Airy {Bessel} | R Documentation |
Compute the Airy functions Ai or Bi or their first derivatives, d/dz Ai(z) and d/dz Bi(z).
The Airy functions are solutions of the differential equation
w'' = z w
for w(z), and are related to each other and to the (modified) Bessel functions via (many identities, see https://dlmf.nist.gov/9.6), e.g., if zta := (2/3) z * sqrt(z) = 2/3 z^(3/2),
Ai(z) = 1/pi sqrt(z/3) K[1/3](zta) = 1/3 sqrt(z) * (I[-1/3](zta) - I[1/3](zta)),
and
Bi(z) = sqrt(z/3) * (I[-1/3](zta) + I[1/3](zta)).
AiryA(z, deriv = 0, expon.scaled = FALSE, verbose = 0) AiryB(z, deriv = 0, expon.scaled = FALSE, verbose = 0)
z |
complex or numeric vector. |
deriv |
order of derivative; must be 0 or 1. |
expon.scaled |
logical indicating if the result should be scaled by an exponential factor (typically to avoid under- or over-flow). |
verbose |
integer defaulting to 0, indicating the level of verbosity notably from C code. |
By default, when expon.scaled
is false, AiryA()
computes the complex Airy function Ai(z) or its derivative
d/dz Ai(z) on deriv=0
or deriv=1
respectively.
When expon.scaled
is true, it returns
exp(zta)*Ai(z) or
exp(zta)* d/dz Ai(z),
effectively removing the exponential decay in
-pi/3 < arg(z) < pi/3 and
the exponential growth in
pi/3 < abs(arg(z)) < pi,
where zta=(2/3)*z*sqrt(z), and
arg(z) = Arg(z)
.
While the Airy functions Ai(z) and d/dz Ai(z) are
analytic in the whole z plane, the corresponding scaled
functions (for expon.scaled=TRUE
) have a cut along the
negative real axis.
By default, when expon.scaled
is false, AiryB()
computes the complex Airy function Bi(z) or its derivative
d/dz Bi(z) on deriv=0
or deriv=1
respectively.
When expon.scaled
is true, it returns
exp(-abs(Re(zta)))*Bi(z) or
exp(-abs(Re(zta)))* dBi(z)/dz,
to remove the exponential behavior in both the left and right half
planes where, as above,
zta=(2/3)*z*sqrt(z).
a complex or numeric vector of the same length (and class) as z
.
Donald E. Amos, Sandia National Laboratories, wrote the original fortran code. Martin Maechler did the R interface.
see BesselJ
; notably for many results the
Digital Library of Mathematical Functions (DLMF), Chapter 9 Airy and Related Functions at https://dlmf.nist.gov/9.
BesselI
etc; the Hankel functions Hankel
.
The CRAN package Rmpfr has Ai(x)
for
arbitrary precise "mpfr"-numbers x
.
## The AiryA() := Ai() function ------------- curve(AiryA, -20, 100, n=1001) curve(AiryA, -1, 100, n=1011, log="y") -> Aix curve(AiryA(x, expon.scaled=TRUE), -1, 50, n=1001) ## Numerically "proving" the 1st identity above : z <- Aix$x; i <- z > 0; head(z <- z[i <- z > 0]) Aix <- Aix$y[i]; zeta <- 2/3*z*sqrt(z) stopifnot(all.equal(Aix, 1/pi * sqrt(z/3)* BesselK(zeta, nu = 1/3), tol = 4e-15)) # 64b Lnx: 7.9e-16; 32b Win: 1.8e-15 ## This gives many warnings (248 on nb-mm4, F24) about lost accuracy, but on Windows takes ~ 4 sec: curve(AiryA(x, expon.scaled=TRUE), 1, 10000, n=1001, log="xy") ## The AiryB() := Bi() function ------------- curve(AiryB, -20, 2, n=1001); abline(h=0,v=0, col="gray",lty=2) curve(AiryB, -1, 20, n=1001, log = "y") # exponential growth (x > 0) curve(AiryB(x,expon.scaled=TRUE), -1, 20, n=1001) curve(AiryB(x,expon.scaled=TRUE), 1, 10000, n=1001, log="x")