtualResolutions -- a package for computing virtual resolutions