My Project
tgb.cc
Go to the documentation of this file.
1 //! \file tgb.cc
2 // multiple rings
3 // shorten_tails und dessen Aufrufe pruefen wlength!!!
4 /****************************************
5 * Computer Algebra System SINGULAR *
6 ****************************************/
7 /*
8 * ABSTRACT: slimgb and F4 implementation
9 */
10 //#include <vector>
11 //using namespace std;
12 
13 ///@TODO: delay nur auf Sugarvergroesserung
14 ///@TODO: grade aus ecartS, setze dazu strat->honey; und nutze p.ecart
15 ///@TODO: no tail reductions in syz comp
16 #include "kernel/mod2.h"
17 
18 #include "kernel/GBEngine/tgb.h"
21 
22 #include "misc/options.h"
23 #include "kernel/digitech.h"
24 #include "polys/nc/nc.h"
25 #include "polys/nc/sca.h"
26 #include "polys/prCopy.h"
27 
28 #include "coeffs/longrat.h" // nlQlogSize
29 
30 #include <stdlib.h>
31 #include <stdio.h>
32 #include <queue>
33 
34 #define BUCKETS_FOR_NORO_RED 1
35 #define SR_HDL(A) ((long)(A))
36 static const int bundle_size = 100;
37 static const int bundle_size_noro = 10000;
38 static const int delay_factor = 3;
39 #define ADD_LATER_SIZE 500
40 #if 1
42 static int add_to_reductors(slimgb_alg* c, poly h, int len, int ecart, BOOLEAN simplified=FALSE);
43 static void multi_reduction(red_object* los, int & losl, slimgb_alg* c);
44 static void multi_reduce_step(find_erg & erg, red_object* r, slimgb_alg* c);
45 static BOOLEAN extended_product_criterion(poly p1, poly gcd1, poly p2, poly gcd2, slimgb_alg* c);
46 static poly gcd_of_terms(poly p, ring r);
47 static int tgb_pair_better_gen(const void* ap,const void* bp);
49 static BOOLEAN state_is(calc_state state, const int & i, const int & j, slimgb_alg* c);
51 static int simple_posInS (kStrategy strat, poly p,int len, wlen_type wlen);
52 static int* make_connections(int from, int to, poly bound, slimgb_alg* c);
53 static BOOLEAN has_t_rep(const int & arg_i, const int & arg_j, slimgb_alg* state);
54 static void shorten_tails(slimgb_alg* c, poly monom);
55 static poly redNF2 (poly h,slimgb_alg* c , int &len, number& m,int n=0);
56 static poly redNFTail (poly h,const int sl,kStrategy strat, int len);
57 static int bucket_guess(kBucket* bucket);
58 
59 static void simplify_poly (poly p, ring r)
60 {
61  assume (r == currRing);
63  {
64  p_Cleardenom (p, r);
65  //includes p_Content(p,r);
66  }
67  else
68  pNorm (p);
69 }
70 
71 //static const BOOLEAN up_to_radical=TRUE;
72 
73 int slim_nsize (number n, ring r)
74 {
75  if(rField_is_Zp (r))
76  {
77  return 1;
78  }
79  if(rField_is_Q (r))
80  {
81  return nlQlogSize (n, r->cf);
82  }
83  else
84  {
85  return n_Size (n, r->cf);
86  }
87 }
88 
89 static BOOLEAN monomial_root (poly m, ring r)
90 {
91  BOOLEAN changed = FALSE;
92  int i;
93  for(i = 1; i <= rVar (r); i++)
94  {
95  int e = p_GetExp (m, i, r);
96  if(e > 1)
97  {
98  p_SetExp (m, i, 1, r);
99  changed = TRUE;
100  }
101  }
102  if(changed)
103  {
104  p_Setm (m, r);
105  }
106  return changed;
107 }
108 
109 static BOOLEAN polynomial_root (poly h, ring r)
110 {
111  poly got = gcd_of_terms (h, r);
112  BOOLEAN changed = FALSE;
113  if((got != NULL) && (TEST_V_UPTORADICAL))
114  {
115  poly copy = p_Copy (got, r);
116  //p_wrp(got,c->r);
117  changed = monomial_root (got, r);
118  if(changed)
119  {
120  poly div_by = pMDivide (copy, got);
121  poly iter = h;
122  while(iter)
123  {
124  pExpVectorSub (iter, div_by);
125  pIter (iter);
126  }
127  p_Delete (&div_by, r);
128  if(TEST_OPT_PROT)
129  PrintS ("U");
130  }
131  p_Delete (&copy, r);
132  }
133  p_Delete (&got, r);
134  return changed;
135 }
136 
137 static inline poly p_Init_Special (const ring r)
138 {
139  return p_Init (r, lm_bin);
140 }
141 
142 static inline poly pOne_Special (const ring r = currRing)
143 {
144  poly rc = p_Init_Special (r);
145  pSetCoeff0 (rc, n_Init (1, r->cf));
146  return rc;
147 }
148 
149 // zum Initialiseren: in t_rep_gb plazieren:
150 
151 #endif
152 #define LEN_VAR3
153 #define degbound(p) assume(pTotaldegree(p)<10)
154 //#define inDebug(p) assume((debug_Ideal==NULL)||(kNF(debug_Ideal,NULL,p,0,0)==0))
155 
156 //die meisten Varianten stossen sich an coef_buckets
157 
158 #ifdef LEN_VAR1
159 // erste Variante: Laenge: Anzahl der Monome
160 static inline int pSLength (poly p, int l)
161 {
162  return l;
163 }
164 
165 static inline int kSBucketLength (kBucket * bucket, poly lm)
166 {
167  return bucket_guess (bucket);
168 }
169 #endif
170 
171 #ifdef LEN_VAR2
172 // 2. Variante: Laenge: Platz fuer die Koeff.
173 int pSLength (poly p, int l)
174 {
175  int s = 0;
176  while(p != NULL)
177  {
178  s += nSize (pGetCoeff (p));
179  pIter (p);
180  }
181  return s;
182 }
183 
184 int kSBucketLength (kBucket * b, poly lm)
185 {
186  int s = 0;
187  int i;
188  for(i = MAX_BUCKET; i >= 0; i--)
189  {
190  s += pSLength (b->buckets[i], 0);
191  }
192  return s;
193 }
194 #endif
195 
196 #ifdef LEN_VAR3
197 static inline wlen_type pSLength (poly p, int l)
198 {
199  wlen_type c;
200  number coef = pGetCoeff (p);
201  if(rField_is_Q (currRing))
202  {
203  c = nlQlogSize (coef, currRing->cf);
204  }
205  else
206  c = nSize (coef);
207  if(!(TEST_V_COEFSTRAT))
208  {
209  return (wlen_type) c *(wlen_type) l /*pLength(p) */ ;
210  }
211  else
212  {
213  wlen_type res = l;
214  res *= c;
215  res *= c;
216  return res;
217  }
218 }
219 
220 //! TODO CoefBuckets bercksichtigen
222 {
223  int s = 0;
224  wlen_type c;
225  number coef;
226  if(lm == NULL)
227  coef = pGetCoeff (kBucketGetLm (b));
228  //c=nSize(pGetCoeff(kBucketGetLm(b)));
229  else
230  coef = pGetCoeff (lm);
231  //c=nSize(pGetCoeff(lm));
232  if(rField_is_Q (currRing))
233  {
234  c = nlQlogSize (coef, currRing->cf);
235  }
236  else
237  c = nSize (coef);
238 
239  int i;
240  for(i = b->buckets_used; i >= 0; i--)
241  {
242  assume ((b->buckets_length[i] == 0) || (b->buckets[i] != NULL));
243  s += b->buckets_length[i] /*pLength(b->buckets[i]) */ ;
244  }
245 #ifdef HAVE_COEF_BUCKETS
246  assume (b->buckets[0] == kBucketGetLm (b));
247  if(b->coef[0] != NULL)
248  {
249  if(rField_is_Q (currRing))
250  {
251  int modifier = nlQlogSize (pGetCoeff (b->coef[0]), currRing->cf);
252  c += modifier;
253  }
254  else
255  {
256  int modifier = nSize (pGetCoeff (b->coef[0]));
257  c *= modifier;
258  }
259  }
260 #endif
261  if(!(TEST_V_COEFSTRAT))
262  {
263  return s * c;
264  }
265  else
266  {
267  wlen_type res = s;
268  res *= c;
269  res *= c;
270  return res;
271  }
272 }
273 #endif
274 #ifdef LEN_VAR5
275 static inline wlen_type pSLength (poly p, int l)
276 {
277  int c;
278  number coef = pGetCoeff (p);
279  if(rField_is_Q (currRing))
280  {
281  c = nlQlogSize (coef, currRing->cf);
282  }
283  else
284  c = nSize (coef);
285  wlen_type erg = l;
286  erg *= c;
287  erg *= c;
288  //PrintS("lenvar 5");
289  assume (erg >= 0);
290  return erg; /*pLength(p) */ ;
291 }
292 
293 //! TODO CoefBuckets beruecksichtigen
294 wlen_type kSBucketLength (kBucket * b, poly lm = NULL)
295 {
296  wlen_type s = 0;
297  int c;
298  number coef;
299  if(lm == NULL)
300  coef = pGetCoeff (kBucketGetLm (b));
301  //c=nSize(pGetCoeff(kBucketGetLm(b)));
302  else
303  coef = pGetCoeff (lm);
304  //c=nSize(pGetCoeff(lm));
305  if(rField_is_Q (currRing))
306  {
307  c = nlQlogSize (coef, currRing->cf);
308  }
309  else
310  c = nSize (coef);
311 
312  int i;
313  for(i = b->buckets_used; i >= 0; i--)
314  {
315  assume ((b->buckets_length[i] == 0) || (b->buckets[i] != NULL));
316  s += b->buckets_length[i] /*pLength(b->buckets[i]) */ ;
317  }
318 #ifdef HAVE_COEF_BUCKETS
319  assume (b->buckets[0] == kBucketGetLm (b));
320  if(b->coef[0] != NULL)
321  {
322  if(rField_is_Q (currRing))
323  {
324  int modifier = nlQlogSize (pGetCoeff (b->coef[0]), currRing->cf);
325  c += modifier;
326  }
327  else
328  {
329  int modifier = nSize (pGetCoeff (b->coef[0]));
330  c *= modifier;
331  }
332  }
333 #endif
334  wlen_type erg = s;
335  erg *= c;
336  erg *= c;
337  return erg;
338 }
339 #endif
340 
341 #ifdef LEN_VAR4
342 // 4.Variante: Laenge: Platz fuer Leitk * (1+Platz fuer andere Koeff.)
343 int pSLength (poly p, int l)
344 {
345  int s = 1;
346  int c = nSize (pGetCoeff (p));
347  pIter (p);
348  while(p != NULL)
349  {
350  s += nSize (pGetCoeff (p));
351  pIter (p);
352  }
353  return s * c;
354 }
355 
356 int kSBucketLength (kBucket * b)
357 {
358  int s = 1;
359  int c = nSize (pGetCoeff (kBucketGetLm (b)));
360  int i;
361  for(i = MAX_BUCKET; i > 0; i--)
362  {
363  if(b->buckets[i] == NULL)
364  continue;
365  s += pSLength (b->buckets[i], 0);
366  }
367  return s * c;
368 }
369 #endif
370 //BUG/TODO this stuff will fail on internal Schreyer orderings
372 {
373  ring r = c->r;
374  if(p_GetComp (p, r) != 0)
375  return FALSE;
376  if(c->lastDpBlockStart <= (currRing->N))
377  {
378  int i;
379  for(i = 1; i < c->lastDpBlockStart; i++)
380  {
381  if(p_GetExp (p, i, r) != 0)
382  {
383  break;
384  }
385  }
386  if(i >= c->lastDpBlockStart)
387  {
388  //wrp(p);
389  //PrintS("\n");
390  return TRUE;
391  }
392  else
393  return FALSE;
394  }
395  else
396  return FALSE;
397 }
398 
400 {
401  ring r = c->r;
402  if(p_GetComp (p, r) != 0)
403  return FALSE;
404  if(c->lastDpBlockStart <= (currRing->N))
405  {
406  int i;
407  for(i = 1; i < c->lastDpBlockStart; i++)
408  {
409  if(p_GetExp (p, i, r) != 0)
410  {
411  break;
412  }
413  }
414  if(i >= c->lastDpBlockStart)
415  {
416  //wrp(p);
417  //PrintS("\n");
418  return TRUE;
419  }
420  else
421  return FALSE;
422  }
423  else
424  return FALSE;
425 }
426 
427 static int get_last_dp_block_start (ring r)
428 {
429  //ring r=c->r;
430  int last_block;
431 
433  {
434  last_block = rBlocks (r) - 3;
435  }
436  else
437  {
438  last_block = rBlocks (r) - 2;
439  }
440  assume (last_block >= 0);
441  if(r->order[last_block] == ringorder_dp)
442  return r->block0[last_block];
443  return (currRing->N) + 1;
444 }
445 
446 static wlen_type do_pELength (poly p, slimgb_alg * c, int dlm = -1)
447 {
448  if(p == NULL)
449  return 0;
450  wlen_type s = 0;
451  poly pi = p;
452  if(dlm < 0)
453  {
454  dlm = c->pTotaldegree (p);
455  s = 1;
456  pi = p->next;
457  }
458 
459  while(pi)
460  {
461  int d = c->pTotaldegree (pi);
462  if(d > dlm)
463  s += 1 + d - dlm;
464  else
465  ++s;
466  pi = pi->next;
467  }
468  return s;
469 }
470 
471 wlen_type pELength (poly p, slimgb_alg * c, ring /*r*/)
472 {
473  if(p == NULL)
474  return 0;
475  wlen_type s = 0;
476  poly pi = p;
477  int dlm;
478  dlm = c->pTotaldegree (p);
479  s = 1;
480  pi = p->next;
481 
482  while(pi)
483  {
484  int d = c->pTotaldegree (pi);
485  if(d > dlm)
486  s += 1 + d - dlm;
487  else
488  ++s;
489  pi = pi->next;
490  }
491  return s;
492 }
493 
495 {
496  wlen_type s = 0;
497  if(lm == NULL)
498  {
499  lm = kBucketGetLm (b);
500  }
501  if(lm == NULL)
502  return 0;
503  if(elength_is_normal_length (lm, ca))
504  {
505  return bucket_guess (b);
506  }
507  int d = ca->pTotaldegree (lm);
508 #if 0
509  assume (sugar >= d);
510  s = 1 + (bucket_guess (b) - 1) * (sugar - d + 1);
511  return s;
512 #else
513 
514  //int d=pTotaldegree(lm,ca->r);
515  int i;
516  for(i = b->buckets_used; i >= 0; i--)
517  {
518  if(b->buckets[i] == NULL)
519  continue;
520 
521  if((ca->pTotaldegree (b->buckets[i]) <= d)
522  && (elength_is_normal_length (b->buckets[i], ca)))
523  {
524  s += b->buckets_length[i];
525  }
526  else
527  {
528  s += do_pELength (b->buckets[i], ca, d);
529  }
530  }
531  return s;
532 #endif
533 }
534 
535 static inline int pELength (poly p, slimgb_alg * c, int l)
536 {
537  if(p == NULL)
538  return 0;
539  if((l > 0) && (elength_is_normal_length (p, c)))
540  return l;
541  return do_pELength (p, c);
542 }
543 
544 static inline wlen_type pQuality (poly p, slimgb_alg * c, int l = -1)
545 {
546  if(l < 0)
547  l = pLength (p);
548  if(c->isDifficultField)
549  {
550  if(c->eliminationProblem)
551  {
552  wlen_type cs;
553  number coef = pGetCoeff (p);
554  if(rField_is_Q (currRing))
555  {
556  cs = nlQlogSize (coef, currRing->cf);
557  }
558  else
559  cs = nSize (coef);
560  wlen_type erg = cs;
561  if(TEST_V_COEFSTRAT)
562  erg *= cs;
563  //erg*=cs;//for quadratic
564  erg *= pELength (p, c, l);
565  //FIXME: not quadratic coeff size
566  //return cs*pELength(p,c,l);
567  return erg;
568  }
569  //PrintS("I am here");
570  wlen_type r = pSLength (p, l);
571  assume (r >= 0);
572  return r;
573  }
574  if(c->eliminationProblem)
575  return pELength (p, c, l);
576  return l;
577 }
578 
579 static inline int pTotaldegree_full (poly p)
580 {
581  int r = 0;
582  while(p)
583  {
584  int d = pTotaldegree (p);
585  r = si_max (r, d);
586  pIter (p);
587  }
588  return r;
589 }
590 
592 {
593  //works at the moment only for lenvar 1, because in different
594  //case, you have to look on coefs
595  wlen_type s = 0;
596  if(c->isDifficultField)
597  {
598  //s=kSBucketLength(bucket,this->p);
599  if(c->eliminationProblem)
600  {
601  wlen_type cs;
602  number coef;
603 
604  coef = pGetCoeff (kBucketGetLm (bucket));
605  //c=nSize(pGetCoeff(kBucketGetLm(b)));
606 
607  //c=nSize(pGetCoeff(lm));
608  if(rField_is_Q (currRing))
609  {
610  cs = nlQlogSize (coef, currRing->cf);
611  }
612  else
613  cs = nSize (coef);
614 #ifdef HAVE_COEF_BUCKETS
615  if(bucket->coef[0] != NULL)
616  {
617  if(rField_is_Q (currRing))
618  {
619  int modifier = nlQlogSize (pGetCoeff (bucket->coef[0]), currRing->cf);
620  cs += modifier;
621  }
622  else
623  {
624  int modifier = nSize (pGetCoeff (bucket->coef[0]));
625  cs *= modifier;
626  }
627  }
628 #endif
629  //FIXME:not quadratic
630  wlen_type erg = kEBucketLength (this->bucket, this->p, c);
631  //erg*=cs;//for quadratic
632  erg *= cs;
633  if(TEST_V_COEFSTRAT)
634  erg *= cs;
635  //return cs*kEBucketLength(this->bucket,this->p,c);
636  return erg;
637  }
639  }
640  else
641  {
642  if(c->eliminationProblem)
643  //if (false)
644  s = kEBucketLength (this->bucket, this->p, c);
645  else
646  s = bucket_guess (bucket);
647  }
648  return s;
649 }
650 
651 #if 0 //currently unused
652 static void finalize_reduction_step (reduction_step * r)
653 {
654  delete r;
655 }
656 #endif
657 #if 0 //currently unused
658 static int LObject_better_gen (const void *ap, const void *bp)
659 {
660  LObject *a = *(LObject **) ap;
661  LObject *b = *(LObject **) bp;
662  return (pLmCmp (a->p, b->p));
663 }
664 #endif
665 static int red_object_better_gen (const void *ap, const void *bp)
666 {
667  return (pLmCmp (((red_object *) ap)->p, ((red_object *) bp)->p));
668 }
669 
670 #if 0 //currently unused
671 static int pLmCmp_func_inverted (const void *ap1, const void *ap2)
672 {
673  poly p1, p2;
674  p1 = *((poly *) ap1);
675  p2 = *((poly *) ap2);
676  return -pLmCmp (p1, p2);
677 }
678 #endif
679 
680 int tgb_pair_better_gen2 (const void *ap, const void *bp)
681 {
682  return (-tgb_pair_better_gen (ap, bp));
683 }
684 
686 {
687  poly p = obj.p;
688  if ((strat->syzComp>0) && (pGetComp(p)>strat->syzComp)) return -1;
689  long not_sev = ~obj.sev;
690  for(int i = 0; i <= strat->sl; i++)
691  {
692  if(pLmShortDivisibleBy (strat->S[i], strat->sevS[i], p, not_sev))
693  return i;
694  }
695  return -1;
696 }
697 
698 int kFindDivisibleByInS_easy (kStrategy strat, poly p, long sev)
699 {
700  if ((strat->syzComp>0) && (pGetComp(p)>strat->syzComp)) return -1;
701  long not_sev = ~sev;
702  for(int i = 0; i <= strat->sl; i++)
703  {
704  if(pLmShortDivisibleBy (strat->S[i], strat->sevS[i], p, not_sev))
705  return i;
706  }
707  return -1;
708 }
709 
710 static int
712  slimgb_alg * c, int an = 0)
713 {
714  if(pn == 0)
715  return 0;
716 
717  int length = pn - 1;
718  int i;
719  //int an = 0;
720  int en = length;
721 
722  if(pair_better (qe, p[en], c))
723  return length + 1;
724 
725  while(1)
726  {
727  //if (an >= en-1)
728  if(en - 1 <= an)
729  {
730  if(pair_better (p[an], qe, c))
731  return an;
732  return en;
733  }
734  i = (an + en) / 2;
735  if(pair_better (p[i], qe, c))
736  en = i;
737  else
738  an = i;
739  }
740 }
741 
742 static BOOLEAN ascending (int *i, int top)
743 {
744  if(top < 1)
745  return TRUE;
746  if(i[top] < i[top - 1])
747  return FALSE;
748  return ascending (i, top - 1);
749 }
750 
752  sorted_pair_node ** q, int qn, slimgb_alg * c)
753 {
754  int i;
755  int *a = (int *) omalloc (qn * sizeof (int));
756 // int mc;
757 // PrintS("Debug\n");
758 // for(mc=0;mc<qn;mc++)
759 // {
760 // wrp(q[mc]->lcm_of_lm);
761 // PrintS("\n");
762 // }
763 // PrintS("Debug they are in\n");
764 // for(mc=0;mc<pn;mc++)
765 // {
766 // wrp(p[mc]->lcm_of_lm);
767 // PrintS("\n");
768 // }
769  int lastpos = 0;
770  for(i = 0; i < qn; i++)
771  {
772  lastpos = posInPairs (p, pn, q[i], c, si_max (lastpos - 1, 0));
773  // cout<<lastpos<<"\n";
774  a[i] = lastpos;
775  }
776  if((pn + qn) > c->max_pairs)
777  {
778  p =
780  2 * (pn +
781  qn) *
782  sizeof (sorted_pair_node *));
783  c->max_pairs = 2 * (pn + qn);
784  }
785  for(i = qn - 1; i >= 0; i--)
786  {
787  size_t size;
788  if(qn - 1 > i)
789  size = (a[i + 1] - a[i]) * sizeof (sorted_pair_node *);
790  else
791  size = (pn - a[i]) * sizeof (sorted_pair_node *); //as indices begin with 0
792  memmove (p + a[i] + (1 + i), p + a[i], size);
793  p[a[i] + i] = q[i];
794  }
795  omFree (a);
796  return p;
797 }
798 
799 static BOOLEAN
800 trivial_syzygie (int pos1, int pos2, poly bound, slimgb_alg * c)
801 {
802  poly p1 = c->S->m[pos1];
803  poly p2 = c->S->m[pos2];
804 
805  if(pGetComp (p1) > 0 || pGetComp (p2) > 0)
806  return FALSE;
807  int i = 1;
808  poly m = NULL;
809  poly gcd1 = c->gcd_of_terms[pos1];
810  poly gcd2 = c->gcd_of_terms[pos2];
811 
812  if((gcd1 != NULL) && (gcd2 != NULL))
813  {
814  gcd1->next = gcd2; //may ordered incorrect
815  m = gcd_of_terms (gcd1, c->r);
816  gcd1->next = NULL;
817  }
818  if(m == NULL)
819  {
820  loop
821  {
822  if(pGetExp (p1, i) + pGetExp (p2, i) > pGetExp (bound, i))
823  return FALSE;
824  if(i == (currRing->N))
825  {
826  //PrintS("trivial");
827  return TRUE;
828  }
829  i++;
830  }
831  }
832  else
833  {
834  loop
835  {
836  if(pGetExp (p1, i) - pGetExp (m, i) + pGetExp (p2, i) >
837  pGetExp (bound, i))
838  {
839  pDelete (&m);
840  return FALSE;
841  }
842  if(i == (currRing->N))
843  {
844  pDelete (&m);
845  //PrintS("trivial");
846  return TRUE;
847  }
848  i++;
849  }
850  }
851 }
852 
853 //! returns position sets w as weight
854 int find_best (red_object * r, int l, int u, wlen_type & w, slimgb_alg * c)
855 {
856  int best = l;
857  int i;
858  w = r[l].guess_quality (c);
859  for(i = l + 1; i <= u; i++)
860  {
861  wlen_type w2 = r[i].guess_quality (c);
862  if(w2 < w)
863  {
864  w = w2;
865  best = i;
866  }
867  }
868  return best;
869 }
870 
872 {
874 }
875 
877 {
878  assume (i >= 0);
879  assume (j >= 0);
880  if(has_t_rep (i, j, c))
881  return TRUE;
882  //poly lm=pOne();
883  assume (c->tmp_lm != NULL);
884  poly lm = c->tmp_lm;
885 
886  pLcm (c->S->m[i], c->S->m[j], lm);
887  pSetm (lm);
888  assume (lm != NULL);
889  //int deciding_deg= pTotaldegree(lm);
890  int *i_con = make_connections (i, j, lm, c);
891  //p_Delete(&lm,c->r);
892 
893  for(int n = 0; ((n < c->n) && (i_con[n] >= 0)); n++)
894  {
895  if(i_con[n] == j)
896  {
897  now_t_rep (i, j, c);
898  omFree (i_con);
899  return TRUE;
900  }
901  }
902  omFree (i_con);
903 
904  return FALSE;
905 }
906 
908 {
909  int i;
910  for(i = 0; i <= strat->sl; i++)
911  {
912  if(strat->lenS[i] != pLength (strat->S[i]))
913  return FALSE;
914  }
915  return TRUE;
916 }
917 
918 
919 static void cleanS (kStrategy strat, slimgb_alg * c)
920 {
921  int i = 0;
922  LObject P;
923  while(i <= strat->sl)
924  {
925  P.p = strat->S[i];
926  P.sev = strat->sevS[i];
927  //int dummy=strat->sl;
928  //if(kFindDivisibleByInS(strat,&dummy,&P)!=i)
929  if(kFindDivisibleByInS_easy (strat, P.p, P.sev) != i)
930  {
931  deleteInS (i, strat);
932  //remember destroying poly
933  BOOLEAN found = FALSE;
934  int j;
935  for(j = 0; j < c->n; j++)
936  {
937  if(c->S->m[j] == P.p)
938  {
939  found = TRUE;
940  break;
941  }
942  }
943  if(!found)
944  pDelete (&P.p);
945  //remember additional reductors
946  }
947  else
948  i++;
949  }
950 }
951 
952 static int bucket_guess (kBucket * bucket)
953 {
954  int sum = 0;
955  int i;
956  for(i = bucket->buckets_used; i >= 0; i--)
957  {
958  if(bucket->buckets[i])
959  sum += bucket->buckets_length[i];
960  }
961  return sum;
962 }
963 
964 static int
965 add_to_reductors (slimgb_alg * c, poly h, int len, int ecart,
966  BOOLEAN simplified)
967 {
968  //inDebug(h);
969  assume (lenS_correct (c->strat));
970  assume (len == pLength (h));
971  int i;
972 // if (c->isDifficultField)
973 // i=simple_posInS(c->strat,h,pSLength(h,len),c->isDifficultField);
974 // else
975 // i=simple_posInS(c->strat,h,len,c->isDifficultField);
976 
977  LObject P;
978  memset (&P, 0, sizeof (P));
979  P.tailRing = c->r;
980  P.p = h; /*p_Copy(h,c->r); */
981  P.ecart = ecart;
982  P.FDeg = c->r->pFDeg (P.p, c->r);
983  if(!(simplified))
984  {
986  {
987  p_Cleardenom (P.p, c->r); //includes p_Content(P.p,c->r );
988  }
989  else
990  pNorm (P.p);
991  //pNormalize (P.p);
992  }
993  wlen_type pq = pQuality (h, c, len);
994  i = simple_posInS (c->strat, h, len, pq);
995  c->strat->enterS (P, i, c->strat, -1);
996 
997  c->strat->lenS[i] = len;
998  assume (pLength (c->strat->S[i]) == c->strat->lenS[i]);
999  if(c->strat->lenSw != NULL)
1000  c->strat->lenSw[i] = pq;
1001 
1002  return i;
1003 }
1004 
1005 static void length_one_crit (slimgb_alg * c, int pos, int len)
1006 {
1007  if(c->nc)
1008  return;
1009  if(len == 1)
1010  {
1011  int i;
1012  for(i = 0; i < pos; i++)
1013  {
1014  if(c->lengths[i] == 1)
1015  c->states[pos][i] = HASTREP;
1016  }
1017  for(i = pos + 1; i < c->n; i++)
1018  {
1019  if(c->lengths[i] == 1)
1020  c->states[i][pos] = HASTREP;
1021  }
1022  if(!c->nc)
1023  shorten_tails (c, c->S->m[pos]);
1024  }
1025 }
1026 
1027 static void move_forward_in_S (int old_pos, int new_pos, kStrategy strat)
1028 {
1029  assume (old_pos >= new_pos);
1030  poly p = strat->S[old_pos];
1031  int ecart = strat->ecartS[old_pos];
1032  long sev = strat->sevS[old_pos];
1033  int s_2_r = strat->S_2_R[old_pos];
1034  int length = strat->lenS[old_pos];
1035  assume (length == pLength (strat->S[old_pos]));
1036  wlen_type length_w;
1037  if(strat->lenSw != NULL)
1038  length_w = strat->lenSw[old_pos];
1039  int i;
1040  for(i = old_pos; i > new_pos; i--)
1041  {
1042  strat->S[i] = strat->S[i - 1];
1043  strat->ecartS[i] = strat->ecartS[i - 1];
1044  strat->sevS[i] = strat->sevS[i - 1];
1045  strat->S_2_R[i] = strat->S_2_R[i - 1];
1046  }
1047  if(strat->lenS != NULL)
1048  for(i = old_pos; i > new_pos; i--)
1049  strat->lenS[i] = strat->lenS[i - 1];
1050  if(strat->lenSw != NULL)
1051  for(i = old_pos; i > new_pos; i--)
1052  strat->lenSw[i] = strat->lenSw[i - 1];
1053 
1054  strat->S[new_pos] = p;
1055  strat->ecartS[new_pos] = ecart;
1056  strat->sevS[new_pos] = sev;
1057  strat->S_2_R[new_pos] = s_2_r;
1058  strat->lenS[new_pos] = length;
1059  if(strat->lenSw != NULL)
1060  strat->lenSw[new_pos] = length_w;
1061  //assume(lenS_correct(strat));
1062 }
1063 
1064 static void move_backward_in_S (int old_pos, int new_pos, kStrategy strat)
1065 {
1066  assume (old_pos <= new_pos);
1067  poly p = strat->S[old_pos];
1068  int ecart = strat->ecartS[old_pos];
1069  long sev = strat->sevS[old_pos];
1070  int s_2_r = strat->S_2_R[old_pos];
1071  int length = strat->lenS[old_pos];
1072  assume (length == pLength (strat->S[old_pos]));
1073  wlen_type length_w;
1074  if(strat->lenSw != NULL)
1075  length_w = strat->lenSw[old_pos];
1076  int i;
1077  for(i = old_pos; i < new_pos; i++)
1078  {
1079  strat->S[i] = strat->S[i + 1];
1080  strat->ecartS[i] = strat->ecartS[i + 1];
1081  strat->sevS[i] = strat->sevS[i + 1];
1082  strat->S_2_R[i] = strat->S_2_R[i + 1];
1083  }
1084  if(strat->lenS != NULL)
1085  for(i = old_pos; i < new_pos; i++)
1086  strat->lenS[i] = strat->lenS[i + 1];
1087  if(strat->lenSw != NULL)
1088  for(i = old_pos; i < new_pos; i++)
1089  strat->lenSw[i] = strat->lenSw[i + 1];
1090 
1091  strat->S[new_pos] = p;
1092  strat->ecartS[new_pos] = ecart;
1093  strat->sevS[new_pos] = sev;
1094  strat->S_2_R[new_pos] = s_2_r;
1095  strat->lenS[new_pos] = length;
1096  if(strat->lenSw != NULL)
1097  strat->lenSw[new_pos] = length_w;
1098  //assume(lenS_correct(strat));
1099 }
1100 
1101 static int *make_connections (int from, int to, poly bound, slimgb_alg * c)
1102 {
1103  ideal I = c->S;
1104  int *cans = (int *) omAlloc (c->n * sizeof (int));
1105  int *connected = (int *) omAlloc (c->n * sizeof (int));
1106  cans[0] = to;
1107  int cans_length = 1;
1108  connected[0] = from;
1109  int last_cans_pos = -1;
1110  int connected_length = 1;
1111  long neg_bounds_short = ~p_GetShortExpVector (bound, c->r);
1112 
1113  int not_yet_found = cans_length;
1114  int con_checked = 0;
1115  int pos;
1116 
1117  while(TRUE)
1118  {
1119  if((con_checked < connected_length) && (not_yet_found > 0))
1120  {
1121  pos = connected[con_checked];
1122  for(int i = 0; i < cans_length; i++)
1123  {
1124  if(cans[i] < 0)
1125  continue;
1126  //FIXME: triv. syz. does not hold on noncommutative, check it for modules
1127  if((has_t_rep (pos, cans[i], c))
1128  || ((!rIsPluralRing (c->r))
1129  && (trivial_syzygie (pos, cans[i], bound, c))))
1130  {
1131  connected[connected_length] = cans[i];
1132  connected_length++;
1133  cans[i] = -1;
1134  --not_yet_found;
1135 
1136  if(connected[connected_length - 1] == to)
1137  {
1138  if(connected_length < c->n)
1139  {
1140  connected[connected_length] = -1;
1141  }
1142  omFree (cans);
1143  return connected;
1144  }
1145  }
1146  }
1147  con_checked++;
1148  }
1149  else
1150  {
1151  for(last_cans_pos++; last_cans_pos <= c->n; last_cans_pos++)
1152  {
1153  if(last_cans_pos == c->n)
1154  {
1155  if(connected_length < c->n)
1156  {
1157  connected[connected_length] = -1;
1158  }
1159  omFree (cans);
1160  return connected;
1161  }
1162  if((last_cans_pos == from) || (last_cans_pos == to))
1163  continue;
1165  (I->m[last_cans_pos], c->short_Exps[last_cans_pos], bound,
1166  neg_bounds_short, c->r))
1167  {
1168  cans[cans_length] = last_cans_pos;
1169  cans_length++;
1170  break;
1171  }
1172  }
1173  not_yet_found++;
1174  for(int i = 0; i < con_checked; i++)
1175  {
1176  if(has_t_rep (connected[i], last_cans_pos, c))
1177  {
1178  connected[connected_length] = last_cans_pos;
1179  connected_length++;
1180  cans[cans_length - 1] = -1;
1181  --not_yet_found;
1182  if(connected[connected_length - 1] == to)
1183  {
1184  if(connected_length < c->n)
1185  {
1186  connected[connected_length] = -1;
1187  }
1188  omFree (cans);
1189  return connected;
1190  }
1191  break;
1192  }
1193  }
1194  }
1195  }
1196  if(connected_length < c->n)
1197  {
1198  connected[connected_length] = -1;
1199  }
1200  omFree (cans);
1201  return connected;
1202 }
1203 
1204 #ifdef HEAD_BIN
1205 static inline poly p_MoveHead (poly p, omBin b)
1206 {
1207  poly np;
1208  omTypeAllocBin (poly, np, b);
1209  memmove (np, p, omSizeWOfBin(b) * sizeof (long));
1210  omFreeBinAddr (p);
1211  return np;
1212 }
1213 #endif
1214 
1215 static void replace_pair (int &i, int &j, slimgb_alg * c)
1216 {
1217  if(i < 0)
1218  return;
1219  c->soon_free = NULL;
1220  int syz_deg;
1221  poly lm = pOne ();
1222 
1223  pLcm (c->S->m[i], c->S->m[j], lm);
1224  pSetm (lm);
1225 
1226  int *i_con = make_connections (i, j, lm, c);
1227 
1228  for(int n = 0; ((n < c->n) && (i_con[n] >= 0)); n++)
1229  {
1230  if(i_con[n] == j)
1231  {
1232  now_t_rep (i, j, c);
1233  omFree (i_con);
1234  p_Delete (&lm, c->r);
1235  return;
1236  }
1237  }
1238 
1239  int *j_con = make_connections (j, i, lm, c);
1240 
1241 // if(c->n>1)
1242 // {
1243 // if (i_con[1]>=0)
1244 // i=i_con[1];
1245 // else
1246 // {
1247 // if (j_con[1]>=0)
1248 // j=j_con[1];
1249 // }
1250  // }
1251 
1252  int sugar = syz_deg = c->pTotaldegree (lm);
1253 
1254  p_Delete (&lm, c->r);
1255  if(c->T_deg_full) //Sugar
1256  {
1257  int t_i = c->T_deg_full[i] - c->T_deg[i];
1258  int t_j = c->T_deg_full[j] - c->T_deg[j];
1259  sugar += si_max (t_i, t_j);
1260  //Print("\n max: %d\n",max(t_i,t_j));
1261  }
1262 
1263  for(int m = 0; ((m < c->n) && (i_con[m] >= 0)); m++)
1264  {
1265  if(c->T_deg_full != NULL)
1266  {
1267  int s1 = c->T_deg_full[i_con[m]] + syz_deg - c->T_deg[i_con[m]];
1268  if(s1 > sugar)
1269  continue;
1270  }
1271  if(c->weighted_lengths[i_con[m]] < c->weighted_lengths[i])
1272  i = i_con[m];
1273  }
1274  for(int m = 0; ((m < c->n) && (j_con[m] >= 0)); m++)
1275  {
1276  if(c->T_deg_full != NULL)
1277  {
1278  int s1 = c->T_deg_full[j_con[m]] + syz_deg - c->T_deg[j_con[m]];
1279  if(s1 > sugar)
1280  continue;
1281  }
1282  if(c->weighted_lengths[j_con[m]] < c->weighted_lengths[j])
1283  j = j_con[m];
1284  }
1285 
1286  //can also try dependend search
1287  omFree (i_con);
1288  omFree (j_con);
1289  return;
1290 }
1291 
1292 static void add_later (poly p, const char *prot, slimgb_alg * c)
1293 {
1294  int i = 0;
1295  //check, if it is already in the queue
1296 
1297  while(c->add_later->m[i] != NULL)
1298  {
1299  if(p_LmEqual (c->add_later->m[i], p, c->r))
1300  return;
1301  i++;
1302  }
1303  if(TEST_OPT_PROT)
1304  PrintS (prot);
1305  c->add_later->m[i] = p;
1306 }
1307 
1308 static int simple_posInS (kStrategy strat, poly p, int len, wlen_type wlen)
1309 {
1310  if(strat->sl == -1)
1311  return 0;
1312  if(strat->lenSw)
1313  return pos_helper (strat, p, (wlen_type) wlen, (wlen_set) strat->lenSw,
1314  strat->S);
1315  return pos_helper (strat, p, len, strat->lenS, strat->S);
1316 }
1317 
1318 /*2
1319  *if the leading term of p
1320  *divides the leading term of some S[i] it will be canceled
1321  */
1322 static inline void
1323 clearS (poly p, unsigned long p_sev, int l, int *at, int *k, kStrategy strat)
1324 {
1325  assume (p_sev == pGetShortExpVector (p));
1326  if(!pLmShortDivisibleBy (p, p_sev, strat->S[*at], ~strat->sevS[*at]))
1327  return;
1328  if(l >= strat->lenS[*at])
1329  return;
1330  if(TEST_OPT_PROT)
1331  PrintS ("!");
1332  mflush ();
1333  //pDelete(&strat->S[*at]);
1334  deleteInS ((*at), strat);
1335  (*at)--;
1336  (*k)--;
1337 // assume(lenS_correct(strat));
1338 }
1339 
1340 static int iq_crit (const void *ap, const void *bp)
1341 {
1342  sorted_pair_node *a = *((sorted_pair_node **) ap);
1343  sorted_pair_node *b = *((sorted_pair_node **) bp);
1344  assume (a->i > a->j);
1345  assume (b->i > b->j);
1346 
1347  if(a->deg < b->deg)
1348  return -1;
1349  if(a->deg > b->deg)
1350  return 1;
1351  int comp = pLmCmp (a->lcm_of_lm, b->lcm_of_lm);
1352  if(comp != 0)
1353  return comp;
1354  if(a->expected_length < b->expected_length)
1355  return -1;
1356  if(a->expected_length > b->expected_length)
1357  return 1;
1358  if(a->j > b->j)
1359  return 1;
1360  if(a->j < b->j)
1361  return -1;
1362  return 0;
1363 }
1364 
1365 static wlen_type coeff_mult_size_estimate (int s1, int s2, ring r)
1366 {
1367  if(rField_is_Q (r))
1368  return s1 + s2;
1369  else
1370  return s1 * s2;
1371 }
1372 
1374 {
1375  if((c->isDifficultField) && (c->eliminationProblem))
1376  {
1377  int c1 = slim_nsize (p_GetCoeff (c->S->m[i], c->r), c->r);
1378  int c2 = slim_nsize (p_GetCoeff (c->S->m[j], c->r), c->r);
1379  wlen_type el1 = c->weighted_lengths[i] / c1;
1380  assume (el1 != 0);
1381  assume (c->weighted_lengths[i] % c1 == 0);
1382  wlen_type el2 = c->weighted_lengths[j] / c2;
1383  assume (el2 != 0);
1384  //assume (c->weighted_lengths[j] % c2 == 0); // fails in Tst/Plural/dmod_lib.tst
1385  //should be * for function fields
1386  //return (c1+c2) * (el1+el2-2);
1387  wlen_type res = coeff_mult_size_estimate (c1, c2, c->r);
1388  res *= el1 + el2 - 2;
1389  return res;
1390 
1391  }
1392  if(c->isDifficultField)
1393  {
1394  //int cs=slim_nsize(p_GetCoeff(c->S->m[i],c->r),c->r)+
1395  // slim_nsize(p_GetCoeff(c->S->m[j],c->r),c->r);
1396  if(!(TEST_V_COEFSTRAT))
1397  {
1398  wlen_type cs =
1400  (p_GetCoeff (c->S->m[i], c->r), c->r),
1401  slim_nsize (p_GetCoeff (c->S->m[j], c->r),
1402  c->r), c->r);
1403  return (wlen_type) (c->lengths[i] + c->lengths[j] - 2) * (wlen_type) cs;
1404  }
1405  else
1406  {
1407 
1408  wlen_type cs =
1410  (p_GetCoeff (c->S->m[i], c->r), c->r),
1411  slim_nsize (p_GetCoeff (c->S->m[j], c->r),
1412  c->r), c->r);
1413  cs *= cs;
1414  return (wlen_type) (c->lengths[i] + c->lengths[j] - 2) * (wlen_type) cs;
1415  }
1416  }
1417  if(c->eliminationProblem)
1418  {
1419 
1420  return (c->weighted_lengths[i] + c->weighted_lengths[j] - 2);
1421  }
1422  return c->lengths[i] + c->lengths[j] - 2;
1423 
1424 }
1425 
1427  int *ip)
1428 {
1429  p_Test (h, c->r);
1430  assume (h != NULL);
1431  poly got = gcd_of_terms (h, c->r);
1432  if((got != NULL) && (TEST_V_UPTORADICAL))
1433  {
1434  poly copy = p_Copy (got, c->r);
1435  //p_wrp(got,c->r);
1436  BOOLEAN changed = monomial_root (got, c->r);
1437  if(changed)
1438  {
1439  poly div_by = pMDivide (copy, got);
1440  poly iter = h;
1441  while(iter)
1442  {
1443  pExpVectorSub (iter, div_by);
1444  pIter (iter);
1445  }
1446  p_Delete (&div_by, c->r);
1447  PrintS ("U");
1448  }
1449  p_Delete (&copy, c->r);
1450  }
1451 
1452 #define ENLARGE(pointer, type) pointer=(type*) omrealloc(pointer, c->array_lengths*sizeof(type))
1453 
1454 #define ENLARGE_ALIGN(pointer, type) {if(pointer)\
1455  pointer=(type*)omReallocAligned(pointer, c->array_lengths*sizeof(type));\
1456  else pointer=(type*)omAllocAligned(c->array_lengths*sizeof(type));}
1457 // BOOLEAN corr=lenS_correct(c->strat);
1458  int sugar;
1459  int ecart = 0;
1460  ++(c->n);
1461  ++(c->S->ncols);
1462  int i, j;
1463  i = c->n - 1;
1464  sorted_pair_node **nodes =
1465  (sorted_pair_node **) omalloc (sizeof (sorted_pair_node *) * i);
1466  int spc = 0;
1467  if(c->n > c->array_lengths)
1468  {
1469  c->array_lengths = c->array_lengths * 2;
1470  assume (c->array_lengths >= c->n);
1471  ENLARGE (c->T_deg, int);
1472  ENLARGE_ALIGN (c->tmp_pair_lm, poly);
1474 
1475  ENLARGE_ALIGN (c->short_Exps, long);
1476  ENLARGE (c->lengths, int);
1477 #ifndef HAVE_BOOST
1478 #ifndef USE_STDVECBOOL
1479 
1480  ENLARGE_ALIGN (c->states, char *);
1481 #endif
1482 #endif
1483  ENLARGE_ALIGN (c->gcd_of_terms, poly);
1484  //if (c->weighted_lengths!=NULL) {
1486  //}
1487  //ENLARGE_ALIGN(c->S->m,poly);
1488  }
1489  pEnlargeSet (&c->S->m, c->n - 1, 1);
1490  if(c->T_deg_full)
1491  ENLARGE (c->T_deg_full, int);
1492  sugar = c->T_deg[i] = c->pTotaldegree (h);
1493  if(c->T_deg_full)
1494  {
1495  sugar = c->T_deg_full[i] = c->pTotaldegree_full (h);
1496  ecart = sugar - c->T_deg[i];
1497  assume (ecart >= 0);
1498  }
1499  c->tmp_pair_lm[i] = pOne_Special (c->r);
1500 
1501  c->tmp_spn[i] = (sorted_pair_node *) omAlloc (sizeof (sorted_pair_node));
1502 
1503  c->lengths[i] = pLength (h);
1504 
1505  //necessary for correct weighted length
1506 
1508  {
1509  p_Cleardenom (h, c->r); //includes p_Content(h,c->r);
1510  }
1511  else
1512  pNorm (h);
1513  //pNormalize (h);
1514 
1515  c->weighted_lengths[i] = pQuality (h, c, c->lengths[i]);
1516  c->gcd_of_terms[i] = got;
1517 #ifdef HAVE_BOOST
1518  c->states.push_back (dynamic_bitset <> (i));
1519 
1520 #else
1521 #ifdef USE_STDVECBOOL
1522 
1523  c->states.push_back (vector < bool > (i));
1524 
1525 #else
1526  if(i > 0)
1527  c->states[i] = (char *) omAlloc (i * sizeof (char));
1528  else
1529  c->states[i] = NULL;
1530 #endif
1531 #endif
1532 
1533  c->S->m[i] = h;
1534  c->short_Exps[i] = p_GetShortExpVector (h, c->r);
1535 
1536 #undef ENLARGE
1537 #undef ENLARGE_ALIGN
1538  if(p_GetComp (h, currRing) <= c->syz_comp)
1539  {
1540  for(j = 0; j < i; j++)
1541  {
1542 
1543 
1544 #ifndef HAVE_BOOST
1545  c->states[i][j] = UNCALCULATED;
1546 #endif
1547  assume (p_LmDivisibleBy (c->S->m[i], c->S->m[j], c->r) ==
1548  p_LmShortDivisibleBy (c->S->m[i], c->short_Exps[i], c->S->m[j],
1549  ~(c->short_Exps[j]), c->r));
1550 
1551  if(__p_GetComp (c->S->m[i], c->r) != __p_GetComp (c->S->m[j], c->r))
1552  {
1553  //c->states[i][j]=UNCALCULATED;
1554  //WARNUNG: be careful
1555  continue;
1556  }
1557  else if((!c->nc) && (c->lengths[i] == 1) && (c->lengths[j] == 1))
1558  {
1559  c->states[i][j] = HASTREP;
1560  }
1561  else if(((!c->nc) || (c->is_homog && rIsSCA (c->r)))
1562  && (pHasNotCF (c->S->m[i], c->S->m[j])))
1563 // else if ((!(c->nc)) && (pHasNotCF(c->S->m[i],c->S->m[j])))
1564  {
1565  c->easy_product_crit++;
1566  c->states[i][j] = HASTREP;
1567  continue;
1568  }
1569  else
1571  (c->S->m[i], c->gcd_of_terms[i], c->S->m[j], c->gcd_of_terms[j],
1572  c))
1573  {
1574  c->states[i][j] = HASTREP;
1575  c->extended_product_crit++;
1576  //PrintS("E");
1577  }
1578  // if (c->states[i][j]==UNCALCULATED)
1579  // {
1580 
1581  if((TEST_V_FINDMONOM) && (!c->nc))
1582  {
1583  //PrintS("COMMU");
1584  // if (c->lengths[i]==c->lengths[j])
1585  // {
1586 // poly short_s=ksCreateShortSpoly(c->S->m[i],c->S->m[j],c->r);
1587 // if (short_s==NULL)
1588 // {
1589 // c->states[i][j]=HASTREP;
1590 // }
1591 // else
1592 // {
1593 // p_Delete(&short_s, currRing);
1594 // }
1595 // }
1596  if(c->lengths[i] + c->lengths[j] == 3)
1597  {
1598 
1599 
1600  poly short_s = ksCreateShortSpoly (c->S->m[i], c->S->m[j], c->r);
1601  if(short_s == NULL)
1602  {
1603  c->states[i][j] = HASTREP;
1604  }
1605  else
1606  {
1607  assume (pLength (short_s) == 1);
1608  if(TEST_V_UPTORADICAL)
1609  monomial_root (short_s, c->r);
1610  int iS = kFindDivisibleByInS_easy (c->strat, short_s,
1611  p_GetShortExpVector (short_s,
1612  c->r));
1613  if(iS < 0)
1614  {
1615  //PrintS("N");
1616  if(TRUE)
1617  {
1618  c->states[i][j] = HASTREP;
1619  add_later (short_s, "N", c);
1620  }
1621  else
1622  p_Delete (&short_s, currRing);
1623  }
1624  else
1625  {
1626  if(c->strat->lenS[iS] > 1)
1627  {
1628  //PrintS("O");
1629  if(TRUE)
1630  {
1631  c->states[i][j] = HASTREP;
1632  add_later (short_s, "O", c);
1633  }
1634  else
1635  p_Delete (&short_s, currRing);
1636  }
1637  else
1638  p_Delete (&short_s, currRing);
1639  c->states[i][j] = HASTREP;
1640  }
1641 
1642 
1643  }
1644  }
1645  }
1646  // if (short_s)
1647  // {
1648  assume (spc <= j);
1649  sorted_pair_node *s = c->tmp_spn[spc]; //(sorted_pair_node*) omalloc(sizeof(sorted_pair_node));
1650  s->i = si_max (i, j);
1651  s->j = si_min (i, j);
1652  assume (s->j == j);
1653  s->expected_length = pair_weighted_length (i, j, c); //c->lengths[i]+c->lengths[j]-2;
1654 
1655  poly lm = c->tmp_pair_lm[spc]; //=pOne_Special();
1656 
1657  pLcm (c->S->m[i], c->S->m[j], lm);
1658  pSetm (lm);
1659  p_Test (lm, c->r);
1660  s->deg = c->pTotaldegree (lm);
1661 
1662  if(c->T_deg_full) //Sugar
1663  {
1664  int t_i = c->T_deg_full[s->i] - c->T_deg[s->i];
1665  int t_j = c->T_deg_full[s->j] - c->T_deg[s->j];
1666  s->deg += si_max (t_i, t_j);
1667  //Print("\n max: %d\n",max(t_i,t_j));
1668  }
1669  p_Test (lm, c->r);
1670  s->lcm_of_lm = lm;
1671  // pDelete(&short_s);
1672  //assume(lm!=NULL);
1673  nodes[spc] = s;
1674  spc++;
1675 
1676  // }
1677  //else
1678  //{
1679  //c->states[i][j]=HASTREP;
1680  //}
1681  }
1682  } //if syz_comp end
1683 
1684  assume (spc <= i);
1685  //now ideal quotient crit
1686  qsort (nodes, spc, sizeof (sorted_pair_node *), iq_crit);
1687 
1688  sorted_pair_node **nodes_final =
1689  (sorted_pair_node **) omalloc (sizeof (sorted_pair_node *) * (i+1));
1690  int spc_final = 0;
1691  j = 0;
1692  while(j < spc)
1693  {
1694  int lower = j;
1695  int upper;
1696  BOOLEAN has = FALSE;
1697  for(upper = lower + 1; upper < spc; upper++)
1698  {
1699  if(!pLmEqual (nodes[lower]->lcm_of_lm, nodes[upper]->lcm_of_lm))
1700  {
1701  break;
1702  }
1703  if(has_t_rep (nodes[upper]->i, nodes[upper]->j, c))
1704  has = TRUE;
1705  }
1706  upper = upper - 1;
1707  int z;
1708  assume (spc_final <= j);
1709  for(z = 0; z < spc_final; z++)
1710  {
1711  if(p_LmDivisibleBy
1712  (nodes_final[z]->lcm_of_lm, nodes[lower]->lcm_of_lm, c->r))
1713  {
1714  has = TRUE;
1715  break;
1716  }
1717  }
1718 
1719  if(has)
1720  {
1721  for(; lower <= upper; lower++)
1722  {
1723  //free_sorted_pair_node(nodes[lower],c->r);
1724  //omfree(nodes[lower]);
1725  nodes[lower] = NULL;
1726  }
1727  j = upper + 1;
1728  continue;
1729  }
1730  else
1731  {
1732  p_Test (nodes[lower]->lcm_of_lm, c->r);
1733  nodes[lower]->lcm_of_lm = pCopy (nodes[lower]->lcm_of_lm);
1734  assume (__p_GetComp (c->S->m[nodes[lower]->i], c->r) ==
1735  __p_GetComp (c->S->m[nodes[lower]->j], c->r));
1736  nodes_final[spc_final] =
1737  (sorted_pair_node *) omAlloc (sizeof (sorted_pair_node));
1738 
1739  *(nodes_final[spc_final++]) = *(nodes[lower]);
1740  //c->tmp_spn[nodes[lower]->j]=(sorted_pair_node*) omalloc(sizeof(sorted_pair_node));
1741  nodes[lower] = NULL;
1742  for(lower = lower + 1; lower <= upper; lower++)
1743  {
1744  // free_sorted_pair_node(nodes[lower],c->r);
1745  //omfree(nodes[lower]);
1746  nodes[lower] = NULL;
1747  }
1748  j = upper + 1;
1749  continue;
1750  }
1751  }
1752 
1753  // Print("i:%d,spc_final:%d",i,spc_final);
1754 
1755  assume (spc_final <= spc);
1756  omFree (nodes);
1757  nodes = NULL;
1758 
1759  add_to_reductors (c, h, c->lengths[c->n - 1], ecart, TRUE);
1760  //i=posInS(c->strat,c->strat->sl,h,0 ecart);
1761  if(!(c->nc))
1762  {
1763  if(c->lengths[c->n - 1] == 1)
1764  shorten_tails (c, c->S->m[c->n - 1]);
1765  }
1766  //you should really update c->lengths, c->strat->lenS, and the oder of polys in strat if you sort after lengths
1767 
1768  //for(i=c->strat->sl; i>0;i--)
1769  // if(c->strat->lenS[i]<c->strat->lenS[i-1]) printf("fehler bei %d\n",i);
1770  if(c->Rcounter > 50)
1771  {
1772  c->Rcounter = 0;
1773  cleanS (c->strat, c);
1774  }
1775 
1776 #ifdef HAVE_PLURAL
1777  // for SCA:
1778  // here write at the end of nodes_final[spc_final,...,spc_final+lmdeg-1]
1779  if(rIsSCA (c->r))
1780  {
1781  const poly pNext = pNext (h);
1782 
1783  if(pNext != NULL)
1784  {
1785  // for additional polynomials
1786  const unsigned int m_iFirstAltVar = scaFirstAltVar (c->r);
1787  const unsigned int m_iLastAltVar = scaLastAltVar (c->r);
1788 
1789  int N = // c->r->N;
1790  m_iLastAltVar - m_iFirstAltVar + 1; // should be enough
1791  // TODO: but we may also use got = gcd({m}_{m\in f}))!
1792 
1793  poly *array_arg = (poly *) omalloc (N * sizeof (poly)); // !
1794  int j = 0;
1795 
1796 
1797  for(unsigned short v = m_iFirstAltVar; v <= m_iLastAltVar; v++)
1798  // for all x_v | Ann(lm(h))
1799  if(p_GetExp (h, v, c->r)) // TODO: use 'got' here!
1800  {
1801  assume (p_GetExp (h, v, c->r) == 1);
1802 
1803  poly p = sca_pp_Mult_xi_pp (v, pNext, c->r); // x_v * h;
1804 
1805  if(p != NULL) // if (x_v * h != 0)
1806  array_arg[j++] = p;
1807  } // for all x_v | Ann(lm(h))
1808 
1809  c->introduceDelayedPairs (array_arg, j);
1810 
1811  omFree (array_arg); // !!!
1812  }
1813 // PrintS("Saturation - done!!!\n");
1814  }
1815 #endif // if SCAlgebra
1816 
1817 
1818  if(!ip)
1819  {
1820  qsort (nodes_final, spc_final, sizeof (sorted_pair_node *),
1822 
1823 
1824  c->apairs =
1825  spn_merge (c->apairs, c->pair_top + 1, nodes_final, spc_final, c);
1826  c->pair_top += spc_final;
1828  omFree (nodes_final);
1829  return NULL;
1830  }
1831  {
1832  *ip = spc_final;
1833  return nodes_final;
1834  }
1835 }
1836 
1837 static poly redNF2 (poly h, slimgb_alg * c, int &len, number & m, int n)
1838 {
1839  m = nInit (1);
1840  if(h == NULL)
1841  return NULL;
1842 
1843  assume (len == pLength (h));
1844  kStrategy strat = c->strat;
1845  if(0 > strat->sl)
1846  {
1847  return h;
1848  }
1849  int j;
1850 
1851  LObject P (h);
1852  P.SetShortExpVector ();
1853  P.bucket = kBucketCreate (currRing);
1854  // BOOLEAN corr=lenS_correct(strat);
1855  kBucketInit (P.bucket, P.p, len /*pLength(P.p) */ );
1856  //wlen_set lenSw=(wlen_set) c->strat->lenS;
1857  //FIXME: plainly wrong
1858  //strat->lenS;
1859  //if (strat->lenSw!=NULL)
1860  // lenSw=strat->lenSw;
1861  //int max_pos=simple_posInS(strat,P.p);
1862  loop
1863  {
1864  //int dummy=strat->sl;
1865  j = kFindDivisibleByInS_easy (strat, P.p, P.sev);
1866  //j=kFindDivisibleByInS(strat,&dummy,&P);
1867  if((j >= 0) && ((!n) ||
1868  ((strat->lenS[j] <= n) &&
1869  ((strat->lenSw == NULL) || (strat->lenSw[j] <= n)))))
1870  {
1871  nNormalize (pGetCoeff (P.p));
1872 #ifdef KDEBUG
1873  if(TEST_OPT_DEBUG)
1874  {
1875  PrintS ("red:");
1876  wrp (h);
1877  PrintS (" with ");
1878  wrp (strat->S[j]);
1879  }
1880 #endif
1881 
1882  number coef = kBucketPolyRed (P.bucket, strat->S[j],
1883  strat->lenS[j] /*pLength(strat->S[j]) */ ,
1884  strat->kNoether);
1885  number m2 = nMult (m, coef);
1886  nDelete (&m);
1887  m = m2;
1888  nDelete (&coef);
1889  h = kBucketGetLm (P.bucket);
1890 
1891  if(h == NULL)
1892  {
1893  len = 0;
1894  kBucketDestroy (&P.bucket);
1895  return NULL;
1896  }
1897  P.p = h;
1898  P.t_p = NULL;
1899  P.SetShortExpVector ();
1900 #ifdef KDEBUG
1901  if(TEST_OPT_DEBUG)
1902  {
1903  PrintS ("\nto:");
1904  wrp (h);
1905  PrintLn ();
1906  }
1907 #endif
1908  }
1909  else
1910  {
1911  kBucketClear (P.bucket, &(P.p), &len);
1912  kBucketDestroy (&P.bucket);
1913  pNormalize (P.p);
1914  assume (len == (pLength (P.p)));
1915  return P.p;
1916  }
1917  }
1918 }
1919 
1920 static poly redTailShort (poly h, kStrategy strat)
1921 {
1922  if(h == NULL)
1923  return NULL; //n_Init(1,currRing);
1924  if(TEST_V_MODPSOLVSB)
1925  {
1926  bit_reduce (pNext (h), strat->tailRing);
1927  }
1928  int i;
1929  int len = pLength (h);
1930  for(i = 0; i <= strat->sl; i++)
1931  {
1932  if((strat->lenS[i] > 2)
1933  || ((strat->lenSw != NULL) && (strat->lenSw[i] > 2)))
1934  break;
1935  }
1936  return (redNFTail (h, i - 1, strat, len));
1937 }
1938 
1939 static void line_of_extended_prod (int fixpos, slimgb_alg * c)
1940 {
1941  if(c->gcd_of_terms[fixpos] == NULL)
1942  {
1943  c->gcd_of_terms[fixpos] = gcd_of_terms (c->S->m[fixpos], c->r);
1944  if(c->gcd_of_terms[fixpos])
1945  {
1946  int i;
1947  for(i = 0; i < fixpos; i++)
1948  if((c->states[fixpos][i] != HASTREP)
1949  &&
1951  (c->S->m[fixpos], c->gcd_of_terms[fixpos], c->S->m[i],
1952  c->gcd_of_terms[i], c)))
1953  {
1954  c->states[fixpos][i] = HASTREP;
1955  c->extended_product_crit++;
1956  }
1957  for(i = fixpos + 1; i < c->n; i++)
1958  if((c->states[i][fixpos] != HASTREP)
1959  &&
1961  (c->S->m[fixpos], c->gcd_of_terms[fixpos], c->S->m[i],
1962  c->gcd_of_terms[i], c)))
1963  {
1964  c->states[i][fixpos] = HASTREP;
1965  c->extended_product_crit++;
1966  }
1967  }
1968  }
1969 }
1970 
1971 static void c_S_element_changed_hook (int pos, slimgb_alg * c)
1972 {
1973  length_one_crit (c, pos, c->lengths[pos]);
1974  if(!c->nc)
1975  line_of_extended_prod (pos, c);
1976 }
1977 
1979 {
1980 public:
1981  poly p;
1984  int n;
1985  poly_tree_node (int sn):l (NULL), r (NULL), n (sn)
1986  {
1987  }
1988 };
1990 {
1991 public:
1993  int n;
1994  int get_n (poly p);
1996  {
1997  }
1998 };
2000 {
2001  poly_tree_node **node = &top_level;
2002  while(*node != NULL)
2003  {
2004  int c = pLmCmp (p, (*node)->p);
2005  if(c == 0)
2006  return (*node)->n;
2007  if(c == -1)
2008  node = &((*node)->r);
2009  else
2010  node = &((*node)->l);
2011  }
2012  (*node) = new poly_tree_node (n);
2013  n++;
2014  (*node)->p = pLmInit (p);
2015  return (*node)->n;
2016 }
2017 
2018 //mac_polys exp are smaller iff they are greater by monomial ordering
2019 //corresponding to solving linear equations notation
2020 
2022 {
2023  red_object r2 = ro;
2024  ro.validate ();
2025  if((r2.p != ro.p) || (r2.sev != ro.sev))
2026  return FALSE;
2027  return TRUE;
2028 }
2029 
2030 int terms_sort_crit (const void *a, const void *b)
2031 {
2032  return -pLmCmp (*((poly *) a), *((poly *) b));
2033 }
2034 
2035 #if 0 // currently unused
2036 static void unify_terms (poly * terms, int &sum)
2037 {
2038  if(sum == 0)
2039  return;
2040  int last = 0;
2041  int curr = 1;
2042  while(curr < sum)
2043  {
2044  if(!(pLmEqual (terms[curr], terms[last])))
2045  {
2046  terms[++last] = terms[curr];
2047  }
2048  ++curr;
2049  }
2050  sum = last + 1;
2051 }
2052 #endif
2053 #if 0 // currently unused
2054 static void
2055 export_mat (number * number_array, int pn, int tn, const char *format_str,
2056  int mat_nr)
2057 {
2058  char matname[20];
2059  sprintf (matname, format_str, mat_nr);
2060  FILE *out = fopen (matname, "w");
2061  int i, j;
2062  fprintf (out, "mat=[\n");
2063  for(i = 0; i < pn; i++)
2064  {
2065  fprintf (out, "[\n");
2066  for(j = 0; j < tn; j++)
2067  {
2068  if(j > 0)
2069  {
2070  fprintf (out, ", ");
2071  }
2072  fprintf (out, "%i", npInt (number_array[i * tn + j], currRing));
2073  }
2074  if(i < pn - 1)
2075  fprintf (out, "],\n");
2076  else
2077  fprintf (out, "],\n");
2078  }
2079  fprintf (out, "]\n");
2080  fclose (out);
2081 }
2082 #endif
2083 //typedef unsigned short number_type;
2084 
2085 
2086 #ifdef USE_NORO
2087 #ifndef NORO_CACHE
2088 static void
2089 linalg_step_modp (poly * p, poly * p_out, int &pn, poly * terms, int tn,
2090  slimgb_alg * c)
2091 {
2092  STATIC_VAR int export_n = 0;
2093  assume (terms[tn - 1] != NULL);
2094  assume (rField_is_Zp (c->r));
2095  //I don't do deletes, copies of number_types ...
2096  const number_type zero = 0; //npInit(0);
2097  int array_size = pn * tn;
2098  number_type *number_array =
2099  (number_type *) omalloc (pn * tn * sizeof (number_type));
2100  int i;
2101  for(i = 0; i < array_size; i++)
2102  {
2103  number_array[i] = zero;
2104  }
2105  for(i = 0; i < pn; i++)
2106  {
2107  poly h = p[i];
2108  //int base=tn*i;
2109  write_poly_to_row (number_array + tn * i, h, terms, tn, c->r);
2110 
2111  }
2112 #if 0
2113  //export matrix
2114  export_mat (number_array, pn, tn, "mat%i.py", ++export_n);
2115 #endif
2116  int rank = pn;
2117  simplest_gauss_modp (number_array, rank, tn);
2118  int act_row = 0;
2119  int p_pos = 0;
2120  for(i = 0; i < pn; i++)
2121  {
2122  poly h = NULL;
2123  int j;
2124  int base = tn * i;
2125  number *row = number_array + base;
2126  h = row_to_poly (row, terms, tn, c->r);
2127 
2128  if(h != NULL)
2129  {
2130  p_out[p_pos++] = h;
2131  }
2132  }
2133  pn = p_pos;
2134  //assert(p_pos==rank)
2135  while(p_pos < pn)
2136  {
2137  p_out[p_pos++] = NULL;
2138  }
2139 #if 0
2140  export_mat (number_array, pn, tn, "mat%i.py", ++export_n);
2141 #endif
2142 }
2143 #endif
2144 #endif
2145 static void mass_add (poly * p, int pn, slimgb_alg * c)
2146 {
2147  int j;
2148  int *ibuf = (int *) omalloc (pn * sizeof (int));
2149  sorted_pair_node ***sbuf =
2150  (sorted_pair_node ***) omalloc (pn * sizeof (sorted_pair_node **));
2151  for(j = 0; j < pn; j++)
2152  {
2153  p_Test (p[j], c->r);
2154  sbuf[j] = add_to_basis_ideal_quotient (p[j], c, ibuf + j);
2155  }
2156  int sum = 0;
2157  for(j = 0; j < pn; j++)
2158  {
2159  sum += ibuf[j];
2160  }
2161  sorted_pair_node **big_sbuf =
2162  (sorted_pair_node **) omalloc (sum * sizeof (sorted_pair_node *));
2163  int partsum = 0;
2164  for(j = 0; j < pn; j++)
2165  {
2166  memmove (big_sbuf + partsum, sbuf[j],
2167  ibuf[j] * sizeof (sorted_pair_node *));
2168  omFree (sbuf[j]);
2169  partsum += ibuf[j];
2170  }
2171 
2172  qsort (big_sbuf, sum, sizeof (sorted_pair_node *), tgb_pair_better_gen2);
2173  c->apairs = spn_merge (c->apairs, c->pair_top + 1, big_sbuf, sum, c);
2174  c->pair_top += sum;
2176  omFree (big_sbuf);
2177  omFree (sbuf);
2178  omFree (ibuf);
2179  //omfree(buf);
2180 #ifdef TGB_DEBUG
2181  int z;
2182  for(z = 1; z <= c->pair_top; z++)
2183  {
2184  assume (pair_better (c->apairs[z], c->apairs[z - 1], c));
2185  }
2186 #endif
2187 
2188 }
2189 
2190 #ifdef NORO_CACHE
2191 #ifndef NORO_NON_POLY
2192 void NoroCache::evaluateRows ()
2193 {
2194  //after that can evaluate placeholders
2195  int i;
2196  buffer = (number *) omAlloc (nIrreducibleMonomials * sizeof (number));
2197  for(i = 0; i < root.branches_len; i++)
2198  {
2199  evaluateRows (1, root.branches[i]);
2200  }
2201  omFree (buffer);
2202  buffer = NULL;
2203 }
2204 
2205 void NoroCache::evaluateRows (int level, NoroCacheNode * node)
2206 {
2207  assume (level >= 0);
2208  if(node == NULL)
2209  return;
2210  if(level < (currRing->N))
2211  {
2212  int i, sum;
2213  for(i = 0; i < node->branches_len; i++)
2214  {
2215  evaluateRows (level + 1, node->branches[i]);
2216  }
2217  }
2218  else
2219  {
2220  DataNoroCacheNode *dn = (DataNoroCacheNode *) node;
2221  if(dn->value_len != backLinkCode)
2222  {
2223  poly p = dn->value_poly;
2224 #ifndef NORO_SPARSE_ROWS_PRE
2225  dn->row = new DenseRow ();
2226  DenseRow *row = dn->row;
2227  memset (buffer, 0, sizeof (number) * nIrreducibleMonomials);
2228 
2229  if(p == NULL)
2230  {
2231  row->array = NULL;
2232  row->begin = 0;
2233  row->end = 0;
2234  return;
2235  }
2236  int i = 0;
2237  int idx;
2238  number *a = buffer;
2239  while(p)
2240  {
2242 
2243  idx = ref->term_index;
2244  assume (idx >= 0);
2245  a[idx] = p_GetCoeff (p, currRing);
2246  if(i == 0)
2247  row->begin = idx;
2248  i++;
2249  pIter (p);
2250  }
2251  row->end = idx + 1;
2252  assume (row->end > row->begin);
2253  int len = row->end - row->begin;
2254  row->array = (number *) omalloc ((len) * sizeof (number));
2255  memcpy (row->array, a + row->begin, len * sizeof (number));
2256 #else
2257  assume (dn->value_len == pLength (dn->value_poly));
2258  dn->row = new SparseRow (dn->value_len);
2259  SparseRow *row = dn->row;
2260  int i = 0;
2261  while(p)
2262  {
2264 
2265  int idx = ref->term_index;
2266  assume (idx >= 0);
2267  row->idx_array[i] = idx;
2268  row->coef_array[i] = p_GetCoeff (p, currRing);
2269  i++;
2270  pIter (p);
2271  }
2272  if(i != dn->value_len)
2273  {
2274  PrintS ("F4 calc wrong, as poly len was wrong\n");
2275  }
2276  assume (i == dn->value_len);
2277 #endif
2278  }
2279  }
2280 }
2281 
2282 void
2283  NoroCache::evaluatePlaceHolder (number * row,
2284  std::vector < NoroPlaceHolder >
2285  &place_holders)
2286 {
2287  int i;
2288  int s = place_holders.size ();
2289 
2290  if (currRing->cf-ch<=NV_MAX_PRIME)
2291  {
2292  for(i = 0; i < s; i++)
2293  {
2294  DataNoroCacheNode *ref = place_holders[i].ref;
2295  number coef = place_holders[i].coef;
2296  if(ref->value_len == backLinkCode)
2297  {
2298  row[ref->term_index] = npAddM (row[ref->term_index], coef);
2299  }
2300  else
2301  {
2302  #ifndef NORO_SPARSE_ROWS_PRE
2303  DenseRow *ref_row = ref->row;
2304  if(ref_row == NULL)
2305  continue;
2306  number *ref_begin = ref_row->array;
2307  number *ref_end = ref_row->array + (ref_row->end - ref_row->begin);
2308  number *my_pos = row + ref_row->begin;
2309  //TODO npisOne distinction
2310  if(!(npIsOne (coef)))
2311  {
2312  while(ref_begin != ref_end)
2313  {
2314  *my_pos = npAddM (*my_pos, npMult (coef, *ref_begin));
2315  ++ref_begin;
2316  ++my_pos;
2317  }
2318  }
2319  else
2320  {
2321  while(ref_begin != ref_end)
2322  {
2323 
2324  *my_pos = npAddM (*my_pos, *ref_begin);
2325  ++ref_begin;
2326  ++my_pos;
2327  }
2328  }
2329  #else
2330  SparseRow *ref_row = ref->row;
2331  if(ref_row == NULL)
2332  continue;
2333  int n = ref_row->len;
2334  int j;
2335  int *idx_array = ref_row->idx_array;
2336  number *coef_array = ref_row->coef_array;
2337  if(!(npIsOne (coef)))
2338  {
2339  for(j = 0; j < n; j++)
2340  {
2341  int idx = idx_array[j];
2342  number ref_coef = coef_array[j];
2343  row[idx] = npAddM (row[idx], npMult (coef, ref_coef));
2344  }
2345  }
2346  else
2347  {
2348  for(j = 0; j < n; j++)
2349  {
2350  int idx = idx_array[j];
2351  number ref_coef = coef_array[j];
2352  row[idx] = npAddM (row[idx], ref_coef);
2353  }
2354  }
2355  #endif
2356  }
2357  }
2358  }
2359  else /*ch >NV_MAX_PRIME */
2360  {
2361  for(i = 0; i < s; i++)
2362  {
2363  DataNoroCacheNode *ref = place_holders[i].ref;
2364  number coef = place_holders[i].coef;
2365  if(ref->value_len == backLinkCode)
2366  {
2367  row[ref->term_index] = npAddM (row[ref->term_index], coef);
2368  }
2369  else
2370  {
2371  #ifndef NORO_SPARSE_ROWS_PRE
2372  DenseRow *ref_row = ref->row;
2373  if(ref_row == NULL)
2374  continue;
2375  number *ref_begin = ref_row->array;
2376  number *ref_end = ref_row->array + (ref_row->end - ref_row->begin);
2377  number *my_pos = row + ref_row->begin;
2378  //TODO npisOne distinction
2379  if(!(npIsOne (coef)))
2380  {
2381  while(ref_begin != ref_end)
2382  {
2383  *my_pos = npAddM (*my_pos, nvMult (coef, *ref_begin));
2384  ++ref_begin;
2385  ++my_pos;
2386  }
2387  }
2388  else
2389  {
2390  while(ref_begin != ref_end)
2391  {
2392  *my_pos = npAddM (*my_pos, *ref_begin);
2393  ++ref_begin;
2394  ++my_pos;
2395  }
2396  }
2397  #else
2398  SparseRow *ref_row = ref->row;
2399  if(ref_row == NULL)
2400  continue;
2401  int n = ref_row->len;
2402  int j;
2403  int *idx_array = ref_row->idx_array;
2404  number *coef_array = ref_row->coef_array;
2405  if(!(npIsOne (coef)))
2406  {
2407  for(j = 0; j < n; j++)
2408  {
2409  int idx = idx_array[j];
2410  number ref_coef = coef_array[j];
2411  row[idx] = npAddM (row[idx], nvMult (coef, ref_coef));
2412  }
2413  }
2414  else
2415  {
2416  for(j = 0; j < n; j++)
2417  {
2418  int idx = idx_array[j];
2419  number ref_coef = coef_array[j];
2420  row[idx] = npAddM (row[idx], ref_coef);
2421  }
2422  }
2423  #endif
2424  }
2425  }
2426  }
2427 }
2428 #endif
2429 
2430 //poly noro_red_non_unique(poly p, int &len, NoroCache* cache,slimgb_alg* c);
2431 
2432 #ifndef NORO_NON_POLY
2433 MonRedRes
2434 noro_red_mon (poly t, BOOLEAN force_unique, NoroCache * cache, slimgb_alg * c)
2435 {
2436  MonRedRes res_holder;
2437 
2438  //wrp(t);
2439  res_holder.changed = TRUE;
2440  if(force_unique)
2441  {
2442  DataNoroCacheNode *ref = cache->getCacheReference (t);
2443  if(ref != NULL)
2444  {
2445  res_holder.len = ref->value_len;
2446  if(res_holder.len == NoroCache::backLinkCode)
2447  {
2448  res_holder.len = 1;
2449  }
2450  res_holder.coef = p_GetCoeff (t, c->r);
2451  res_holder.p = ref->value_poly;
2452  res_holder.ref = ref;
2453  res_holder.onlyBorrowed = TRUE;
2454  res_holder.changed = TRUE;
2455  p_Delete (&t, c->r);
2456  return res_holder;
2457  }
2458  }
2459  else
2460  {
2461  BOOLEAN succ;
2462  poly cache_lookup = cache->lookup (t, succ, res_holder.len); //don't own this yet
2463  if(succ)
2464  {
2465  if(cache_lookup == t)
2466  {
2467  //know they are equal
2468  //res_holder.len=1;
2469 
2470  res_holder.changed = FALSE;
2471  res_holder.p = t;
2472  res_holder.coef = npInit (1);
2473 
2474  res_holder.onlyBorrowed = FALSE;
2475  return res_holder;
2476  }
2477 
2478  res_holder.coef = p_GetCoeff (t, c->r);
2479  p_Delete (&t, c->r);
2480 
2481  res_holder.p = cache_lookup;
2482 
2483  res_holder.onlyBorrowed = TRUE;
2484  return res_holder;
2485 
2486  }
2487  }
2488 
2489  unsigned long sev = p_GetShortExpVector (t, currRing);
2490  int i = kFindDivisibleByInS_easy (c->strat, t, sev);
2491  if(i >= 0)
2492  {
2493  number coef_bak = p_GetCoeff (t, c->r);
2494 
2495  p_SetCoeff (t, npInit (1), c->r);
2496  assume (npIsOne (p_GetCoeff (c->strat->S[i], c->r)));
2497  number coefstrat = p_GetCoeff (c->strat->S[i], c->r);
2498 
2499  //poly t_copy_mon=p_Copy(t,c->r);
2500  poly exp_diff = cache->temp_term;
2501  p_ExpVectorDiff (exp_diff, t, c->strat->S[i], c->r);
2502  p_SetCoeff (exp_diff, npNeg (nInvers (coefstrat)), c->r);
2503  // nInvers may be npInvers or nvInvers
2504  p_Setm (exp_diff, c->r);
2505  assume (c->strat->S[i] != NULL);
2506  //poly t_to_del=t;
2507  poly res;
2508  res = pp_Mult_mm (pNext (c->strat->S[i]), exp_diff, c->r);
2509 
2510  res_holder.len = c->strat->lenS[i] - 1;
2511  res = noro_red_non_unique (res, res_holder.len, cache, c);
2512 
2513  DataNoroCacheNode *ref = cache->insert (t, res, res_holder.len);
2514  p_Delete (&t, c->r);
2515  //p_Delete(&t_copy_mon,c->r);
2516  //res=pMult_nn(res,coef_bak);
2517  res_holder.changed = TRUE;
2518  res_holder.p = res;
2519  res_holder.coef = coef_bak;
2520  res_holder.onlyBorrowed = TRUE;
2521  res_holder.ref = ref;
2522  return res_holder;
2523  }
2524  else
2525  {
2526  number coef_bak = p_GetCoeff (t, c->r);
2527  number one = npInit (1);
2528  p_SetCoeff (t, one, c->r);
2529  res_holder.len = 1;
2530  if(!(force_unique))
2531  {
2532  res_holder.ref = cache->insert (t, t, res_holder.len);
2533  p_SetCoeff (t, coef_bak, c->r);
2534  //return t;
2535 
2536  //we need distinction
2537  res_holder.changed = FALSE;
2538  res_holder.p = t;
2539 
2540  res_holder.coef = npInit (1);
2541  res_holder.onlyBorrowed = FALSE;
2542  return res_holder;
2543  }
2544  else
2545  {
2546  res_holder.ref = cache->insertAndTransferOwnerShip (t, c->r);
2547  res_holder.coef = coef_bak;
2548  res_holder.onlyBorrowed = TRUE;
2549  res_holder.changed = FALSE;
2550  res_holder.p = t;
2551  return res_holder;
2552  }
2553  }
2554 
2555 }
2556 #endif
2557 //SparseRow* noro_red_to_non_poly(poly p, int &len, NoroCache* cache,slimgb_alg* c);
2558 #ifndef NORO_NON_POLY
2559 //len input and out: Idea: reverse addition
2560 poly noro_red_non_unique (poly p, int &len, NoroCache * cache, slimgb_alg * c)
2561 {
2562  assume (len == pLength (p));
2563  poly orig_p = p;
2564  if(p == NULL)
2565  {
2566  len = 0;
2567  return NULL;
2568  }
2569  kBucket_pt bucket = kBucketCreate (currRing);
2570  kBucketInit (bucket, NULL, 0);
2571  poly unchanged_head = NULL;
2572  poly unchanged_tail = NULL;
2573  int unchanged_size = 0;
2574 
2575  while(p)
2576  {
2577  poly t = p;
2578  pIter (p);
2579  pNext (t) = NULL;
2580 #ifndef SING_NDEBUG
2581  number coef_debug = p_GetCoeff (t, currRing);
2582 #endif
2583  MonRedRes red = noro_red_mon (t, FALSE, cache, c);
2584  if((!(red.changed)) && (!(red.onlyBorrowed)))
2585  {
2586  unchanged_size++;
2587  assume (npIsOne (red.coef));
2588  assume (p_GetCoeff (red.p, currRing) == coef_debug);
2589  if(unchanged_head)
2590  {
2591  pNext (unchanged_tail) = red.p;
2592  pIter (unchanged_tail);
2593  }
2594  else
2595  {
2596  unchanged_tail = red.p;
2597  unchanged_head = red.p;
2598  }
2599  }
2600  else
2601  {
2602  assume (red.len == pLength (red.p));
2603  if(red.onlyBorrowed)
2604  {
2605  if(npIsOne (red.coef))
2606  {
2607  t = p_Copy (red.p, currRing);
2608  }
2609  else
2610  t = __pp_Mult_nn (red.p, red.coef, currRing);
2611  }
2612  else
2613  {
2614  if(npIsOne (red.coef))
2615  t = red.p;
2616  else
2617  t = __p_Mult_nn (red.p, red.coef, currRing);
2618  }
2619  kBucket_Add_q (bucket, t, &red.len);
2620  }
2621  }
2622  poly res = NULL;
2623  len = 0;
2624  kBucket_Add_q (bucket, unchanged_head, &unchanged_size);
2625  kBucketClear (bucket, &res, &len);
2626  kBucketDestroy (&bucket);
2627  return res;
2628 }
2629 #endif
2630 #ifdef NORO_SPARSE_ROWS_PRE
2631 //len input and out: Idea: reverse addition
2632 
2633 /*template <class number_type> SparseRow<number_type>* noro_red_to_non_poly(poly p, int &len, NoroCache<number_type>* cache,slimgb_alg* c)
2634  * {
2635  if (n_GetChar(currRing->cf)<255)
2636  {
2637  return noro_red_to_non_poly_t<tgb_uint8>(p,len,cache,c);
2638  }
2639  else
2640  {
2641  if (n_GetChar(currRing->cf)<65000)
2642  {
2643  return noro_red_to_non_poly_t<tgb_uint16>(p,len,cache,c);
2644  }
2645  else
2646  {
2647  return noro_red_to_non_poly_t<tgb_uint32>(p,len,cache,c);
2648  }
2649  }
2650 }*/
2651 #endif
2652 //len input and out: Idea: reverse addition
2653 #ifndef NORO_NON_POLY
2654 std::vector < NoroPlaceHolder > noro_red (poly p, int &len, NoroCache * cache,
2655  slimgb_alg * c)
2656 {
2657  std::vector < NoroPlaceHolder > res;
2658  while(p)
2659  {
2660  poly t = p;
2661  pIter (p);
2662  pNext (t) = NULL;
2663 
2664  MonRedRes red = noro_red_mon (t, TRUE, cache, c);
2665  assume (red.onlyBorrowed);
2666  assume (red.coef);
2667  assume (red.ref);
2668  NoroPlaceHolder h;
2669  h.ref = red.ref;
2670  h.coef = red.coef;
2671  assume (!((h.ref->value_poly == NULL) && (h.ref->value_len != 0)));
2672  if(h.ref->value_poly)
2673  res.push_back (h);
2674  }
2675  return res;
2676 }
2677 #endif
2678 
2679 #endif
2680 #ifdef USE_NORO
2681 #ifndef NORO_CACHE
2682 void noro_step (poly * p, int &pn, slimgb_alg * c)
2683 {
2684  poly *reduced = (poly *) omalloc (pn * sizeof (poly));
2685  int j;
2686  int *reduced_len = (int *) omalloc (pn * sizeof (int));
2687  int reduced_c = 0;
2688  //if (TEST_OPT_PROT)
2689  // PrintS("reduced system:\n");
2690 #ifdef NORO_CACHE
2691  NoroCache cache;
2692 #endif
2693  for(j = 0; j < pn; j++)
2694  {
2695 
2696  poly h = p[j];
2697  int h_len = pLength (h);
2698 
2699  number coef;
2700 #ifndef NORO_CACHE
2701  h = redNF2 (p_Copy (h, c->r), c, h_len, coef, 0);
2702 #else
2703  h = noro_red (p_Copy (h, c->r), h_len, &cache, c);
2704  assume (pLength (h) == h_len);
2705 #endif
2706  if(h != NULL)
2707  {
2708 #ifndef NORO_CACHE
2709 
2710  h = redNFTail (h, c->strat->sl, c->strat, h_len);
2711  h_len = pLength (h);
2712 #endif
2713  reduced[reduced_c] = h;
2714  reduced_len[reduced_c] = h_len;
2715  reduced_c++;
2716  if(TEST_OPT_PROT)
2717  Print ("%d ", h_len);
2718  }
2719  }
2720  int reduced_sum = 0;
2721  for(j = 0; j < reduced_c; j++)
2722  {
2723  reduced_sum += reduced_len[j];
2724  }
2725  poly *terms = (poly *) omalloc (reduced_sum * sizeof (poly));
2726  int tc = 0;
2727  for(j = 0; j < reduced_c; j++)
2728  {
2729  poly h = reduced[j];
2730 
2731  while(h != NULL)
2732  {
2733  terms[tc++] = h;
2734  pIter (h);
2735  assume (tc <= reduced_sum);
2736  }
2737  }
2738  assume (tc == reduced_sum);
2739  qsort (terms, reduced_sum, sizeof (poly), terms_sort_crit);
2740  int nterms = reduced_sum;
2741  //if (TEST_OPT_PROT)
2742  //Print("orig estimation:%i\n",reduced_sum);
2743  unify_terms (terms, nterms);
2744  //if (TEST_OPT_PROT)
2745  // Print("actual number of columns:%i\n",nterms);
2746  int rank = reduced_c;
2747  linalg_step_modp (reduced, p, rank, terms, nterms, c);
2748  omFree (terms);
2749 
2750  pn = rank;
2751  omFree (reduced);
2752 
2753  if(TEST_OPT_PROT)
2754  PrintS ("\n");
2755 }
2756 #else
2757 
2758 #endif
2759 #endif
2760 static void go_on (slimgb_alg * c)
2761 {
2762  //set limit of 1000 for multireductions, at the moment for
2763  //programming reasons
2764 #ifdef USE_NORO
2765  //Print("module rank%d\n",c->S->rank);
2766  const BOOLEAN use_noro = c->use_noro;
2767 #else
2768  const BOOLEAN use_noro = FALSE;
2769 #endif
2770  int i = 0;
2771  c->average_length = 0;
2772  for(i = 0; i < c->n; i++)
2773  {
2774  c->average_length += c->lengths[i];
2775  }
2776  c->average_length = c->average_length / c->n;
2777  i = 0;
2778  int max_pairs = bundle_size;
2779 
2780 #ifdef USE_NORO
2781  if((use_noro) || (c->use_noro_last_block))
2782  max_pairs = bundle_size_noro;
2783 #endif
2784  poly *p = (poly *) omAlloc ((max_pairs + 1) * sizeof (poly)); //nullterminated
2785 
2786  int curr_deg = -1;
2787  while(i < max_pairs)
2788  {
2789  sorted_pair_node *s = top_pair (c); //here is actually chain criterium done
2790 
2791  if(!s)
2792  break;
2793 
2794  if(curr_deg >= 0)
2795  {
2796  if(s->deg > curr_deg)
2797  break;
2798  }
2799 
2800  else
2801  curr_deg = s->deg;
2802  quick_pop_pair (c);
2803  if(s->i >= 0)
2804  {
2805  //be careful replace_pair use createShortSpoly which is not noncommutative
2806  now_t_rep (s->i, s->j, c);
2807  replace_pair (s->i, s->j, c);
2808 
2809  if(s->i == s->j)
2810  {
2811  free_sorted_pair_node (s, c->r);
2812  continue;
2813  }
2814  now_t_rep (s->i, s->j, c);
2815  }
2816  poly h;
2817  if(s->i >= 0)
2818  {
2819 #ifdef HAVE_PLURAL
2820  if(c->nc)
2821  {
2822  h = nc_CreateSpoly (c->S->m[s->i], c->S->m[s->j] /*, NULL */ , c->r);
2823 
2824  if(h != NULL)
2825  p_Cleardenom (h, c->r);
2826  }
2827  else
2828 #endif
2829  h = ksOldCreateSpoly (c->S->m[s->i], c->S->m[s->j], NULL, c->r);
2830  p_Test (h, c->r);
2831  }
2832  else
2833  {
2834  h = s->lcm_of_lm;
2835  p_Test (h, c->r);
2836  }
2837  // if(s->i>=0)
2838 // now_t_rep(s->j,s->i,c);
2839  number coef;
2840  int mlen = pLength (h);
2841  p_Test (h, c->r);
2842  if((!c->nc) & (!(use_noro)))
2843  {
2844  h = redNF2 (h, c, mlen, coef, 2);
2845  redTailShort (h, c->strat);
2846  nDelete (&coef);
2847  }
2848  p_Test (h, c->r);
2849  free_sorted_pair_node (s, c->r);
2850  if(!h)
2851  continue;
2852  p[i] = h;
2853  i++;
2854  }
2855  p[i] = NULL;
2856 // pre_comp(p,i,c);
2857  if(i == 0)
2858  {
2859  omFree (p);
2860  return;
2861  }
2862 #ifdef TGB_RESORT_PAIRS
2863  c->replaced = new bool[c->n];
2864  c->used_b = FALSE;
2865 #endif
2866 
2867  c->normal_forms += i;
2868  int j;
2869 #ifdef USE_NORO
2870  //if ((!(c->nc))&&(rField_is_Zp(c->r)))
2871  //{
2872  if(use_noro)
2873  {
2874  int pn = i;
2875  if(pn == 0)
2876  {
2877  omFree (p);
2878  return;
2879  }
2880  {
2881  if(n_GetChar(currRing->cf) < 255)
2882  {
2883  noro_step < tgb_uint8 > (p, pn, c);
2884  }
2885  else
2886  {
2887  if(n_GetChar(currRing->cf) < 65000)
2888  {
2889  noro_step < tgb_uint16 > (p, pn, c);
2890  }
2891  else
2892  {
2893  noro_step < tgb_uint32 > (p, pn, c);
2894  }
2895  }
2896  }
2897 
2898  //if (TEST_OPT_PROT)
2899  //{
2900  // Print("reported rank:%i\n",pn);
2901  //}
2902  mass_add (p, pn, c);
2903  omFree (p);
2904  return;
2905  /*if (TEST_OPT_PROT)
2906  for(j=0;j<pn;j++)
2907  {
2908  p_wrp(p[j],c->r);
2909  } */
2910  }
2911 #endif
2912  red_object *buf = (red_object *) omAlloc (i * sizeof (red_object)); /*i>0*/
2913  for(j = 0; j < i; j++)
2914  {
2915  p_Test (p[j], c->r);
2916  buf[j].p = p[j];
2917  buf[j].sev = pGetShortExpVector (p[j]);
2918  buf[j].bucket = kBucketCreate (currRing);
2919  p_Test (p[j], c->r);
2920  int len = pLength (p[j]);
2921  kBucketInit (buf[j].bucket, buf[j].p, len);
2922  buf[j].initial_quality = buf[j].guess_quality (c);
2923  assume (buf[j].initial_quality >= 0);
2924  }
2925  omFree (p);
2926  qsort (buf, i, sizeof (red_object), red_object_better_gen);
2927 // Print("\ncurr_deg:%i\n",curr_deg);
2928  if(TEST_OPT_PROT)
2929  {
2930  Print ("%dM[%d,", curr_deg, i);
2931  }
2932 
2933  multi_reduction (buf, i, c);
2934 #ifdef TGB_RESORT_PAIRS
2935  if(c->used_b)
2936  {
2937  if(TEST_OPT_PROT)
2938  PrintS ("B");
2939  int e;
2940  for(e = 0; e <= c->pair_top; e++)
2941  {
2942  if(c->apairs[e]->i < 0)
2943  continue;
2944  assume (c->apairs[e]->j >= 0);
2945  if((c->replaced[c->apairs[e]->i]) || (c->replaced[c->apairs[e]->j]))
2946  {
2947  sorted_pair_node *s = c->apairs[e];
2948  s->expected_length = pair_weighted_length (s->i, s->j, c);
2949  }
2950  }
2951  qsort (c->apairs, c->pair_top + 1, sizeof (sorted_pair_node *),
2953  }
2954 #endif
2955 #ifdef TGB_DEBUG
2956  {
2957  int k;
2958  for(k = 0; k < i; k++)
2959  {
2960  assume (kFindDivisibleByInS_easy (c->strat, buf[k]) < 0);
2961  int k2;
2962  for(k2 = 0; k2 < i; k2++)
2963  {
2964  if(k == k2)
2965  continue;
2966  assume ((!(p_LmDivisibleBy (buf[k].p, buf[k2].p, c->r)))
2967  || (wrp (buf[k].p), Print (" k %d k2 %d ", k, k2),
2968  wrp (buf[k2].p), FALSE));
2969  }
2970  }
2971  }
2972 #endif
2973  //resort S
2974 
2975  if(TEST_OPT_PROT)
2976  Print ("%i]", i);
2977 
2978  poly *add_those = (poly *) omalloc (i * sizeof (poly));
2979  for(j = 0; j < i; j++)
2980  {
2981  int len;
2982  poly p;
2983  buf[j].flatten ();
2984  kBucketClear (buf[j].bucket, &p, &len);
2985  kBucketDestroy (&buf[j].bucket);
2986  p_Test (p, c->r);
2987  //if (!c->nc) {
2988  if((c->tailReductions) || (lies_in_last_dp_block (p, c)))
2989  {
2990  p = redNFTail (p, c->strat->sl, c->strat, 0);
2991  }
2992  else
2993  {
2994  p = redTailShort (p, c->strat);
2995  }
2996  //}
2997  p_Test (p, c->r);
2998  add_those[j] = p;
2999 
3000  //sbuf[j]=add_to_basis(p,-1,-1,c,ibuf+j);
3001  }
3002  mass_add (add_those, i, c);
3003  omFree (add_those);
3004  omFree (buf);
3005 
3006  if(TEST_OPT_PROT)
3007  Print ("(%d)", c->pair_top + 1);
3008  //TODO: implement that while(!(idIs0(c->add_later)))
3009 #ifdef TGB_RESORT_PAIRS
3010  delete c->replaced;
3011  c->replaced = NULL;
3012  c->used_b = FALSE;
3013 #endif
3014  return;
3015 }
3016 
3017 #ifdef REDTAIL_S
3018 
3019 static poly redNFTail (poly h, const int sl, kStrategy strat, int len)
3020 {
3021  if(h == NULL)
3022  return NULL;
3023  pTest (h);
3024  if(0 > sl)
3025  return h;
3026  if(pNext (h) == NULL)
3027  return h;
3029 
3030  int j;
3031  poly res = h;
3032  poly act = res;
3033  LObject P (pNext (h));
3034  pNext (res) = NULL;
3035  P.bucket = kBucketCreate (currRing);
3036  len--;
3037  h = P.p;
3038  if(len <= 0)
3039  len = pLength (h);
3040  kBucketInit (P.bucket, h /*P.p */ , len /*pLength(P.p) */ );
3041  pTest (h);
3042  loop
3043  {
3044  P.p = h;
3045  P.t_p = NULL;
3046  P.SetShortExpVector ();
3047  loop
3048  {
3049  //int dummy=strat->sl;
3050  j = kFindDivisibleByInS_easy (strat, P.p, P.sev); //kFindDivisibleByInS(strat,&dummy,&P);
3051  if(j >= 0)
3052  {
3053 #ifdef REDTAIL_PROT
3054  PrintS ("r");
3055 #endif
3056  nNormalize (pGetCoeff (P.p));
3057 #ifdef KDEBUG
3058  if(TEST_OPT_DEBUG)
3059  {
3060  PrintS ("red tail:");
3061  wrp (h);
3062  PrintS (" with ");
3063  wrp (strat->S[j]);
3064  }
3065 #endif
3066  number coef;
3067  pTest (strat->S[j]);
3068 #ifdef HAVE_PLURAL
3069  if(nc)
3070  {
3071  nc_kBucketPolyRed_Z (P.bucket, strat->S[j], &coef);
3072  }
3073  else
3074 #endif
3075  coef = kBucketPolyRed (P.bucket, strat->S[j],
3076  strat->lenS[j] /*pLength(strat->S[j]) */ ,
3077  strat->kNoether);
3078  res=__p_Mult_nn (res, coef, currRing);
3079  nDelete (&coef);
3080  h = kBucketGetLm (P.bucket);
3081  if(h == NULL)
3082  {
3083 #ifdef REDTAIL_PROT
3084  PrintS (" ");
3085 #endif
3086  kBucketDestroy (&P.bucket);
3087  return res;
3088  }
3089  P.p = h;
3090  P.t_p = NULL;
3091  P.SetShortExpVector ();
3092 #ifdef KDEBUG
3093  if(TEST_OPT_DEBUG)
3094  {
3095  PrintS ("\nto tail:");
3096  wrp (h);
3097  PrintLn ();
3098  }
3099 #endif
3100  }
3101  else
3102  {
3103 #ifdef REDTAIL_PROT
3104  PrintS ("n");
3105 #endif
3106  break;
3107  }
3108  } /* end loop current mon */
3109  // poly tmp=pHead(h /*kBucketGetLm(P.bucket)*/);
3110  //act->next=tmp;pIter(act);
3111  act->next = kBucketExtractLm (P.bucket);
3112  pIter (act);
3113  h = kBucketGetLm (P.bucket);
3114  if(h == NULL)
3115  {
3116 #ifdef REDTAIL_PROT
3117  PrintS (" ");
3118 #endif
3119  kBucketDestroy (&P.bucket);
3120  return res;
3121  }
3122  pTest (h);
3123  }
3124 }
3125 #endif
3126 
3127 
3128 //try to fill, return FALSE iff queue is empty
3129 
3130 //transfers ownership of m to mat
3132 {
3133  assume (mat->mp[row] == NULL);
3134  mat->mp[row] = m;
3135 #ifdef TGB_DEBUG
3136  mac_poly r = m;
3137  while(r)
3138  {
3139  assume (r->exp < mat->columns);
3140  r = r->next;
3141  }
3142 #endif
3143 }
3144 
3145 poly
3146 free_row_to_poly (tgb_sparse_matrix * mat, int row, poly * monoms,
3147  int monom_index)
3148 {
3149  poly p = NULL;
3150  poly *set_this = &p;
3151  mac_poly r = mat->mp[row];
3152  mat->mp[row] = NULL;
3153  while(r)
3154  {
3155  (*set_this) = pLmInit (monoms[monom_index - 1 - r->exp]);
3156  pSetCoeff ((*set_this), r->coef);
3157  set_this = &((*set_this)->next);
3158  mac_poly old = r;
3159  r = r->next;
3160  delete old;
3161 
3162  }
3163  return p;
3164 }
3165 
3166 static int poly_crit (const void *ap1, const void *ap2)
3167 {
3168  poly p1, p2;
3169  p1 = *((poly *) ap1);
3170  p2 = *((poly *) ap2);
3171 
3172  int c = pLmCmp (p1, p2);
3173  if(c != 0)
3174  return c;
3175  int l1 = pLength (p1);
3176  int l2 = pLength (p2);
3177  if(l1 < l2)
3178  return -1;
3179  if(l1 > l2)
3180  return 1;
3181  return 0;
3182 }
3183 
3185 {
3186  if(s == 0)
3187  return;
3188  sorted_pair_node **si_array =
3189  (sorted_pair_node **) omAlloc (s * sizeof (sorted_pair_node *));
3190 
3191  for(int i = 0; i < s; i++)
3192  {
3193  sorted_pair_node *si =
3194  (sorted_pair_node *) omAlloc (sizeof (sorted_pair_node));
3195  si->i = -1;
3196  si->j = -2;
3197  poly p = pa[i];
3198  simplify_poly (p, r);
3199  si->expected_length = pQuality (p, this, pLength (p));
3200  p_Test (p, r);
3201  si->deg = this->pTotaldegree_full (p);
3202  /*if (!rField_is_Zp(r))
3203  {
3204  p_Content(p,r);
3205  p_Cleardenom(p,r);
3206  } */
3207 
3208  si->lcm_of_lm = p;
3209 
3210  // c->apairs[n-1-i]=si;
3211  si_array[i] = si;
3212  }
3213 
3214  qsort (si_array, s, sizeof (sorted_pair_node *), tgb_pair_better_gen2);
3215  apairs = spn_merge (apairs, pair_top + 1, si_array, s, this);
3216  pair_top += s;
3217  omFree (si_array);
3218 }
3219 
3220 slimgb_alg::slimgb_alg (ideal I, int syz_comp, BOOLEAN F4, int deg_pos)
3221 {
3222  this->deg_pos = deg_pos;
3223  lastCleanedDeg = -1;
3224  completed = FALSE;
3225  this->syz_comp = syz_comp;
3226  r = currRing;
3227  nc = rIsPluralRing (r);
3229  //Print("last dp Block start: %i\n", this->lastDpBlockStart);
3230  is_homog = TRUE;
3231  {
3232  int hzz;
3233  for(hzz = 0; hzz < IDELEMS (I); hzz++)
3234  {
3235  assume (I->m[hzz] != NULL);
3236  int d = this->pTotaldegree (I->m[hzz]);
3237  poly t = I->m[hzz]->next;
3238  while(t)
3239  {
3240  if(d != this->pTotaldegree (t))
3241  {
3242  is_homog = FALSE;
3243  break;
3244  }
3245  t = t->next;
3246  }
3247  if(!(is_homog))
3248  break;
3249  }
3250  }
3251  eliminationProblem = ((!(is_homog)) && ((currRing->pLexOrder) || (I->rank > 1)));
3252  tailReductions = ((is_homog) || ((TEST_OPT_REDTAIL) && (!(I->rank > 1))));
3253  // Print("is homog:%d",c->is_homog);
3254  void *h;
3255  int i;
3256  to_destroy = NULL;
3257  easy_product_crit = 0;
3259  if(rField_is_Zp (r))
3261  else
3263  //not fully correct
3264  //(rChar()==0);
3265  F4_mode = F4;
3266 
3267  reduction_steps = 0;
3268  last_index = -1;
3269 
3270  F = NULL;
3271  F_minus = NULL;
3272 
3273  Rcounter = 0;
3274 
3275  soon_free = NULL;
3276 
3277  tmp_lm = pOne ();
3278 
3279  normal_forms = 0;
3280  current_degree = 1;
3281 
3282  max_pairs = 5 * IDELEMS (I);
3283 
3284  apairs =
3285  (sorted_pair_node **) omAlloc (sizeof (sorted_pair_node *) * max_pairs);
3286  pair_top = -1;
3287 
3288  int n = IDELEMS (I);
3289  array_lengths = n;
3290 
3291 
3292  i = 0;
3293  this->n = 0;
3294  T_deg = (int *) omAlloc (n * sizeof (int));
3295  if(eliminationProblem)
3296  T_deg_full = (int *) omAlloc (n * sizeof (int));
3297  else
3298  T_deg_full = NULL;
3299  tmp_pair_lm = (poly *) omAlloc (n * sizeof (poly));
3300  tmp_spn = (sorted_pair_node **) omAlloc (n * sizeof (sorted_pair_node *));
3301  lm_bin = omGetSpecBin (POLYSIZE + (r->ExpL_Size) * sizeof (long));
3302 #ifdef HEAD_BIN
3303  HeadBin = omGetSpecBin (POLYSIZE + (currRing->ExpL_Size) * sizeof (long));
3304 #endif
3305  /* omUnGetSpecBin(&(c->HeadBin)); */
3306 #ifndef HAVE_BOOST
3307 #ifdef USE_STDVECBOOL
3308 #else
3309  h = omAlloc (n * sizeof (char *));
3310 
3311  states = (char **) h;
3312 #endif
3313 #endif
3314  h = omAlloc (n * sizeof (int));
3315  lengths = (int *) h;
3317  gcd_of_terms = (poly *) omAlloc (n * sizeof (poly));
3318 
3319  short_Exps = (long *) omAlloc (n * sizeof (long));
3320  if(F4_mode)
3321  S = idInit (n, I->rank);
3322  else
3323  S = idInit (1, I->rank);
3324  strat = new skStrategy;
3325  if(eliminationProblem)
3326  strat->honey = TRUE;
3327  strat->syzComp = syz_comp;
3331  strat->tailRing = r;
3332  strat->enterS = enterSBba;
3333  strat->sl = -1;
3334  i = n;
3335  i = 1; //some strange bug else
3336  /* initS(c->S,NULL,c->strat); */
3337  /* intS start: */
3338  // i=((i+IDELEMS(c->S)+15)/16)*16;
3339  strat->ecartS = (intset) omAlloc (i * sizeof (int)); /*initec(i); */
3340  strat->sevS = (unsigned long *) omAlloc0 (i * sizeof (unsigned long));
3341  /*initsevS(i); */
3342  strat->S_2_R = (int *) omAlloc0 (i * sizeof (int)); /*initS_2_R(i); */
3343  strat->fromQ = NULL;
3344  strat->Shdl = idInit (1, 1);
3345  strat->S = strat->Shdl->m;
3346  strat->lenS = (int *) omAlloc0 (i * sizeof (int));
3348  strat->lenSw = (wlen_type *) omAlloc0 (i * sizeof (wlen_type));
3349  else
3350  strat->lenSw = NULL;
3351  assume (n > 0);
3352  add_to_basis_ideal_quotient (I->m[0], this, NULL);
3353 
3354  assume (strat->sl == IDELEMS (strat->Shdl) - 1);
3355  if(!(F4_mode))
3356  {
3357  poly *array_arg = I->m;
3358  array_arg++;
3359  introduceDelayedPairs (array_arg, n - 1);
3360  /*
3361  for (i=1;i<n;i++)//the 1 is wanted, because first element is added to basis
3362  {
3363  // add_to_basis(I->m[i],-1,-1,c);
3364  si=(sorted_pair_node*) omalloc(sizeof(sorted_pair_node));
3365  si->i=-1;
3366  si->j=-2;
3367  si->expected_length=pQuality(I->m[i],this,pLength(I->m[i]));
3368  si->deg=pTotaldegree(I->m[i]);
3369  if (!rField_is_Zp(r))
3370  {
3371  p_Cleardenom(I->m[i], r);
3372  }
3373  si->lcm_of_lm=I->m[i];
3374 
3375  // c->apairs[n-1-i]=si;
3376  apairs[n-i-1]=si;
3377  ++(pair_top);
3378  } */
3379  }
3380  else
3381  {
3382  for(i = 1; i < n; i++) //the 1 is wanted, because first element is added to basis
3383  add_to_basis_ideal_quotient (I->m[i], this, NULL);
3384  }
3385  for(i = 0; i < IDELEMS (I); i++)
3386  {
3387  I->m[i] = NULL;
3388  }
3389  idDelete (&I);
3390  add_later = idInit (ADD_LATER_SIZE, S->rank);
3391 #ifdef USE_NORO
3392  use_noro = ((!(nc)) && (S->rank <= 1) && (rField_is_Zp (r))
3393  && (!(eliminationProblem)) && (n_GetChar(currRing->cf) <= NV_MAX_PRIME));
3394  use_noro_last_block = false;
3395  if((!(use_noro)) && (lastDpBlockStart <= (currRing->N)))
3396  {
3397  use_noro_last_block = ((!(nc)) && (S->rank <= 1) && (rField_is_Zp (r))
3398  && (n_GetChar(currRing->cf) <= NV_MAX_PRIME));
3399  }
3400 #else
3401  use_noro = false;
3402  use_noro_last_block = false;
3403 #endif
3404  //Print("NORO last block %i",use_noro_last_block);
3405  memset (add_later->m, 0, ADD_LATER_SIZE * sizeof (poly));
3406 }
3407 
3409 {
3410 
3411  if(!(completed))
3412  {
3413  poly *add = (poly *) omAlloc ((pair_top + 2) * sizeof (poly));
3414  int piter;
3415  int pos = 0;
3416  for(piter = 0; piter <= pair_top; piter++)
3417  {
3418  sorted_pair_node *s = apairs[piter];
3419  if(s->i < 0)
3420  {
3421  //delayed element
3422  if(s->lcm_of_lm != NULL)
3423  {
3424  add[pos] = s->lcm_of_lm;
3425  pos++;
3426  }
3427  }
3429  apairs[piter] = NULL;
3430  }
3431  pair_top = -1;
3432  add[pos] = NULL;
3433  pos = 0;
3434  while(add[pos] != NULL)
3435  {
3436  add_to_basis_ideal_quotient (add[pos], this, NULL);
3437  pos++;
3438  }
3439  for(piter = 0; piter <= pair_top; piter++)
3440  {
3441  sorted_pair_node *s = apairs[piter];
3442  assume (s->i >= 0);
3444  apairs[piter] = NULL;
3445  }
3446  pair_top = -1;
3447  }
3448  id_Delete (&add_later, r);
3449  int i, j;
3450  slimgb_alg *c = this;
3451  while(c->to_destroy)
3452  {
3453  pDelete (&(c->to_destroy->p));
3454  poly_list_node *old = c->to_destroy;
3455  c->to_destroy = c->to_destroy->next;
3456  omFree (old);
3457  }
3458  while(c->F)
3459  {
3460  for(i = 0; i < c->F->size; i++)
3461  {
3462  pDelete (&(c->F->mp[i].m));
3463  }
3464  omFree (c->F->mp);
3465  c->F->mp = NULL;
3466  mp_array_list *old = c->F;
3467  c->F = c->F->next;
3468  omFree (old);
3469  }
3470  while(c->F_minus)
3471  {
3472  for(i = 0; i < c->F_minus->size; i++)
3473  {
3474  pDelete (&(c->F_minus->p[i]));
3475  }
3476  omFree (c->F_minus->p);
3477  c->F_minus->p = NULL;
3478  poly_array_list *old = c->F_minus;
3479  c->F_minus = c->F_minus->next;
3480  omFree (old);
3481  }
3482 #ifndef HAVE_BOOST
3483 #ifndef USE_STDVECBOOL
3484  for(int z = 1 /* zero length at 0 */ ; z < c->n; z++)
3485  {
3486  omFree (c->states[z]);
3487  }
3488  omFree (c->states);
3489 #endif
3490 #endif
3491 
3492  omFree (c->lengths);
3493  omFree (c->weighted_lengths);
3494  for(int z = 0; z < c->n; z++)
3495  {
3496  pDelete (&c->tmp_pair_lm[z]);
3497  omFree (c->tmp_spn[z]);
3498  }
3499  omFree (c->tmp_pair_lm);
3500  omFree (c->tmp_spn);
3501 
3502  omFree (c->T_deg);
3503  omfree (c->T_deg_full); /*c->T_deg_full my be NULL*/
3504 
3505  omFree (c->strat->ecartS);
3506  omFree (c->strat->sevS);
3507 // initsevS(i);
3508  omFree (c->strat->S_2_R);
3509 
3510 
3511  omFree (c->strat->lenS);
3512 
3513  if(c->strat->lenSw)
3514  omFree (c->strat->lenSw);
3515 
3516  for(i = 0; i < c->n; i++)
3517  {
3518  if(c->gcd_of_terms[i])
3519  pDelete (&(c->gcd_of_terms[i]));
3520  }
3521  omFree (c->gcd_of_terms);
3522 
3523  omFree (c->apairs);
3524  if(TEST_OPT_PROT)
3525  {
3526  //Print("calculated %d NFs\n",c->normal_forms);
3527  Print ("\nNF:%i product criterion:%i, ext_product criterion:%i \n",
3529  }
3530 
3531  for(i = 0; i <= c->strat->sl; i++)
3532  {
3533  if(!c->strat->S[i])
3534  continue;
3535  BOOLEAN found = FALSE;
3536  for(j = 0; j < c->n; j++)
3537  {
3538  if(c->S->m[j] == c->strat->S[i])
3539  {
3540  found = TRUE;
3541  break;
3542  }
3543  }
3544  if(!found)
3545  pDelete (&c->strat->S[i]);
3546  }
3547 // for(i=0;i<c->n;i++)
3548 // {
3549 // if (c->rep[i]!=i)
3550 // {
3551 // // for(j=0;j<=c->strat->sl;j++)
3552 // {
3553 // // if(c->strat->S[j]==c->S->m[i])
3554 // {
3555 // // c->strat->S[j]=NULL;
3556 // // break;
3557 // // }
3558 // // }
3559 // // PrintS("R_delete");
3560 // pDelete(&c->S->m[i]);
3561 // }
3562 // }
3563 
3564  if(completed)
3565  {
3566  for(i = 0; i < c->n; i++)
3567  {
3568  assume (c->S->m[i] != NULL);
3569  if(p_GetComp (c->S->m[i], currRing) > this->syz_comp)
3570  continue;
3571  for(j = 0; j < c->n; j++)
3572  {
3573  if((c->S->m[j] == NULL) || (i == j))
3574  continue;
3575  assume (p_LmShortDivisibleBy (c->S->m[j], c->short_Exps[j],
3576  c->S->m[i], ~c->short_Exps[i],
3577  c->r) == p_LmDivisibleBy (c->S->m[j],
3578  c->S->m[i],
3579  c->r));
3580  if(p_LmShortDivisibleBy (c->S->m[j], c->short_Exps[j],
3581  c->S->m[i], ~c->short_Exps[i], c->r))
3582  {
3583  pDelete (&c->S->m[i]);
3584  break;
3585  }
3586  }
3587  }
3588  }
3589  omFree (c->short_Exps);
3590 
3591  ideal I = c->S;
3592  IDELEMS (I) = c->n;
3593  idSkipZeroes (I);
3594  for(i = 0; i <= c->strat->sl; i++)
3595  c->strat->S[i] = NULL;
3596  id_Delete (&c->strat->Shdl, c->r);
3597  pDelete (&c->tmp_lm);
3599  delete c->strat;
3600 }
3601 
3602 ideal t_rep_gb (const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
3603 {
3604  assume (r == currRing);
3605  ring orig_ring = r;
3606  int pos;
3607  ring new_ring = rAssure_TDeg (orig_ring, pos);
3608  ideal s_h;
3609  if(orig_ring != new_ring)
3610  {
3611  rChangeCurrRing (new_ring);
3612  s_h = idrCopyR_NoSort (arg_I, orig_ring, new_ring);
3613  /*int i;
3614  for(i=0;i<IDELEMS(s_h);i++)
3615  {
3616  poly p=s_h->m[i];
3617  while(p)
3618  {
3619  p_Setm(p,new_ring);
3620  pIter(p);
3621  }
3622  } */
3623  }
3624  else
3625  {
3626  s_h = id_Copy (arg_I, orig_ring);
3627  }
3628  idTest (s_h);
3629 
3630  ideal s_result = do_t_rep_gb (new_ring, s_h, syz_comp, F4_mode, pos);
3631  ideal result;
3632  if(orig_ring != new_ring)
3633  {
3634  idTest (s_result);
3635  rChangeCurrRing (orig_ring);
3636  result = idrMoveR_NoSort (s_result, new_ring, orig_ring);
3637 
3638  idTest (result);
3639  //rChangeCurrRing(new_ring);
3640  rDelete(new_ring);
3641  //rChangeCurrRing(orig_ring);
3642  }
3643  else
3644  result = s_result;
3645  idTest (result);
3646  return result;
3647 }
3648 
3649 ideal
3650 do_t_rep_gb (ring /*r*/, ideal arg_I, int syz_comp, BOOLEAN F4_mode, int deg_pos)
3651 {
3652  // Print("QlogSize(0) %d, QlogSize(1) %d,QlogSize(-2) %d, QlogSize(5) %d\n", QlogSize(nlInit(0)),QlogSize(nlInit(1)),QlogSize(nlInit(-2)),QlogSize(nlInit(5)));
3653 
3654  if(TEST_OPT_PROT)
3655  if(F4_mode)
3656  PrintS ("F4 Modus\n");
3657 
3658  //debug_Ideal=arg_debug_Ideal;
3659  //if (debug_Ideal) PrintS("DebugIdeal received\n");
3660  // Print("Idelems %i \n----------\n",IDELEMS(arg_I));
3661  ideal I = arg_I;
3662  id_Compactify (I,currRing);
3663  if(idIs0 (I))
3664  return I;
3665  int i;
3666  for(i = 0; i < IDELEMS (I); i++)
3667  {
3668  assume (I->m[i] != NULL);
3669  simplify_poly (I->m[i], currRing);
3670  }
3671 
3672  qsort (I->m, IDELEMS (I), sizeof (poly), poly_crit);
3673  //Print("Idelems %i \n----------\n",IDELEMS(I));
3674  //slimgb_alg* c=(slimgb_alg*) omalloc(sizeof(slimgb_alg));
3675  //int syz_comp=arg_I->rank;
3676  slimgb_alg *c = new slimgb_alg (I, syz_comp, F4_mode, deg_pos);
3677 
3678  while((c->pair_top >= 0)
3679  && ((!(TEST_OPT_DEGBOUND))
3680  || (c->apairs[c->pair_top]->deg <= Kstd1_deg)))
3681  {
3682 #ifdef HAVE_F4
3683  if(F4_mode)
3684  go_on_F4 (c);
3685  else
3686 #endif
3687  go_on (c);
3688  }
3689  if(c->pair_top < 0)
3690  c->completed = TRUE;
3691  I = c->S;
3692  delete c;
3693  if(TEST_OPT_REDSB)
3694  {
3695  ideal erg = kInterRed (I, NULL);
3696  assume (I != erg);
3697  id_Delete (&I, currRing);
3698  return erg;
3699  }
3700  //qsort(I->m, IDELEMS(I),sizeof(poly),pLmCmp_func);
3701  assume (I->rank >= id_RankFreeModule (I,currRing));
3702  return (I);
3703 }
3704 
3705 void now_t_rep (const int &arg_i, const int &arg_j, slimgb_alg * c)
3706 {
3707  int i, j;
3708  if(arg_i == arg_j)
3709  {
3710  return;
3711  }
3712  if(arg_i > arg_j)
3713  {
3714  i = arg_j;
3715  j = arg_i;
3716  }
3717  else
3718  {
3719  i = arg_i;
3720  j = arg_j;
3721  }
3722  c->states[j][i] = HASTREP;
3723 }
3724 
3725 static BOOLEAN
3726 has_t_rep (const int &arg_i, const int &arg_j, slimgb_alg * state)
3727 {
3728  assume (0 <= arg_i);
3729  assume (0 <= arg_j);
3730  assume (arg_i < state->n);
3731  assume (arg_j < state->n);
3732  if(arg_i == arg_j)
3733  {
3734  return (TRUE);
3735  }
3736  if(arg_i > arg_j)
3737  {
3738  return (state->states[arg_i][arg_j] == HASTREP);
3739  }
3740  else
3741  {
3742  return (state->states[arg_j][arg_i] == HASTREP);
3743  }
3744 }
3745 
3746 #if 0 // unused
3747 static int pLcmDeg (poly a, poly b)
3748 {
3749  int i;
3750  int n = 0;
3751  for(i = (currRing->N); i; i--)
3752  {
3753  n += si_max (pGetExp (a, i), pGetExp (b, i));
3754  }
3755  return n;
3756 }
3757 #endif
3758 
3759 static void shorten_tails (slimgb_alg * c, poly monom)
3760 {
3761  return;
3762 // BOOLEAN corr=lenS_correct(c->strat);
3763  for(int i = 0; i < c->n; i++)
3764  {
3765  //enter tail
3766 
3767  if(c->S->m[i] == NULL)
3768  continue;
3769  poly tail = c->S->m[i]->next;
3770  poly prev = c->S->m[i];
3771  BOOLEAN did_something = FALSE;
3772  while((tail != NULL) && (pLmCmp (tail, monom) >= 0))
3773  {
3774  if(p_LmDivisibleBy (monom, tail, c->r))
3775  {
3776  did_something = TRUE;
3777  prev->next = tail->next;
3778  tail->next = NULL;
3779  p_Delete (&tail, c->r);
3780  tail = prev;
3781  //PrintS("Shortened");
3782  c->lengths[i]--;
3783  }
3784  prev = tail;
3785  tail = tail->next;
3786  }
3787  if(did_something)
3788  {
3789  int new_pos;
3790  wlen_type q;
3791  q = pQuality (c->S->m[i], c, c->lengths[i]);
3792  new_pos = simple_posInS (c->strat, c->S->m[i], c->lengths[i], q);
3793 
3794  int old_pos = -1;
3795  //assume new_pos<old_pos
3796  for(int z = 0; z <= c->strat->sl; z++)
3797  {
3798  if(c->strat->S[z] == c->S->m[i])
3799  {
3800  old_pos = z;
3801  break;
3802  }
3803  }
3804  if(old_pos == -1)
3805  for(int z = new_pos - 1; z >= 0; z--)
3806  {
3807  if(c->strat->S[z] == c->S->m[i])
3808  {
3809  old_pos = z;
3810  break;
3811  }
3812  }
3813  assume (old_pos >= 0);
3814  assume (new_pos <= old_pos);
3815  assume (pLength (c->strat->S[old_pos]) == c->lengths[i]);
3816  c->strat->lenS[old_pos] = c->lengths[i];
3817  if(c->strat->lenSw)
3818  c->strat->lenSw[old_pos] = q;
3819  if(new_pos < old_pos)
3820  move_forward_in_S (old_pos, new_pos, c->strat);
3821  length_one_crit (c, i, c->lengths[i]);
3822  }
3823  }
3824 }
3825 
3826 #if 0 // currently unused
3827 static sorted_pair_node *pop_pair (slimgb_alg * c)
3828 {
3830 
3831  if(c->pair_top < 0)
3832  return NULL;
3833  else
3834  return (c->apairs[c->pair_top--]);
3835 }
3836 #endif
3837 
3838 void slimgb_alg::cleanDegs (int lower, int upper)
3839 {
3840  assume (is_homog);
3841  int deg;
3842  if(TEST_OPT_PROT)
3843  {
3844  PrintS ("C");
3845  }
3846  for(deg = lower; deg <= upper; deg++)
3847  {
3848  int i;
3849  for(i = 0; i < n; i++)
3850  {
3851  if(T_deg[i] == deg)
3852  {
3853  poly h;
3854  h = S->m[i];
3855  h = redNFTail (h, strat->sl, strat, lengths[i]);
3857  {
3858  p_Cleardenom (h, r); //includes p_Content(h,r);
3859  }
3860  else
3861  pNorm (h);
3862  //TODO:GCD of TERMS
3863  poly got =::gcd_of_terms (h, r);
3864  p_Delete (&gcd_of_terms[i], r);
3865  gcd_of_terms[i] = got;
3866  int len = pLength (h);
3867  wlen_type wlen = pQuality (h, this, len);
3868  if(weighted_lengths)
3869  weighted_lengths[i] = wlen;
3870  lengths[i] = len;
3871  assume (h == S->m[i]);
3872  int j;
3873  for(j = 0; j <= strat->sl; j++)
3874  {
3875  if(h == strat->S[j])
3876  {
3877  int new_pos = simple_posInS (strat, h, len, wlen);
3878  if(strat->lenS)
3879  {
3880  strat->lenS[j] = len;
3881  }
3882  if(strat->lenSw)
3883  {
3884  strat->lenSw[j] = wlen;
3885  }
3886  if(new_pos < j)
3887  {
3888  move_forward_in_S (j, new_pos, strat);
3889  }
3890  else
3891  {
3892  if(new_pos > j)
3893  new_pos = new_pos - 1; //is identical with one element
3894  if(new_pos > j)
3895  move_backward_in_S (j, new_pos, strat);
3896  }
3897  break;
3898  }
3899  }
3900  }
3901  }
3902  }
3903  {
3904  int i, j;
3905  for(i = 0; i < this->n; i++)
3906  {
3907  for(j = 0; j < i; j++)
3908  {
3909  if(T_deg[i] + T_deg[j] <= upper)
3910  {
3911  now_t_rep (i, j, this);
3912  }
3913  }
3914  }
3915  }
3916  //TODO resort and update strat->S,strat->lenSw
3917  //TODO mark pairs
3918 }
3919 
3921 {
3922  while(c->pair_top >= 0)
3923  {
3924  super_clean_top_of_pair_list (c); //yeah, I know, it's odd that I use a different proc here
3925  if((c->is_homog) && (c->pair_top >= 0)
3926  && (c->apairs[c->pair_top]->deg >= c->lastCleanedDeg + 2))
3927  {
3928  int upper = c->apairs[c->pair_top]->deg - 1;
3929  c->cleanDegs (c->lastCleanedDeg + 1, upper);
3930  c->lastCleanedDeg = upper;
3931  }
3932  else
3933  {
3934  break;
3935  }
3936  }
3937 
3938  if(c->pair_top < 0)
3939  return NULL;
3940  else
3941  return (c->apairs[c->pair_top]);
3942 }
3943 
3945 {
3946  if(c->pair_top < 0)
3947  return NULL;
3948  else
3949  return (c->apairs[c->pair_top--]);
3950 }
3951 
3953 {
3954  while((c->pair_top >= 0)
3955  && (c->apairs[c->pair_top]->i >= 0)
3956  &&
3958  (c->apairs[c->pair_top]->j, c->apairs[c->pair_top]->i, c)))
3959  {
3960  free_sorted_pair_node (c->apairs[c->pair_top], c->r);
3961  c->pair_top--;
3962  }
3963 }
3964 
3966 {
3967  while((c->pair_top >= 0) && (c->apairs[c->pair_top]->i >= 0)
3968  &&
3969  (!state_is
3970  (UNCALCULATED, c->apairs[c->pair_top]->j, c->apairs[c->pair_top]->i,
3971  c)))
3972  {
3973  free_sorted_pair_node (c->apairs[c->pair_top], c->r);
3974  c->pair_top--;
3975  }
3976 }
3977 
3978 static BOOLEAN
3979 state_is (calc_state state, const int &arg_i, const int &arg_j,
3980  slimgb_alg * c)
3981 {
3982  assume (0 <= arg_i);
3983  assume (0 <= arg_j);
3984  assume (arg_i < c->n);
3985  assume (arg_j < c->n);
3986  if(arg_i == arg_j)
3987  {
3988  return (TRUE);
3989  }
3990  if(arg_i > arg_j)
3991  {
3992  return (c->states[arg_i][arg_j] == state);
3993  }
3994  else
3995  return (c->states[arg_j][arg_i] == state);
3996 }
3997 
3999 {
4000  if(s->i >= 0)
4001  p_Delete (&s->lcm_of_lm, r);
4002  omFree (s);
4003 }
4004 
4005 static BOOLEAN
4007 {
4008  if(a->deg < b->deg)
4009  return TRUE;
4010  if(a->deg > b->deg)
4011  return FALSE;
4012 
4013  int comp = pLmCmp (a->lcm_of_lm, b->lcm_of_lm);
4014  if(comp == 1)
4015  return FALSE;
4016  if(-1 == comp)
4017  return TRUE;
4018  if(a->expected_length < b->expected_length)
4019  return TRUE;
4020  if(a->expected_length > b->expected_length)
4021  return FALSE;
4022  if(a->i + a->j < b->i + b->j)
4023  return TRUE;
4024  if(a->i + a->j > b->i + b->j)
4025  return FALSE;
4026  if(a->i < b->i)
4027  return TRUE;
4028  if(a->i > b->i)
4029  return FALSE;
4030  return TRUE;
4031 }
4032 
4033 static int tgb_pair_better_gen (const void *ap, const void *bp)
4034 {
4035  sorted_pair_node *a = *((sorted_pair_node **) ap);
4036  sorted_pair_node *b = *((sorted_pair_node **) bp);
4037  assume ((a->i > a->j) || (a->i < 0));
4038  assume ((b->i > b->j) || (b->i < 0));
4039  if(a->deg < b->deg)
4040  return -1;
4041  if(a->deg > b->deg)
4042  return 1;
4043 
4044  int comp = pLmCmp (a->lcm_of_lm, b->lcm_of_lm);
4045 
4046  if(comp == 1)
4047  return 1;
4048  if(-1 == comp)
4049  return -1;
4050  if(a->expected_length < b->expected_length)
4051  return -1;
4052  if(a->expected_length > b->expected_length)
4053  return 1;
4054  if(a->i + a->j < b->i + b->j)
4055  return -1;
4056  if(a->i + a->j > b->i + b->j)
4057  return 1;
4058  if(a->i < b->i)
4059  return -1;
4060  if(a->i > b->i)
4061  return 1;
4062  return 0;
4063 }
4064 
4065 static poly gcd_of_terms (poly p, ring r)
4066 {
4067  int max_g_0 = 0;
4068  assume (p != NULL);
4069  int i;
4070  poly m = pOne ();
4071  poly t;
4072  for(i = (currRing->N); i; i--)
4073  {
4074  pSetExp (m, i, pGetExp (p, i));
4075  if(max_g_0 == 0)
4076  if(pGetExp (m, i) > 0)
4077  max_g_0 = i;
4078  }
4079 
4080  t = p->next;
4081  while(t != NULL)
4082  {
4083  if(max_g_0 == 0)
4084  break;
4085  for(i = max_g_0; i; i--)
4086  {
4087  pSetExp (m, i, si_min (pGetExp (t, i), pGetExp (m, i)));
4088  if(max_g_0 == i)
4089  if(pGetExp (m, i) == 0)
4090  max_g_0 = 0;
4091  if((max_g_0 == 0) && (pGetExp (m, i) > 0))
4092  {
4093  max_g_0 = i;
4094  }
4095  }
4096  t = t->next;
4097  }
4098  p_Setm (m, r);
4099  if(max_g_0 > 0)
4100  return m;
4101  pDelete (&m);
4102  return NULL;
4103 }
4104 
4105 static inline BOOLEAN pHasNotCFExtended (poly p1, poly p2, poly m)
4106 {
4107 
4108  if(pGetComp (p1) > 0 || pGetComp (p2) > 0)
4109  return FALSE;
4110  int i = 1;
4111  loop
4112  {
4113  if((pGetExp (p1, i) - pGetExp (m, i) > 0)
4114  && (pGetExp (p2, i) - pGetExp (m, i) > 0))
4115  return FALSE;
4116  if(i == (currRing->N))
4117  return TRUE;
4118  i++;
4119  }
4120 }
4121 
4122 //for impl reasons may return false if the the normal product criterion matches
4123 static inline BOOLEAN
4124 extended_product_criterion (poly p1, poly gcd1, poly p2, poly gcd2,
4125  slimgb_alg * c)
4126 {
4127  if(c->nc)
4128  return FALSE;
4129  if(gcd1 == NULL)
4130  return FALSE;
4131  if(gcd2 == NULL)
4132  return FALSE;
4133  gcd1->next = gcd2; //may ordered incorrect
4134  poly m = gcd_of_terms (gcd1, c->r);
4135  gcd1->next = NULL;
4136  if(m == NULL)
4137  return FALSE;
4138 
4139  BOOLEAN erg = pHasNotCFExtended (p1, p2, m);
4140  pDelete (&m);
4141  return erg;
4142 }
4143 
4144 #if 0 //currently unused
4145 static poly kBucketGcd (kBucket * b, ring r)
4146 {
4147  int s = 0;
4148  int i;
4149  poly m, n;
4150  BOOLEAN initialized = FALSE;
4151  for(i = MAX_BUCKET - 1; i >= 0; i--)
4152  {
4153  if(b->buckets[i] != NULL)
4154  {
4155  if(!initialized)
4156  {
4157  m = gcd_of_terms (b->buckets[i], r);
4158  initialized = TRUE;
4159  if(m == NULL)
4160  return NULL;
4161  }
4162  else
4163  {
4164  n = gcd_of_terms (b->buckets[i], r);
4165  if(n == NULL)
4166  {
4167  pDelete (&m);
4168  return NULL;
4169  }
4170  n->next = m;
4171  poly t = gcd_of_terms (n, r);
4172  n->next = NULL;
4173  pDelete (&m);
4174  pDelete (&n);
4175  m = t;
4176  if(m == NULL)
4177  return NULL;
4178 
4179  }
4180  }
4181  }
4182  return m;
4183 }
4184 #endif
4185 
4186 static inline wlen_type quality_of_pos_in_strat_S (int pos, slimgb_alg * c)
4187 {
4188  if(c->strat->lenSw != NULL)
4189  return c->strat->lenSw[pos];
4190  return c->strat->lenS[pos];
4191 }
4192 
4193 #ifdef HAVE_PLURAL
4194 static inline wlen_type
4196  //meant only for nc
4197 {
4198  poly m = pOne ();
4199  pExpVectorDiff (m, high, c->strat->S[pos]);
4200  poly product = nc_mm_Mult_pp (m, c->strat->S[pos], c->r);
4201  wlen_type erg = pQuality (product, c);
4202  pDelete (&m);
4203  pDelete (&product);
4204  return erg;
4205 }
4206 #endif
4207 
4208 static void
4210  find_erg & erg)
4211 {
4212  erg.expand = NULL;
4213  BOOLEAN swap_roles; //from reduce_by, to_reduce_u if fromS
4214  if(erg.fromS)
4215  {
4216  if(pLmEqual (c->strat->S[erg.reduce_by], los[erg.to_reduce_u].p))
4217  {
4218  wlen_type quality_a = quality_of_pos_in_strat_S (erg.reduce_by, c);
4219  int best = erg.to_reduce_u + 1;
4220 /*
4221  for (i=erg.to_reduce_u;i>=erg.to_reduce_l;i--)
4222  {
4223  int qc=los[i].guess_quality(c);
4224  if (qc<quality_a)
4225  {
4226  best=i;
4227  quality_a=qc;
4228  }
4229  }
4230  if(best!=erg.to_reduce_u+1)
4231  {*/
4232  wlen_type qc;
4233  best = find_best (los, erg.to_reduce_l, erg.to_reduce_u, qc, c);
4234  if(qc < quality_a)
4235  {
4236  los[best].flatten ();
4237  int b_pos = kBucketCanonicalize (los[best].bucket);
4238  los[best].p = los[best].bucket->buckets[b_pos];
4239  qc = pQuality (los[best].bucket->buckets[b_pos], c);
4240  if(qc < quality_a)
4241  {
4242  red_object h = los[erg.to_reduce_u];
4243  los[erg.to_reduce_u] = los[best];
4244  los[best] = h;
4245  swap_roles = TRUE;
4246  }
4247  else
4248  swap_roles = FALSE;
4249  }
4250  else
4251  {
4252  swap_roles = FALSE;
4253  }
4254  }
4255  else
4256  {
4257  if(erg.to_reduce_u > erg.to_reduce_l)
4258  {
4259  wlen_type quality_a = quality_of_pos_in_strat_S (erg.reduce_by, c);
4260 #ifdef HAVE_PLURAL
4261  if((c->nc) && (!(rIsSCA (c->r))))
4262  quality_a =
4264  los[erg.to_reduce_u].p, c);
4265 #endif
4266  int best = erg.to_reduce_u + 1;
4267  wlen_type qc;
4268  best = find_best (los, erg.to_reduce_l, erg.to_reduce_u, qc, c);
4269  assume (qc == los[best].guess_quality (c));
4270  if(qc < quality_a)
4271  {
4272  los[best].flatten ();
4273  int b_pos = kBucketCanonicalize (los[best].bucket);
4274  los[best].p = los[best].bucket->buckets[b_pos];
4275  qc = pQuality (los[best].bucket->buckets[b_pos], c);
4276  //(best!=erg.to_reduce_u+1)
4277  if(qc < quality_a)
4278  {
4279  red_object h = los[erg.to_reduce_u];
4280  los[erg.to_reduce_u] = los[best];
4281  los[best] = h;
4282  erg.reduce_by = erg.to_reduce_u;
4283  erg.fromS = FALSE;
4284  erg.to_reduce_u--;
4285  }
4286  }
4287  }
4288  else
4289  {
4290  assume (erg.to_reduce_u == erg.to_reduce_l);
4291  wlen_type quality_a = quality_of_pos_in_strat_S (erg.reduce_by, c);
4292  wlen_type qc = los[erg.to_reduce_u].guess_quality (c);
4293  if(qc < 0)
4294  PrintS ("Wrong wlen_type");
4295  if(qc < quality_a)
4296  {
4297  int best = erg.to_reduce_u;
4298  los[best].flatten ();
4299  int b_pos = kBucketCanonicalize (los[best].bucket);
4300  los[best].p = los[best].bucket->buckets[b_pos];
4301  qc = pQuality (los[best].bucket->buckets[b_pos], c);
4302  assume (qc >= 0);
4303  if(qc < quality_a)
4304  {
4305  BOOLEAN exp = FALSE;
4306  if(qc <= 2)
4307  {
4308  //Print("\n qc is %lld \n",qc);
4309  exp = TRUE;
4310  }
4311  else
4312  {
4313  if(qc < quality_a / 2)
4314  exp = TRUE;
4315  else if(erg.reduce_by < c->n / 4)
4316  exp = TRUE;
4317  }
4318  if(exp)
4319  {
4320  poly clear_into;
4321  los[erg.to_reduce_u].flatten ();
4322  kBucketClear (los[erg.to_reduce_u].bucket, &clear_into,
4323  &erg.expand_length);
4324  erg.expand = pCopy (clear_into);
4325  kBucketInit (los[erg.to_reduce_u].bucket, clear_into,
4326  erg.expand_length);
4327  if(TEST_OPT_PROT)
4328  PrintS ("e");
4329  }
4330  }
4331  }
4332  }
4333 
4334  swap_roles = FALSE;
4335  return;
4336  }
4337  }
4338  else
4339  {
4340  if(erg.reduce_by > erg.to_reduce_u)
4341  {
4342  //then lm(rb)>= lm(tru) so =
4343  assume (erg.reduce_by == erg.to_reduce_u + 1);
4344  int best = erg.reduce_by;
4345  wlen_type quality_a = los[erg.reduce_by].guess_quality (c);
4346  wlen_type qc;
4347  best = find_best (los, erg.to_reduce_l, erg.to_reduce_u, qc, c);
4348 
4349  if(qc < quality_a)
4350  {
4351  red_object h = los[erg.reduce_by];
4352  los[erg.reduce_by] = los[best];
4353  los[best] = h;
4354  }
4355  swap_roles = FALSE;
4356  return;
4357  }
4358  else
4359  {
4360  assume (!pLmEqual (los[erg.reduce_by].p, los[erg.to_reduce_l].p));
4361  assume (erg.to_reduce_u == erg.to_reduce_l);
4362  //further assume, that reduce_by is the above all other polys
4363  //with same leading term
4364  int il = erg.reduce_by;
4365  wlen_type quality_a = los[erg.reduce_by].guess_quality (c);
4366  wlen_type qc;
4367  while((il > 0) && pLmEqual (los[il - 1].p, los[il].p))
4368  {
4369  il--;
4370  qc = los[il].guess_quality (c);
4371  if(qc < quality_a)
4372  {
4373  quality_a = qc;
4374  erg.reduce_by = il;
4375  }
4376  }
4377  swap_roles = FALSE;
4378  }
4379  }
4380  if(swap_roles)
4381  {
4382  if(TEST_OPT_PROT)
4383  PrintS ("b");
4384  poly clear_into;
4385  int new_length;
4386  int bp = erg.to_reduce_u; //bucket_positon
4387  //kBucketClear(los[bp].bucket,&clear_into,&new_length);
4388  new_length = los[bp].clear_to_poly ();
4389  clear_into = los[bp].p;
4390  poly p = c->strat->S[erg.reduce_by];
4391  int j = erg.reduce_by;
4392  int old_length = c->strat->lenS[j]; // in view of S
4393  los[bp].p = p;
4394  kBucketInit (los[bp].bucket, p, old_length);
4395  wlen_type qal = pQuality (clear_into, c, new_length);
4396  int pos_in_c = -1;
4397  int z;
4398  int new_pos;
4399  new_pos = simple_posInS (c->strat, clear_into, new_length, qal);
4400  assume (new_pos <= j);
4401  for(z = c->n; z; z--)
4402  {
4403  if(p == c->S->m[z - 1])
4404  {
4405  pos_in_c = z - 1;
4406  break;
4407  }
4408  }
4409 
4410  int tdeg_full = -1;
4411  int tdeg = -1;
4412  if(pos_in_c >= 0)
4413  {
4414 #ifdef TGB_RESORT_PAIRS
4415  c->used_b = TRUE;
4416  c->replaced[pos_in_c] = TRUE;
4417 #endif
4418  tdeg = c->T_deg[pos_in_c];
4419  c->S->m[pos_in_c] = clear_into;
4420  c->lengths[pos_in_c] = new_length;
4421  c->weighted_lengths[pos_in_c] = qal;
4422  if(c->gcd_of_terms[pos_in_c] == NULL)
4423  c->gcd_of_terms[pos_in_c] = gcd_of_terms (clear_into, c->r);
4424  if(c->T_deg_full)
4425  tdeg_full = c->T_deg_full[pos_in_c] =
4426  c->pTotaldegree_full (clear_into);
4427  else
4428  tdeg_full = tdeg;
4429  c_S_element_changed_hook (pos_in_c, c);
4430  }
4431  else
4432  {
4433  if(c->eliminationProblem)
4434  {
4435  tdeg_full = c->pTotaldegree_full (clear_into);
4436  tdeg = c->pTotaldegree (clear_into);
4437  }
4438  }
4439  c->strat->S[j] = clear_into;
4440  c->strat->lenS[j] = new_length;
4441 
4442  assume (pLength (clear_into) == new_length);
4443  if(c->strat->lenSw != NULL)
4444  c->strat->lenSw[j] = qal;
4446  {
4447  p_Cleardenom (clear_into, c->r); //should be unnecessary
4448  //includes p_Content(clear_into, c->r);
4449  }
4450  else
4451  pNorm (clear_into);
4452 #ifdef FIND_DETERMINISTIC
4453  erg.reduce_by = j;
4454  //resort later see diploma thesis, find_in_S must be deterministic
4455  //during multireduction if spolys are only in the span of the
4456  //input polys
4457 #else
4458  if(new_pos < j)
4459  {
4460  if(c->strat->honey)
4461  c->strat->ecartS[j] = tdeg_full - tdeg;
4462  move_forward_in_S (j, new_pos, c->strat);
4463  erg.reduce_by = new_pos;
4464  }
4465 #endif
4466  }
4467 }
4468 
4469 static int fwbw (red_object * los, int i)
4470 {
4471  int i2 = i;
4472  int step = 1;
4473 
4474  BOOLEAN bw = FALSE;
4475  BOOLEAN incr = TRUE;
4476 
4477  while(1)
4478  {
4479  if(!bw)
4480  {
4481  step = si_min (i2, step);
4482  if(step == 0)
4483  break;
4484  i2 -= step;
4485 
4486  if(!pLmEqual (los[i].p, los[i2].p))
4487  {
4488  bw = TRUE;
4489  incr = FALSE;
4490  }
4491  else
4492  {
4493  if((!incr) && (step == 1))
4494  break;
4495  }
4496  }
4497  else
4498  {
4499  step = si_min (i - i2, step);
4500  if(step == 0)
4501  break;
4502  i2 += step;
4503  if(pLmEqual (los[i].p, los[i2].p))
4504  {
4505  if(step == 1)
4506  break;
4507  else
4508  {
4509  bw = FALSE;
4510  }
4511  }
4512  }
4513  if(incr)
4514  step *= 2;
4515  else
4516  {
4517  if(step % 2 == 1)
4518  step = (step + 1) / 2;
4519  else
4520  step /= 2;
4521  }
4522  }
4523  return i2;
4524 }
4525 
4526 static void
4527 canonicalize_region (red_object * los, int l, int u, slimgb_alg * /*c*/)
4528 {
4529  assume (l <= u + 1);
4530  int i;
4531  for(i = l; i <= u; i++)
4532  {
4533  kBucketCanonicalize (los[i].bucket);
4534  }
4535 }
4536 
4537 #ifdef SING_NDEBUG
4538 static void
4539 multi_reduction_find (red_object * los, int /*losl*/, slimgb_alg * c, int startf,
4540  find_erg & erg)
4541 #else
4542 static void
4543 multi_reduction_find (red_object * los, int losl, slimgb_alg * c, int startf,
4544  find_erg & erg)
4545 #endif
4546 {
4547  kStrategy strat = c->strat;
4548 
4549  #ifndef SING_NDEBUG
4550  assume (startf <= losl);
4551  assume ((startf == losl - 1)
4552  || (pLmCmp (los[startf].p, los[startf + 1].p) == -1));
4553  #endif
4554  int i = startf;
4555 
4556  int j;
4557  while(i >= 0)
4558  {
4559  #ifndef SING_NDEBUG
4560  assume ((i == losl - 1) || (pLmCmp (los[i].p, los[i + 1].p) <= 0));
4561  #endif
4562  assume (is_valid_ro (los[i]));
4563  j = kFindDivisibleByInS_easy (strat, los[i]);
4564  if(j >= 0)
4565  {
4566  erg.to_reduce_u = i;
4567  erg.reduce_by = j;
4568  erg.fromS = TRUE;
4569  int i2 = fwbw (los, i);
4570  assume (pLmEqual (los[i].p, los[i2].p));
4571  assume ((i2 == 0) || (!pLmEqual (los[i2].p, los[i2 - 1].p)));
4572  assume (i >= i2);
4573 
4574  erg.to_reduce_l = i2;
4575  #ifndef SING_NDEBUG
4576  assume ((i == losl - 1) || (pLmCmp (los[i].p, los[i + 1].p) == -1));
4577  #endif
4578  canonicalize_region (los, erg.to_reduce_u + 1, startf, c);
4579  return;
4580  }
4581  else /*if(j < 0)*/
4582  {
4583  //not reduceable, try to use this for reducing higher terms
4584  int i2 = fwbw (los, i);
4585  assume (pLmEqual (los[i].p, los[i2].p));
4586  assume ((i2 == 0) || (!pLmEqual (los[i2].p, los[i2 - 1].p)));
4587  assume (i >= i2);
4588  if(i2 != i)
4589  {
4590  erg.to_reduce_u = i - 1;
4591  erg.to_reduce_l = i2;
4592  erg.reduce_by = i;
4593  erg.fromS = FALSE;
4594  #ifndef SING_NDEBUG
4595  assume ((i == losl - 1) || (pLmCmp (los[i].p, los[i + 1].p) == -1));
4596  #endif
4597  canonicalize_region (los, erg.to_reduce_u + 1, startf, c);
4598  return;
4599  }
4600  i--;
4601  }
4602  }
4603  erg.reduce_by = -1; //error code
4604  return;
4605 }
4606 
4607 // nicht reduzierbare eintrage in ergnisliste schreiben
4608 // nullen loeschen
4609 // while(finde_groessten leitterm reduzierbar(c,erg))
4610 // {
4611 
4612 static int
4613 multi_reduction_clear_zeroes (red_object * los, int losl, int l, int u)
4614 {
4615  int deleted = 0;
4616  int i = l;
4617  int last = -1;
4618  while(i <= u)
4619  {
4620  if(los[i].p == NULL)
4621  {
4622  kBucketDestroy (&los[i].bucket);
4623 // delete los[i];//here we assume los are constructed with new
4624  //destroy resources, must be added here
4625  if(last >= 0)
4626  {
4627  memmove (los + (int) (last + 1 - deleted), los + (last + 1),
4628  sizeof (red_object) * (i - 1 - last));
4629  }
4630  last = i;
4631  deleted++;
4632  }
4633  i++;
4634  }
4635  if((last >= 0) && (last != losl - 1))
4636  memmove (los + (int) (last + 1 - deleted), los + last + 1,
4637  sizeof (red_object) * (losl - 1 - last));
4638  return deleted;
4639 }
4640 
4642 {
4643  int an = 0;
4644  int en = top;
4645  if(top == -1)
4646  return 0;
4647  if(pLmCmp (key->p, a[top].p) == 1)
4648  return top + 1;
4649  int i;
4650  loop
4651  {
4652  if(an >= en - 1)
4653  {
4654  if(pLmCmp (key->p, a[an].p) == -1)
4655  return an;
4656  return en;
4657  }
4658  i = (an + en) / 2;
4659  if(pLmCmp (key->p, a[i].p) == -1)
4660  en = i;
4661  else
4662  an = i;
4663  }
4664 }
4665 
4666 static void sort_region_down (red_object * los, int l, int u, slimgb_alg * /*c*/)
4667 {
4668  int r_size = u - l + 1;
4669  qsort (los + l, r_size, sizeof (red_object), red_object_better_gen);
4670  int i;
4671  int *new_indices = (int *) omalloc ((r_size) * sizeof (int));
4672  int bound = 0;
4673  BOOLEAN at_end = FALSE;
4674  for(i = l; i <= u; i++)
4675  {
4676  if(!(at_end))
4677  {
4678  bound = new_indices[i - l] =
4679  bound + search_red_object_pos (los + bound, l - bound - 1, los + i);
4680  if(bound == l)
4681  at_end = TRUE;
4682  }
4683  else
4684  {
4685  new_indices[i - l] = l;
4686  }
4687  }
4688  red_object *los_region =
4689  (red_object *) omalloc (sizeof (red_object) * (u - l + 1));
4690  for(int i = 0; i < r_size; i++)
4691  {
4692  new_indices[i] += i;
4693  los_region[i] = los[l + i];
4694  assume ((i == 0) || (new_indices[i] > new_indices[i - 1]));
4695  }
4696 
4697  i = r_size - 1;
4698  int j = u;
4699  int j2 = l - 1;
4700  while(i >= 0)
4701  {
4702  if(new_indices[i] == j)
4703  {
4704  los[j] = los_region[i];
4705  i--;
4706  j--;
4707  }
4708  else
4709  {
4710  assume (new_indices[i] < j);
4711  los[j] = los[j2];
4712  assume (j2 >= 0);
4713  j2--;
4714  j--;
4715  }
4716  }
4717  omFree (los_region);
4718  omFree (new_indices);
4719 }
4720 
4721 //assume that los is ordered ascending by leading term, all non zero
4722 static void multi_reduction (red_object * los, int &losl, slimgb_alg * c)
4723 {
4724  poly *delay = (poly *) omAlloc (losl * sizeof (poly));
4725  int delay_s = 0;
4726  //initialize;
4727  assume (c->strat->sl >= 0);
4728  assume (losl > 0);
4729  int i;
4730  wlen_type max_initial_quality = 0;
4731 
4732  for(i = 0; i < losl; i++)
4733  {
4734  los[i].sev = pGetShortExpVector (los[i].p);
4735 //SetShortExpVector();
4736  los[i].p = kBucketGetLm (los[i].bucket);
4737  if(los[i].initial_quality > max_initial_quality)
4738  max_initial_quality = los[i].initial_quality;
4739  // else
4740 // Print("init2_qal=%lld;", los[i].initial_quality);
4741 // Print("initial_quality=%lld;",max_initial_quality);
4742  }
4743 
4744  int curr_pos = losl - 1;
4745 
4746 // nicht reduzierbare eintrage in ergnisliste schreiben
4747  // nullen loeschen
4748  while(curr_pos >= 0)
4749  {
4750  if((c->use_noro_last_block)
4751  && (lies_in_last_dp_block (los[curr_pos].p, c)))
4752  {
4753  int pn_noro = curr_pos + 1;
4754  poly *p_noro = (poly *) omAlloc (pn_noro * sizeof (poly));
4755  for(i = 0; i < pn_noro; i++)
4756  {
4757  int dummy_len;
4758  poly p;
4759  los[i].p = NULL;
4760  kBucketClear (los[i].bucket, &p, &dummy_len);
4761  p_noro[i] = p;
4762  }
4763  if(n_GetChar(currRing->cf) < 255)
4764  {
4765  noro_step < tgb_uint8 > (p_noro, pn_noro, c);
4766  }
4767  else
4768  {
4769  if(n_GetChar(currRing->cf) < 65000)
4770  {
4771  noro_step < tgb_uint16 > (p_noro, pn_noro, c);
4772  }
4773  else
4774  {
4775  noro_step < tgb_uint32 > (p_noro, pn_noro, c);
4776  }
4777  }
4778  for(i = 0; i < pn_noro; i++)
4779  {
4780  los[i].p = p_noro[i];
4781  los[i].sev = pGetShortExpVector (los[i].p);
4782  //ignore quality
4783  kBucketInit (los[i].bucket, los[i].p, pLength (los[i].p));
4784  }
4785  qsort (los, pn_noro, sizeof (red_object), red_object_better_gen);
4786  int deleted =
4787  multi_reduction_clear_zeroes (los, losl, pn_noro, curr_pos);
4788  losl -= deleted;
4789  curr_pos -= deleted;
4790  break;
4791  }
4792  find_erg erg;
4793 
4794  multi_reduction_find (los, losl, c, curr_pos, erg); //last argument should be curr_pos
4795  if(erg.reduce_by < 0)
4796  break;
4797 
4798  erg.expand = NULL;
4799 
4800  multi_reduction_lls_trick (los, losl, c, erg);
4801 
4802  int i;
4803  // wrp(los[erg.to_reduce_u].p);
4804  //PrintLn();
4805  multi_reduce_step (erg, los, c);
4806 
4807 
4808  if(!TEST_OPT_REDTHROUGH)
4809  {
4810  for(i = erg.to_reduce_l; i <= erg.to_reduce_u; i++)
4811  {
4812  if(los[i].p != NULL) //the check (los[i].p!=NULL) might be invalid
4813  {
4814  //
4815  assume (los[i].initial_quality > 0);
4816  if(los[i].guess_quality (c)
4817  > 1.5 * delay_factor * max_initial_quality)
4818  {
4819  if(TEST_OPT_PROT)
4820  PrintS ("v");
4821  los[i].canonicalize ();
4822  if(los[i].guess_quality (c) > delay_factor * max_initial_quality)
4823  {
4824  if(TEST_OPT_PROT)
4825  PrintS (".");
4826  los[i].clear_to_poly ();
4827  //delay.push_back(los[i].p);
4828  delay[delay_s] = los[i].p;
4829  delay_s++;
4830  los[i].p = NULL;
4831  }
4832  }
4833  }
4834  }
4835  }
4836  int deleted = multi_reduction_clear_zeroes (los, losl, erg.to_reduce_l,
4837  erg.to_reduce_u);
4838  if(erg.fromS == FALSE)
4839  curr_pos = si_max (erg.to_reduce_u, erg.reduce_by);
4840  else
4841  curr_pos = erg.to_reduce_u;
4842  losl -= deleted;
4843  curr_pos -= deleted;
4844 
4845  //Print("deleted %i \n",deleted);
4846  if((TEST_V_UPTORADICAL) && (!(erg.fromS)))
4847  sort_region_down (los, si_min (erg.to_reduce_l, erg.reduce_by),
4848  (si_max (erg.to_reduce_u, erg.reduce_by)) - deleted,
4849  c);
4850  else
4851  sort_region_down (los, erg.to_reduce_l, erg.to_reduce_u - deleted, c);
4852 
4853  if(erg.expand)
4854  {
4855 #ifdef FIND_DETERMINISTIC
4856  int i;
4857  for(i = 0; c->expandS[i]; i++) ;
4858  c->expandS = (poly *) omrealloc (c->expandS, (i + 2) * sizeof (poly));
4859  c->expandS[i] = erg.expand;
4860  c->expandS[i + 1] = NULL;
4861 #else
4862  int ecart = 0;
4863  if(c->eliminationProblem)
4864  {
4865  ecart =
4866  c->pTotaldegree_full (erg.expand) - c->pTotaldegree (erg.expand);
4867  }
4868  add_to_reductors (c, erg.expand, erg.expand_length, ecart);
4869 #endif
4870  }
4871  }
4872 
4873  //sorted_pair_node** pairs=(sorted_pair_node**)
4874  // omalloc(delay_s*sizeof(sorted_pair_node*));
4875  c->introduceDelayedPairs (delay, delay_s);
4876  /*
4877  for(i=0;i<delay_s;i++)
4878  {
4879  poly p=delay[i];
4880  //if (rPar(c->r)==0)
4881  simplify_poly(p,c->r);
4882  sorted_pair_node* si=(sorted_pair_node*) omalloc(sizeof(sorted_pair_node));
4883  si->i=-1;
4884  si->j=-1;
4885  if (!rField_is_Zp(c->r))
4886  {
4887  if (!c->nc)
4888  p=redTailShort(p, c->strat);
4889  p_Cleardenom(p, c->r);
4890  p_Content(p, c->r);
4891  }
4892  si->expected_length=pQuality(p,c,pLength(p));
4893  si->deg=pTotaldegree(p);
4894  si->lcm_of_lm=p;
4895  pairs[i]=si;
4896  }
4897  qsort(pairs,delay_s,sizeof(sorted_pair_node*),tgb_pair_better_gen2);
4898  c->apairs=spn_merge(c->apairs,c->pair_top+1,pairs,delay_s,c);
4899  c->pair_top+=delay_s; */
4900  omFree (delay);
4901  //omfree(pairs);
4902  return;
4903 }
4904 
4906 {
4907  assume (p == kBucketGetLm (bucket));
4908 }
4909 
4911 {
4912  p = kBucketGetLm (bucket);
4913  if(p)
4914  sev = pGetShortExpVector (p);
4915 }
4916 
4918 {
4919  flatten ();
4920  int l;
4921  kBucketClear (bucket, &p, &l);
4922  return l;
4923 }
4924 
4925 void reduction_step::reduce (red_object * /*r*/, int /*l*/, int /*u*/)
4926 {
4927 }
4928 
4930 {
4931  number coef;
4932 #ifdef HAVE_PLURAL
4933  if(c->nc)
4934  nc_kBucketPolyRed_Z (ro.bucket, p, &coef);
4935  else
4936 #endif
4937  coef = kBucketPolyRed (ro.bucket, p, p_len, c->strat->kNoether);
4938  nDelete (&coef);
4939 }
4940 
4941 void simple_reducer::reduce (red_object * r, int l, int u)
4942 {
4943  this->pre_reduce (r, l, u);
4944  int i;
4945 //debug start
4946 
4947  if(c->eliminationProblem)
4948  {
4949  assume (p_LmEqual (r[l].p, r[u].p, c->r));
4950  /*int lm_deg=pTotaldegree(r[l].p);
4951  reducer_deg=lm_deg+pTotaldegree_full(p)-pTotaldegree(p); */
4952  }
4953 
4954  for(i = l; i <= u; i++)
4955  {
4956  this->do_reduce (r[i]);
4957  }
4958  for(i = l; i <= u; i++)
4959  {
4960  kBucketSimpleContent (r[i].bucket);
4961  r[i].validate ();
4962  }
4963 }
4964 
4966 {
4967 }
4968 
4970 {
4971  if(fill_back != NULL)
4972  {
4974  }
4975  fill_back = NULL;
4976 }
4977 
4979 {
4980  STATIC_VAR int id = 0;
4981  id++;
4982  unsigned long sev;
4983  BOOLEAN lt_changed = FALSE;
4984  int rn = erg.reduce_by;
4985  poly red;
4986  int red_len;
4987  simple_reducer *pointer;
4988  BOOLEAN work_on_copy = FALSE;
4989  if(erg.fromS)
4990  {
4991  red = c->strat->S[rn];
4992  red_len = c->strat->lenS[rn];
4993  assume (red_len == pLength (red));
4994  }
4995  else
4996  {
4997  r[rn].flatten ();
4998  kBucketClear (r[rn].bucket, &red, &red_len);
4999 
5001  {
5002  p_Cleardenom (red, c->r); //should be unnecessary
5003  //includes p_Content(red, c->r);
5004  }
5005  //pNormalize (red);
5006 
5007  if((!(erg.fromS)) && (TEST_V_UPTORADICAL))
5008  {
5009  if(polynomial_root (red, c->r))
5010  lt_changed = TRUE;
5011  sev = p_GetShortExpVector (red, c->r);
5012  }
5013  red_len = pLength (red);
5014  }
5015  if(((TEST_V_MODPSOLVSB) && (red_len > 1))
5016  || ((c->nc) || (erg.to_reduce_u - erg.to_reduce_l > 5)))
5017  {
5018  work_on_copy = TRUE;
5019  // poly m=pOne();
5020  poly m = c->tmp_lm;
5021  pSetCoeff (m, nInit (1));
5022  pSetComp (m, 0);
5023  for(int i = 1; i <= (currRing->N); i++)
5024  pSetExp (m, i, (pGetExp (r[erg.to_reduce_l].p, i) - pGetExp (red, i)));
5025  pSetm (m);
5026  poly red_cp;
5027 #ifdef HAVE_PLURAL
5028  if(c->nc)
5029  red_cp = nc_mm_Mult_pp (m, red, c->r);
5030  else
5031 #endif
5032  red_cp = ppMult_mm (red, m);
5033  if(!erg.fromS)
5034  {
5035  kBucketInit (r[rn].bucket, red, red_len);
5036  }
5037  //now reduce the copy
5038  //static poly redNF2 (poly h,slimgb_alg* c , int &len, number& m,int n)
5039 
5040  if(!c->nc)
5041  redTailShort (red_cp, c->strat);
5042  //number mul;
5043  // red_len--;
5044 // red_cp->next=redNF2(red_cp->next,c,red_len,mul,c->average_length);
5045 // pSetCoeff(red_cp,nMult(red_cp->coef,mul));
5046 // nDelete(&mul);
5047 // red_len++;
5048  red = red_cp;
5049  red_len = pLength (red);
5050  // pDelete(&m);
5051  }
5052 
5053  assume (red_len == pLength (red));
5054 
5055  int reducer_deg = 0;
5056  if(c->eliminationProblem)
5057  {
5058  int lm_deg = c->pTotaldegree (r[erg.to_reduce_l].p);
5059  int ecart;
5060  if(erg.fromS)
5061  {
5062  ecart = c->strat->ecartS[erg.reduce_by];
5063  }
5064  else
5065  {
5066  ecart = c->pTotaldegree_full (red) - lm_deg;
5067  }
5068  reducer_deg = lm_deg + ecart;
5069  }
5070  pointer = new simple_reducer (red, red_len, reducer_deg, c);
5071 
5072  if((!work_on_copy) && (!erg.fromS))
5073  pointer->fill_back = r[rn].bucket;
5074  else
5075  pointer->fill_back = NULL;
5076  pointer->reduction_id = id;
5077  pointer->c = c;
5078 
5079  pointer->reduce (r, erg.to_reduce_l, erg.to_reduce_u);
5080  if(work_on_copy)
5081  pDelete (&pointer->p);
5082  delete pointer;
5083  if(lt_changed)
5084  {
5085  assume (!erg.fromS);
5086  r[erg.reduce_by].sev = sev;
5087  }
5088 }
5089 
5090 void simple_reducer::pre_reduce (red_object * /*r*/, int /*l*/, int /*u*/)
5091 {
5092 }
5093 
5094 #if 0
5095 template int pos_helper<int, int*>(skStrategy*, spolyrec*, int, int*, spolyrec**);
5096 template int pos_helper<long, long*>(skStrategy*, spolyrec*, long, long*, spolyrec**);
5097 
5098 template void noro_step<unsigned char>(spolyrec**, int&, slimgb_alg*);
5099 template void noro_step<unsigned int>(spolyrec**, int&, slimgb_alg*);
5100 template void noro_step<unsigned short>(spolyrec**, int&, slimgb_alg*);
5101 
5102 
5103 template int term_nodes_sort_crit<unsigned char>(void const*, void const*);
5104 template int term_nodes_sort_crit<unsigned int>(void const*, void const*);
5105 template int term_nodes_sort_crit<unsigned short>(void const*, void const*);
5106 
5107 template spolyrec* row_to_poly<unsigned char>(unsigned char*, spolyrec**, int, ip_sring*);
5108 template spolyrec* row_to_poly<unsigned int>(unsigned int*, spolyrec**, int, ip_sring*);
5109 template spolyrec* row_to_poly<unsigned short>(unsigned short*, spolyrec**, int, ip_sring*);
5110 
5111 template void simplest_gauss_modp<unsigned char>(unsigned char*, int, int);
5112 template void simplest_gauss_modp<unsigned int>(unsigned int*, int, int);
5113 template void simplest_gauss_modp<unsigned short>(unsigned short*, int, int);
5114 
5115 
5116 template int modP_lastIndexRow<unsigned char>(unsigned char*, int);
5117 template int modP_lastIndexRow<unsigned int>(unsigned int*, int);
5118 template int modP_lastIndexRow<unsigned short>(unsigned short*, int);
5119 
5120 template SparseRow<unsigned char>* noro_red_to_non_poly_t<unsigned char>(spolyrec*, int&, NoroCache<unsigned char>*, slimgb_alg*);
5121 template SparseRow<unsigned int>* noro_red_to_non_poly_t<unsigned int>(spolyrec*, int&, NoroCache<unsigned int>*, slimgb_alg*);
5122 template SparseRow<unsigned short>* noro_red_to_non_poly_t<unsigned short>(spolyrec*, int&, NoroCache<unsigned short>*, slimgb_alg*);
5123 
5124 
5125 template MonRedResNP<unsigned char> noro_red_mon_to_non_poly<unsigned char>(spolyrec*, NoroCache<unsigned char>*, slimgb_alg*);
5126 template MonRedResNP<unsigned int> noro_red_mon_to_non_poly<unsigned int>(spolyrec*, NoroCache<unsigned int>*, slimgb_alg*);
5127 template MonRedResNP<unsigned short> noro_red_mon_to_non_poly<unsigned short>(spolyrec*, NoroCache<unsigned short>*, slimgb_alg*);
5128 
5129 template SparseRow<unsigned char>* noro_red_to_non_poly_dense<unsigned char>(MonRedResNP<unsigned char>*, int, NoroCache<unsigned char>*);
5130 template SparseRow<unsigned char>* noro_red_to_non_poly_sparse<unsigned char>(MonRedResNP<unsigned char>*, int, NoroCache<unsigned char>*);
5131 template SparseRow<unsigned int>* noro_red_to_non_poly_dense<unsigned int>(MonRedResNP<unsigned int>*, int, NoroCache<unsigned int>*);
5132 template SparseRow<unsigned int>* noro_red_to_non_poly_sparse<unsigned int>(MonRedResNP<unsigned int>*, int, NoroCache<unsigned int>*);
5133 template SparseRow<unsigned short>* noro_red_to_non_poly_dense<unsigned short>(MonRedResNP<unsigned short>*, int, NoroCache<unsigned short>*);
5134 template SparseRow<unsigned short>* noro_red_to_non_poly_sparse<unsigned short>(MonRedResNP<unsigned short>*, int, NoroCache<unsigned short>*);
5135 
5136 
5137 
5138 template class DataNoroCacheNode<unsigned char>;
5139 template class DataNoroCacheNode<unsigned int>;
5140 template class DataNoroCacheNode<unsigned short>;
5141 
5142 template class NoroCache<unsigned char>;
5143 template class NoroCache<unsigned int>;
5144 template class NoroCache<unsigned short>;
5145 
5146 
5147 
5148 template void add_coef_times_dense<unsigned char>(unsigned char*, int, unsigned char const*, int, snumber*);
5149 template void add_coef_times_dense<unsigned int>(unsigned int*, int, unsigned int const*, int, snumber*);
5150 template void add_coef_times_dense<unsigned short>(unsigned short*, int, unsigned short const*, int, snumber*);
5151 template void add_coef_times_sparse<unsigned char>(unsigned char*, int, SparseRow<unsigned char>*, snumber*);
5152 template void add_coef_times_sparse<unsigned int>(unsigned int*, int, SparseRow<unsigned int>*, snumber*);
5153 template void add_coef_times_sparse<unsigned short>(unsigned short*, int, SparseRow<unsigned short>*, snumber*);
5154 template void add_dense<unsigned char>(unsigned char*, int, unsigned char const*, int);
5155 template void add_dense<unsigned int>(unsigned int*, int, unsigned int const*, int);
5156 template void add_dense<unsigned short>(unsigned short*, int, unsigned short const*, int);
5157 template void add_sparse<unsigned char>(unsigned char*, int, SparseRow<unsigned char>*);
5158 template void add_sparse<unsigned int>(unsigned int*, int, SparseRow<unsigned int>*);
5159 template void add_sparse<unsigned short>(unsigned short*, int, SparseRow<unsigned short>*);
5160 
5161 
5162 template void sub_dense<unsigned char>(unsigned char*, int, unsigned char const*, int);
5163 template void sub_dense<unsigned int>(unsigned int*, int, unsigned int const*, int);
5164 template void sub_dense<unsigned short>(unsigned short*, int, unsigned short const*, int);
5165 template void sub_sparse<unsigned char>(unsigned char*, int, SparseRow<unsigned char>*);
5166 template void sub_sparse<unsigned int>(unsigned int*, int, SparseRow<unsigned int>*);
5167 template void sub_sparse<unsigned short>(unsigned short*, int, SparseRow<unsigned short>*);
5168 template void write_coef_idx_to_buffer_dense<unsigned char>(CoefIdx<unsigned char>*, int&, unsigned char*, int);
5169 template void write_coef_idx_to_buffer_dense<unsigned int>(CoefIdx<unsigned int>*, int&, unsigned int*, int);
5170 template void write_coef_idx_to_buffer_dense<unsigned short>(CoefIdx<unsigned short>*, int&, unsigned short*, int);
5171 template void write_coef_idx_to_buffer<unsigned char>(CoefIdx<unsigned char>*, int&, int*, unsigned char*, int);
5172 template void write_coef_idx_to_buffer<unsigned int>(CoefIdx<unsigned int>*, int&, int*, unsigned int*, int);
5173 template void write_coef_idx_to_buffer<unsigned short>(CoefIdx<unsigned short>*, int&, int*, unsigned short*, int);
5174 template void write_coef_times_xx_idx_to_buffer_dense<unsigned char>(CoefIdx<unsigned char>*, int&, unsigned char*, int, snumber*);
5175 template void write_coef_times_xx_idx_to_buffer_dense<unsigned int>(CoefIdx<unsigned int>*, int&, unsigned int*, int, snumber*);
5176 template void write_coef_times_xx_idx_to_buffer_dense<unsigned short>(CoefIdx<unsigned short>*, int&, unsigned short*, int, snumber*);
5177 template void write_coef_times_xx_idx_to_buffer<unsigned char>(CoefIdx<unsigned char>*, int&, int*, unsigned char*, int, snumber*);
5178 template void write_coef_times_xx_idx_to_buffer<unsigned int>(CoefIdx<unsigned int>*, int&, int*, unsigned int*, int, snumber*);
5179 template void write_coef_times_xx_idx_to_buffer<unsigned short>(CoefIdx<unsigned short>*, int&, int*, unsigned short*, int, snumber*);
5180 template void write_minus_coef_idx_to_buffer_dense<unsigned char>(CoefIdx<unsigned char>*, int&, unsigned char*, int);
5181 template void write_minus_coef_idx_to_buffer_dense<unsigned int>(CoefIdx<unsigned int>*, int&, unsigned int*, int);
5182 template void write_minus_coef_idx_to_buffer_dense<unsigned short>(CoefIdx<unsigned short>*, int&, unsigned short*, int);
5183 template void write_minus_coef_idx_to_buffer<unsigned char>(CoefIdx<unsigned char>*, int&, int*, unsigned char*, int);
5184 template void write_minus_coef_idx_to_buffer<unsigned int>(CoefIdx<unsigned int>*, int&, int*, unsigned int*, int);
5185 template void write_minus_coef_idx_to_buffer<unsigned short>(CoefIdx<unsigned short>*, int&, int*, unsigned short*, int);
5186 
5187 
5188 template class std::vector<DataNoroCacheNode<unsigned char>*>;
5189 template class std::vector<DataNoroCacheNode<unsigned int>*>;
5190 template class std::vector<DataNoroCacheNode<unsigned short>*>;
5191 template class std::vector<PolySimple>;
5192 
5196 
5197 template void std::sort_heap<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5198 template void std::sort_heap<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5199 template void std::sort_heap<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5200 
5201 template void std::make_heap<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5202 template void std::make_heap<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5203 template void std::make_heap<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5204 #endif
5205 
5206 #if 0
5207 template void std::__final_insertion_sort<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5208 template void std::__final_insertion_sort<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5209 template void std::__final_insertion_sort<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5210 
5211 template void std::__introsort_loop<CoefIdx<unsigned char>*, long>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*, long);
5212 template void std::__introsort_loop<CoefIdx<unsigned int>*, long>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*, long);
5213 template void std::__introsort_loop<CoefIdx<unsigned short>*, long>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*, long);
5214 
5215 template void std::__heap_select<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5216 template void std::__heap_select<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5217 template void std::__heap_select<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5218 
5219 template void std::__insertion_sort<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5220 template void std::__insertion_sort<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5221 template void std::__insertion_sort<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5222 
5223 template void std::__move_median_first<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*, CoefIdx<unsigned char>*);
5224 template void std::__move_median_first<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*, CoefIdx<unsigned int>*);
5225 template void std::__move_median_first<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*, CoefIdx<unsigned short>*);
5226 
5227 template void std::__unguarded_linear_insert<CoefIdx<unsigned char>*>(CoefIdx<unsigned char>*);
5228 template void std::__unguarded_linear_insert<CoefIdx<unsigned int>*>(CoefIdx<unsigned int>*);
5229 template void std::__unguarded_linear_insert<CoefIdx<unsigned short>*>(CoefIdx<unsigned short>*);
5230 
5231 template void std::__adjust_heap<CoefIdx<unsigned char>*, long, CoefIdx<unsigned char> >(CoefIdx<unsigned char>*, long, long, CoefIdx<unsigned char>);
5232 template void std::__adjust_heap<CoefIdx<unsigned int>*, long, CoefIdx<unsigned int> >(CoefIdx<unsigned int>*, long, long, CoefIdx<unsigned int>);
5233 template void std::__adjust_heap<CoefIdx<unsigned short>*, long, CoefIdx<unsigned short> >(CoefIdx<unsigned short>*, long, long, CoefIdx<unsigned short>);
5234 
5235 template void std::__push_heap<CoefIdx<unsigned char>*, long, CoefIdx<unsigned char> >(CoefIdx<unsigned char>*, long, long, CoefIdx<unsigned char>);
5236 template void std::__push_heap<CoefIdx<unsigned int>*, long, CoefIdx<unsigned int> >(CoefIdx<unsigned int>*, long, long, CoefIdx<unsigned int>);
5237 template void std::__push_heap<CoefIdx<unsigned short>*, long, CoefIdx<unsigned short> >(CoefIdx<unsigned short>*, long, long, CoefIdx<unsigned short>);
5238 
5239 template CoefIdx<unsigned char>* std::__unguarded_partition<CoefIdx<unsigned char>*, CoefIdx<unsigned char> >(CoefIdx<unsigned char>*, CoefIdx<unsigned char>*, CoefIdx<unsigned char> const&);
5240 template CoefIdx<unsigned int>* std::__unguarded_partition<CoefIdx<unsigned int>*, CoefIdx<unsigned int> >(CoefIdx<unsigned int>*, CoefIdx<unsigned int>*, CoefIdx<unsigned int> const&);
5241 template CoefIdx<unsigned short>* std::__unguarded_partition<CoefIdx<unsigned short>*, CoefIdx<unsigned short> >(CoefIdx<unsigned short>*, CoefIdx<unsigned short>*, CoefIdx<unsigned short> const&);
5242 
5243 #endif
5244 
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
int size(const CanonicalForm &f, const Variable &v)
int size ( const CanonicalForm & f, const Variable & v )
Definition: cf_ops.cc:600
int level(const CanonicalForm &f)
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
int p
Definition: cfModGcd.cc:4080
CanonicalForm b
Definition: cfModGcd.cc:4105
static CanonicalForm bound(const CFMatrix &M)
Definition: cf_linsys.cc:460
template void noro_step< tgb_uint8 >(poly *p, int &pn, slimgb_alg *c)
template void noro_step< tgb_uint32 >(poly *p, int &pn, slimgb_alg *c)
template void noro_step< tgb_uint16 >(poly *p, int &pn, slimgb_alg *c)
SparseRow< number_type > * row
Definition: tgb_internal.h:539
number * array
Definition: tgb_internal.h:488
NoroCacheNode ** branches
Definition: tgb_internal.h:421
int nIrreducibleMonomials
Definition: tgb_internal.h:692
poly temp_term
Definition: tgb_internal.h:579
DataNoroCacheNode< number_type > * insertAndTransferOwnerShip(poly t, ring)
Definition: tgb_internal.h:633
DataNoroCacheNode< number_type > * getCacheReference(poly term)
NoroCacheNode root
Definition: tgb_internal.h:740
poly lookup(poly term, BOOLEAN &succ, int &len)
number * buffer
Definition: tgb_internal.h:741
DataNoroCacheNode< number_type > * insert(poly term, poly nf, int len)
Definition: tgb_internal.h:593
static const int backLinkCode
Definition: tgb_internal.h:592
number_type * coef_array
Definition: tgb_internal.h:504
int * idx_array
Definition: tgb_internal.h:503
poly_tree_node * top_level
Definition: tgb.cc:1992
int get_n(poly p)
Definition: tgb.cc:1999
mac_poly_r * next
Definition: tgbgauss.h:51
number coef
Definition: tgbgauss.h:50
int exp
Definition: tgbgauss.h:52
poly_tree_node(int sn)
Definition: tgb.cc:1985
poly_tree_node * l
Definition: tgb.cc:1982
poly_tree_node * r
Definition: tgb.cc:1983
unsigned long sev
Definition: tgb_internal.h:300
void validate()
Definition: tgb.cc:4910
void flatten()
Definition: tgb.cc:4905
kBucket_pt bucket
Definition: tgb_internal.h:298
wlen_type initial_quality
Definition: tgb_internal.h:303
int clear_to_poly()
Definition: tgb.cc:4917
wlen_type guess_quality(slimgb_alg *c)
Definition: tgb.cc:591
void canonicalize()
Definition: tgb.cc:871
makes on each red_object in a region a single_step
Definition: tgb_internal.h:336
virtual ~reduction_step()
Definition: tgb.cc:4965
slimgb_alg * c
Definition: tgb_internal.h:343
virtual void reduce(red_object *r, int l, int u)
we assume hat all occuring red_objects have same lm, and all occ. lm's in r[l...u] are the same,...
Definition: tgb.cc:4925
virtual void pre_reduce(red_object *r, int l, int u)
Definition: tgb.cc:5090
~simple_reducer()
Definition: tgb.cc:4969
kBucket_pt fill_back
Definition: tgb_internal.h:350
virtual void reduce(red_object *r, int l, int u)
we assume hat all occuring red_objects have same lm, and all occ. lm's in r[l...u] are the same,...
Definition: tgb.cc:4941
virtual void do_reduce(red_object &ro)
Definition: tgb.cc:4929
int syzComp
Definition: kutil.h:357
int * S_2_R
Definition: kutil.h:345
ring tailRing
Definition: kutil.h:346
intset lenS
Definition: kutil.h:320
intset ecartS
Definition: kutil.h:310
char honey
Definition: kutil.h:381
polyset S
Definition: kutil.h:307
poly kNoether
Definition: kutil.h:331
ideal Shdl
Definition: kutil.h:304
wlen_set lenSw
Definition: kutil.h:321
intset fromQ
Definition: kutil.h:322
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition: kutil.h:287
void(* initEcart)(TObject *L)
Definition: kutil.h:281
int sl
Definition: kutil.h:351
unsigned long * sevS
Definition: kutil.h:323
unsigned long pTotaldegree(poly p)
Definition: tgb_internal.h:275
mp_array_list * F
Definition: tgb_internal.h:239
BOOLEAN completed
Definition: tgb_internal.h:266
int lastCleanedDeg
Definition: tgb_internal.h:261
virtual ~slimgb_alg()
Definition: tgb.cc:3408
int_pair_node * soon_free
Definition: tgb_internal.h:229
sorted_pair_node ** apairs
Definition: tgb_internal.h:230
BOOLEAN nc
Definition: tgb_internal.h:271
kStrategy strat
Definition: tgb_internal.h:221
int * T_deg_full
Definition: tgb_internal.h:223
BOOLEAN use_noro_last_block
Definition: tgb_internal.h:264
int array_lengths
Definition: tgb_internal.h:250
int easy_product_crit
Definition: tgb_internal.h:257
int lastDpBlockStart
Definition: tgb_internal.h:260
int * lengths
Definition: tgb_internal.h:218
ideal add_later
Definition: tgb_internal.h:215
int extended_product_crit
Definition: tgb_internal.h:258
sorted_pair_node ** tmp_spn
Definition: tgb_internal.h:226
void introduceDelayedPairs(poly *pa, int s)
Definition: tgb.cc:3184
char ** states
Definition: tgb_internal.h:210
BOOLEAN isDifficultField
Definition: tgb_internal.h:265
unsigned int reduction_steps
Definition: tgb_internal.h:246
poly_array_list * F_minus
Definition: tgb_internal.h:240
int current_degree
Definition: tgb_internal.h:252
poly * gcd_of_terms
Definition: tgb_internal.h:228
int average_length
Definition: tgb_internal.h:259
poly * tmp_pair_lm
Definition: tgb_internal.h:225
long * short_Exps
Definition: tgb_internal.h:220
poly * expandS
Definition: tgb_internal.h:227
slimgb_alg(ideal I, int syz_comp, BOOLEAN F4, int deg_pos)
Definition: tgb.cc:3220
BOOLEAN tailReductions
Definition: tgb_internal.h:268
BOOLEAN is_homog
Definition: tgb_internal.h:267
void cleanDegs(int lower, int upper)
Definition: tgb.cc:3838
int syz_comp
array_lengths should be greater equal n;
Definition: tgb_internal.h:249
int pTotaldegree_full(poly p)
Definition: tgb_internal.h:283
BOOLEAN use_noro
Definition: tgb_internal.h:263
BOOLEAN eliminationProblem
Definition: tgb_internal.h:269
wlen_type * weighted_lengths
Definition: tgb_internal.h:219
BOOLEAN F4_mode
Definition: tgb_internal.h:270
poly_list_node * to_destroy
Definition: tgb_internal.h:237
int normal_forms
Definition: tgb_internal.h:251
mac_poly * mp
Definition: tgbgauss.h:64
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:571
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:445
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:539
BOOLEAN pa(leftv res, leftv args)
Definition: cohomo.cc:4344
void bit_reduce(poly &f, ring r)
Definition: digitech.cc:15
#define Print
Definition: emacs.cc:80
CFFListIterator iter
Definition: facAbsBiFact.cc:53
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool found
Definition: facFactorize.cc:55
CFArray copy(const CFList &list)
write elements of list into an array
int j
Definition: facHensel.cc:110
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
void sort(CFArray &A, int l=0)
quick sort A
#define STATIC_VAR
Definition: globaldefs.h:7
STATIC_VAR poly last
Definition: hdegree.cc:1150
STATIC_VAR scmon act
Definition: hdegree.cc:1151
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
ideal id_Copy(ideal h1, const ring r)
copy an ideal
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idTest(id)
Definition: ideals.h:47
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
STATIC_VAR Poly * h
Definition: janet.cc:971
KINLINE poly ksOldCreateSpoly(poly p1, poly p2, poly spNoether, ring r)
Definition: kInline.h:1162
void kBucketClear(kBucket_pt bucket, poly *p, int *length)
Definition: kbuckets.cc:521
void kBucketDestroy(kBucket_pt *bucket_pt)
Definition: kbuckets.cc:216
void kBucketInit(kBucket_pt bucket, poly lm, int length)
Definition: kbuckets.cc:493
poly kBucketExtractLm(kBucket_pt bucket)
Definition: kbuckets.cc:511
kBucket_pt kBucketCreate(const ring bucket_ring)
Creation/Destruction of buckets.
Definition: kbuckets.cc:209
number kBucketPolyRed(kBucket_pt bucket, poly p1, int l1, poly spNoether)
Definition: kbuckets.cc:1085
void kBucket_Add_q(kBucket_pt bucket, poly q, int *l)
Add to Bucket a poly ,i.e. Bpoly == q+Bpoly.
Definition: kbuckets.cc:660
const poly kBucketGetLm(kBucket_pt bucket)
Definition: kbuckets.cc:506
void kBucketSimpleContent(kBucket_pt bucket)
Definition: kbuckets.cc:1209
int kBucketCanonicalize(kBucket_pt bucket)
Canonicalizes Bpoly, i.e. converts polys of buckets into one poly in one bucket: Returns number of bu...
#define MAX_BUCKET
Bucket definition (should be no one elses business, though)
Definition: kbuckets.h:175
poly ksCreateShortSpoly(poly p1, poly p2, ring tailRing)
Definition: kspoly.cc:1415
ideal kInterRed(ideal F, ideal Q)
Definition: kstd1.cc:3745
EXTERN_VAR int Kstd1_deg
Definition: kstd1.h:49
void initBuchMoraPos(kStrategy strat)
Definition: kutil.cc:9822
void initBuchMoraCrit(kStrategy strat)
Definition: kutil.cc:9670
void deleteInS(int i, kStrategy strat)
Definition: kutil.cc:1137
void initEcartBBA(TObject *h)
Definition: kutil.cc:1333
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition: kutil.cc:9023
wlen_type * wlen_set
Definition: kutil.h:55
int64 wlen_type
Definition: kutil.h:54
int * intset
Definition: kutil.h:53
class sLObject LObject
Definition: kutil.h:58
#define pi
Definition: libparse.cc:1145
static poly nc_mm_Mult_pp(const poly m, const poly p, const ring r)
Definition: nc.h:224
static bool rIsSCA(const ring r)
Definition: nc.h:190
static poly nc_CreateSpoly(const poly p1, const poly p2, const ring r)
Definition: nc.h:241
static void nc_kBucketPolyRed_Z(kBucket_pt b, poly p, number *c)
Definition: nc.h:286
poly sca_pp_Mult_xi_pp(short i, const poly pPoly, const ring rRing)
Definition: sca.cc:1203
static FORCE_INLINE int nlQlogSize(number n, const coeffs r)
only used by slimgb (tgb.cc)
Definition: longrat.h:76
'SR_INT' is the type of those integers small enough to fit into 29 bits.
Definition: longrat.h:49
STATIC_VAR unsigned add[]
Definition: misc_ip.cc:115
#define assume(x)
Definition: mod2.h:387
number npNeg(number c, const coeffs r)
Definition: modulop.cc:150
long npInt(number &n, const coeffs r)
Definition: modulop.cc:85
static BOOLEAN npIsOne(number a, const coeffs)
Definition: modulop.h:171
static number npAddM(number a, number b, const coeffs r)
Definition: modulop.h:116
#define NV_MAX_PRIME
Definition: modulop.h:29
static number npInit(long i, const coeffs r)
Definition: modulop_inl.h:27
static number nvMult(number a, number b, const coeffs r)
Definition: modulop_inl.h:50
static number npMult(number a, number b, const coeffs r)
Definition: modulop_inl.h:12
#define p_GetComp(p, r)
Definition: monomials.h:64
#define pIter(p)
Definition: monomials.h:37
#define POLYSIZE
Definition: monomials.h:233
#define pNext(p)
Definition: monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_GetCoeff(p, r)
Definition: monomials.h:50
#define __p_GetComp(p, r)
Definition: monomials.h:63
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357
char N base
Definition: ValueTraits.h:144
Definition: ap.h:40
number * number_array
Definition: ntupel.cc:25
#define nDelete(n)
Definition: numbers.h:16
#define nSize(n)
Definition: numbers.h:39
#define nInvers(a)
Definition: numbers.h:33
#define nNormalize(n)
Definition: numbers.h:30
#define nInit(i)
Definition: numbers.h:24
#define nMult(n1, n2)
Definition: numbers.h:17
#define omrealloc(addr, size)
Definition: omAllocDecl.h:233
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
#define omalloc(size)
Definition: omAllocDecl.h:228
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define omAllocAligned
Definition: omAllocDecl.h:273
#define omSizeWOfBin(bin_ptr)
#define omGetSpecBin(size)
Definition: omBin.h:11
#define omUnGetSpecBin(bin_ptr)
Definition: omBin.h:14
#define NULL
Definition: omList.c:12
omBin_t * omBin
Definition: omStructs.h:12
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define TEST_OPT_REDTAIL
Definition: options.h:116
#define TEST_V_FINDMONOM
Definition: options.h:142
#define TEST_V_UPTORADICAL
Definition: options.h:141
#define TEST_OPT_REDSB
Definition: options.h:104
#define TEST_OPT_DEGBOUND
Definition: options.h:113
#define TEST_OPT_PROT
Definition: options.h:103
#define TEST_OPT_REDTHROUGH
Definition: options.h:122
#define TEST_OPT_DEBUG
Definition: options.h:108
#define TEST_V_MODPSOLVSB
Definition: options.h:139
#define TEST_V_COEFSTRAT
Definition: options.h:140
unsigned long p_GetShortExpVector(const poly p, const ring r)
Definition: p_polys.cc:4809
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2900
void pEnlargeSet(poly **p, int l, int increment)
Definition: p_polys.cc:3766
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1691
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:962
static poly pp_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:991
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static void p_ExpVectorDiff(poly pr, poly p1, poly p2, const ring r)
Definition: p_polys.h:1434
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition: p_polys.h:1897
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1863
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
static unsigned pLength(poly a)
Definition: p_polys.h:191
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1280
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
#define p_Test(p, r)
Definition: p_polys.h:162
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:931
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define pSetm(p)
Definition: polys.h:271
#define pHasNotCF(p1, p2)
Definition: polys.h:263
#define pLmEqual(p1, p2)
Definition: polys.h:111
#define pExpVectorDiff(pr, p1, p2)
Definition: polys.h:91
#define ppMult_mm(p, m)
Definition: polys.h:201
#define pGetComp(p)
Component.
Definition: polys.h:37
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
Definition: polys.h:31
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition: polys.h:146
#define pExpVectorSub(p1, p2)
Definition: polys.h:88
#define pLmInit(p)
like pInit, except that expvector is initialized to that of p, p must be != NULL
Definition: polys.h:64
#define pSetComp(p, v)
Definition: polys.h:38
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition: polys.h:152
void wrp(poly p)
Definition: polys.h:310
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:363
#define pNormalize(p)
Definition: polys.h:317
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition: polys.h:105
#define pMDivide(a, b)
Definition: polys.h:293
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
#define pLcm(a, b, m)
Definition: polys.h:295
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
Definition: prCopy.cc:260
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:204
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
#define mflush()
Definition: reporter.h:58
ring rAssure_TDeg(ring r, int &pos)
Definition: ring.cc:4501
BOOLEAN rRing_has_CompLastBlock(const ring r)
Definition: ring.cc:5154
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:449
static int rBlocks(ring r)
Definition: ring.h:570
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:502
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
@ ringorder_dp
Definition: ring.h:78
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:508
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:594
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18
int status int void * buf
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void id_Compactify(ideal id, const ring r)
#define IDELEMS(i)
Definition: simpleideals.h:23
Definition: ring.h:248
#define loop
Definition: structs.h:80
static int fwbw(red_object *los, int i)
Definition: tgb.cc:4469
BOOLEAN is_valid_ro(red_object &ro)
Definition: tgb.cc:2021
static poly redNFTail(poly h, const int sl, kStrategy strat, int len)
Definition: tgb.cc:3019
ideal t_rep_gb(const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
Definition: tgb.cc:3602
sorted_pair_node * quick_pop_pair(slimgb_alg *c)
Definition: tgb.cc:3944
static void shorten_tails(slimgb_alg *c, poly monom)
Definition: tgb.cc:3759
static void go_on(slimgb_alg *c)
Definition: tgb.cc:2760
static poly gcd_of_terms(poly p, ring r)
Definition: tgb.cc:4065
BOOLEAN good_has_t_rep(int i, int j, slimgb_alg *c)
Definition: tgb.cc:876
static int add_to_reductors(slimgb_alg *c, poly h, int len, int ecart, BOOLEAN simplified=FALSE)
Definition: tgb.cc:965
int tgb_pair_better_gen2(const void *ap, const void *bp)
Definition: tgb.cc:680
static const int bundle_size
Definition: tgb.cc:36
static int tgb_pair_better_gen(const void *ap, const void *bp)
Definition: tgb.cc:4033
#define ADD_LATER_SIZE
Definition: tgb.cc:39
STATIC_VAR omBin lm_bin
Definition: tgb.cc:41
static void clearS(poly p, unsigned long p_sev, int l, int *at, int *k, kStrategy strat)
Definition: tgb.cc:1323
static wlen_type pair_weighted_length(int i, int j, slimgb_alg *c)
Definition: tgb.cc:1373
static void move_forward_in_S(int old_pos, int new_pos, kStrategy strat)
Definition: tgb.cc:1027
void now_t_rep(const int &arg_i, const int &arg_j, slimgb_alg *c)
Definition: tgb.cc:3705
void clean_top_of_pair_list(slimgb_alg *c)
Definition: tgb.cc:3965
#define ENLARGE(pointer, type)
static void mass_add(poly *p, int pn, slimgb_alg *c)
Definition: tgb.cc:2145
static int get_last_dp_block_start(ring r)
Definition: tgb.cc:427
static wlen_type coeff_mult_size_estimate(int s1, int s2, ring r)
Definition: tgb.cc:1365
int find_best(red_object *r, int l, int u, wlen_type &w, slimgb_alg *c)
returns position sets w as weight
Definition: tgb.cc:854
static BOOLEAN monomial_root(poly m, ring r)
Definition: tgb.cc:89
int search_red_object_pos(red_object *a, int top, red_object *key)
Definition: tgb.cc:4641
static int * make_connections(int from, int to, poly bound, slimgb_alg *c)
Definition: tgb.cc:1101
static BOOLEAN pair_better(sorted_pair_node *a, sorted_pair_node *b, slimgb_alg *c=NULL)
Definition: tgb.cc:4006
static poly p_Init_Special(const ring r)
Definition: tgb.cc:137
#define ENLARGE_ALIGN(pointer, type)
static void sort_region_down(red_object *los, int l, int u, slimgb_alg *)
Definition: tgb.cc:4666
int slim_nsize(number n, ring r)
Definition: tgb.cc:73
static wlen_type pSLength(poly p, int l)
Definition: tgb.cc:197
static int multi_reduction_clear_zeroes(red_object *los, int losl, int l, int u)
Definition: tgb.cc:4613
static int pTotaldegree_full(poly p)
Definition: tgb.cc:579
static BOOLEAN lies_in_last_dp_block(poly p, slimgb_alg *c)
Definition: tgb.cc:399
wlen_type pELength(poly p, slimgb_alg *c, ring)
Definition: tgb.cc:471
wlen_type kEBucketLength(kBucket *b, poly lm, slimgb_alg *ca)
Definition: tgb.cc:494
static int posInPairs(sorted_pair_node **p, int pn, sorted_pair_node *qe, slimgb_alg *c, int an=0)
Definition: tgb.cc:711
static const int delay_factor
Definition: tgb.cc:38
int kFindDivisibleByInS_easy(kStrategy strat, const red_object &obj)
Definition: tgb.cc:685
static int poly_crit(const void *ap1, const void *ap2)
Definition: tgb.cc:3166
static int simple_posInS(kStrategy strat, poly p, int len, wlen_type wlen)
Definition: tgb.cc:1308
static wlen_type quality_of_pos_in_strat_S(int pos, slimgb_alg *c)
Definition: tgb.cc:4186
sorted_pair_node ** spn_merge(sorted_pair_node **p, int pn, sorted_pair_node **q, int qn, slimgb_alg *c)
Definition: tgb.cc:751
static void c_S_element_changed_hook(int pos, slimgb_alg *c)
Definition: tgb.cc:1971
static void replace_pair(int &i, int &j, slimgb_alg *c)
Definition: tgb.cc:1215
static void multi_reduction_find(red_object *los, int, slimgb_alg *c, int startf, find_erg &erg)
Definition: tgb.cc:4539
static void line_of_extended_prod(int fixpos, slimgb_alg *c)
Definition: tgb.cc:1939
static BOOLEAN trivial_syzygie(int pos1, int pos2, poly bound, slimgb_alg *c)
Definition: tgb.cc:800
static int iq_crit(const void *ap, const void *bp)
Definition: tgb.cc:1340
static poly redNF2(poly h, slimgb_alg *c, int &len, number &m, int n=0)
Definition: tgb.cc:1837
static void simplify_poly(poly p, ring r)
Definition: tgb.cc:59
static void multi_reduction(red_object *los, int &losl, slimgb_alg *c)
Definition: tgb.cc:4722
static void add_later(poly p, const char *prot, slimgb_alg *c)
Definition: tgb.cc:1292
static poly pOne_Special(const ring r=currRing)
Definition: tgb.cc:142
static poly redTailShort(poly h, kStrategy strat)
Definition: tgb.cc:1920
static void cleanS(kStrategy strat, slimgb_alg *c)
Definition: tgb.cc:919
static BOOLEAN ascending(int *i, int top)
Definition: tgb.cc:742
static wlen_type quality_of_pos_in_strat_S_mult_high(int pos, poly high, slimgb_alg *c)
Definition: tgb.cc:4195
static void multi_reduce_step(find_erg &erg, red_object *r, slimgb_alg *c)
Definition: tgb.cc:4978
sorted_pair_node * top_pair(slimgb_alg *c)
Definition: tgb.cc:3920
static wlen_type do_pELength(poly p, slimgb_alg *c, int dlm=-1)
Definition: tgb.cc:446
sorted_pair_node ** add_to_basis_ideal_quotient(poly h, slimgb_alg *c, int *ip)
Definition: tgb.cc:1426
ideal do_t_rep_gb(ring, ideal arg_I, int syz_comp, BOOLEAN F4_mode, int deg_pos)
Definition: tgb.cc:3650
static wlen_type pQuality(poly p, slimgb_alg *c, int l=-1)
Definition: tgb.cc:544
static void move_backward_in_S(int old_pos, int new_pos, kStrategy strat)
Definition: tgb.cc:1064
void free_sorted_pair_node(sorted_pair_node *s, const ring r)
Definition: tgb.cc:3998
BOOLEAN lenS_correct(kStrategy strat)
Definition: tgb.cc:907
void init_with_mac_poly(tgb_sparse_matrix *mat, int row, mac_poly m)
Definition: tgb.cc:3131
int terms_sort_crit(const void *a, const void *b)
Definition: tgb.cc:2030
static void canonicalize_region(red_object *los, int l, int u, slimgb_alg *)
Definition: tgb.cc:4527
static BOOLEAN polynomial_root(poly h, ring r)
Definition: tgb.cc:109
poly free_row_to_poly(tgb_sparse_matrix *mat, int row, poly *monoms, int monom_index)
Definition: tgb.cc:3146
static int bucket_guess(kBucket *bucket)
Definition: tgb.cc:952
wlen_type kSBucketLength(kBucket *b, poly lm=NULL)
TODO CoefBuckets bercksichtigen.
Definition: tgb.cc:221
static void super_clean_top_of_pair_list(slimgb_alg *c)
Definition: tgb.cc:3952
static void multi_reduction_lls_trick(red_object *los, int, slimgb_alg *c, find_erg &erg)
Definition: tgb.cc:4209
static int red_object_better_gen(const void *ap, const void *bp)
Definition: tgb.cc:665
static void length_one_crit(slimgb_alg *c, int pos, int len)
Definition: tgb.cc:1005
static BOOLEAN has_t_rep(const int &arg_i, const int &arg_j, slimgb_alg *state)
Definition: tgb.cc:3726
static BOOLEAN pHasNotCFExtended(poly p1, poly p2, poly m)
Definition: tgb.cc:4105
static BOOLEAN extended_product_criterion(poly p1, poly gcd1, poly p2, poly gcd2, slimgb_alg *c)
Definition: tgb.cc:4124
static const int bundle_size_noro
Definition: tgb.cc:37
static BOOLEAN state_is(calc_state state, const int &i, const int &j, slimgb_alg *c)
Definition: tgb.cc:3979
static BOOLEAN elength_is_normal_length(poly p, slimgb_alg *c)
Definition: tgb.cc:371
BOOLEAN fromS
Definition: tgb_internal.h:379
void simplest_gauss_modp(number_type *a, int nrows, int ncols)
poly_array_list * next
Definition: tgb_internal.h:197
mp_array_list * next
Definition: tgb_internal.h:189
poly expand
Definition: tgb_internal.h:374
int expand_length
Definition: tgb_internal.h:375
int pos_helper(kStrategy strat, poly p, len_type len, set_type setL, polyset set)
Definition: tgb_internal.h:383
poly_list_node * next
Definition: tgb_internal.h:171
poly row_to_poly(number_type *row, poly *terms, int tn, ring r)
int to_reduce_u
Definition: tgb_internal.h:376
wlen_type expected_length
Definition: tgb_internal.h:147
void write_poly_to_row(number_type *row, poly h, poly *terms, int tn, ring r)
calc_state
Definition: tgb_internal.h:312
@ UNCALCULATED
Definition: tgb_internal.h:313
@ HASTREP
Definition: tgb_internal.h:314
void noro_step(poly *p, int &pn, slimgb_alg *c)
int to_reduce_l
Definition: tgb_internal.h:377
int reduce_by
Definition: tgb_internal.h:378
monom_poly * mp
Definition: tgb_internal.h:187
int tdeg(poly p)
Definition: walkSupport.cc:35