My Project
Public Member Functions | Private Member Functions | Private Attributes | Friends
rootArranger Class Reference

#include <mpr_numeric.h>

Public Member Functions

 rootArranger (rootContainer **_roots, rootContainer **_mu, const int _howclean=PM_CORRUPT)
 
 ~rootArranger ()
 
void solve_all ()
 
void arrange ()
 
bool success ()
 

Private Member Functions

 rootArranger (const rootArranger &)
 

Private Attributes

rootContainer ** roots
 
rootContainer ** mu
 
int howclean
 
int rc
 
int mc
 
bool found_roots
 

Friends

lists listOfRoots (rootArranger *, const unsigned int oprec)
 

Detailed Description

Definition at line 149 of file mpr_numeric.h.

Constructor & Destructor Documentation

◆ rootArranger() [1/2]

rootArranger::rootArranger ( rootContainer **  _roots,
rootContainer **  _mu,
const int  _howclean = PM_CORRUPT 
)

Definition at line 847 of file mpr_numeric.cc.

850  : roots(_roots), mu(_mu), howclean(_howclean)
851 {
852  found_roots=false;
853 }
rootContainer ** roots
Definition: mpr_numeric.h:167
rootContainer ** mu
Definition: mpr_numeric.h:168
bool found_roots
Definition: mpr_numeric.h:172

◆ ~rootArranger()

rootArranger::~rootArranger ( )
inline

Definition at line 157 of file mpr_numeric.h.

157 {}

◆ rootArranger() [2/2]

rootArranger::rootArranger ( const rootArranger )
private

Member Function Documentation

◆ arrange()

void rootArranger::arrange ( )

Definition at line 882 of file mpr_numeric.cc.

883 {
884  gmp_complex tmp,zwerg;
885  int anzm= mu[0]->getAnzElems();
886  int anzr= roots[0]->getAnzRoots();
887  int xkoord, r, rtest, xk, mtest;
888  bool found;
889  //gmp_complex mprec(1.0/pow(10,gmp_output_digits-5),1.0/pow(10,gmp_output_digits-5));
890 
891  for ( xkoord= 0; xkoord < anzm; xkoord++ ) { // für x1,x2, x1,x2,x3, x1,x2,...,xn
892  gmp_float mprec(1.0/pow(10.0,(int)(gmp_output_digits/3)));
893  for ( r= 0; r < anzr; r++ ) { // für jede Nullstelle
894  // (x1-koordinate) * evp[1] + (x2-koordinate) * evp[2] +
895  // ... + (xkoord-koordinate) * evp[xkoord]
896  tmp= gmp_complex();
897  for ( xk =0; xk <= xkoord; xk++ )
898  {
899  tmp -= (*roots[xk])[r] * mu[xkoord]->evPointCoord(xk+1); //xk+1
900  }
901  found= false;
902  do { // while not found
903  for ( rtest= r; rtest < anzr; rtest++ ) { // für jede Nullstelle
904  zwerg = tmp - (*roots[xk])[rtest] * mu[xkoord]->evPointCoord(xk+1); // xk+1, xkoord+2
905  for ( mtest= 0; mtest < anzr; mtest++ )
906  {
907  // if ( tmp == (*mu[xkoord])[mtest] )
908  // {
909  if ( ((zwerg.real() <= (*mu[xkoord])[mtest].real() + mprec) &&
910  (zwerg.real() >= (*mu[xkoord])[mtest].real() - mprec)) &&
911  ((zwerg.imag() <= (*mu[xkoord])[mtest].imag() + mprec) &&
912  (zwerg.imag() >= (*mu[xkoord])[mtest].imag() - mprec)) )
913  {
914  roots[xk]->swapRoots( r, rtest );
915  found= true;
916  break;
917  }
918  }
919  } // rtest
920  if (!found)
921  {
922  WarnS("rootArranger::arrange: precision lost");
923  mprec*=10;
924  }
925  } while(!found);
926 #if 0
927  if ( !found )
928  {
929  Warn("rootArranger::arrange: No match? coord %d, root %d.",xkoord,r);
930 //#ifdef mprDEBUG_PROT
931  WarnS("One of these ...");
932  for ( rtest= r; rtest < anzr; rtest++ )
933  {
934  tmp= gmp_complex();
935  for ( xk =0; xk <= xkoord; xk++ )
936  {
937  tmp-= (*roots[xk])[r] * mu[xkoord]->evPointCoord(xk+1);
938  }
939  tmp-= (*roots[xk])[rtest] * mu[xkoord]->evPointCoord(xk+1); // xkoord+2
940  Warn(" %s",complexToStr(tmp,gmp_output_digits+1),rtest);
941  }
942  WarnS(" ... must match to one of these:");
943  for ( mtest= 0; mtest < anzr; mtest++ )
944  {
945  Warn(" %s",complexToStr((*mu[xkoord])[mtest],gmp_output_digits+1));
946  }
947 //#endif
948  }
949 #endif
950  } // r
951  } // xkoord
952 }
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
gmp_complex numbers based on
Definition: mpr_complex.h:179
gmp_float imag() const
Definition: mpr_complex.h:235
gmp_float real() const
Definition: mpr_complex.h:234
bool swapRoots(const int from, const int to)
Definition: mpr_numeric.cc:416
int getAnzRoots()
Definition: mpr_numeric.h:97
int getAnzElems()
Definition: mpr_numeric.h:95
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
bool found
Definition: facFactorize.cc:55
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:115
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:704

◆ solve_all()

void rootArranger::solve_all ( )

Definition at line 857 of file mpr_numeric.cc.

858 {
859  int i;
860  found_roots= true;
861 
862  // find roots of polys given by coeffs in roots
863  rc= roots[0]->getAnzElems();
864  for ( i= 0; i < rc; i++ )
865  if ( !roots[i]->solver( howclean ) )
866  {
867  found_roots= false;
868  return;
869  }
870  // find roots of polys given by coeffs in mu
871  mc= mu[0]->getAnzElems();
872  for ( i= 0; i < mc; i++ )
873  if ( ! mu[i]->solver( howclean ) )
874  {
875  found_roots= false;
876  return;
877  }
878 }
int i
Definition: cfEzgcd.cc:132

◆ success()

bool rootArranger::success ( )
inline

Definition at line 162 of file mpr_numeric.h.

162 { return found_roots; }

Friends And Related Function Documentation

◆ listOfRoots

lists listOfRoots ( rootArranger self,
const unsigned int  oprec 
)
friend

Definition at line 5163 of file ipshell.cc.

5164 {
5165  int i,j;
5166  int count= self->roots[0]->getAnzRoots(); // number of roots
5167  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5168 
5169  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5170 
5171  if ( self->found_roots )
5172  {
5173  listofroots->Init( count );
5174 
5175  for (i=0; i < count; i++)
5176  {
5177  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5178  onepoint->Init(elem);
5179  for ( j= 0; j < elem; j++ )
5180  {
5181  if ( !rField_is_long_C(currRing) )
5182  {
5183  onepoint->m[j].rtyp=STRING_CMD;
5184  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5185  }
5186  else
5187  {
5188  onepoint->m[j].rtyp=NUMBER_CMD;
5189  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5190  }
5191  onepoint->m[j].next= NULL;
5192  onepoint->m[j].name= NULL;
5193  }
5194  listofroots->m[i].rtyp=LIST_CMD;
5195  listofroots->m[i].data=(void *)onepoint;
5196  listofroots->m[j].next= NULL;
5197  listofroots->m[j].name= NULL;
5198  }
5199 
5200  }
5201  else
5202  {
5203  listofroots->Init( 0 );
5204  }
5205 
5206  return listofroots;
5207 }
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
leftv next
Definition: subexpr.h:86
void * data
Definition: subexpr.h:88
Definition: lists.h:24
sleftv * m
Definition: lists.h:46
INLINE_THIS void Init(int l=0)
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:452
int j
Definition: facHensel.cc:110
@ NUMBER_CMD
Definition: grammar.cc:288
slists * lists
Definition: mpr_numeric.h:146
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define NULL
Definition: omList.c:12
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:547
int status int void size_t count
Definition: si_signals.h:59
@ LIST_CMD
Definition: tok.h:118
@ STRING_CMD
Definition: tok.h:185

Field Documentation

◆ found_roots

bool rootArranger::found_roots
private

Definition at line 172 of file mpr_numeric.h.

◆ howclean

int rootArranger::howclean
private

Definition at line 170 of file mpr_numeric.h.

◆ mc

int rootArranger::mc
private

Definition at line 171 of file mpr_numeric.h.

◆ mu

rootContainer** rootArranger::mu
private

Definition at line 168 of file mpr_numeric.h.

◆ rc

int rootArranger::rc
private

Definition at line 171 of file mpr_numeric.h.

◆ roots

rootContainer** rootArranger::roots
private

Definition at line 167 of file mpr_numeric.h.


The documentation for this class was generated from the following files: