My Project
ipshell.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT:
6 */
7 
8 #include "kernel/mod2.h"
9 
10 #include "factory/factory.h"
11 
12 #include "misc/options.h"
13 #include "misc/mylimits.h"
14 #include "misc/intvec.h"
15 #include "misc/prime.h"
16 
17 #include "coeffs/numbers.h"
18 #include "coeffs/coeffs.h"
19 
20 #include "coeffs/rmodulon.h"
21 #include "coeffs/longrat.h"
22 
24 #include "polys/monomials/ring.h"
25 #include "polys/monomials/maps.h"
26 
27 #include "polys/prCopy.h"
28 #include "polys/matpol.h"
29 
30 #include "polys/shiftop.h"
31 #include "polys/weight.h"
32 #include "polys/clapsing.h"
33 
34 
37 
38 #include "kernel/polys.h"
39 #include "kernel/ideals.h"
40 
43 
44 #include "kernel/GBEngine/syz.h"
45 #include "kernel/GBEngine/kstd1.h"
46 #include "kernel/GBEngine/kutil.h" // denominator_list
47 
50 
51 #include "kernel/spectrum/semic.h"
52 #include "kernel/spectrum/splist.h"
54 
56 
57 #include "Singular/lists.h"
58 #include "Singular/attrib.h"
59 #include "Singular/ipconv.h"
60 #include "Singular/links/silink.h"
61 #include "Singular/ipshell.h"
62 #include "Singular/maps_ip.h"
63 #include "Singular/tok.h"
64 #include "Singular/ipid.h"
65 #include "Singular/subexpr.h"
66 #include "Singular/fevoices.h"
67 #include "Singular/sdb.h"
68 
69 #include <cmath>
70 #include <ctype.h>
71 
72 #include "kernel/maps/gen_maps.h"
73 
74 #include "polys/clapsing.h"
75 
76 #ifdef SINGULAR_4_2
77 #include "Singular/number2.h"
78 #include "coeffs/bigintmat.h"
79 #endif
82 const char *lastreserved=NULL;
83 
85 
86 /*0 implementation*/
87 
88 const char * iiTwoOps(int t)
89 {
90  if (t<127)
91  {
92  STATIC_VAR char ch[2];
93  switch (t)
94  {
95  case '&':
96  return "and";
97  case '|':
98  return "or";
99  default:
100  ch[0]=t;
101  ch[1]='\0';
102  return ch;
103  }
104  }
105  switch (t)
106  {
107  case COLONCOLON: return "::";
108  case DOTDOT: return "..";
109  //case PLUSEQUAL: return "+=";
110  //case MINUSEQUAL: return "-=";
111  case MINUSMINUS: return "--";
112  case PLUSPLUS: return "++";
113  case EQUAL_EQUAL: return "==";
114  case LE: return "<=";
115  case GE: return ">=";
116  case NOTEQUAL: return "<>";
117  default: return Tok2Cmdname(t);
118  }
119 }
120 
121 int iiOpsTwoChar(const char *s)
122 {
123 /* not handling: &&, ||, ** */
124  if (s[1]=='\0') return s[0];
125  else if (s[2]!='\0') return 0;
126  switch(s[0])
127  {
128  case '.': if (s[1]=='.') return DOTDOT;
129  else return 0;
130  case ':': if (s[1]==':') return COLONCOLON;
131  else return 0;
132  case '-': if (s[1]=='-') return MINUSMINUS;
133  else return 0;
134  case '+': if (s[1]=='+') return PLUSPLUS;
135  else return 0;
136  case '=': if (s[1]=='=') return EQUAL_EQUAL;
137  else return 0;
138  case '<': if (s[1]=='=') return LE;
139  else if (s[1]=='>') return NOTEQUAL;
140  else return 0;
141  case '>': if (s[1]=='=') return GE;
142  else return 0;
143  case '!': if (s[1]=='=') return NOTEQUAL;
144  else return 0;
145  }
146  return 0;
147 }
148 
149 static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
150 {
151  char buffer[22];
152  int l;
153  char buf2[128];
154 
155  if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
156  else sprintf(buf2, "%s", IDID(h));
157 
158  Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
159  if (h == currRingHdl) PrintS("*");
160  PrintS(Tok2Cmdname((int)IDTYP(h)));
161 
162  ipListFlag(h);
163  switch(IDTYP(h))
164  {
165  case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
166  case INT_CMD: Print(" %d",IDINT(h)); break;
167  case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
168  case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
169  break;
170  case POLY_CMD:
171  case VECTOR_CMD:if (c)
172  {
173  PrintS(" ");wrp(IDPOLY(h));
174  if(IDPOLY(h) != NULL)
175  {
176  Print(", %d monomial(s)",pLength(IDPOLY(h)));
177  }
178  }
179  break;
180  case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));// and continue
181  case IDEAL_CMD: Print(", %u generator(s)",
182  IDELEMS(IDIDEAL(h))); break;
183  case MAP_CMD:
184  Print(" from %s",IDMAP(h)->preimage); break;
185  case MATRIX_CMD:Print(" %u x %u"
186  ,MATROWS(IDMATRIX(h))
187  ,MATCOLS(IDMATRIX(h))
188  );
189  break;
190  case SMATRIX_CMD:Print(" %u x %u"
191  ,(int)(IDIDEAL(h)->rank)
192  ,IDELEMS(IDIDEAL(h))
193  );
194  break;
195  case PACKAGE_CMD:
196  paPrint(IDID(h),IDPACKAGE(h));
197  break;
198  case PROC_CMD: if((IDPROC(h)->libname!=NULL)
199  && (strlen(IDPROC(h)->libname)>0))
200  Print(" from %s",IDPROC(h)->libname);
201  if(IDPROC(h)->language==LANG_C)
202  PrintS(" (C)");
203  if(IDPROC(h)->is_static)
204  PrintS(" (static)");
205  break;
206  case STRING_CMD:
207  {
208  char *s;
209  l=strlen(IDSTRING(h));
210  memset(buffer,0,sizeof(buffer));
211  strncpy(buffer,IDSTRING(h),si_min(l,20));
212  if ((s=strchr(buffer,'\n'))!=NULL)
213  {
214  *s='\0';
215  }
216  PrintS(" ");
217  PrintS(buffer);
218  if((s!=NULL) ||(l>20))
219  {
220  Print("..., %d char(s)",l);
221  }
222  break;
223  }
224  case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
225  break;
226  case RING_CMD:
227  if ((IDRING(h)==currRing) && (currRingHdl!=h))
228  PrintS("(*)"); /* this is an alias to currRing */
229  //Print(" ref:%d",IDRING(h)->ref);
230 #ifdef RDEBUG
232  Print(" <%lx>",(long)(IDRING(h)));
233 #endif
234  break;
235 #ifdef SINGULAR_4_2
236  case CNUMBER_CMD:
237  { number2 n=(number2)IDDATA(h);
238  Print(" (%s)",nCoeffName(n->cf));
239  break;
240  }
241  case CMATRIX_CMD:
242  { bigintmat *b=(bigintmat*)IDDATA(h);
243  Print(" %d x %d (%s)",
244  b->rows(),b->cols(),
245  nCoeffName(b->basecoeffs()));
246  break;
247  }
248 #endif
249  /*default: break;*/
250  }
251  PrintLn();
252 }
253 
255 {
256  BOOLEAN oldShortOut = FALSE;
257 
258  if (currRing != NULL)
259  {
260  oldShortOut = currRing->ShortOut;
261  currRing->ShortOut = 1;
262  }
263  int t=v->Typ();
264  Print("// %s %s ",v->Name(),Tok2Cmdname(t));
265  switch (t)
266  {
267  case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
268  case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
269  ((intvec*)(v->Data()))->cols()); break;
270  case MATRIX_CMD:Print(" %u x %u\n" ,
271  MATROWS((matrix)(v->Data())),
272  MATCOLS((matrix)(v->Data())));break;
273  case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
274  case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
275 
276  case PROC_CMD:
277  case RING_CMD:
278  case IDEAL_CMD: PrintLn(); break;
279 
280  //case INT_CMD:
281  //case STRING_CMD:
282  //case INTVEC_CMD:
283  //case POLY_CMD:
284  //case VECTOR_CMD:
285  //case PACKAGE_CMD:
286 
287  default:
288  break;
289  }
290  v->Print();
291  if (currRing != NULL)
292  currRing->ShortOut = oldShortOut;
293 }
294 
295 static void killlocals0(int v, idhdl * localhdl, const ring r)
296 {
297  idhdl h = *localhdl;
298  while (h!=NULL)
299  {
300  int vv;
301  //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
302  if ((vv=IDLEV(h))>0)
303  {
304  if (vv < v)
305  {
306  if (iiNoKeepRing)
307  {
308  //PrintS(" break\n");
309  return;
310  }
311  h = IDNEXT(h);
312  //PrintLn();
313  }
314  else //if (vv >= v)
315  {
316  idhdl nexth = IDNEXT(h);
317  killhdl2(h,localhdl,r);
318  h = nexth;
319  //PrintS("kill\n");
320  }
321  }
322  else
323  {
324  h = IDNEXT(h);
325  //PrintLn();
326  }
327  }
328 }
329 
330 void killlocals_rec(idhdl *root,int v, ring r)
331 {
332  idhdl h=*root;
333  while (h!=NULL)
334  {
335  if (IDLEV(h)>=v)
336  {
337 // Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
338  idhdl n=IDNEXT(h);
339  killhdl2(h,root,r);
340  h=n;
341  }
342  else if (IDTYP(h)==PACKAGE_CMD)
343  {
344  // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
345  if (IDPACKAGE(h)!=basePack)
346  killlocals_rec(&(IDRING(h)->idroot),v,r);
347  h=IDNEXT(h);
348  }
349  else if (IDTYP(h)==RING_CMD)
350  {
351  if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
352  // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
353  {
354  // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
355  killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
356  }
357  h=IDNEXT(h);
358  }
359  else
360  {
361 // Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
362  h=IDNEXT(h);
363  }
364  }
365 }
367 {
368  if (L==NULL) return FALSE;
369  BOOLEAN changed=FALSE;
370  int n=L->nr;
371  for(;n>=0;n--)
372  {
373  leftv h=&(L->m[n]);
374  void *d=h->data;
375  if ((h->rtyp==RING_CMD)
376  && (((ring)d)->idroot!=NULL))
377  {
378  if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
379  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
380  }
381  else if (h->rtyp==LIST_CMD)
382  changed|=killlocals_list(v,(lists)d);
383  }
384  return changed;
385 }
386 void killlocals(int v)
387 {
388  BOOLEAN changed=FALSE;
389  idhdl sh=currRingHdl;
390  ring cr=currRing;
391  if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
392  //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
393 
394  killlocals_rec(&(basePack->idroot),v,currRing);
395 
397  {
398  int t=iiRETURNEXPR.Typ();
399  if (/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
400  {
402  if (((ring)h->data)->idroot!=NULL)
403  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
404  }
405  else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
406  {
408  changed |=killlocals_list(v,(lists)h->data);
409  }
410  }
411  if (changed)
412  {
414  if (currRingHdl==NULL)
415  currRing=NULL;
416  else if(cr!=currRing)
417  rChangeCurrRing(cr);
418  }
419 
420  if (myynest<=1) iiNoKeepRing=TRUE;
421  //Print("end killlocals >= %d\n",v);
422  //listall();
423 }
424 
425 void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
426 {
427  package savePack=currPack;
428  idhdl h,start;
429  BOOLEAN all = typ<0;
430  BOOLEAN really_all=FALSE;
431 
432  if ( typ==0 )
433  {
434  if (strcmp(what,"all")==0)
435  {
436  if (currPack!=basePack)
437  list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
438  really_all=TRUE;
439  h=basePack->idroot;
440  }
441  else
442  {
443  h = ggetid(what);
444  if (h!=NULL)
445  {
446  if (iterate) list1(prefix,h,TRUE,fullname);
447  if (IDTYP(h)==ALIAS_CMD) PrintS("A");
448  if ((IDTYP(h)==RING_CMD)
449  //|| (IDTYP(h)==PACKAGE_CMD)
450  )
451  {
452  h=IDRING(h)->idroot;
453  }
454  else if(IDTYP(h)==PACKAGE_CMD)
455  {
457  //Print("list_cmd:package\n");
458  all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
459  h=IDPACKAGE(h)->idroot;
460  }
461  else
462  {
463  currPack=savePack;
464  return;
465  }
466  }
467  else
468  {
469  Werror("%s is undefined",what);
470  currPack=savePack;
471  return;
472  }
473  }
474  all=TRUE;
475  }
476  else if (RingDependend(typ))
477  {
478  h = currRing->idroot;
479  }
480  else
481  h = IDROOT;
482  start=h;
483  while (h!=NULL)
484  {
485  if ((all
486  && (IDTYP(h)!=PROC_CMD)
487  &&(IDTYP(h)!=PACKAGE_CMD)
488  &&(IDTYP(h)!=CRING_CMD)
489  )
490  || (typ == IDTYP(h))
491  || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
492  )
493  {
494  list1(prefix,h,start==currRingHdl, fullname);
495  if ((IDTYP(h)==RING_CMD)
496  && (really_all || (all && (h==currRingHdl)))
497  && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
498  {
499  list_cmd(0,IDID(h),"// ",FALSE);
500  }
501  if (IDTYP(h)==PACKAGE_CMD && really_all)
502  {
503  package save_p=currPack;
505  list_cmd(0,IDID(h),"// ",FALSE);
506  currPack=save_p;
507  }
508  }
509  h = IDNEXT(h);
510  }
511  currPack=savePack;
512 }
513 
514 void test_cmd(int i)
515 {
516  int ii;
517 
518  if (i<0)
519  {
520  ii= -i;
521  if (ii < 32)
522  {
523  si_opt_1 &= ~Sy_bit(ii);
524  }
525  else if (ii < 64)
526  {
527  si_opt_2 &= ~Sy_bit(ii-32);
528  }
529  else
530  WerrorS("out of bounds\n");
531  }
532  else if (i<32)
533  {
534  ii=i;
535  if (Sy_bit(ii) & kOptions)
536  {
537  WarnS("Gerhard, use the option command");
538  si_opt_1 |= Sy_bit(ii);
539  }
540  else if (Sy_bit(ii) & validOpts)
541  si_opt_1 |= Sy_bit(ii);
542  }
543  else if (i<64)
544  {
545  ii=i-32;
546  si_opt_2 |= Sy_bit(ii);
547  }
548  else
549  WerrorS("out of bounds\n");
550 }
551 
553 {
554  int rc = 0;
555  while (v!=NULL)
556  {
557  switch (v->Typ())
558  {
559  case INT_CMD:
560  case POLY_CMD:
561  case VECTOR_CMD:
562  case NUMBER_CMD:
563  rc++;
564  break;
565  case INTVEC_CMD:
566  case INTMAT_CMD:
567  rc += ((intvec *)(v->Data()))->length();
568  break;
569  case MATRIX_CMD:
570  case IDEAL_CMD:
571  case MODUL_CMD:
572  {
573  matrix mm = (matrix)(v->Data());
574  rc += mm->rows() * mm->cols();
575  }
576  break;
577  case LIST_CMD:
578  rc+=((lists)v->Data())->nr+1;
579  break;
580  default:
581  rc++;
582  }
583  v = v->next;
584  }
585  return rc;
586 }
587 
589 {
590  sleftv vf;
591  if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
592  {
593  WerrorS("link expected");
594  return TRUE;
595  }
596  si_link l=(si_link)vf.Data();
597  if (vf.next == NULL)
598  {
599  WerrorS("write: need at least two arguments");
600  return TRUE;
601  }
602 
603  BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
604  if (b)
605  {
606  const char *s;
607  if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
608  else s=sNoName_fe;
609  Werror("cannot write to %s",s);
610  }
611  vf.CleanUp();
612  return b;
613 }
614 
615 leftv iiMap(map theMap, const char * what)
616 {
617  idhdl w,r;
618  leftv v;
619  int i;
620  nMapFunc nMap;
621 
622  r=IDROOT->get(theMap->preimage,myynest);
623  if ((currPack!=basePack)
624  &&((r==NULL) || ((r->typ != RING_CMD) )))
625  r=basePack->idroot->get(theMap->preimage,myynest);
626  if ((r==NULL) && (currRingHdl!=NULL)
627  && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
628  {
629  r=currRingHdl;
630  }
631  if ((r!=NULL) && (r->typ == RING_CMD))
632  {
633  ring src_ring=IDRING(r);
634  if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
635  {
636  Werror("can not map from ground field of %s to current ground field",
637  theMap->preimage);
638  return NULL;
639  }
640  if (IDELEMS(theMap)<src_ring->N)
641  {
642  theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
643  IDELEMS(theMap)*sizeof(poly),
644  (src_ring->N)*sizeof(poly));
645 #ifdef HAVE_SHIFTBBA
646  if (rIsLPRing(src_ring))
647  {
648  // src_ring [x,y,z,...]
649  // curr_ring [a,b,c,...]
650  //
651  // map=[a,b,c,d] -> [a,b,c,...]
652  // map=[a,b] -> [a,b,0,...]
653 
654  short src_lV = src_ring->isLPring;
655  short src_ncGenCount = src_ring->LPncGenCount;
656  short src_nVars = src_lV - src_ncGenCount;
657  int src_nblocks = src_ring->N / src_lV;
658 
659  short dest_nVars = currRing->isLPring - currRing->LPncGenCount;
660  short dest_ncGenCount = currRing->LPncGenCount;
661 
662  // add missing NULL generators
663  for(i=IDELEMS(theMap); i < src_lV - src_ncGenCount; i++)
664  {
665  theMap->m[i]=NULL;
666  }
667 
668  // remove superfluous generators
669  for(i = src_nVars; i < IDELEMS(theMap); i++)
670  {
671  if (theMap->m[i] != NULL)
672  {
673  p_Delete(&(theMap->m[i]), currRing);
674  theMap->m[i] = NULL;
675  }
676  }
677 
678  // add ncgen mappings
679  for(i = src_nVars; i < src_lV; i++)
680  {
681  short ncGenIndex = i - src_nVars;
682  if (ncGenIndex < dest_ncGenCount)
683  {
684  poly p = p_One(currRing);
685  p_SetExp(p, dest_nVars + ncGenIndex + 1, 1, currRing);
686  p_Setm(p, currRing);
687  theMap->m[i] = p;
688  }
689  else
690  {
691  theMap->m[i] = NULL;
692  }
693  }
694 
695  // copy the first block to all other blocks
696  for(i = 1; i < src_nblocks; i++)
697  {
698  for(int j = 0; j < src_lV; j++)
699  {
700  theMap->m[(i * src_lV) + j] = p_Copy(theMap->m[j], currRing);
701  }
702  }
703  }
704  else
705  {
706 #endif
707  for(i=IDELEMS(theMap);i<src_ring->N;i++)
708  theMap->m[i]=NULL;
709 #ifdef HAVE_SHIFTBBA
710  }
711 #endif
712  IDELEMS(theMap)=src_ring->N;
713  }
714  if (what==NULL)
715  {
716  WerrorS("argument of a map must have a name");
717  }
718  else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
719  {
720  char *save_r=NULL;
722  sleftv tmpW;
723  tmpW.Init();
724  tmpW.rtyp=IDTYP(w);
725  if (tmpW.rtyp==MAP_CMD)
726  {
727  tmpW.rtyp=IDEAL_CMD;
728  save_r=IDMAP(w)->preimage;
729  IDMAP(w)->preimage=0;
730  }
731  tmpW.data=IDDATA(w);
732  // check overflow
733  BOOLEAN overflow=FALSE;
734  if ((tmpW.rtyp==IDEAL_CMD)
735  || (tmpW.rtyp==MODUL_CMD)
736  || (tmpW.rtyp==MAP_CMD))
737  {
738  ideal id=(ideal)tmpW.data;
739  long *degs=(long*)omAlloc(IDELEMS(id)*sizeof(long));
740  for(int i=IDELEMS(id)-1;i>=0;i--)
741  {
742  poly p=id->m[i];
743  if (p!=NULL) degs[i]=p_Totaldegree(p,src_ring);
744  else degs[i]=0;
745  }
746  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
747  {
748  if (theMap->m[j]!=NULL)
749  {
750  long deg_monexp=pTotaldegree(theMap->m[j]);
751 
752  for(int i=IDELEMS(id)-1;i>=0;i--)
753  {
754  poly p=id->m[i];
755  if ((p!=NULL) && (degs[i]!=0) &&
756  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)degs[i])/2)))
757  {
758  overflow=TRUE;
759  break;
760  }
761  }
762  }
763  }
764  omFreeSize(degs,IDELEMS(id)*sizeof(long));
765  }
766  else if (tmpW.rtyp==POLY_CMD)
767  {
768  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
769  {
770  if (theMap->m[j]!=NULL)
771  {
772  long deg_monexp=pTotaldegree(theMap->m[j]);
773  poly p=(poly)tmpW.data;
774  long deg=0;
775  if ((p!=NULL) && ((deg=p_Totaldegree(p,src_ring))!=0) &&
776  ((unsigned long)deg_monexp > (currRing->bitmask / ((unsigned long)deg)/2)))
777  {
778  overflow=TRUE;
779  break;
780  }
781  }
782  }
783  }
784  if (overflow)
785 #ifdef HAVE_SHIFTBBA
786  // in Letterplace rings the exponent is always 0 or 1! ignore this warning.
787  if (!rIsLPRing(currRing))
788  {
789 #endif
790  Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
791 #ifdef HAVE_SHIFTBBA
792  }
793 #endif
794 #if 0
795  if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
796  {
797  v->rtyp=tmpW.rtyp;
798  v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
799  }
800  else
801 #endif
802  {
803  if ((tmpW.rtyp==IDEAL_CMD)
804  ||(tmpW.rtyp==MODUL_CMD)
805  ||(tmpW.rtyp==MATRIX_CMD)
806  ||(tmpW.rtyp==MAP_CMD))
807  {
808  v->rtyp=tmpW.rtyp;
809  char *tmp = theMap->preimage;
810  theMap->preimage=(char*)1L;
811  // map gets 1 as its rank (as an ideal)
812  v->data=maMapIdeal(IDIDEAL(w), src_ring, (ideal)theMap, currRing,nMap);
813  theMap->preimage=tmp; // map gets its preimage back
814  }
815  if (v->data==NULL) /*i.e. not IDEAL_CMD/MODUL_CMD/MATRIX_CMD/MAP */
816  {
817  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
818  {
819  Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
821  if (save_r!=NULL) IDMAP(w)->preimage=save_r;
822  return NULL;
823  }
824  }
825  }
826  if (save_r!=NULL)
827  {
828  IDMAP(w)->preimage=save_r;
829  IDMAP((idhdl)v)->preimage=omStrDup(save_r);
830  v->rtyp=MAP_CMD;
831  }
832  return v;
833  }
834  else
835  {
836  Werror("%s undefined in %s",what,theMap->preimage);
837  }
838  }
839  else
840  {
841  Werror("cannot find preimage %s",theMap->preimage);
842  }
843  return NULL;
844 }
845 
846 #ifdef OLD_RES
847 void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
848  intvec ** weights)
849 {
850  lists L=liMakeResolv(r,length,rlen,typ0,weights);
851  int i=0;
852  idhdl h;
853  char * s=(char *)omAlloc(strlen(name)+5);
854 
855  while (i<=L->nr)
856  {
857  sprintf(s,"%s(%d)",name,i+1);
858  if (i==0)
859  h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
860  else
861  h=enterid(s,myynest,MODUL_CMD,&(currRing->idroot), FALSE);
862  if (h!=NULL)
863  {
864  h->data.uideal=(ideal)L->m[i].data;
865  h->attribute=L->m[i].attribute;
867  Print("//defining: %s as %d-th syzygy module\n",s,i+1);
868  }
869  else
870  {
871  idDelete((ideal *)&(L->m[i].data));
872  Warn("cannot define %s",s);
873  }
874  //L->m[i].data=NULL;
875  //L->m[i].rtyp=0;
876  //L->m[i].attribute=NULL;
877  i++;
878  }
879  omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
881  omFreeSize((ADDRESS)s,strlen(name)+5);
882 }
883 #endif
884 
885 //resolvente iiFindRes(char * name, int * len, int *typ0)
886 //{
887 // char *s=(char *)omAlloc(strlen(name)+5);
888 // int i=-1;
889 // resolvente r;
890 // idhdl h;
891 //
892 // do
893 // {
894 // i++;
895 // sprintf(s,"%s(%d)",name,i+1);
896 // h=currRing->idroot->get(s,myynest);
897 // } while (h!=NULL);
898 // *len=i-1;
899 // if (*len<=0)
900 // {
901 // Werror("no objects %s(1),.. found",name);
902 // omFreeSize((ADDRESS)s,strlen(name)+5);
903 // return NULL;
904 // }
905 // r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
906 // memset(r,0,(*len)*sizeof(ideal));
907 // i=-1;
908 // *typ0=MODUL_CMD;
909 // while (i<(*len))
910 // {
911 // i++;
912 // sprintf(s,"%s(%d)",name,i+1);
913 // h=currRing->idroot->get(s,myynest);
914 // if (h->typ != MODUL_CMD)
915 // {
916 // if ((i!=0) || (h->typ!=IDEAL_CMD))
917 // {
918 // Werror("%s is not of type module",s);
919 // omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
920 // omFreeSize((ADDRESS)s,strlen(name)+5);
921 // return NULL;
922 // }
923 // *typ0=IDEAL_CMD;
924 // }
925 // if ((i>0) && (idIs0(r[i-1])))
926 // {
927 // *len=i-1;
928 // break;
929 // }
930 // r[i]=IDIDEAL(h);
931 // }
932 // omFreeSize((ADDRESS)s,strlen(name)+5);
933 // return r;
934 //}
935 
937 {
938  int i;
939  resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
940 
941  for (i=0; i<l; i++)
942  if (r[i]!=NULL) res[i]=idCopy(r[i]);
943  return res;
944 }
945 
947 {
948  int len=0;
949  int typ0;
950  lists L=(lists)v->Data();
951  intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
952  int add_row_shift = 0;
953  if (weights==NULL)
954  weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
955  if (weights!=NULL) add_row_shift=weights->min_in();
956  resolvente rr=liFindRes(L,&len,&typ0);
957  if (rr==NULL) return TRUE;
958  resolvente r=iiCopyRes(rr,len);
959 
960  syMinimizeResolvente(r,len,0);
961  omFreeSize((ADDRESS)rr,len*sizeof(ideal));
962  len++;
963  res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
964  return FALSE;
965 }
966 
968 {
969  sleftv tmp;
970  tmp.Init();
971  tmp.rtyp=INT_CMD;
972  tmp.data=(void *)1;
973  if ((u->Typ()==IDEAL_CMD)
974  || (u->Typ()==MODUL_CMD))
975  return jjBETTI2_ID(res,u,&tmp);
976  else
977  return jjBETTI2(res,u,&tmp);
978 }
979 
981 {
983  l->Init(1);
984  l->m[0].rtyp=u->Typ();
985  l->m[0].data=u->Data();
986  attr *a=u->Attribute();
987  if (a!=NULL)
988  l->m[0].attribute=*a;
989  sleftv tmp2;
990  tmp2.Init();
991  tmp2.rtyp=LIST_CMD;
992  tmp2.data=(void *)l;
993  BOOLEAN r=jjBETTI2(res,&tmp2,v);
994  l->m[0].data=NULL;
995  l->m[0].attribute=NULL;
996  l->m[0].rtyp=DEF_CMD;
997  l->Clean();
998  return r;
999 }
1000 
1002 {
1003  resolvente r;
1004  int len;
1005  int reg,typ0;
1006  lists l=(lists)u->Data();
1007 
1008  intvec *weights=NULL;
1009  int add_row_shift=0;
1010  intvec *ww=NULL;
1011  if (l->nr>=0) ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
1012  if (ww!=NULL)
1013  {
1014  weights=ivCopy(ww);
1015  add_row_shift = ww->min_in();
1016  (*weights) -= add_row_shift;
1017  }
1018  //Print("attr:%x\n",weights);
1019 
1020  r=liFindRes(l,&len,&typ0);
1021  if (r==NULL) return TRUE;
1022  intvec* res_im=syBetti(r,len,&reg,weights,(int)(long)v->Data());
1023  res->data=(void*)res_im;
1024  omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
1025  //Print("rowShift: %d ",add_row_shift);
1026  for(int i=1;i<=res_im->rows();i++)
1027  {
1028  if (IMATELEM(*res_im,1,i)==0) { add_row_shift--; }
1029  else break;
1030  }
1031  //Print(" %d\n",add_row_shift);
1032  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
1033  if (weights!=NULL) delete weights;
1034  return FALSE;
1035 }
1036 
1038 {
1039  int len,reg,typ0;
1040 
1041  resolvente r=liFindRes(L,&len,&typ0);
1042 
1043  if (r==NULL)
1044  return -2;
1045  intvec *weights=NULL;
1046  int add_row_shift=0;
1047  intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
1048  if (ww!=NULL)
1049  {
1050  weights=ivCopy(ww);
1051  add_row_shift = ww->min_in();
1052  (*weights) -= add_row_shift;
1053  }
1054  //Print("attr:%x\n",weights);
1055 
1056  intvec *dummy=syBetti(r,len,&reg,weights);
1057  if (weights!=NULL) delete weights;
1058  delete dummy;
1059  omFreeSize((ADDRESS)r,len*sizeof(ideal));
1060  return reg+1+add_row_shift;
1061 }
1062 
1064 #define BREAK_LINE_LENGTH 80
1065 void iiDebug()
1066 {
1067 #ifdef HAVE_SDB
1068  sdb_flags=1;
1069 #endif
1070  Print("\n-- break point in %s --\n",VoiceName());
1072  char * s;
1074  s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
1075  loop
1076  {
1077  memset(s,0,BREAK_LINE_LENGTH+4);
1079  if (s[BREAK_LINE_LENGTH-1]!='\0')
1080  {
1081  Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
1082  }
1083  else
1084  break;
1085  }
1086  if (*s=='\n')
1087  {
1089  }
1090 #if MDEBUG
1091  else if(strncmp(s,"cont;",5)==0)
1092  {
1094  }
1095 #endif /* MDEBUG */
1096  else
1097  {
1098  strcat( s, "\n;~\n");
1100  }
1101 }
1102 
1103 lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1104 {
1105  int i;
1106  indset save;
1108 
1109  hexist = hInit(S, Q, &hNexist, currRing);
1110  if (hNexist == 0)
1111  {
1112  intvec *iv=new intvec(rVar(currRing));
1113  for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1114  res->Init(1);
1115  res->m[0].rtyp=INTVEC_CMD;
1116  res->m[0].data=(intvec*)iv;
1117  return res;
1118  }
1119  else if (hisModule!=0)
1120  {
1121  res->Init(0);
1122  return res;
1123  }
1124  save = ISet = (indset)omAlloc0Bin(indlist_bin);
1125  hMu = 0;
1126  hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1127  hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1128  hpure = (scmon)omAlloc0((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1129  hrad = hexist;
1130  hNrad = hNexist;
1131  radmem = hCreate(rVar(currRing) - 1);
1132  hCo = rVar(currRing) + 1;
1133  hNvar = rVar(currRing);
1134  hRadical(hrad, &hNrad, hNvar);
1135  hSupp(hrad, hNrad, hvar, &hNvar);
1136  if (hNvar)
1137  {
1138  hCo = hNvar;
1139  hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1140  hLexR(hrad, hNrad, hvar, hNvar);
1142  }
1143  if (hCo && (hCo < rVar(currRing)))
1144  {
1146  }
1147  if (hMu!=0)
1148  {
1149  ISet = save;
1150  hMu2 = 0;
1151  if (all && (hCo+1 < rVar(currRing)))
1152  {
1155  i=hMu+hMu2;
1156  res->Init(i);
1157  if (hMu2 == 0)
1158  {
1160  }
1161  }
1162  else
1163  {
1164  res->Init(hMu);
1165  }
1166  for (i=0;i<hMu;i++)
1167  {
1168  res->m[i].data = (void *)save->set;
1169  res->m[i].rtyp = INTVEC_CMD;
1170  ISet = save;
1171  save = save->nx;
1173  }
1174  omFreeBin((ADDRESS)save, indlist_bin);
1175  if (hMu2 != 0)
1176  {
1177  save = JSet;
1178  for (i=hMu;i<hMu+hMu2;i++)
1179  {
1180  res->m[i].data = (void *)save->set;
1181  res->m[i].rtyp = INTVEC_CMD;
1182  JSet = save;
1183  save = save->nx;
1185  }
1186  omFreeBin((ADDRESS)save, indlist_bin);
1187  }
1188  }
1189  else
1190  {
1191  res->Init(0);
1193  }
1194  hKill(radmem, rVar(currRing) - 1);
1195  omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1196  omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1197  omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1199  return res;
1200 }
1201 
1202 int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1203 {
1204  BOOLEAN res=FALSE;
1205  BOOLEAN is_qring=FALSE;
1206  const char *id = name->name;
1207 
1208  sy->Init();
1209  if ((name->name==NULL)||(isdigit(name->name[0])))
1210  {
1211  WerrorS("object to declare is not a name");
1212  res=TRUE;
1213  }
1214  else
1215  {
1216  if (root==NULL) return TRUE;
1217  if (*root!=IDROOT)
1218  {
1219  if ((currRing==NULL) || (*root!=currRing->idroot))
1220  {
1221  Werror("can not define `%s` in other package",name->name);
1222  return TRUE;
1223  }
1224  }
1225  if (t==QRING_CMD)
1226  {
1227  t=RING_CMD; // qring is always RING_CMD
1228  is_qring=TRUE;
1229  }
1230 
1231  if (TEST_V_ALLWARN
1232  && (name->rtyp!=0)
1233  && (name->rtyp!=IDHDL)
1234  && (currRingHdl!=NULL) && (IDLEV(currRingHdl)==myynest))
1235  {
1236  Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1238  }
1239  {
1240  sy->data = (char *)enterid(id,lev,t,root,init_b);
1241  }
1242  if (sy->data!=NULL)
1243  {
1244  sy->rtyp=IDHDL;
1245  currid=sy->name=IDID((idhdl)sy->data);
1246  if (is_qring)
1247  {
1249  }
1250  // name->name=NULL; /* used in enterid */
1251  //sy->e = NULL;
1252  if (name->next!=NULL)
1253  {
1255  res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1256  }
1257  }
1258  else res=TRUE;
1259  }
1260  name->CleanUp();
1261  return res;
1262 }
1263 
1265 {
1266  attr at=NULL;
1267  if (iiCurrProc!=NULL)
1268  at=iiCurrProc->attribute->get("default_arg");
1269  if (at==NULL)
1270  return FALSE;
1271  sleftv tmp;
1272  tmp.Init();
1273  tmp.rtyp=at->atyp;
1274  tmp.data=at->CopyA();
1275  return iiAssign(p,&tmp);
1276 }
1278 {
1279  // must be inside a proc, as we simultae an proc_end at the end
1280  if (myynest==0)
1281  {
1282  WerrorS("branchTo can only occur in a proc");
1283  return TRUE;
1284  }
1285  // <string1...stringN>,<proc>
1286  // known: args!=NULL, l>=1
1287  int l=args->listLength();
1288  int ll=0;
1289  if (iiCurrArgs!=NULL) ll=iiCurrArgs->listLength();
1290  if (ll!=(l-1)) return FALSE;
1291  leftv h=args;
1292  // set up the table for type test:
1293  short *t=(short*)omAlloc(l*sizeof(short));
1294  t[0]=l-1;
1295  int b;
1296  int i;
1297  for(i=1;i<l;i++,h=h->next)
1298  {
1299  if (h->Typ()!=STRING_CMD)
1300  {
1301  omFree(t);
1302  Werror("arg %d is not a string",i);
1303  return TRUE;
1304  }
1305  int tt;
1306  b=IsCmd((char *)h->Data(),tt);
1307  if(b) t[i]=tt;
1308  else
1309  {
1310  omFree(t);
1311  Werror("arg %d is not a type name",i);
1312  return TRUE;
1313  }
1314  }
1315  if (h->Typ()!=PROC_CMD)
1316  {
1317  omFree(t);
1318  Werror("last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1319  i,h->name,Tok2Cmdname(h->Typ()),h->Typ(),myynest);
1320  return TRUE;
1321  }
1322  b=iiCheckTypes(iiCurrArgs,t,0);
1323  omFree(t);
1324  if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1325  {
1326  // get the proc:
1327  iiCurrProc=(idhdl)h->data;
1328  idhdl currProc=iiCurrProc; /*iiCurrProc may be changed after yyparse*/
1329  procinfo * pi=IDPROC(currProc);
1330  // already loaded ?
1331  if( pi->data.s.body==NULL )
1332  {
1334  if (pi->data.s.body==NULL) return TRUE;
1335  }
1336  // set currPackHdl/currPack
1337  if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1338  {
1339  currPack=pi->pack;
1342  //Print("set pack=%s\n",IDID(currPackHdl));
1343  }
1344  // see iiAllStart:
1345  BITSET save1=si_opt_1;
1346  BITSET save2=si_opt_2;
1347  newBuffer( omStrDup(pi->data.s.body), BT_proc,
1348  pi, pi->data.s.body_lineno-(iiCurrArgs==NULL) );
1349  BOOLEAN err=yyparse();
1350  iiCurrProc=NULL;
1351  si_opt_1=save1;
1352  si_opt_2=save2;
1353  // now save the return-expr.
1355  memcpy(&sLastPrinted,&iiRETURNEXPR,sizeof(sleftv));
1356  iiRETURNEXPR.Init();
1357  // warning about args.:
1358  if (iiCurrArgs!=NULL)
1359  {
1360  if (err==0) Warn("too many arguments for %s",IDID(currProc));
1361  iiCurrArgs->CleanUp();
1363  iiCurrArgs=NULL;
1364  }
1365  // similate proc_end:
1366  // - leave input
1367  void myychangebuffer();
1368  myychangebuffer();
1369  // - set the current buffer to its end (this is a pointer in a buffer,
1370  // not a file ptr) "branchTo" is only valid in proc)
1372  // - kill local vars
1374  // - return
1375  newBuffer(omStrDup("\n;return(_);\n"),BT_execute);
1376  return (err!=0);
1377  }
1378  return FALSE;
1379 }
1381 {
1382  if (iiCurrArgs==NULL)
1383  {
1384  if (strcmp(p->name,"#")==0)
1385  return iiDefaultParameter(p);
1386  Werror("not enough arguments for proc %s",VoiceName());
1387  p->CleanUp();
1388  return TRUE;
1389  }
1390  leftv h=iiCurrArgs;
1391  leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1392  BOOLEAN is_default_list=FALSE;
1393  if (strcmp(p->name,"#")==0)
1394  {
1395  is_default_list=TRUE;
1396  rest=NULL;
1397  }
1398  else
1399  {
1400  h->next=NULL;
1401  }
1402  BOOLEAN res=iiAssign(p,h);
1403  if (is_default_list)
1404  {
1405  iiCurrArgs=NULL;
1406  }
1407  else
1408  {
1409  iiCurrArgs=rest;
1410  }
1411  h->CleanUp();
1413  return res;
1414 }
1415 
1416 static BOOLEAN iiInternalExport (leftv v, int toLev)
1417 {
1418  idhdl h=(idhdl)v->data;
1419  //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1420  if (IDLEV(h)==0)
1421  {
1422  if ((myynest>0) && (BVERBOSE(V_REDEFINE))) Warn("`%s` is already global",IDID(h));
1423  }
1424  else
1425  {
1426  h=IDROOT->get(v->name,toLev);
1427  idhdl *root=&IDROOT;
1428  if ((h==NULL)&&(currRing!=NULL))
1429  {
1430  h=currRing->idroot->get(v->name,toLev);
1431  root=&currRing->idroot;
1432  }
1433  BOOLEAN keepring=FALSE;
1434  if ((h!=NULL)&&(IDLEV(h)==toLev))
1435  {
1436  if (IDTYP(h)==v->Typ())
1437  {
1438  if ((IDTYP(h)==RING_CMD)
1439  && (v->Data()==IDDATA(h)))
1440  {
1441  rIncRefCnt(IDRING(h));
1442  keepring=TRUE;
1443  IDLEV(h)=toLev;
1444  //WarnS("keepring");
1445  return FALSE;
1446  }
1447  if (BVERBOSE(V_REDEFINE))
1448  {
1449  Warn("redefining %s (%s)",IDID(h),my_yylinebuf);
1450  }
1451  if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1452  killhdl2(h,root,currRing);
1453  }
1454  else
1455  {
1456  return TRUE;
1457  }
1458  }
1459  h=(idhdl)v->data;
1460  IDLEV(h)=toLev;
1461  if (keepring) rDecRefCnt(IDRING(h));
1463  //Print("export %s\n",IDID(h));
1464  }
1465  return FALSE;
1466 }
1467 
1468 BOOLEAN iiInternalExport (leftv v, int toLev, package rootpack)
1469 {
1470  idhdl h=(idhdl)v->data;
1471  if(h==NULL)
1472  {
1473  Warn("'%s': no such identifier\n", v->name);
1474  return FALSE;
1475  }
1476  package frompack=v->req_packhdl;
1477  if (frompack==NULL) frompack=currPack;
1478  if ((RingDependend(IDTYP(h)))
1479  || ((IDTYP(h)==LIST_CMD)
1480  && (lRingDependend(IDLIST(h)))
1481  )
1482  )
1483  {
1484  //Print("// ==> Ringdependent set nesting to 0\n");
1485  return (iiInternalExport(v, toLev));
1486  }
1487  else
1488  {
1489  IDLEV(h)=toLev;
1490  v->req_packhdl=rootpack;
1491  if (h==frompack->idroot)
1492  {
1493  frompack->idroot=h->next;
1494  }
1495  else
1496  {
1497  idhdl hh=frompack->idroot;
1498  while ((hh!=NULL) && (hh->next!=h))
1499  hh=hh->next;
1500  if ((hh!=NULL) && (hh->next==h))
1501  hh->next=h->next;
1502  else
1503  {
1504  Werror("`%s` not found",v->Name());
1505  return TRUE;
1506  }
1507  }
1508  h->next=rootpack->idroot;
1509  rootpack->idroot=h;
1510  }
1511  return FALSE;
1512 }
1513 
1514 BOOLEAN iiExport (leftv v, int toLev)
1515 {
1516  BOOLEAN nok=FALSE;
1517  leftv r=v;
1518  while (v!=NULL)
1519  {
1520  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1521  {
1522  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1523  nok=TRUE;
1524  }
1525  else
1526  {
1527  if(iiInternalExport(v, toLev))
1528  {
1529  r->CleanUp();
1530  return TRUE;
1531  }
1532  }
1533  v=v->next;
1534  }
1535  r->CleanUp();
1536  return nok;
1537 }
1538 
1539 /*assume root!=idroot*/
1540 BOOLEAN iiExport (leftv v, int toLev, package pack)
1541 {
1542 // if ((pack==basePack)&&(pack!=currPack))
1543 // { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1544  BOOLEAN nok=FALSE;
1545  leftv rv=v;
1546  while (v!=NULL)
1547  {
1548  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1549  )
1550  {
1551  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1552  nok=TRUE;
1553  }
1554  else
1555  {
1556  idhdl old=pack->idroot->get( v->name,toLev);
1557  if (old!=NULL)
1558  {
1559  if ((pack==currPack) && (old==(idhdl)v->data))
1560  {
1561  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1562  break;
1563  }
1564  else if (IDTYP(old)==v->Typ())
1565  {
1566  if (BVERBOSE(V_REDEFINE))
1567  {
1568  Warn("redefining %s (%s)",IDID(old),my_yylinebuf);
1569  }
1570  v->name=omStrDup(v->name);
1571  killhdl2(old,&(pack->idroot),currRing);
1572  }
1573  else
1574  {
1575  rv->CleanUp();
1576  return TRUE;
1577  }
1578  }
1579  //Print("iiExport: pack=%s\n",IDID(root));
1580  if(iiInternalExport(v, toLev, pack))
1581  {
1582  rv->CleanUp();
1583  return TRUE;
1584  }
1585  }
1586  v=v->next;
1587  }
1588  rv->CleanUp();
1589  return nok;
1590 }
1591 
1593 {
1594  if (currRing==NULL)
1595  {
1596  #ifdef SIQ
1597  if (siq<=0)
1598  {
1599  #endif
1600  if (RingDependend(i))
1601  {
1602  WerrorS("no ring active (9)");
1603  return TRUE;
1604  }
1605  #ifdef SIQ
1606  }
1607  #endif
1608  }
1609  return FALSE;
1610 }
1611 
1612 poly iiHighCorner(ideal I, int ak)
1613 {
1614  int i;
1615  if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1616  poly po=NULL;
1618  {
1619  scComputeHC(I,currRing->qideal,ak,po);
1620  if (po!=NULL)
1621  {
1622  pGetCoeff(po)=nInit(1);
1623  for (i=rVar(currRing); i>0; i--)
1624  {
1625  if (pGetExp(po, i) > 0) pDecrExp(po,i);
1626  }
1627  pSetComp(po,ak);
1628  pSetm(po);
1629  }
1630  }
1631  else
1632  po=pOne();
1633  return po;
1634 }
1635 
1637 {
1638  if (p!=basePack)
1639  {
1640  idhdl t=basePack->idroot;
1641  while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1642  if (t==NULL)
1643  {
1644  WarnS("package not found\n");
1645  p=basePack;
1646  }
1647  }
1648 }
1649 
1650 idhdl rDefault(const char *s)
1651 {
1652  idhdl tmp=NULL;
1653 
1654  if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1655  if (tmp==NULL) return NULL;
1656 
1657 // if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1659  {
1661  }
1662 
1663  ring r = IDRING(tmp) = (ring) omAlloc0Bin(sip_sring_bin);
1664 
1665  #ifndef TEST_ZN_AS_ZP
1666  r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1667  #else
1668  mpz_t modBase;
1669  mpz_init_set_ui(modBase, (long)32003);
1670  ZnmInfo info;
1671  info.base= modBase;
1672  info.exp= 1;
1673  r->cf=nInitChar(n_Zn,(void*) &info);
1674  r->cf->is_field=1;
1675  r->cf->is_domain=1;
1676  r->cf->has_simple_Inverse=1;
1677  #endif
1678  r->N = 3;
1679  /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1680  /*names*/
1681  r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1682  r->names[0] = omStrDup("x");
1683  r->names[1] = omStrDup("y");
1684  r->names[2] = omStrDup("z");
1685  /*weights: entries for 3 blocks: NULL*/
1686  r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1687  /*order: dp,C,0*/
1688  r->order = (rRingOrder_t *) omAlloc(3 * sizeof(rRingOrder_t *));
1689  r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1690  r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1691  /* ringorder dp for the first block: var 1..3 */
1692  r->order[0] = ringorder_dp;
1693  r->block0[0] = 1;
1694  r->block1[0] = 3;
1695  /* ringorder C for the second block: no vars */
1696  r->order[1] = ringorder_C;
1697  /* the last block: everything is 0 */
1698  r->order[2] = (rRingOrder_t)0;
1699 
1700  /* complete ring intializations */
1701  rComplete(r);
1702  rSetHdl(tmp);
1703  return currRingHdl;
1704 }
1705 
1706 static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n);
1708 {
1709  if ((r==NULL)||(r->VarOffset==NULL))
1710  return NULL;
1712  if (h!=NULL) return h;
1713  if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1714  if (h!=NULL) return h;
1716  while(p!=NULL)
1717  {
1718  if ((p->cPack!=basePack)
1719  && (p->cPack!=currPack))
1720  h=rSimpleFindHdl(r,p->cPack->idroot,n);
1721  if (h!=NULL) return h;
1722  p=p->next;
1723  }
1724  idhdl tmp=basePack->idroot;
1725  while (tmp!=NULL)
1726  {
1727  if (IDTYP(tmp)==PACKAGE_CMD)
1728  h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1729  if (h!=NULL) return h;
1730  tmp=IDNEXT(tmp);
1731  }
1732  return NULL;
1733 }
1734 
1735 void rDecomposeCF(leftv h,const ring r,const ring R)
1736 {
1738  L->Init(4);
1739  h->rtyp=LIST_CMD;
1740  h->data=(void *)L;
1741  // 0: char/ cf - ring
1742  // 1: list (var)
1743  // 2: list (ord)
1744  // 3: qideal
1745  // ----------------------------------------
1746  // 0: char/ cf - ring
1747  L->m[0].rtyp=INT_CMD;
1748  L->m[0].data=(void *)(long)r->cf->ch;
1749  // ----------------------------------------
1750  // 1: list (var)
1752  LL->Init(r->N);
1753  int i;
1754  for(i=0; i<r->N; i++)
1755  {
1756  LL->m[i].rtyp=STRING_CMD;
1757  LL->m[i].data=(void *)omStrDup(r->names[i]);
1758  }
1759  L->m[1].rtyp=LIST_CMD;
1760  L->m[1].data=(void *)LL;
1761  // ----------------------------------------
1762  // 2: list (ord)
1764  i=rBlocks(r)-1;
1765  LL->Init(i);
1766  i--;
1767  lists LLL;
1768  for(; i>=0; i--)
1769  {
1770  intvec *iv;
1771  int j;
1772  LL->m[i].rtyp=LIST_CMD;
1774  LLL->Init(2);
1775  LLL->m[0].rtyp=STRING_CMD;
1776  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1777  if (r->block1[i]-r->block0[i] >=0 )
1778  {
1779  j=r->block1[i]-r->block0[i];
1780  if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1781  iv=new intvec(j+1);
1782  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1783  {
1784  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1785  }
1786  else switch (r->order[i])
1787  {
1788  case ringorder_dp:
1789  case ringorder_Dp:
1790  case ringorder_ds:
1791  case ringorder_Ds:
1792  case ringorder_lp:
1793  case ringorder_rp:
1794  case ringorder_ls:
1795  for(;j>=0; j--) (*iv)[j]=1;
1796  break;
1797  default: /* do nothing */;
1798  }
1799  }
1800  else
1801  {
1802  iv=new intvec(1);
1803  }
1804  LLL->m[1].rtyp=INTVEC_CMD;
1805  LLL->m[1].data=(void *)iv;
1806  LL->m[i].data=(void *)LLL;
1807  }
1808  L->m[2].rtyp=LIST_CMD;
1809  L->m[2].data=(void *)LL;
1810  // ----------------------------------------
1811  // 3: qideal
1812  L->m[3].rtyp=IDEAL_CMD;
1813  if (nCoeff_is_transExt(R->cf))
1814  L->m[3].data=(void *)idInit(1,1);
1815  else
1816  {
1817  ideal q=idInit(IDELEMS(r->qideal));
1818  q->m[0]=p_Init(R);
1819  pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1820  L->m[3].data=(void *)q;
1821 // I->m[0] = pNSet(R->minpoly);
1822  }
1823  // ----------------------------------------
1824 }
1825 static void rDecomposeC_41(leftv h,const coeffs C)
1826 /* field is R or C */
1827 {
1829  if (nCoeff_is_long_C(C)) L->Init(3);
1830  else L->Init(2);
1831  h->rtyp=LIST_CMD;
1832  h->data=(void *)L;
1833  // 0: char/ cf - ring
1834  // 1: list (var)
1835  // 2: list (ord)
1836  // ----------------------------------------
1837  // 0: char/ cf - ring
1838  L->m[0].rtyp=INT_CMD;
1839  L->m[0].data=(void *)0;
1840  // ----------------------------------------
1841  // 1:
1843  LL->Init(2);
1844  LL->m[0].rtyp=INT_CMD;
1845  LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1846  LL->m[1].rtyp=INT_CMD;
1847  LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1848  L->m[1].rtyp=LIST_CMD;
1849  L->m[1].data=(void *)LL;
1850  // ----------------------------------------
1851  // 2: list (par)
1852  if (nCoeff_is_long_C(C))
1853  {
1854  L->m[2].rtyp=STRING_CMD;
1855  L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1856  }
1857  // ----------------------------------------
1858 }
1859 static void rDecomposeC(leftv h,const ring R)
1860 /* field is R or C */
1861 {
1863  if (rField_is_long_C(R)) L->Init(3);
1864  else L->Init(2);
1865  h->rtyp=LIST_CMD;
1866  h->data=(void *)L;
1867  // 0: char/ cf - ring
1868  // 1: list (var)
1869  // 2: list (ord)
1870  // ----------------------------------------
1871  // 0: char/ cf - ring
1872  L->m[0].rtyp=INT_CMD;
1873  L->m[0].data=(void *)0;
1874  // ----------------------------------------
1875  // 1:
1877  LL->Init(2);
1878  LL->m[0].rtyp=INT_CMD;
1879  LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1880  LL->m[1].rtyp=INT_CMD;
1881  LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1882  L->m[1].rtyp=LIST_CMD;
1883  L->m[1].data=(void *)LL;
1884  // ----------------------------------------
1885  // 2: list (par)
1886  if (rField_is_long_C(R))
1887  {
1888  L->m[2].rtyp=STRING_CMD;
1889  L->m[2].data=(void *)omStrDup(*rParameter(R));
1890  }
1891  // ----------------------------------------
1892 }
1893 
1894 #ifdef HAVE_RINGS
1896 /* field is R or C */
1897 {
1899  if (nCoeff_is_Ring(C)) L->Init(1);
1900  else L->Init(2);
1901  h->rtyp=LIST_CMD;
1902  h->data=(void *)L;
1903  // 0: char/ cf - ring
1904  // 1: list (module)
1905  // ----------------------------------------
1906  // 0: char/ cf - ring
1907  L->m[0].rtyp=STRING_CMD;
1908  L->m[0].data=(void *)omStrDup("integer");
1909  // ----------------------------------------
1910  // 1: modulo
1911  if (nCoeff_is_Z(C)) return;
1913  LL->Init(2);
1914  LL->m[0].rtyp=BIGINT_CMD;
1915  LL->m[0].data=n_InitMPZ( C->modBase, coeffs_BIGINT);
1916  LL->m[1].rtyp=INT_CMD;
1917  LL->m[1].data=(void *) C->modExponent;
1918  L->m[1].rtyp=LIST_CMD;
1919  L->m[1].data=(void *)LL;
1920 }
1921 #endif
1922 
1923 void rDecomposeRing(leftv h,const ring R)
1924 /* field is R or C */
1925 {
1926 #ifdef HAVE_RINGS
1928  if (rField_is_Z(R)) L->Init(1);
1929  else L->Init(2);
1930  h->rtyp=LIST_CMD;
1931  h->data=(void *)L;
1932  // 0: char/ cf - ring
1933  // 1: list (module)
1934  // ----------------------------------------
1935  // 0: char/ cf - ring
1936  L->m[0].rtyp=STRING_CMD;
1937  L->m[0].data=(void *)omStrDup("integer");
1938  // ----------------------------------------
1939  // 1: module
1940  if (rField_is_Z(R)) return;
1942  LL->Init(2);
1943  LL->m[0].rtyp=BIGINT_CMD;
1944  LL->m[0].data=n_InitMPZ( R->cf->modBase, coeffs_BIGINT);
1945  LL->m[1].rtyp=INT_CMD;
1946  LL->m[1].data=(void *) R->cf->modExponent;
1947  L->m[1].rtyp=LIST_CMD;
1948  L->m[1].data=(void *)LL;
1949 #else
1950  WerrorS("rDecomposeRing");
1951 #endif
1952 }
1953 
1954 
1956 {
1957  assume( C != NULL );
1958 
1959  // sanity check: require currRing==r for rings with polynomial data
1960  if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1961  {
1962  WerrorS("ring with polynomial data must be the base ring or compatible");
1963  return TRUE;
1964  }
1965  if (nCoeff_is_numeric(C))
1966  {
1967  rDecomposeC_41(res,C);
1968  }
1969 #ifdef HAVE_RINGS
1970  else if (nCoeff_is_Ring(C))
1971  {
1973  }
1974 #endif
1975  else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1976  {
1977  rDecomposeCF(res, C->extRing, currRing);
1978  }
1979  else if(nCoeff_is_GF(C))
1980  {
1982  Lc->Init(4);
1983  // char:
1984  Lc->m[0].rtyp=INT_CMD;
1985  Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1986  // var:
1988  Lv->Init(1);
1989  Lv->m[0].rtyp=STRING_CMD;
1990  Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1991  Lc->m[1].rtyp=LIST_CMD;
1992  Lc->m[1].data=(void*)Lv;
1993  // ord:
1995  Lo->Init(1);
1997  Loo->Init(2);
1998  Loo->m[0].rtyp=STRING_CMD;
1999  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2000 
2001  intvec *iv=new intvec(1); (*iv)[0]=1;
2002  Loo->m[1].rtyp=INTVEC_CMD;
2003  Loo->m[1].data=(void *)iv;
2004 
2005  Lo->m[0].rtyp=LIST_CMD;
2006  Lo->m[0].data=(void*)Loo;
2007 
2008  Lc->m[2].rtyp=LIST_CMD;
2009  Lc->m[2].data=(void*)Lo;
2010  // q-ideal:
2011  Lc->m[3].rtyp=IDEAL_CMD;
2012  Lc->m[3].data=(void *)idInit(1,1);
2013  // ----------------------
2014  res->rtyp=LIST_CMD;
2015  res->data=(void*)Lc;
2016  }
2017  else
2018  {
2019  res->rtyp=INT_CMD;
2020  res->data=(void *)(long)C->ch;
2021  }
2022  // ----------------------------------------
2023  return FALSE;
2024 }
2025 
2027 {
2028  assume( r != NULL );
2029  const coeffs C = r->cf;
2030  assume( C != NULL );
2031 
2032  // sanity check: require currRing==r for rings with polynomial data
2033  if ( (r!=currRing) && (
2034  (r->qideal != NULL)
2035 #ifdef HAVE_PLURAL
2036  || (rIsPluralRing(r))
2037 #endif
2038  )
2039  )
2040  {
2041  WerrorS("ring with polynomial data must be the base ring or compatible");
2042  return NULL;
2043  }
2044  // 0: char/ cf - ring
2045  // 1: list (var)
2046  // 2: list (ord)
2047  // 3: qideal
2048  // possibly:
2049  // 4: C
2050  // 5: D
2052  if (rIsPluralRing(r))
2053  L->Init(6);
2054  else
2055  L->Init(4);
2056  // ----------------------------------------
2057  // 0: char/ cf - ring
2058  L->m[0].rtyp=CRING_CMD;
2059  L->m[0].data=(char*)r->cf; r->cf->ref++;
2060  // ----------------------------------------
2061  // 1: list (var)
2063  LL->Init(r->N);
2064  int i;
2065  for(i=0; i<r->N; i++)
2066  {
2067  LL->m[i].rtyp=STRING_CMD;
2068  LL->m[i].data=(void *)omStrDup(r->names[i]);
2069  }
2070  L->m[1].rtyp=LIST_CMD;
2071  L->m[1].data=(void *)LL;
2072  // ----------------------------------------
2073  // 2: list (ord)
2075  i=rBlocks(r)-1;
2076  LL->Init(i);
2077  i--;
2078  lists LLL;
2079  for(; i>=0; i--)
2080  {
2081  intvec *iv;
2082  int j;
2083  LL->m[i].rtyp=LIST_CMD;
2085  LLL->Init(2);
2086  LLL->m[0].rtyp=STRING_CMD;
2087  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2088 
2089  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
2090  {
2091  assume( r->block0[i] == r->block1[i] );
2092  const int s = r->block0[i];
2093  assume( -2 < s && s < 2);
2094 
2095  iv=new intvec(1);
2096  (*iv)[0] = s;
2097  }
2098  else if (r->block1[i]-r->block0[i] >=0 )
2099  {
2100  int bl=j=r->block1[i]-r->block0[i];
2101  if (r->order[i]==ringorder_M)
2102  {
2103  j=(j+1)*(j+1)-1;
2104  bl=j+1;
2105  }
2106  else if (r->order[i]==ringorder_am)
2107  {
2108  j+=r->wvhdl[i][bl+1];
2109  }
2110  iv=new intvec(j+1);
2111  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2112  {
2113  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2114  }
2115  else switch (r->order[i])
2116  {
2117  case ringorder_dp:
2118  case ringorder_Dp:
2119  case ringorder_ds:
2120  case ringorder_Ds:
2121  case ringorder_lp:
2122  for(;j>=0; j--) (*iv)[j]=1;
2123  break;
2124  default: /* do nothing */;
2125  }
2126  }
2127  else
2128  {
2129  iv=new intvec(1);
2130  }
2131  LLL->m[1].rtyp=INTVEC_CMD;
2132  LLL->m[1].data=(void *)iv;
2133  LL->m[i].data=(void *)LLL;
2134  }
2135  L->m[2].rtyp=LIST_CMD;
2136  L->m[2].data=(void *)LL;
2137  // ----------------------------------------
2138  // 3: qideal
2139  L->m[3].rtyp=IDEAL_CMD;
2140  if (r->qideal==NULL)
2141  L->m[3].data=(void *)idInit(1,1);
2142  else
2143  L->m[3].data=(void *)idCopy(r->qideal);
2144  // ----------------------------------------
2145 #ifdef HAVE_PLURAL // NC! in rDecompose
2146  if (rIsPluralRing(r))
2147  {
2148  L->m[4].rtyp=MATRIX_CMD;
2149  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2150  L->m[5].rtyp=MATRIX_CMD;
2151  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2152  }
2153 #endif
2154  return L;
2155 }
2156 
2157 lists rDecompose(const ring r)
2158 {
2159  assume( r != NULL );
2160  const coeffs C = r->cf;
2161  assume( C != NULL );
2162 
2163  // sanity check: require currRing==r for rings with polynomial data
2164  if ( (r!=currRing) && (
2165  (nCoeff_is_algExt(C) && (C != currRing->cf))
2166  || (r->qideal != NULL)
2167 #ifdef HAVE_PLURAL
2168  || (rIsPluralRing(r))
2169 #endif
2170  )
2171  )
2172  {
2173  WerrorS("ring with polynomial data must be the base ring or compatible");
2174  return NULL;
2175  }
2176  // 0: char/ cf - ring
2177  // 1: list (var)
2178  // 2: list (ord)
2179  // 3: qideal
2180  // possibly:
2181  // 4: C
2182  // 5: D
2184  if (rIsPluralRing(r))
2185  L->Init(6);
2186  else
2187  L->Init(4);
2188  // ----------------------------------------
2189  // 0: char/ cf - ring
2190  if (rField_is_numeric(r))
2191  {
2192  rDecomposeC(&(L->m[0]),r);
2193  }
2194  else if (rField_is_Ring(r))
2195  {
2196  rDecomposeRing(&(L->m[0]),r);
2197  }
2198  else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2199  {
2200  rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2201  }
2202  else if(rField_is_GF(r))
2203  {
2205  Lc->Init(4);
2206  // char:
2207  Lc->m[0].rtyp=INT_CMD;
2208  Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2209  // var:
2211  Lv->Init(1);
2212  Lv->m[0].rtyp=STRING_CMD;
2213  Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2214  Lc->m[1].rtyp=LIST_CMD;
2215  Lc->m[1].data=(void*)Lv;
2216  // ord:
2218  Lo->Init(1);
2220  Loo->Init(2);
2221  Loo->m[0].rtyp=STRING_CMD;
2222  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2223 
2224  intvec *iv=new intvec(1); (*iv)[0]=1;
2225  Loo->m[1].rtyp=INTVEC_CMD;
2226  Loo->m[1].data=(void *)iv;
2227 
2228  Lo->m[0].rtyp=LIST_CMD;
2229  Lo->m[0].data=(void*)Loo;
2230 
2231  Lc->m[2].rtyp=LIST_CMD;
2232  Lc->m[2].data=(void*)Lo;
2233  // q-ideal:
2234  Lc->m[3].rtyp=IDEAL_CMD;
2235  Lc->m[3].data=(void *)idInit(1,1);
2236  // ----------------------
2237  L->m[0].rtyp=LIST_CMD;
2238  L->m[0].data=(void*)Lc;
2239  }
2240  else
2241  {
2242  L->m[0].rtyp=INT_CMD;
2243  L->m[0].data=(void *)(long)r->cf->ch;
2244  }
2245  // ----------------------------------------
2246  // 1: list (var)
2248  LL->Init(r->N);
2249  int i;
2250  for(i=0; i<r->N; i++)
2251  {
2252  LL->m[i].rtyp=STRING_CMD;
2253  LL->m[i].data=(void *)omStrDup(r->names[i]);
2254  }
2255  L->m[1].rtyp=LIST_CMD;
2256  L->m[1].data=(void *)LL;
2257  // ----------------------------------------
2258  // 2: list (ord)
2260  i=rBlocks(r)-1;
2261  LL->Init(i);
2262  i--;
2263  lists LLL;
2264  for(; i>=0; i--)
2265  {
2266  intvec *iv;
2267  int j;
2268  LL->m[i].rtyp=LIST_CMD;
2270  LLL->Init(2);
2271  LLL->m[0].rtyp=STRING_CMD;
2272  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2273 
2274  if((r->order[i] == ringorder_IS)
2275  || (r->order[i] == ringorder_s)) //|| r->order[i] == ringorder_S)
2276  {
2277  assume( r->block0[i] == r->block1[i] );
2278  const int s = r->block0[i];
2279  assume( (-2 < s && s < 2)||(r->order[i] != ringorder_IS));
2280 
2281  iv=new intvec(1);
2282  (*iv)[0] = s;
2283  }
2284  else if (r->block1[i]-r->block0[i] >=0 )
2285  {
2286  int bl=j=r->block1[i]-r->block0[i];
2287  if (r->order[i]==ringorder_M)
2288  {
2289  j=(j+1)*(j+1)-1;
2290  bl=j+1;
2291  }
2292  else if (r->order[i]==ringorder_am)
2293  {
2294  j+=r->wvhdl[i][bl+1];
2295  }
2296  iv=new intvec(j+1);
2297  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2298  {
2299  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2300  }
2301  else switch (r->order[i])
2302  {
2303  case ringorder_dp:
2304  case ringorder_Dp:
2305  case ringorder_ds:
2306  case ringorder_Ds:
2307  case ringorder_lp:
2308  case ringorder_ls:
2309  case ringorder_rp:
2310  for(;j>=0; j--) (*iv)[j]=1;
2311  break;
2312  default: /* do nothing */;
2313  }
2314  }
2315  else
2316  {
2317  iv=new intvec(1);
2318  }
2319  LLL->m[1].rtyp=INTVEC_CMD;
2320  LLL->m[1].data=(void *)iv;
2321  LL->m[i].data=(void *)LLL;
2322  }
2323  L->m[2].rtyp=LIST_CMD;
2324  L->m[2].data=(void *)LL;
2325  // ----------------------------------------
2326  // 3: qideal
2327  L->m[3].rtyp=IDEAL_CMD;
2328  if (r->qideal==NULL)
2329  L->m[3].data=(void *)idInit(1,1);
2330  else
2331  L->m[3].data=(void *)idCopy(r->qideal);
2332  // ----------------------------------------
2333 #ifdef HAVE_PLURAL // NC! in rDecompose
2334  if (rIsPluralRing(r))
2335  {
2336  L->m[4].rtyp=MATRIX_CMD;
2337  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2338  L->m[5].rtyp=MATRIX_CMD;
2339  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2340  }
2341 #endif
2342  return L;
2343 }
2344 
2345 void rComposeC(lists L, ring R)
2346 /* field is R or C */
2347 {
2348  // ----------------------------------------
2349  // 0: char/ cf - ring
2350  if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2351  {
2352  WerrorS("invalid coeff. field description, expecting 0");
2353  return;
2354  }
2355 // R->cf->ch=0;
2356  // ----------------------------------------
2357  // 0, (r1,r2) [, "i" ]
2358  if (L->m[1].rtyp!=LIST_CMD)
2359  {
2360  WerrorS("invalid coeff. field description, expecting precision list");
2361  return;
2362  }
2363  lists LL=(lists)L->m[1].data;
2364  if ((LL->nr!=1)
2365  || (LL->m[0].rtyp!=INT_CMD)
2366  || (LL->m[1].rtyp!=INT_CMD))
2367  {
2368  WerrorS("invalid coeff. field description list, expected list(`int`,`int`)");
2369  return;
2370  }
2371  int r1=(int)(long)LL->m[0].data;
2372  int r2=(int)(long)LL->m[1].data;
2373  r1=si_min(r1,32767);
2374  r2=si_min(r2,32767);
2375  LongComplexInfo par; memset(&par, 0, sizeof(par));
2376  par.float_len=r1;
2377  par.float_len2=r2;
2378  if (L->nr==2) // complex
2379  {
2380  if (L->m[2].rtyp!=STRING_CMD)
2381  {
2382  WerrorS("invalid coeff. field description, expecting parameter name");
2383  return;
2384  }
2385  par.par_name=(char*)L->m[2].data;
2386  R->cf = nInitChar(n_long_C, &par);
2387  }
2388  else if ((r1<=SHORT_REAL_LENGTH) && (r2<=SHORT_REAL_LENGTH)) /* && L->nr==1*/
2389  R->cf = nInitChar(n_R, NULL);
2390  else /* && L->nr==1*/
2391  {
2392  R->cf = nInitChar(n_long_R, &par);
2393  }
2394 }
2395 
2396 #ifdef HAVE_RINGS
2397 void rComposeRing(lists L, ring R)
2398 /* field is R or C */
2399 {
2400  // ----------------------------------------
2401  // 0: string: integer
2402  // no further entries --> Z
2403  mpz_t modBase;
2404  unsigned int modExponent = 1;
2405 
2406  if (L->nr == 0)
2407  {
2408  mpz_init_set_ui(modBase,0);
2409  modExponent = 1;
2410  }
2411  // ----------------------------------------
2412  // 1:
2413  else
2414  {
2415  if (L->m[1].rtyp!=LIST_CMD) WerrorS("invalid data, expecting list of numbers");
2416  lists LL=(lists)L->m[1].data;
2417  if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2418  {
2419  number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2420  // assume that tmp is integer, not rational
2421  mpz_init(modBase);
2422  n_MPZ (modBase, tmp, coeffs_BIGINT);
2423  }
2424  else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2425  {
2426  mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2427  }
2428  else
2429  {
2430  mpz_init_set_ui(modBase,0);
2431  }
2432  if (LL->nr >= 1)
2433  {
2434  modExponent = (unsigned long) LL->m[1].data;
2435  }
2436  else
2437  {
2438  modExponent = 1;
2439  }
2440  }
2441  // ----------------------------------------
2442  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
2443  {
2444  WerrorS("Wrong ground ring specification (module is 1)");
2445  return;
2446  }
2447  if (modExponent < 1)
2448  {
2449  WerrorS("Wrong ground ring specification (exponent smaller than 1)");
2450  return;
2451  }
2452  // module is 0 ---> integers
2453  if (mpz_sgn1(modBase) == 0)
2454  {
2455  R->cf=nInitChar(n_Z,NULL);
2456  }
2457  // we have an exponent
2458  else if (modExponent > 1)
2459  {
2460  //R->cf->ch = R->cf->modExponent;
2461  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2462  {
2463  /* this branch should be active for modExponent = 2..32 resp. 2..64,
2464  depending on the size of a long on the respective platform */
2465  R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2466  }
2467  else
2468  {
2469  //ringtype 3
2470  ZnmInfo info;
2471  info.base= modBase;
2472  info.exp= modExponent;
2473  R->cf=nInitChar(n_Znm,(void*) &info);
2474  }
2475  }
2476  // just a module m > 1
2477  else
2478  {
2479  //ringtype = 2;
2480  //const int ch = mpz_get_ui(modBase);
2481  ZnmInfo info;
2482  info.base= modBase;
2483  info.exp= modExponent;
2484  R->cf=nInitChar(n_Zn,(void*) &info);
2485  }
2486  mpz_clear(modBase);
2487 }
2488 #endif
2489 
2490 static void rRenameVars(ring R)
2491 {
2492  int i,j;
2493  BOOLEAN ch;
2494  do
2495  {
2496  ch=0;
2497  for(i=0;i<R->N-1;i++)
2498  {
2499  for(j=i+1;j<R->N;j++)
2500  {
2501  if (strcmp(R->names[i],R->names[j])==0)
2502  {
2503  ch=TRUE;
2504  Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`in >>%s<<\nin %s:%d",i+1,j+1,R->names[i],R->names[i],my_yylinebuf,currentVoice->filename,yylineno);
2505  omFree(R->names[j]);
2506  R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2507  sprintf(R->names[j],"@%s",R->names[i]);
2508  }
2509  }
2510  }
2511  }
2512  while (ch);
2513  for(i=0;i<rPar(R); i++)
2514  {
2515  for(j=0;j<R->N;j++)
2516  {
2517  if (strcmp(rParameter(R)[i],R->names[j])==0)
2518  {
2519  Warn("name conflict par(%d) and var(%d): `%s`, rename the VARIABLE to `@@(%d)`in >>%s<<\nin %s:%d",i+1,j+1,R->names[j],i+1,my_yylinebuf,currentVoice->filename,yylineno);
2520 // omFree(rParameter(R)[i]);
2521 // rParameter(R)[i]=(char *)omAlloc(10);
2522 // sprintf(rParameter(R)[i],"@@(%d)",i+1);
2523  omFree(R->names[j]);
2524  R->names[j]=(char *)omAlloc(10);
2525  sprintf(R->names[j],"@@(%d)",i+1);
2526  }
2527  }
2528  }
2529 }
2530 
2531 static inline BOOLEAN rComposeVar(const lists L, ring R)
2532 {
2533  assume(R!=NULL);
2534  if (L->m[1].Typ()==LIST_CMD)
2535  {
2536  lists v=(lists)L->m[1].Data();
2537  R->N = v->nr+1;
2538  if (R->N<=0)
2539  {
2540  WerrorS("no ring variables");
2541  return TRUE;
2542  }
2543  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2544  int i;
2545  for(i=0;i<R->N;i++)
2546  {
2547  if (v->m[i].Typ()==STRING_CMD)
2548  R->names[i]=omStrDup((char *)v->m[i].Data());
2549  else if (v->m[i].Typ()==POLY_CMD)
2550  {
2551  poly p=(poly)v->m[i].Data();
2552  int nr=pIsPurePower(p);
2553  if (nr>0)
2554  R->names[i]=omStrDup(currRing->names[nr-1]);
2555  else
2556  {
2557  Werror("var name %d must be a string or a ring variable",i+1);
2558  return TRUE;
2559  }
2560  }
2561  else
2562  {
2563  Werror("var name %d must be `string` (not %d)",i+1, v->m[i].Typ());
2564  return TRUE;
2565  }
2566  }
2567  }
2568  else
2569  {
2570  WerrorS("variable must be given as `list`");
2571  return TRUE;
2572  }
2573  return FALSE;
2574 }
2575 
2576 static inline BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
2577 {
2578  assume(R!=NULL);
2579  long bitmask=0L;
2580  if (L->m[2].Typ()==LIST_CMD)
2581  {
2582  lists v=(lists)L->m[2].Data();
2583  int n= v->nr+2;
2584  int j_in_R,j_in_L;
2585  // do we have an entry "L",... ?: set bitmask
2586  for (int j=0; j < n-1; j++)
2587  {
2588  if (v->m[j].Typ()==LIST_CMD)
2589  {
2590  lists vv=(lists)v->m[j].Data();
2591  if ((vv->nr==1)
2592  &&(vv->m[0].Typ()==STRING_CMD)
2593  &&(strcmp((char*)vv->m[0].Data(),"L")==0))
2594  {
2595  number nn=(number)vv->m[1].Data();
2596  if (vv->m[1].Typ()==BIGINT_CMD)
2597  bitmask=n_Int(nn,coeffs_BIGINT);
2598  else if (vv->m[1].Typ()==INT_CMD)
2599  bitmask=(long)nn;
2600  else
2601  {
2602  Werror("illegal argument for pseudo ordering L: %d",vv->m[1].Typ());
2603  return TRUE;
2604  }
2605  break;
2606  }
2607  }
2608  }
2609  if (bitmask!=0) n--;
2610 
2611  // initialize fields of R
2612  R->order=(rRingOrder_t *)omAlloc0((n+1)*sizeof(rRingOrder_t));
2613  R->block0=(int *)omAlloc0((n+1)*sizeof(int));
2614  R->block1=(int *)omAlloc0((n+1)*sizeof(int));
2615  R->wvhdl=(int**)omAlloc0((n+1)*sizeof(int_ptr));
2616  // init order, so that rBlocks works correctly
2617  for (j_in_R= n-2; j_in_R>=0; j_in_R--)
2618  R->order[j_in_R] = ringorder_unspec;
2619  // orderings
2620  for(j_in_R=0,j_in_L=0;j_in_R<n-1;j_in_R++,j_in_L++)
2621  {
2622  // todo: a(..), M
2623  if (v->m[j_in_L].Typ()!=LIST_CMD)
2624  {
2625  WerrorS("ordering must be list of lists");
2626  return TRUE;
2627  }
2628  lists vv=(lists)v->m[j_in_L].Data();
2629  if ((vv->nr==1)
2630  && (vv->m[0].Typ()==STRING_CMD))
2631  {
2632  if (strcmp((char*)vv->m[0].Data(),"L")==0)
2633  {
2634  j_in_R--;
2635  continue;
2636  }
2637  if ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD)
2638  && (vv->m[1].Typ()!=INTMAT_CMD))
2639  {
2640  PrintS(lString(vv));
2641  Werror("ordering name must be a (string,intvec), not (string,%s)",Tok2Cmdname(vv->m[1].Typ()));
2642  return TRUE;
2643  }
2644  R->order[j_in_R]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2645 
2646  if (j_in_R==0) R->block0[0]=1;
2647  else
2648  {
2649  int jj=j_in_R-1;
2650  while((jj>=0)
2651  && ((R->order[jj]== ringorder_a)
2652  || (R->order[jj]== ringorder_aa)
2653  || (R->order[jj]== ringorder_am)
2654  || (R->order[jj]== ringorder_c)
2655  || (R->order[jj]== ringorder_C)
2656  || (R->order[jj]== ringorder_s)
2657  || (R->order[jj]== ringorder_S)
2658  ))
2659  {
2660  //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2661  jj--;
2662  }
2663  if (jj<0) R->block0[j_in_R]=1;
2664  else R->block0[j_in_R]=R->block1[jj]+1;
2665  }
2666  intvec *iv;
2667  if (vv->m[1].Typ()==INT_CMD)
2668  {
2669  int l=si_max(1,(int)(long)vv->m[1].Data());
2670  iv=new intvec(l);
2671  for(int i=0;i<l;i++) (*iv)[i]=1;
2672  }
2673  else
2674  iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC/INTMAT
2675  int iv_len=iv->length();
2676  if (iv_len==0)
2677  {
2678  Werror("empty intvec for ordering %d (%s)",j_in_R+1,rSimpleOrdStr(R->order[j_in_R]));
2679  return TRUE;
2680  }
2681  if (R->order[j_in_R]==ringorder_M)
2682  {
2683  if (vv->m[1].rtyp==INTMAT_CMD) iv->makeVector();
2684  iv_len=iv->length();
2685  }
2686  if ((R->order[j_in_R]!=ringorder_s)
2687  &&(R->order[j_in_R]!=ringorder_c)
2688  &&(R->order[j_in_R]!=ringorder_C))
2689  {
2690  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+iv_len-1);
2691  if (R->block1[j_in_R]>R->N)
2692  {
2693  if (R->block0[j_in_R]>R->N)
2694  {
2695  Werror("not enough variables for ordering %d (%s)",j_in_R,rSimpleOrdStr(R->order[j_in_R]));
2696  return TRUE;
2697  }
2698  R->block1[j_in_R]=R->N;
2699  iv_len=R->block1[j_in_R]-R->block0[j_in_R]+1;
2700  }
2701  //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2702  }
2703  int i;
2704  switch (R->order[j_in_R])
2705  {
2706  case ringorder_ws:
2707  case ringorder_Ws:
2708  R->OrdSgn=-1; // and continue
2709  case ringorder_aa:
2710  case ringorder_a:
2711  case ringorder_wp:
2712  case ringorder_Wp:
2713  R->wvhdl[j_in_R] =( int *)omAlloc(iv_len*sizeof(int));
2714  for (i=0; i<iv_len;i++)
2715  {
2716  R->wvhdl[j_in_R][i]=(*iv)[i];
2717  }
2718  break;
2719  case ringorder_am:
2720  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2721  for (i=0; i<iv_len;i++)
2722  {
2723  R->wvhdl[j_in_R][i]=(*iv)[i];
2724  }
2725  R->wvhdl[j_in_R][i]=iv->length() - iv_len;
2726  //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2727  for (; i<iv->length(); i++)
2728  {
2729  R->wvhdl[j_in_R][i+1]=(*iv)[i];
2730  }
2731  break;
2732  case ringorder_M:
2733  R->wvhdl[j_in_R] =( int *)omAlloc((iv->length())*sizeof(int));
2734  for (i=0; i<iv->length();i++) R->wvhdl[j_in_R][i]=(*iv)[i];
2735  R->block1[j_in_R]=si_max(R->block0[j_in_R],R->block0[j_in_R]+(int)sqrt((double)(iv->length())));
2736  if (R->block1[j_in_R]>R->N)
2737  {
2738  R->block1[j_in_R]=R->N;
2739  }
2740  break;
2741  case ringorder_ls:
2742  case ringorder_ds:
2743  case ringorder_Ds:
2744  case ringorder_rs:
2745  R->OrdSgn=-1;
2746  case ringorder_lp:
2747  case ringorder_dp:
2748  case ringorder_Dp:
2749  case ringorder_rp:
2750  #if 0
2751  for (i=0; i<iv_len;i++)
2752  {
2753  if (((*iv)[i]!=1)&&(iv_len!=1))
2754  {
2755  iv->show(1);
2756  Warn("ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2757  (*iv)[i],j_in_R+1,rSimpleOrdStr(R->order[j_in_R]),i+1,my_yylinebuf);
2758  break;
2759  }
2760  }
2761  #endif // break absfact.tst
2762  break;
2763  case ringorder_S:
2764  break;
2765  case ringorder_c:
2766  case ringorder_C:
2767  R->block1[j_in_R]=R->block0[j_in_R]=0;
2768  break;
2769 
2770  case ringorder_s:
2771  R->block1[j_in_R]=R->block0[j_in_R]=(*iv)[0];
2772  rSetSyzComp(R->block0[j_in_R],R);
2773  break;
2774 
2775  case ringorder_IS:
2776  {
2777  R->block1[j_in_R] = R->block0[j_in_R] = 0;
2778  if( iv->length() > 0 )
2779  {
2780  const int s = (*iv)[0];
2781  assume( -2 < s && s < 2 );
2782  R->block1[j_in_R] = R->block0[j_in_R] = s;
2783  }
2784  break;
2785  }
2786  case 0:
2787  case ringorder_unspec:
2788  break;
2789  case ringorder_L: /* cannot happen */
2790  case ringorder_a64: /*not implemented */
2791  WerrorS("ring order not implemented");
2792  return TRUE;
2793  }
2794  delete iv;
2795  }
2796  else
2797  {
2798  PrintS(lString(vv));
2799  WerrorS("ordering name must be a (string,intvec)");
2800  return TRUE;
2801  }
2802  }
2803  // sanity check
2804  j_in_R=n-2;
2805  if ((R->order[j_in_R]==ringorder_c)
2806  || (R->order[j_in_R]==ringorder_C)
2807  || (R->order[j_in_R]==ringorder_unspec)) j_in_R--;
2808  if (R->block1[j_in_R] != R->N)
2809  {
2810  if (((R->order[j_in_R]==ringorder_dp) ||
2811  (R->order[j_in_R]==ringorder_ds) ||
2812  (R->order[j_in_R]==ringorder_Dp) ||
2813  (R->order[j_in_R]==ringorder_Ds) ||
2814  (R->order[j_in_R]==ringorder_rp) ||
2815  (R->order[j_in_R]==ringorder_rs) ||
2816  (R->order[j_in_R]==ringorder_lp) ||
2817  (R->order[j_in_R]==ringorder_ls))
2818  &&
2819  R->block0[j_in_R] <= R->N)
2820  {
2821  R->block1[j_in_R] = R->N;
2822  }
2823  else
2824  {
2825  Werror("ordering incomplete: size (%d) should be %d",R->block1[j_in_R],R->N);
2826  return TRUE;
2827  }
2828  }
2829  if (R->block0[j_in_R]>R->N)
2830  {
2831  Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j_in_R+1);
2832  for(int ii=0;ii<=j_in_R;ii++)
2833  Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2834  return TRUE;
2835  }
2836  if (check_comp)
2837  {
2838  BOOLEAN comp_order=FALSE;
2839  int jj;
2840  for(jj=0;jj<n;jj++)
2841  {
2842  if ((R->order[jj]==ringorder_c) ||
2843  (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2844  }
2845  if (!comp_order)
2846  {
2847  R->order=(rRingOrder_t*)omRealloc0Size(R->order,n*sizeof(rRingOrder_t),(n+1)*sizeof(rRingOrder_t));
2848  R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2849  R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2850  R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2851  R->order[n-1]=ringorder_C;
2852  R->block0[n-1]=0;
2853  R->block1[n-1]=0;
2854  R->wvhdl[n-1]=NULL;
2855  n++;
2856  }
2857  }
2858  }
2859  else
2860  {
2861  WerrorS("ordering must be given as `list`");
2862  return TRUE;
2863  }
2864  if (bitmask!=0) { R->bitmask=bitmask; R->wanted_maxExp=bitmask; }
2865  return FALSE;
2866 }
2867 
2868 ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask,const int isLetterplace)
2869 {
2870  if ((L->nr!=3)
2871 #ifdef HAVE_PLURAL
2872  &&(L->nr!=5)
2873 #endif
2874  )
2875  return NULL;
2876  int is_gf_char=0;
2877  // 0: char/ cf - ring
2878  // 1: list (var)
2879  // 2: list (ord)
2880  // 3: qideal
2881  // possibly:
2882  // 4: C
2883  // 5: D
2884 
2885  ring R = (ring) omAlloc0Bin(sip_sring_bin);
2886 
2887  // ------------------------------------------------------------------
2888  // 0: char:
2889  if (L->m[0].Typ()==CRING_CMD)
2890  {
2891  R->cf=(coeffs)L->m[0].Data();
2892  R->cf->ref++;
2893  }
2894  else if (L->m[0].Typ()==INT_CMD)
2895  {
2896  int ch = (int)(long)L->m[0].Data();
2897  assume( ch >= 0 );
2898 
2899  if (ch == 0) // Q?
2900  R->cf = nInitChar(n_Q, NULL);
2901  else
2902  {
2903  int l = IsPrime(ch); // Zp?
2904  if( l != ch )
2905  {
2906  Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2907  ch = l;
2908  }
2909  #ifndef TEST_ZN_AS_ZP
2910  R->cf = nInitChar(n_Zp, (void*)(long)ch);
2911  #else
2912  mpz_t modBase;
2913  mpz_init_set_ui(modBase,(long) ch);
2914  ZnmInfo info;
2915  info.base= modBase;
2916  info.exp= 1;
2917  R->cf=nInitChar(n_Zn,(void*) &info); //exponent is missing
2918  R->cf->is_field=1;
2919  R->cf->is_domain=1;
2920  R->cf->has_simple_Inverse=1;
2921  #endif
2922  }
2923  }
2924  else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2925  {
2926  lists LL=(lists)L->m[0].Data();
2927 
2928 #ifdef HAVE_RINGS
2929  if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2930  {
2931  rComposeRing(LL, R); // Ring!?
2932  }
2933  else
2934 #endif
2935  if (LL->nr < 3)
2936  rComposeC(LL,R); // R, long_R, long_C
2937  else
2938  {
2939  if (LL->m[0].Typ()==INT_CMD)
2940  {
2941  int ch = (int)(long)LL->m[0].Data();
2942  while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2943  if (fftable[is_gf_char]==0) is_gf_char=-1;
2944 
2945  if(is_gf_char!= -1)
2946  {
2947  GFInfo param;
2948 
2949  param.GFChar = ch;
2950  param.GFDegree = 1;
2951  param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2952 
2953  // nfInitChar should be able to handle the case when ch is in fftables!
2954  R->cf = nInitChar(n_GF, (void*)&param);
2955  }
2956  }
2957 
2958  if( R->cf == NULL )
2959  {
2960  ring extRing = rCompose((lists)L->m[0].Data(),FALSE,0x7fff);
2961 
2962  if (extRing==NULL)
2963  {
2964  WerrorS("could not create the specified coefficient field");
2965  goto rCompose_err;
2966  }
2967 
2968  if( extRing->qideal != NULL ) // Algebraic extension
2969  {
2970  AlgExtInfo extParam;
2971 
2972  extParam.r = extRing;
2973 
2974  R->cf = nInitChar(n_algExt, (void*)&extParam);
2975  }
2976  else // Transcendental extension
2977  {
2978  TransExtInfo extParam;
2979  extParam.r = extRing;
2980  assume( extRing->qideal == NULL );
2981 
2982  R->cf = nInitChar(n_transExt, &extParam);
2983  }
2984  }
2985  }
2986  }
2987  else
2988  {
2989  WerrorS("coefficient field must be described by `int` or `list`");
2990  goto rCompose_err;
2991  }
2992 
2993  if( R->cf == NULL )
2994  {
2995  WerrorS("could not create coefficient field described by the input!");
2996  goto rCompose_err;
2997  }
2998 
2999  // ------------------------- VARS ---------------------------
3000  if (rComposeVar(L,R)) goto rCompose_err;
3001  // ------------------------ ORDER ------------------------------
3002  if (rComposeOrder(L,check_comp,R)) goto rCompose_err;
3003 
3004  // ------------------------ ??????? --------------------
3005 
3006  if (!isLetterplace) rRenameVars(R);
3007  #ifdef HAVE_SHIFTBBA
3008  else
3009  {
3010  R->isLPring=isLetterplace;
3011  R->ShortOut=FALSE;
3012  R->CanShortOut=FALSE;
3013  }
3014  #endif
3015  if ((bitmask!=0)&&(R->wanted_maxExp==0)) R->wanted_maxExp=bitmask;
3016  rComplete(R);
3017 
3018  // ------------------------ Q-IDEAL ------------------------
3019 
3020  if (L->m[3].Typ()==IDEAL_CMD)
3021  {
3022  ideal q=(ideal)L->m[3].Data();
3023  if (q->m[0]!=NULL)
3024  {
3025  if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
3026  {
3027  #if 0
3028  WerrorS("coefficient fields must be equal if q-ideal !=0");
3029  goto rCompose_err;
3030  #else
3031  ring orig_ring=currRing;
3032  rChangeCurrRing(R);
3033  int *perm=NULL;
3034  int *par_perm=NULL;
3035  int par_perm_size=0;
3036  nMapFunc nMap;
3037 
3038  if ((nMap=nSetMap(orig_ring->cf))==NULL)
3039  {
3040  if (rEqual(orig_ring,currRing))
3041  {
3042  nMap=n_SetMap(currRing->cf, currRing->cf);
3043  }
3044  else
3045  // Allow imap/fetch to be make an exception only for:
3046  if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
3050  ||
3051  (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
3052  (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
3053  rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
3054  {
3055  par_perm_size=rPar(orig_ring);
3056 
3057 // if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
3058 // naSetChar(rInternalChar(orig_ring),orig_ring);
3059 // else ntSetChar(rInternalChar(orig_ring),orig_ring);
3060 
3061  nSetChar(currRing->cf);
3062  }
3063  else
3064  {
3065  WerrorS("coefficient fields must be equal if q-ideal !=0");
3066  goto rCompose_err;
3067  }
3068  }
3069  perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
3070  if (par_perm_size!=0)
3071  par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
3072  int i;
3073  #if 0
3074  // use imap:
3075  maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
3076  currRing->names,currRing->N,currRing->parameter, currRing->P,
3077  perm,par_perm, currRing->ch);
3078  #else
3079  // use fetch
3080  if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
3081  {
3082  for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
3083  }
3084  else if (par_perm_size!=0)
3085  for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
3086  for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
3087  #endif
3088  ideal dest_id=idInit(IDELEMS(q),1);
3089  for(i=IDELEMS(q)-1; i>=0; i--)
3090  {
3091  dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
3092  par_perm,par_perm_size);
3093  // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
3094  pTest(dest_id->m[i]);
3095  }
3096  R->qideal=dest_id;
3097  if (perm!=NULL)
3098  omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
3099  if (par_perm!=NULL)
3100  omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
3101  rChangeCurrRing(orig_ring);
3102  #endif
3103  }
3104  else
3105  R->qideal=idrCopyR(q,currRing,R);
3106  }
3107  }
3108  else
3109  {
3110  WerrorS("q-ideal must be given as `ideal`");
3111  goto rCompose_err;
3112  }
3113 
3114 
3115  // ---------------------------------------------------------------
3116  #ifdef HAVE_PLURAL
3117  if (L->nr==5)
3118  {
3119  if (nc_CallPlural((matrix)L->m[4].Data(),
3120  (matrix)L->m[5].Data(),
3121  NULL,NULL,
3122  R,
3123  true, // !!!
3124  true, false,
3125  currRing, FALSE)) goto rCompose_err;
3126  // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
3127  }
3128  #endif
3129  return R;
3130 
3131 rCompose_err:
3132  if (R->N>0)
3133  {
3134  int i;
3135  if (R->names!=NULL)
3136  {
3137  i=R->N-1;
3138  while (i>=0) { omfree(R->names[i]); i--; }
3139  omFree(R->names);
3140  }
3141  }
3142  omfree(R->order);
3143  omfree(R->block0);
3144  omfree(R->block1);
3145  omfree(R->wvhdl);
3146  omFree(R);
3147  return NULL;
3148 }
3149 
3150 // from matpol.cc
3151 
3152 /*2
3153 * compute the jacobi matrix of an ideal
3154 */
3156 {
3157  int i,j;
3158  matrix result;
3159  ideal id=(ideal)a->Data();
3160 
3161  result =mpNew(IDELEMS(id),rVar(currRing));
3162  for (i=1; i<=IDELEMS(id); i++)
3163  {
3164  for (j=1; j<=rVar(currRing); j++)
3165  {
3166  MATELEM(result,i,j) = pDiff(id->m[i-1],j);
3167  }
3168  }
3169  res->data=(char *)result;
3170  return FALSE;
3171 }
3172 
3173 /*2
3174 * returns the Koszul-matrix of degree d of a vectorspace with dimension n
3175 * uses the first n entrees of id, if id <> NULL
3176 */
3178 {
3179  int n=(int)(long)b->Data();
3180  int d=(int)(long)c->Data();
3181  int k,l,sign,row,col;
3182  matrix result;
3183  ideal temp;
3184  BOOLEAN bo;
3185  poly p;
3186 
3187  if ((d>n) || (d<1) || (n<1))
3188  {
3189  res->data=(char *)mpNew(1,1);
3190  return FALSE;
3191  }
3192  int *choise = (int*)omAlloc(d*sizeof(int));
3193  if (id==NULL)
3194  temp=idMaxIdeal(1);
3195  else
3196  temp=(ideal)id->Data();
3197 
3198  k = binom(n,d);
3199  l = k*d;
3200  l /= n-d+1;
3201  result =mpNew(l,k);
3202  col = 1;
3203  idInitChoise(d,1,n,&bo,choise);
3204  while (!bo)
3205  {
3206  sign = 1;
3207  for (l=1;l<=d;l++)
3208  {
3209  if (choise[l-1]<=IDELEMS(temp))
3210  {
3211  p = pCopy(temp->m[choise[l-1]-1]);
3212  if (sign == -1) p = pNeg(p);
3213  sign *= -1;
3214  row = idGetNumberOfChoise(l-1,d,1,n,choise);
3215  MATELEM(result,row,col) = p;
3216  }
3217  }
3218  col++;
3219  idGetNextChoise(d,n,&bo,choise);
3220  }
3221  omFreeSize(choise,d*sizeof(int));
3222  if (id==NULL) idDelete(&temp);
3223 
3224  res->data=(char *)result;
3225  return FALSE;
3226 }
3227 
3228 // from syz1.cc
3229 /*2
3230 * read out the Betti numbers from resolution
3231 * (interpreter interface)
3232 */
3234 {
3235  syStrategy syzstr=(syStrategy)u->Data();
3236 
3237  BOOLEAN minim=(int)(long)w->Data();
3238  int row_shift=0;
3239  int add_row_shift=0;
3240  intvec *weights=NULL;
3241  intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3242  if (ww!=NULL)
3243  {
3244  weights=ivCopy(ww);
3245  add_row_shift = ww->min_in();
3246  (*weights) -= add_row_shift;
3247  }
3248 
3249  res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3250  //row_shift += add_row_shift;
3251  //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3252  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3253 
3254  return FALSE;
3255 }
3257 {
3258  sleftv tmp;
3259  tmp.Init();
3260  tmp.rtyp=INT_CMD;
3261  tmp.data=(void *)1;
3262  return syBetti2(res,u,&tmp);
3263 }
3264 
3265 /*3
3266 * converts a resolution into a list of modules
3267 */
3268 lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3269 {
3270  resolvente fullres = syzstr->fullres;
3271  resolvente minres = syzstr->minres;
3272 
3273  const int length = syzstr->length;
3274 
3275  if ((fullres==NULL) && (minres==NULL))
3276  {
3277  if (syzstr->hilb_coeffs==NULL)
3278  { // La Scala
3279  fullres = syReorder(syzstr->res, length, syzstr);
3280  }
3281  else
3282  { // HRES
3283  minres = syReorder(syzstr->orderedRes, length, syzstr);
3284  syKillEmptyEntres(minres, length);
3285  }
3286  }
3287 
3288  resolvente tr;
3289  int typ0=IDEAL_CMD;
3290 
3291  if (minres!=NULL)
3292  tr = minres;
3293  else
3294  tr = fullres;
3295 
3296  resolvente trueres=NULL;
3297  intvec ** w=NULL;
3298 
3299  if (length>0)
3300  {
3301  trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3302  for (int i=length-1;i>=0;i--)
3303  {
3304  if (tr[i]!=NULL)
3305  {
3306  trueres[i] = idCopy(tr[i]);
3307  }
3308  }
3309  if ( id_RankFreeModule(trueres[0], currRing) > 0)
3310  typ0 = MODUL_CMD;
3311  if (syzstr->weights!=NULL)
3312  {
3313  w = (intvec**)omAlloc0(length*sizeof(intvec*));
3314  for (int i=length-1;i>=0;i--)
3315  {
3316  if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3317  }
3318  }
3319  }
3320 
3321  lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3322  w, add_row_shift);
3323 
3324  if (toDel)
3325  syKillComputation(syzstr);
3326  else
3327  {
3328  if( fullres != NULL && syzstr->fullres == NULL )
3329  syzstr->fullres = fullres;
3330 
3331  if( minres != NULL && syzstr->minres == NULL )
3332  syzstr->minres = minres;
3333  }
3334  return li;
3335 }
3336 
3337 /*3
3338 * converts a list of modules into a resolution
3339 */
3341 {
3342  int typ0;
3344 
3345  resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3346  if (fr != NULL)
3347  {
3348 
3349  result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3350  for (int i=result->length-1;i>=0;i--)
3351  {
3352  if (fr[i]!=NULL)
3353  result->fullres[i] = idCopy(fr[i]);
3354  }
3355  result->list_length=result->length;
3356  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3357  }
3358  else
3359  {
3360  omFreeSize(result, sizeof(ssyStrategy));
3361  result = NULL;
3362  }
3363  return result;
3364 }
3365 
3366 /*3
3367 * converts a list of modules into a minimal resolution
3368 */
3370 {
3371  int typ0;
3373 
3374  resolvente fr = liFindRes(li,&(result->length),&typ0);
3375  result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3376  for (int i=result->length-1;i>=0;i--)
3377  {
3378  if (fr[i]!=NULL)
3379  result->minres[i] = idCopy(fr[i]);
3380  }
3381  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3382  return result;
3383 }
3384 // from weight.cc
3386 {
3387  ideal F=(ideal)id->Data();
3388  intvec * iv = new intvec(rVar(currRing));
3389  polyset s;
3390  int sl, n, i;
3391  int *x;
3392 
3393  res->data=(char *)iv;
3394  s = F->m;
3395  sl = IDELEMS(F) - 1;
3396  n = rVar(currRing);
3397  double wNsqr = (double)2.0 / (double)n;
3399  x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3400  wCall(s, sl, x, wNsqr, currRing);
3401  for (i = n; i!=0; i--)
3402  (*iv)[i-1] = x[i + n + 1];
3403  omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3404  return FALSE;
3405 }
3406 
3408 {
3409  res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3410  if (res->data==NULL)
3411  res->data=(char *)new intvec(rVar(currRing));
3412  return FALSE;
3413 }
3414 /*==============================================================*/
3415 // from clapsing.cc
3416 #if 0
3417 BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3418 {
3419  BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3420  res->data=(void *)b;
3421 }
3422 #endif
3423 
3425 {
3426  res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3427  (poly)w->CopyD(), currRing);
3428  return errorreported;
3429 }
3430 
3432 {
3433  res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3434  return (res->data==NULL);
3435 }
3436 
3437 // from semic.cc
3438 #ifdef HAVE_SPECTRUM
3439 
3440 // ----------------------------------------------------------------------------
3441 // Initialize a spectrum deep from a singular lists
3442 // ----------------------------------------------------------------------------
3443 
3444 void copy_deep( spectrum& spec, lists l )
3445 {
3446  spec.mu = (int)(long)(l->m[0].Data( ));
3447  spec.pg = (int)(long)(l->m[1].Data( ));
3448  spec.n = (int)(long)(l->m[2].Data( ));
3449 
3450  spec.copy_new( spec.n );
3451 
3452  intvec *num = (intvec*)l->m[3].Data( );
3453  intvec *den = (intvec*)l->m[4].Data( );
3454  intvec *mul = (intvec*)l->m[5].Data( );
3455 
3456  for( int i=0; i<spec.n; i++ )
3457  {
3458  spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3459  spec.w[i] = (*mul)[i];
3460  }
3461 }
3462 
3463 // ----------------------------------------------------------------------------
3464 // singular lists constructor for spectrum
3465 // ----------------------------------------------------------------------------
3466 
3467 spectrum /*former spectrum::spectrum ( lists l )*/
3469 {
3470  spectrum result;
3471  copy_deep( result, l );
3472  return result;
3473 }
3474 
3475 // ----------------------------------------------------------------------------
3476 // generate a Singular lists from a spectrum
3477 // ----------------------------------------------------------------------------
3478 
3479 /* former spectrum::thelist ( void )*/
3481 {
3483 
3484  L->Init( 6 );
3485 
3486  intvec *num = new intvec( spec.n );
3487  intvec *den = new intvec( spec.n );
3488  intvec *mult = new intvec( spec.n );
3489 
3490  for( int i=0; i<spec.n; i++ )
3491  {
3492  (*num) [i] = spec.s[i].get_num_si( );
3493  (*den) [i] = spec.s[i].get_den_si( );
3494  (*mult)[i] = spec.w[i];
3495  }
3496 
3497  L->m[0].rtyp = INT_CMD; // milnor number
3498  L->m[1].rtyp = INT_CMD; // geometrical genus
3499  L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3500  L->m[3].rtyp = INTVEC_CMD; // numerators
3501  L->m[4].rtyp = INTVEC_CMD; // denomiantors
3502  L->m[5].rtyp = INTVEC_CMD; // multiplicities
3503 
3504  L->m[0].data = (void*)(long)spec.mu;
3505  L->m[1].data = (void*)(long)spec.pg;
3506  L->m[2].data = (void*)(long)spec.n;
3507  L->m[3].data = (void*)num;
3508  L->m[4].data = (void*)den;
3509  L->m[5].data = (void*)mult;
3510 
3511  return L;
3512 }
3513 // from spectrum.cc
3514 // ----------------------------------------------------------------------------
3515 // print out an error message for a spectrum list
3516 // ----------------------------------------------------------------------------
3517 
3518 typedef enum
3519 {
3522 
3525 
3532 
3537 
3543 
3546 
3549 
3551 
3552 void list_error( semicState state )
3553 {
3554  switch( state )
3555  {
3556  case semicListTooShort:
3557  WerrorS( "the list is too short" );
3558  break;
3559  case semicListTooLong:
3560  WerrorS( "the list is too long" );
3561  break;
3562 
3564  WerrorS( "first element of the list should be int" );
3565  break;
3567  WerrorS( "second element of the list should be int" );
3568  break;
3570  WerrorS( "third element of the list should be int" );
3571  break;
3573  WerrorS( "fourth element of the list should be intvec" );
3574  break;
3576  WerrorS( "fifth element of the list should be intvec" );
3577  break;
3579  WerrorS( "sixth element of the list should be intvec" );
3580  break;
3581 
3582  case semicListNNegative:
3583  WerrorS( "first element of the list should be positive" );
3584  break;
3586  WerrorS( "wrong number of numerators" );
3587  break;
3589  WerrorS( "wrong number of denominators" );
3590  break;
3592  WerrorS( "wrong number of multiplicities" );
3593  break;
3594 
3595  case semicListMuNegative:
3596  WerrorS( "the Milnor number should be positive" );
3597  break;
3598  case semicListPgNegative:
3599  WerrorS( "the geometrical genus should be nonnegative" );
3600  break;
3601  case semicListNumNegative:
3602  WerrorS( "all numerators should be positive" );
3603  break;
3604  case semicListDenNegative:
3605  WerrorS( "all denominators should be positive" );
3606  break;
3607  case semicListMulNegative:
3608  WerrorS( "all multiplicities should be positive" );
3609  break;
3610 
3611  case semicListNotSymmetric:
3612  WerrorS( "it is not symmetric" );
3613  break;
3615  WerrorS( "it is not monotonous" );
3616  break;
3617 
3618  case semicListMilnorWrong:
3619  WerrorS( "the Milnor number is wrong" );
3620  break;
3621  case semicListPGWrong:
3622  WerrorS( "the geometrical genus is wrong" );
3623  break;
3624 
3625  default:
3626  WerrorS( "unspecific error" );
3627  break;
3628  }
3629 }
3630 // ----------------------------------------------------------------------------
3631 // this is the main spectrum computation function
3632 // ----------------------------------------------------------------------------
3633 
3635 {
3645 };
3646 
3647 // from splist.cc
3648 // ----------------------------------------------------------------------------
3649 // Compute the spectrum of a spectrumPolyList
3650 // ----------------------------------------------------------------------------
3651 
3652 /* former spectrumPolyList::spectrum ( lists*, int) */
3654 {
3655  spectrumPolyNode **node = &speclist.root;
3657 
3658  poly f,tmp;
3659  int found,cmp;
3660 
3661  Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3662  ( fast==2 ? 2 : 1 ) );
3663 
3664  Rational weight_prev( 0,1 );
3665 
3666  int mu = 0; // the milnor number
3667  int pg = 0; // the geometrical genus
3668  int n = 0; // number of different spectral numbers
3669  int z = 0; // number of spectral number equal to smax
3670 
3671  while( (*node)!=(spectrumPolyNode*)NULL &&
3672  ( fast==0 || (*node)->weight<=smax ) )
3673  {
3674  // ---------------------------------------
3675  // determine the first normal form which
3676  // contains the monomial node->mon
3677  // ---------------------------------------
3678 
3679  found = FALSE;
3680  search = *node;
3681 
3682  while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3683  {
3684  if( search->nf!=(poly)NULL )
3685  {
3686  f = search->nf;
3687 
3688  do
3689  {
3690  // --------------------------------
3691  // look for (*node)->mon in f
3692  // --------------------------------
3693 
3694  cmp = pCmp( (*node)->mon,f );
3695 
3696  if( cmp<0 )
3697  {
3698  f = pNext( f );
3699  }
3700  else if( cmp==0 )
3701  {
3702  // -----------------------------
3703  // we have found a normal form
3704  // -----------------------------
3705 
3706  found = TRUE;
3707 
3708  // normalize coefficient
3709 
3710  number inv = nInvers( pGetCoeff( f ) );
3711  search->nf=__p_Mult_nn( search->nf,inv,currRing );
3712  nDelete( &inv );
3713 
3714  // exchange normal forms
3715 
3716  tmp = (*node)->nf;
3717  (*node)->nf = search->nf;
3718  search->nf = tmp;
3719  }
3720  }
3721  while( cmp<0 && f!=(poly)NULL );
3722  }
3723  search = search->next;
3724  }
3725 
3726  if( found==FALSE )
3727  {
3728  // ------------------------------------------------
3729  // the weight of node->mon is a spectrum number
3730  // ------------------------------------------------
3731 
3732  mu++;
3733 
3734  if( (*node)->weight<=(Rational)1 ) pg++;
3735  if( (*node)->weight==smax ) z++;
3736  if( (*node)->weight>weight_prev ) n++;
3737 
3738  weight_prev = (*node)->weight;
3739  node = &((*node)->next);
3740  }
3741  else
3742  {
3743  // -----------------------------------------------
3744  // determine all other normal form which contain
3745  // the monomial node->mon
3746  // replace for node->mon its normal form
3747  // -----------------------------------------------
3748 
3749  while( search!=(spectrumPolyNode*)NULL )
3750  {
3751  if( search->nf!=(poly)NULL )
3752  {
3753  f = search->nf;
3754 
3755  do
3756  {
3757  // --------------------------------
3758  // look for (*node)->mon in f
3759  // --------------------------------
3760 
3761  cmp = pCmp( (*node)->mon,f );
3762 
3763  if( cmp<0 )
3764  {
3765  f = pNext( f );
3766  }
3767  else if( cmp==0 )
3768  {
3769  search->nf = pSub( search->nf,
3770  __pp_Mult_nn( (*node)->nf,pGetCoeff( f ),currRing ) );
3771  pNorm( search->nf );
3772  }
3773  }
3774  while( cmp<0 && f!=(poly)NULL );
3775  }
3776  search = search->next;
3777  }
3778  speclist.delete_node( node );
3779  }
3780 
3781  }
3782 
3783  // --------------------------------------------------------
3784  // fast computation exploits the symmetry of the spectrum
3785  // --------------------------------------------------------
3786 
3787  if( fast==2 )
3788  {
3789  mu = 2*mu - z;
3790  n = ( z > 0 ? 2*n - 1 : 2*n );
3791  }
3792 
3793  // --------------------------------------------------------
3794  // compute the spectrum numbers with their multiplicities
3795  // --------------------------------------------------------
3796 
3797  intvec *nom = new intvec( n );
3798  intvec *den = new intvec( n );
3799  intvec *mult = new intvec( n );
3800 
3801  int count = 0;
3802  int multiplicity = 1;
3803 
3804  for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3805  ( fast==0 || search->weight<=smax );
3806  search=search->next )
3807  {
3808  if( search->next==(spectrumPolyNode*)NULL ||
3809  search->weight<search->next->weight )
3810  {
3811  (*nom) [count] = search->weight.get_num_si( );
3812  (*den) [count] = search->weight.get_den_si( );
3813  (*mult)[count] = multiplicity;
3814 
3815  multiplicity=1;
3816  count++;
3817  }
3818  else
3819  {
3820  multiplicity++;
3821  }
3822  }
3823 
3824  // --------------------------------------------------------
3825  // fast computation exploits the symmetry of the spectrum
3826  // --------------------------------------------------------
3827 
3828  if( fast==2 )
3829  {
3830  int n1,n2;
3831  for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3832  {
3833  (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3834  (*den) [n2] = (*den)[n1];
3835  (*mult)[n2] = (*mult)[n1];
3836  }
3837  }
3838 
3839  // -----------------------------------
3840  // test if the spectrum is symmetric
3841  // -----------------------------------
3842 
3843  if( fast==0 || fast==1 )
3844  {
3845  int symmetric=TRUE;
3846 
3847  for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3848  {
3849  if( (*mult)[n1]!=(*mult)[n2] ||
3850  (*den) [n1]!= (*den)[n2] ||
3851  (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3852  {
3853  symmetric = FALSE;
3854  }
3855  }
3856 
3857  if( symmetric==FALSE )
3858  {
3859  // ---------------------------------------------
3860  // the spectrum is not symmetric => degenerate
3861  // principal part
3862  // ---------------------------------------------
3863 
3864  *L = (lists)omAllocBin( slists_bin);
3865  (*L)->Init( 1 );
3866  (*L)->m[0].rtyp = INT_CMD; // milnor number
3867  (*L)->m[0].data = (void*)(long)mu;
3868 
3869  return spectrumDegenerate;
3870  }
3871  }
3872 
3873  *L = (lists)omAllocBin( slists_bin);
3874 
3875  (*L)->Init( 6 );
3876 
3877  (*L)->m[0].rtyp = INT_CMD; // milnor number
3878  (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3879  (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3880  (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3881  (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3882  (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3883 
3884  (*L)->m[0].data = (void*)(long)mu;
3885  (*L)->m[1].data = (void*)(long)pg;
3886  (*L)->m[2].data = (void*)(long)n;
3887  (*L)->m[3].data = (void*)nom;
3888  (*L)->m[4].data = (void*)den;
3889  (*L)->m[5].data = (void*)mult;
3890 
3891  return spectrumOK;
3892 }
3893 
3895 {
3896  int i;
3897 
3898  #ifdef SPECTRUM_DEBUG
3899  #ifdef SPECTRUM_PRINT
3900  #ifdef SPECTRUM_IOSTREAM
3901  cout << "spectrumCompute\n";
3902  if( fast==0 ) cout << " no optimization" << endl;
3903  if( fast==1 ) cout << " weight optimization" << endl;
3904  if( fast==2 ) cout << " symmetry optimization" << endl;
3905  #else
3906  fputs( "spectrumCompute\n",stdout );
3907  if( fast==0 ) fputs( " no optimization\n", stdout );
3908  if( fast==1 ) fputs( " weight optimization\n", stdout );
3909  if( fast==2 ) fputs( " symmetry optimization\n", stdout );
3910  #endif
3911  #endif
3912  #endif
3913 
3914  // ----------------------
3915  // check if h is zero
3916  // ----------------------
3917 
3918  if( h==(poly)NULL )
3919  {
3920  return spectrumZero;
3921  }
3922 
3923  // ----------------------------------
3924  // check if h has a constant term
3925  // ----------------------------------
3926 
3927  if( hasConstTerm( h, currRing ) )
3928  {
3929  return spectrumBadPoly;
3930  }
3931 
3932  // --------------------------------
3933  // check if h has a linear term
3934  // --------------------------------
3935 
3936  if( hasLinearTerm( h, currRing ) )
3937  {
3938  *L = (lists)omAllocBin( slists_bin);
3939  (*L)->Init( 1 );
3940  (*L)->m[0].rtyp = INT_CMD; // milnor number
3941  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3942 
3943  return spectrumNoSingularity;
3944  }
3945 
3946  // ----------------------------------
3947  // compute the jacobi ideal of (h)
3948  // ----------------------------------
3949 
3950  ideal J = NULL;
3951  J = idInit( rVar(currRing),1 );
3952 
3953  #ifdef SPECTRUM_DEBUG
3954  #ifdef SPECTRUM_PRINT
3955  #ifdef SPECTRUM_IOSTREAM
3956  cout << "\n computing the Jacobi ideal...\n";
3957  #else
3958  fputs( "\n computing the Jacobi ideal...\n",stdout );
3959  #endif
3960  #endif
3961  #endif
3962 
3963  for( i=0; i<rVar(currRing); i++ )
3964  {
3965  J->m[i] = pDiff( h,i+1); //j );
3966 
3967  #ifdef SPECTRUM_DEBUG
3968  #ifdef SPECTRUM_PRINT
3969  #ifdef SPECTRUM_IOSTREAM
3970  cout << " ";
3971  #else
3972  fputs(" ", stdout );
3973  #endif
3974  pWrite( J->m[i] );
3975  #endif
3976  #endif
3977  }
3978 
3979  // --------------------------------------------
3980  // compute a standard basis stdJ of jac(h)
3981  // --------------------------------------------
3982 
3983  #ifdef SPECTRUM_DEBUG
3984  #ifdef SPECTRUM_PRINT
3985  #ifdef SPECTRUM_IOSTREAM
3986  cout << endl;
3987  cout << " computing a standard basis..." << endl;
3988  #else
3989  fputs( "\n", stdout );
3990  fputs( " computing a standard basis...\n", stdout );
3991  #endif
3992  #endif
3993  #endif
3994 
3995  ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3996  idSkipZeroes( stdJ );
3997 
3998  #ifdef SPECTRUM_DEBUG
3999  #ifdef SPECTRUM_PRINT
4000  for( i=0; i<IDELEMS(stdJ); i++ )
4001  {
4002  #ifdef SPECTRUM_IOSTREAM
4003  cout << " ";
4004  #else
4005  fputs( " ",stdout );
4006  #endif
4007 
4008  pWrite( stdJ->m[i] );
4009  }
4010  #endif
4011  #endif
4012 
4013  idDelete( &J );
4014 
4015  // ------------------------------------------
4016  // check if the h has a singularity
4017  // ------------------------------------------
4018 
4019  if( hasOne( stdJ, currRing ) )
4020  {
4021  // -------------------------------
4022  // h is smooth in the origin
4023  // return only the Milnor number
4024  // -------------------------------
4025 
4026  *L = (lists)omAllocBin( slists_bin);
4027  (*L)->Init( 1 );
4028  (*L)->m[0].rtyp = INT_CMD; // milnor number
4029  /* (*L)->m[0].data = (void*)0;a -- done by Init */
4030 
4031  return spectrumNoSingularity;
4032  }
4033 
4034  // ------------------------------------------
4035  // check if the singularity h is isolated
4036  // ------------------------------------------
4037 
4038  for( i=rVar(currRing); i>0; i-- )
4039  {
4040  if( hasAxis( stdJ,i, currRing )==FALSE )
4041  {
4042  return spectrumNotIsolated;
4043  }
4044  }
4045 
4046  // ------------------------------------------
4047  // compute the highest corner hc of stdJ
4048  // ------------------------------------------
4049 
4050  #ifdef SPECTRUM_DEBUG
4051  #ifdef SPECTRUM_PRINT
4052  #ifdef SPECTRUM_IOSTREAM
4053  cout << "\n computing the highest corner...\n";
4054  #else
4055  fputs( "\n computing the highest corner...\n", stdout );
4056  #endif
4057  #endif
4058  #endif
4059 
4060  poly hc = (poly)NULL;
4061 
4062  scComputeHC( stdJ,currRing->qideal, 0,hc );
4063 
4064  if( hc!=(poly)NULL )
4065  {
4066  pGetCoeff(hc) = nInit(1);
4067 
4068  for( i=rVar(currRing); i>0; i-- )
4069  {
4070  if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
4071  }
4072  pSetm( hc );
4073  }
4074  else
4075  {
4076  return spectrumNoHC;
4077  }
4078 
4079  #ifdef SPECTRUM_DEBUG
4080  #ifdef SPECTRUM_PRINT
4081  #ifdef SPECTRUM_IOSTREAM
4082  cout << " ";
4083  #else
4084  fputs( " ", stdout );
4085  #endif
4086  pWrite( hc );
4087  #endif
4088  #endif
4089 
4090  // ----------------------------------------
4091  // compute the Newton polygon nph of h
4092  // ----------------------------------------
4093 
4094  #ifdef SPECTRUM_DEBUG
4095  #ifdef SPECTRUM_PRINT
4096  #ifdef SPECTRUM_IOSTREAM
4097  cout << "\n computing the newton polygon...\n";
4098  #else
4099  fputs( "\n computing the newton polygon...\n", stdout );
4100  #endif
4101  #endif
4102  #endif
4103 
4104  newtonPolygon nph( h, currRing );
4105 
4106  #ifdef SPECTRUM_DEBUG
4107  #ifdef SPECTRUM_PRINT
4108  cout << nph;
4109  #endif
4110  #endif
4111 
4112  // -----------------------------------------------
4113  // compute the weight corner wc of (stdj,nph)
4114  // -----------------------------------------------
4115 
4116  #ifdef SPECTRUM_DEBUG
4117  #ifdef SPECTRUM_PRINT
4118  #ifdef SPECTRUM_IOSTREAM
4119  cout << "\n computing the weight corner...\n";
4120  #else
4121  fputs( "\n computing the weight corner...\n", stdout );
4122  #endif
4123  #endif
4124  #endif
4125 
4126  poly wc = ( fast==0 ? pCopy( hc ) :
4127  ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
4128  /* fast==2 */computeWC( nph,
4129  ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
4130 
4131  #ifdef SPECTRUM_DEBUG
4132  #ifdef SPECTRUM_PRINT
4133  #ifdef SPECTRUM_IOSTREAM
4134  cout << " ";
4135  #else
4136  fputs( " ", stdout );
4137  #endif
4138  pWrite( wc );
4139  #endif
4140  #endif
4141 
4142  // -------------
4143  // compute NF
4144  // -------------
4145 
4146  #ifdef SPECTRUM_DEBUG
4147  #ifdef SPECTRUM_PRINT
4148  #ifdef SPECTRUM_IOSTREAM
4149  cout << "\n computing NF...\n" << endl;
4150  #else
4151  fputs( "\n computing NF...\n", stdout );
4152  #endif
4153  #endif
4154  #endif
4155 
4156  spectrumPolyList NF( &nph );
4157 
4158  computeNF( stdJ,hc,wc,&NF, currRing );
4159 
4160  #ifdef SPECTRUM_DEBUG
4161  #ifdef SPECTRUM_PRINT
4162  cout << NF;
4163  #ifdef SPECTRUM_IOSTREAM
4164  cout << endl;
4165  #else
4166  fputs( "\n", stdout );
4167  #endif
4168  #endif
4169  #endif
4170 
4171  // ----------------------------
4172  // compute the spectrum of h
4173  // ----------------------------
4174 // spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
4175 
4176  return spectrumStateFromList(NF, L, fast );
4177 }
4178 
4179 // ----------------------------------------------------------------------------
4180 // this procedure is called from the interpreter
4181 // ----------------------------------------------------------------------------
4182 // first = polynomial
4183 // result = list of spectrum numbers
4184 // ----------------------------------------------------------------------------
4185 
4187 {
4188  switch( state )
4189  {
4190  case spectrumZero:
4191  WerrorS( "polynomial is zero" );
4192  break;
4193  case spectrumBadPoly:
4194  WerrorS( "polynomial has constant term" );
4195  break;
4196  case spectrumNoSingularity:
4197  WerrorS( "not a singularity" );
4198  break;
4199  case spectrumNotIsolated:
4200  WerrorS( "the singularity is not isolated" );
4201  break;
4202  case spectrumNoHC:
4203  WerrorS( "highest corner cannot be computed" );
4204  break;
4205  case spectrumDegenerate:
4206  WerrorS( "principal part is degenerate" );
4207  break;
4208  case spectrumOK:
4209  break;
4210 
4211  default:
4212  WerrorS( "unknown error occurred" );
4213  break;
4214  }
4215 }
4216 
4218 {
4219  spectrumState state = spectrumOK;
4220 
4221  // -------------------
4222  // check consistency
4223  // -------------------
4224 
4225  // check for a local ring
4226 
4227  if( !ringIsLocal(currRing ) )
4228  {
4229  WerrorS( "only works for local orderings" );
4230  state = spectrumWrongRing;
4231  }
4232 
4233  // no quotient rings are allowed
4234 
4235  else if( currRing->qideal != NULL )
4236  {
4237  WerrorS( "does not work in quotient rings" );
4238  state = spectrumWrongRing;
4239  }
4240  else
4241  {
4242  lists L = (lists)NULL;
4243  int flag = 1; // weight corner optimization is safe
4244 
4245  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4246 
4247  if( state==spectrumOK )
4248  {
4249  result->rtyp = LIST_CMD;
4250  result->data = (char*)L;
4251  }
4252  else
4253  {
4254  spectrumPrintError(state);
4255  }
4256  }
4257 
4258  return (state!=spectrumOK);
4259 }
4260 
4261 // ----------------------------------------------------------------------------
4262 // this procedure is called from the interpreter
4263 // ----------------------------------------------------------------------------
4264 // first = polynomial
4265 // result = list of spectrum numbers
4266 // ----------------------------------------------------------------------------
4267 
4269 {
4270  spectrumState state = spectrumOK;
4271 
4272  // -------------------
4273  // check consistency
4274  // -------------------
4275 
4276  // check for a local polynomial ring
4277 
4278  if( currRing->OrdSgn != -1 )
4279  // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4280  // or should we use:
4281  //if( !ringIsLocal( ) )
4282  {
4283  WerrorS( "only works for local orderings" );
4284  state = spectrumWrongRing;
4285  }
4286  else if( currRing->qideal != NULL )
4287  {
4288  WerrorS( "does not work in quotient rings" );
4289  state = spectrumWrongRing;
4290  }
4291  else
4292  {
4293  lists L = (lists)NULL;
4294  int flag = 2; // symmetric optimization
4295 
4296  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4297 
4298  if( state==spectrumOK )
4299  {
4300  result->rtyp = LIST_CMD;
4301  result->data = (char*)L;
4302  }
4303  else
4304  {
4305  spectrumPrintError(state);
4306  }
4307  }
4308 
4309  return (state!=spectrumOK);
4310 }
4311 
4312 // ----------------------------------------------------------------------------
4313 // check if a list is a spectrum
4314 // check for:
4315 // list has 6 elements
4316 // 1st element is int (mu=Milnor number)
4317 // 2nd element is int (pg=geometrical genus)
4318 // 3rd element is int (n =number of different spectrum numbers)
4319 // 4th element is intvec (num=numerators)
4320 // 5th element is intvec (den=denomiantors)
4321 // 6th element is intvec (mul=multiplicities)
4322 // exactly n numerators
4323 // exactly n denominators
4324 // exactly n multiplicities
4325 // mu>0
4326 // pg>=0
4327 // n>0
4328 // num>0
4329 // den>0
4330 // mul>0
4331 // symmetriy with respect to numberofvariables/2
4332 // monotony
4333 // mu = sum of all multiplicities
4334 // pg = sum of all multiplicities where num/den<=1
4335 // ----------------------------------------------------------------------------
4336 
4338 {
4339  // -------------------
4340  // check list length
4341  // -------------------
4342 
4343  if( l->nr < 5 )
4344  {
4345  return semicListTooShort;
4346  }
4347  else if( l->nr > 5 )
4348  {
4349  return semicListTooLong;
4350  }
4351 
4352  // -------------
4353  // check types
4354  // -------------
4355 
4356  if( l->m[0].rtyp != INT_CMD )
4357  {
4359  }
4360  else if( l->m[1].rtyp != INT_CMD )
4361  {
4363  }
4364  else if( l->m[2].rtyp != INT_CMD )
4365  {
4367  }
4368  else if( l->m[3].rtyp != INTVEC_CMD )
4369  {
4371  }
4372  else if( l->m[4].rtyp != INTVEC_CMD )
4373  {
4375  }
4376  else if( l->m[5].rtyp != INTVEC_CMD )
4377  {
4379  }
4380 
4381  // -------------------------
4382  // check number of entries
4383  // -------------------------
4384 
4385  int mu = (int)(long)(l->m[0].Data( ));
4386  int pg = (int)(long)(l->m[1].Data( ));
4387  int n = (int)(long)(l->m[2].Data( ));
4388 
4389  if( n <= 0 )
4390  {
4391  return semicListNNegative;
4392  }
4393 
4394  intvec *num = (intvec*)l->m[3].Data( );
4395  intvec *den = (intvec*)l->m[4].Data( );
4396  intvec *mul = (intvec*)l->m[5].Data( );
4397 
4398  if( n != num->length( ) )
4399  {
4401  }
4402  else if( n != den->length( ) )
4403  {
4405  }
4406  else if( n != mul->length( ) )
4407  {
4409  }
4410 
4411  // --------
4412  // values
4413  // --------
4414 
4415  if( mu <= 0 )
4416  {
4417  return semicListMuNegative;
4418  }
4419  if( pg < 0 )
4420  {
4421  return semicListPgNegative;
4422  }
4423 
4424  int i;
4425 
4426  for( i=0; i<n; i++ )
4427  {
4428  if( (*num)[i] <= 0 )
4429  {
4430  return semicListNumNegative;
4431  }
4432  if( (*den)[i] <= 0 )
4433  {
4434  return semicListDenNegative;
4435  }
4436  if( (*mul)[i] <= 0 )
4437  {
4438  return semicListMulNegative;
4439  }
4440  }
4441 
4442  // ----------------
4443  // check symmetry
4444  // ----------------
4445 
4446  int j;
4447 
4448  for( i=0, j=n-1; i<=j; i++,j-- )
4449  {
4450  if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4451  (*den)[i] != (*den)[j] ||
4452  (*mul)[i] != (*mul)[j] )
4453  {
4454  return semicListNotSymmetric;
4455  }
4456  }
4457 
4458  // ----------------
4459  // check monotony
4460  // ----------------
4461 
4462  for( i=0, j=1; i<n/2; i++,j++ )
4463  {
4464  if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4465  {
4466  return semicListNotMonotonous;
4467  }
4468  }
4469 
4470  // ---------------------
4471  // check Milnor number
4472  // ---------------------
4473 
4474  for( mu=0, i=0; i<n; i++ )
4475  {
4476  mu += (*mul)[i];
4477  }
4478 
4479  if( mu != (int)(long)(l->m[0].Data( )) )
4480  {
4481  return semicListMilnorWrong;
4482  }
4483 
4484  // -------------------------
4485  // check geometrical genus
4486  // -------------------------
4487 
4488  for( pg=0, i=0; i<n; i++ )
4489  {
4490  if( (*num)[i]<=(*den)[i] )
4491  {
4492  pg += (*mul)[i];
4493  }
4494  }
4495 
4496  if( pg != (int)(long)(l->m[1].Data( )) )
4497  {
4498  return semicListPGWrong;
4499  }
4500 
4501  return semicOK;
4502 }
4503 
4504 // ----------------------------------------------------------------------------
4505 // this procedure is called from the interpreter
4506 // ----------------------------------------------------------------------------
4507 // first = list of spectrum numbers
4508 // second = list of spectrum numbers
4509 // result = sum of the two lists
4510 // ----------------------------------------------------------------------------
4511 
4513 {
4514  semicState state;
4515 
4516  // -----------------
4517  // check arguments
4518  // -----------------
4519 
4520  lists l1 = (lists)first->Data( );
4521  lists l2 = (lists)second->Data( );
4522 
4523  if( (state=list_is_spectrum( l1 )) != semicOK )
4524  {
4525  WerrorS( "first argument is not a spectrum:" );
4526  list_error( state );
4527  }
4528  else if( (state=list_is_spectrum( l2 )) != semicOK )
4529  {
4530  WerrorS( "second argument is not a spectrum:" );
4531  list_error( state );
4532  }
4533  else
4534  {
4535  spectrum s1= spectrumFromList ( l1 );
4536  spectrum s2= spectrumFromList ( l2 );
4537  spectrum sum( s1+s2 );
4538 
4539  result->rtyp = LIST_CMD;
4540  result->data = (char*)(getList(sum));
4541  }
4542 
4543  return (state!=semicOK);
4544 }
4545 
4546 // ----------------------------------------------------------------------------
4547 // this procedure is called from the interpreter
4548 // ----------------------------------------------------------------------------
4549 // first = list of spectrum numbers
4550 // second = integer
4551 // result = the multiple of the first list by the second factor
4552 // ----------------------------------------------------------------------------
4553 
4555 {
4556  semicState state;
4557 
4558  // -----------------
4559  // check arguments
4560  // -----------------
4561 
4562  lists l = (lists)first->Data( );
4563  int k = (int)(long)second->Data( );
4564 
4565  if( (state=list_is_spectrum( l ))!=semicOK )
4566  {
4567  WerrorS( "first argument is not a spectrum" );
4568  list_error( state );
4569  }
4570  else if( k < 0 )
4571  {
4572  WerrorS( "second argument should be positive" );
4573  state = semicMulNegative;
4574  }
4575  else
4576  {
4578  spectrum product( k*s );
4579 
4580  result->rtyp = LIST_CMD;
4581  result->data = (char*)getList(product);
4582  }
4583 
4584  return (state!=semicOK);
4585 }
4586 
4587 // ----------------------------------------------------------------------------
4588 // this procedure is called from the interpreter
4589 // ----------------------------------------------------------------------------
4590 // first = list of spectrum numbers
4591 // second = list of spectrum numbers
4592 // result = semicontinuity index
4593 // ----------------------------------------------------------------------------
4594 
4596 {
4597  semicState state;
4598  BOOLEAN qh=(((int)(long)w->Data())==1);
4599 
4600  // -----------------
4601  // check arguments
4602  // -----------------
4603 
4604  lists l1 = (lists)u->Data( );
4605  lists l2 = (lists)v->Data( );
4606 
4607  if( (state=list_is_spectrum( l1 ))!=semicOK )
4608  {
4609  WerrorS( "first argument is not a spectrum" );
4610  list_error( state );
4611  }
4612  else if( (state=list_is_spectrum( l2 ))!=semicOK )
4613  {
4614  WerrorS( "second argument is not a spectrum" );
4615  list_error( state );
4616  }
4617  else
4618  {
4619  spectrum s1= spectrumFromList( l1 );
4620  spectrum s2= spectrumFromList( l2 );
4621 
4622  res->rtyp = INT_CMD;
4623  if (qh)
4624  res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4625  else
4626  res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4627  }
4628 
4629  // -----------------
4630  // check status
4631  // -----------------
4632 
4633  return (state!=semicOK);
4634 }
4636 {
4637  sleftv tmp;
4638  tmp.Init();
4639  tmp.rtyp=INT_CMD;
4640  /* tmp.data = (void *)0; -- done by Init */
4641 
4642  return semicProc3(res,u,v,&tmp);
4643 }
4644 
4645 #endif
4646 
4648 {
4649  res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4650  return FALSE;
4651 }
4652 
4654 {
4655  if ( !(rField_is_long_R(currRing)) )
4656  {
4657  WerrorS("Ground field not implemented!");
4658  return TRUE;
4659  }
4660 
4661  simplex * LP;
4662  matrix m;
4663 
4664  leftv v= args;
4665  if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4666  return TRUE;
4667  else
4668  m= (matrix)(v->CopyD());
4669 
4670  LP = new simplex(MATROWS(m),MATCOLS(m));
4671  LP->mapFromMatrix(m);
4672 
4673  v= v->next;
4674  if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4675  return TRUE;
4676  else
4677  LP->m= (int)(long)(v->Data());
4678 
4679  v= v->next;
4680  if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4681  return TRUE;
4682  else
4683  LP->n= (int)(long)(v->Data());
4684 
4685  v= v->next;
4686  if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4687  return TRUE;
4688  else
4689  LP->m1= (int)(long)(v->Data());
4690 
4691  v= v->next;
4692  if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4693  return TRUE;
4694  else
4695  LP->m2= (int)(long)(v->Data());
4696 
4697  v= v->next;
4698  if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4699  return TRUE;
4700  else
4701  LP->m3= (int)(long)(v->Data());
4702 
4703 #ifdef mprDEBUG_PROT
4704  Print("m (constraints) %d\n",LP->m);
4705  Print("n (columns) %d\n",LP->n);
4706  Print("m1 (<=) %d\n",LP->m1);
4707  Print("m2 (>=) %d\n",LP->m2);
4708  Print("m3 (==) %d\n",LP->m3);
4709 #endif
4710 
4711  LP->compute();
4712 
4713  lists lres= (lists)omAlloc( sizeof(slists) );
4714  lres->Init( 6 );
4715 
4716  lres->m[0].rtyp= MATRIX_CMD; // output matrix
4717  lres->m[0].data=(void*)LP->mapToMatrix(m);
4718 
4719  lres->m[1].rtyp= INT_CMD; // found a solution?
4720  lres->m[1].data=(void*)(long)LP->icase;
4721 
4722  lres->m[2].rtyp= INTVEC_CMD;
4723  lres->m[2].data=(void*)LP->posvToIV();
4724 
4725  lres->m[3].rtyp= INTVEC_CMD;
4726  lres->m[3].data=(void*)LP->zrovToIV();
4727 
4728  lres->m[4].rtyp= INT_CMD;
4729  lres->m[4].data=(void*)(long)LP->m;
4730 
4731  lres->m[5].rtyp= INT_CMD;
4732  lres->m[5].data=(void*)(long)LP->n;
4733 
4734  res->data= (void*)lres;
4735 
4736  return FALSE;
4737 }
4738 
4740 {
4741  ideal gls = (ideal)(arg1->Data());
4742  int imtype= (int)(long)arg2->Data();
4743 
4744  uResultant::resMatType mtype= determineMType( imtype );
4745 
4746  // check input ideal ( = polynomial system )
4747  if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4748  {
4749  return TRUE;
4750  }
4751 
4752  uResultant *resMat= new uResultant( gls, mtype, false );
4753  if (resMat!=NULL)
4754  {
4755  res->rtyp = MODUL_CMD;
4756  res->data= (void*)resMat->accessResMat()->getMatrix();
4757  if (!errorreported) delete resMat;
4758  }
4759  return errorreported;
4760 }
4761 
4763 {
4764  poly gls;
4765  gls= (poly)(arg1->Data());
4766  int howclean= (int)(long)arg3->Data();
4767 
4768  if ( gls == NULL || pIsConstant( gls ) )
4769  {
4770  WerrorS("Input polynomial is constant!");
4771  return TRUE;
4772  }
4773 
4774  if (rField_is_Zp(currRing))
4775  {
4776  int* r=Zp_roots(gls, currRing);
4777  lists rlist;
4778  rlist= (lists)omAlloc( sizeof(slists) );
4779  rlist->Init( r[0] );
4780  for(int i=r[0];i>0;i--)
4781  {
4782  rlist->m[i-1].data=n_Init(r[i],currRing);
4783  rlist->m[i-1].rtyp=NUMBER_CMD;
4784  }
4785  omFree(r);
4786  res->data=rlist;
4787  res->rtyp= LIST_CMD;
4788  return FALSE;
4789  }
4790  if ( !(rField_is_R(currRing) ||
4791  rField_is_Q(currRing) ||
4794  {
4795  WerrorS("Ground field not implemented!");
4796  return TRUE;
4797  }
4798 
4801  {
4802  unsigned long int ii = (unsigned long int)arg2->Data();
4803  setGMPFloatDigits( ii, ii );
4804  }
4805 
4806  int ldummy;
4807  int deg= currRing->pLDeg( gls, &ldummy, currRing );
4808  int i,vpos=0;
4809  poly piter;
4810  lists elist;
4811 
4812  elist= (lists)omAlloc( sizeof(slists) );
4813  elist->Init( 0 );
4814 
4815  if ( rVar(currRing) > 1 )
4816  {
4817  piter= gls;
4818  for ( i= 1; i <= rVar(currRing); i++ )
4819  if ( pGetExp( piter, i ) )
4820  {
4821  vpos= i;
4822  break;
4823  }
4824  while ( piter )
4825  {
4826  for ( i= 1; i <= rVar(currRing); i++ )
4827  if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4828  {
4829  WerrorS("The input polynomial must be univariate!");
4830  return TRUE;
4831  }
4832  pIter( piter );
4833  }
4834  }
4835 
4836  rootContainer * roots= new rootContainer();
4837  number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4838  piter= gls;
4839  for ( i= deg; i >= 0; i-- )
4840  {
4841  if ( piter && pTotaldegree(piter) == i )
4842  {
4843  pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4844  //nPrint( pcoeffs[i] );PrintS(" ");
4845  pIter( piter );
4846  }
4847  else
4848  {
4849  pcoeffs[i]= nInit(0);
4850  }
4851  }
4852 
4853 #ifdef mprDEBUG_PROT
4854  for (i=deg; i >= 0; i--)
4855  {
4856  nPrint( pcoeffs[i] );PrintS(" ");
4857  }
4858  PrintLn();
4859 #endif
4860 
4861  roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4862  roots->solver( howclean );
4863 
4864  int elem= roots->getAnzRoots();
4865  char *dummy;
4866  int j;
4867 
4868  lists rlist;
4869  rlist= (lists)omAlloc( sizeof(slists) );
4870  rlist->Init( elem );
4871 
4873  {
4874  for ( j= 0; j < elem; j++ )
4875  {
4876  rlist->m[j].rtyp=NUMBER_CMD;
4877  rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4878  //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4879  }
4880  }
4881  else
4882  {
4883  for ( j= 0; j < elem; j++ )
4884  {
4885  dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4886  rlist->m[j].rtyp=STRING_CMD;
4887  rlist->m[j].data=(void *)dummy;
4888  }
4889  }
4890 
4891  elist->Clean();
4892  //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4893 
4894  // this is (via fillContainer) the same data as in root
4895  //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4896  //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4897 
4898  delete roots;
4899 
4900  res->data= (void*)rlist;
4901 
4902  return FALSE;
4903 }
4904 
4906 {
4907  int i;
4908  ideal p,w;
4909  p= (ideal)arg1->Data();
4910  w= (ideal)arg2->Data();
4911 
4912  // w[0] = f(p^0)
4913  // w[1] = f(p^1)
4914  // ...
4915  // p can be a vector of numbers (multivariate polynom)
4916  // or one number (univariate polynom)
4917  // tdg = deg(f)
4918 
4919  int n= IDELEMS( p );
4920  int m= IDELEMS( w );
4921  int tdg= (int)(long)arg3->Data();
4922 
4923  res->data= (void*)NULL;
4924 
4925  // check the input
4926  if ( tdg < 1 )
4927  {
4928  WerrorS("Last input parameter must be > 0!");
4929  return TRUE;
4930  }
4931  if ( n != rVar(currRing) )
4932  {
4933  Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4934  return TRUE;
4935  }
4936  if ( m != (int)pow((double)tdg+1,(double)n) )
4937  {
4938  Werror("Size of second input ideal must be equal to %d!",
4939  (int)pow((double)tdg+1,(double)n));
4940  return TRUE;
4941  }
4942  if ( !(rField_is_Q(currRing) /* ||
4943  rField_is_R() || rField_is_long_R() ||
4944  rField_is_long_C()*/ ) )
4945  {
4946  WerrorS("Ground field not implemented!");
4947  return TRUE;
4948  }
4949 
4950  number tmp;
4951  number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4952  for ( i= 0; i < n; i++ )
4953  {
4954  pevpoint[i]=nInit(0);
4955  if ( (p->m)[i] )
4956  {
4957  tmp = pGetCoeff( (p->m)[i] );
4958  if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4959  {
4960  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4961  WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4962  return TRUE;
4963  }
4964  } else tmp= NULL;
4965  if ( !nIsZero(tmp) )
4966  {
4967  if ( !pIsConstant((p->m)[i]))
4968  {
4969  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4970  WerrorS("Elements of first input ideal must be numbers!");
4971  return TRUE;
4972  }
4973  pevpoint[i]= nCopy( tmp );
4974  }
4975  }
4976 
4977  number *wresults= (number *)omAlloc( m * sizeof( number ) );
4978  for ( i= 0; i < m; i++ )
4979  {
4980  wresults[i]= nInit(0);
4981  if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4982  {
4983  if ( !pIsConstant((w->m)[i]))
4984  {
4985  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4986  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4987  WerrorS("Elements of second input ideal must be numbers!");
4988  return TRUE;
4989  }
4990  wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4991  }
4992  }
4993 
4994  vandermonde vm( m, n, tdg, pevpoint, FALSE );
4995  number *ncpoly= vm.interpolateDense( wresults );
4996  // do not free ncpoly[]!!
4997  poly rpoly= vm.numvec2poly( ncpoly );
4998 
4999  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
5000  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
5001 
5002  res->data= (void*)rpoly;
5003  return FALSE;
5004 }
5005 
5007 {
5008  leftv v= args;
5009 
5010  ideal gls;
5011  int imtype;
5012  int howclean;
5013 
5014  // get ideal
5015  if ( v->Typ() != IDEAL_CMD )
5016  return TRUE;
5017  else gls= (ideal)(v->Data());
5018  v= v->next;
5019 
5020  // get resultant matrix type to use (0,1)
5021  if ( v->Typ() != INT_CMD )
5022  return TRUE;
5023  else imtype= (int)(long)v->Data();
5024  v= v->next;
5025 
5026  if (imtype==0)
5027  {
5028  ideal test_id=idInit(1,1);
5029  int j;
5030  for(j=IDELEMS(gls)-1;j>=0;j--)
5031  {
5032  if (gls->m[j]!=NULL)
5033  {
5034  test_id->m[0]=gls->m[j];
5035  intvec *dummy_w=id_QHomWeight(test_id, currRing);
5036  if (dummy_w!=NULL)
5037  {
5038  WerrorS("Newton polytope not of expected dimension");
5039  delete dummy_w;
5040  return TRUE;
5041  }
5042  }
5043  }
5044  }
5045 
5046  // get and set precision in digits ( > 0 )
5047  if ( v->Typ() != INT_CMD )
5048  return TRUE;
5049  else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
5051  {
5052  unsigned long int ii=(unsigned long int)v->Data();
5053  setGMPFloatDigits( ii, ii );
5054  }
5055  v= v->next;
5056 
5057  // get interpolation steps (0,1,2)
5058  if ( v->Typ() != INT_CMD )
5059  return TRUE;
5060  else howclean= (int)(long)v->Data();
5061 
5062  uResultant::resMatType mtype= determineMType( imtype );
5063  int i,count;
5064  lists listofroots= NULL;
5065  number smv= NULL;
5066  BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
5067 
5068  //emptylist= (lists)omAlloc( sizeof(slists) );
5069  //emptylist->Init( 0 );
5070 
5071  //res->rtyp = LIST_CMD;
5072  //res->data= (void *)emptylist;
5073 
5074  // check input ideal ( = polynomial system )
5075  if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
5076  {
5077  return TRUE;
5078  }
5079 
5080  uResultant * ures;
5081  rootContainer ** iproots;
5082  rootContainer ** muiproots;
5083  rootArranger * arranger;
5084 
5085  // main task 1: setup of resultant matrix
5086  ures= new uResultant( gls, mtype );
5087  if ( ures->accessResMat()->initState() != resMatrixBase::ready )
5088  {
5089  WerrorS("Error occurred during matrix setup!");
5090  return TRUE;
5091  }
5092 
5093  // if dense resultant, check if minor nonsingular
5094  if ( mtype == uResultant::denseResMat )
5095  {
5096  smv= ures->accessResMat()->getSubDet();
5097 #ifdef mprDEBUG_PROT
5098  PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
5099 #endif
5100  if ( nIsZero(smv) )
5101  {
5102  WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
5103  return TRUE;
5104  }
5105  }
5106 
5107  // main task 2: Interpolate specialized resultant polynomials
5108  if ( interpolate_det )
5109  iproots= ures->interpolateDenseSP( false, smv );
5110  else
5111  iproots= ures->specializeInU( false, smv );
5112 
5113  // main task 3: Interpolate specialized resultant polynomials
5114  if ( interpolate_det )
5115  muiproots= ures->interpolateDenseSP( true, smv );
5116  else
5117  muiproots= ures->specializeInU( true, smv );
5118 
5119 #ifdef mprDEBUG_PROT
5120  int c= iproots[0]->getAnzElems();
5121  for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
5122  c= muiproots[0]->getAnzElems();
5123  for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
5124 #endif
5125 
5126  // main task 4: Compute roots of specialized polys and match them up
5127  arranger= new rootArranger( iproots, muiproots, howclean );
5128  arranger->solve_all();
5129 
5130  // get list of roots
5131  if ( arranger->success() )
5132  {
5133  arranger->arrange();
5134  listofroots= listOfRoots(arranger, gmp_output_digits );
5135  }
5136  else
5137  {
5138  WerrorS("Solver was unable to find any roots!");
5139  return TRUE;
5140  }
5141 
5142  // free everything
5143  count= iproots[0]->getAnzElems();
5144  for (i=0; i < count; i++) delete iproots[i];
5145  omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
5146  count= muiproots[0]->getAnzElems();
5147  for (i=0; i < count; i++) delete muiproots[i];
5148  omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
5149 
5150  delete ures;
5151  delete arranger;
5152  nDelete( &smv );
5153 
5154  res->data= (void *)listofroots;
5155 
5156  //emptylist->Clean();
5157  // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
5158 
5159  return FALSE;
5160 }
5161 
5162 // from mpr_numeric.cc
5163 lists listOfRoots( rootArranger* self, const unsigned int oprec )
5164 {
5165  int i,j;
5166  int count= self->roots[0]->getAnzRoots(); // number of roots
5167  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
5168 
5169  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
5170 
5171  if ( self->found_roots )
5172  {
5173  listofroots->Init( count );
5174 
5175  for (i=0; i < count; i++)
5176  {
5177  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
5178  onepoint->Init(elem);
5179  for ( j= 0; j < elem; j++ )
5180  {
5181  if ( !rField_is_long_C(currRing) )
5182  {
5183  onepoint->m[j].rtyp=STRING_CMD;
5184  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
5185  }
5186  else
5187  {
5188  onepoint->m[j].rtyp=NUMBER_CMD;
5189  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
5190  }
5191  onepoint->m[j].next= NULL;
5192  onepoint->m[j].name= NULL;
5193  }
5194  listofroots->m[i].rtyp=LIST_CMD;
5195  listofroots->m[i].data=(void *)onepoint;
5196  listofroots->m[j].next= NULL;
5197  listofroots->m[j].name= NULL;
5198  }
5199 
5200  }
5201  else
5202  {
5203  listofroots->Init( 0 );
5204  }
5205 
5206  return listofroots;
5207 }
5208 
5209 // from ring.cc
5211 {
5212  ring rg = NULL;
5213  if (h!=NULL)
5214  {
5215 // Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
5216  rg = IDRING(h);
5217  if (rg==NULL) return; //id <>NULL, ring==NULL
5218  omCheckAddrSize((ADDRESS)h,sizeof(idrec));
5219  if (IDID(h)) // OB: ????
5221  rTest(rg);
5222  }
5223  else return;
5224 
5225  // clean up history
5226  if (currRing!=NULL)
5227  {
5229  {
5231  }
5232 
5233  if (rg!=currRing)/*&&(currRing!=NULL)*/
5234  {
5235  if (rg->cf!=currRing->cf)
5236  {
5238  if (DENOMINATOR_LIST!=NULL)
5239  {
5240  if (TEST_V_ALLWARN)
5241  Warn("deleting denom_list for ring change to %s",IDID(h));
5242  do
5243  {
5244  n_Delete(&(dd->n),currRing->cf);
5245  dd=dd->next;
5247  DENOMINATOR_LIST=dd;
5248  } while(DENOMINATOR_LIST!=NULL);
5249  }
5250  }
5251  }
5252  }
5253 
5254  // test for valid "currRing":
5255  if ((rg!=NULL) && (rg->idroot==NULL))
5256  {
5257  ring old=rg;
5258  rg=rAssure_HasComp(rg);
5259  if (old!=rg)
5260  {
5261  rKill(old);
5262  IDRING(h)=rg;
5263  }
5264  }
5265  /*------------ change the global ring -----------------------*/
5266  rChangeCurrRing(rg);
5267  currRingHdl = h;
5268 }
5269 
5271 {
5272  // change some bad orderings/combination into better ones
5273  leftv h=ord;
5274  while(h!=NULL)
5275  {
5276  BOOLEAN change=FALSE;
5277  intvec *iv = (intvec *)(h->data);
5278  // ws(-i) -> wp(i)
5279  if ((*iv)[1]==ringorder_ws)
5280  {
5281  BOOLEAN neg=TRUE;
5282  for(int i=2;i<iv->length();i++)
5283  if((*iv)[i]>=0) { neg=FALSE; break; }
5284  if (neg)
5285  {
5286  (*iv)[1]=ringorder_wp;
5287  for(int i=2;i<iv->length();i++)
5288  (*iv)[i]= - (*iv)[i];
5289  change=TRUE;
5290  }
5291  }
5292  // Ws(-i) -> Wp(i)
5293  if ((*iv)[1]==ringorder_Ws)
5294  {
5295  BOOLEAN neg=TRUE;
5296  for(int i=2;i<iv->length();i++)
5297  if((*iv)[i]>=0) { neg=FALSE; break; }
5298  if (neg)
5299  {
5300  (*iv)[1]=ringorder_Wp;
5301  for(int i=2;i<iv->length();i++)
5302  (*iv)[i]= -(*iv)[i];
5303  change=TRUE;
5304  }
5305  }
5306  // wp(1) -> dp
5307  if ((*iv)[1]==ringorder_wp)
5308  {
5309  BOOLEAN all_one=TRUE;
5310  for(int i=2;i<iv->length();i++)
5311  if((*iv)[i]!=1) { all_one=FALSE; break; }
5312  if (all_one)
5313  {
5314  intvec *iv2=new intvec(3);
5315  (*iv2)[0]=1;
5316  (*iv2)[1]=ringorder_dp;
5317  (*iv2)[2]=iv->length()-2;
5318  delete iv;
5319  iv=iv2;
5320  h->data=iv2;
5321  change=TRUE;
5322  }
5323  }
5324  // Wp(1) -> Dp
5325  if ((*iv)[1]==ringorder_Wp)
5326  {
5327  BOOLEAN all_one=TRUE;
5328  for(int i=2;i<iv->length();i++)
5329  if((*iv)[i]!=1) { all_one=FALSE; break; }
5330  if (all_one)
5331  {
5332  intvec *iv2=new intvec(3);
5333  (*iv2)[0]=1;
5334  (*iv2)[1]=ringorder_Dp;
5335  (*iv2)[2]=iv->length()-2;
5336  delete iv;
5337  iv=iv2;
5338  h->data=iv2;
5339  change=TRUE;
5340  }
5341  }
5342  // dp(1)/Dp(1)/rp(1) -> lp(1)
5343  if (((*iv)[1]==ringorder_dp)
5344  || ((*iv)[1]==ringorder_Dp)
5345  || ((*iv)[1]==ringorder_rp))
5346  {
5347  if (iv->length()==3)
5348  {
5349  if ((*iv)[2]==1)
5350  {
5351  if(h->next!=NULL)
5352  {
5353  intvec *iv2 = (intvec *)(h->next->data);
5354  if ((*iv2)[1]==ringorder_lp)
5355  {
5356  (*iv)[1]=ringorder_lp;
5357  change=TRUE;
5358  }
5359  }
5360  }
5361  }
5362  }
5363  // lp(i),lp(j) -> lp(i+j)
5364  if(((*iv)[1]==ringorder_lp)
5365  && (h->next!=NULL))
5366  {
5367  intvec *iv2 = (intvec *)(h->next->data);
5368  if ((*iv2)[1]==ringorder_lp)
5369  {
5370  leftv hh=h->next;
5371  h->next=hh->next;
5372  hh->next=NULL;
5373  if ((*iv2)[0]==1)
5374  (*iv)[2] += 1; // last block unspecified, at least 1
5375  else
5376  (*iv)[2] += (*iv2)[2];
5377  hh->CleanUp();
5378  omFree(hh);
5379  change=TRUE;
5380  }
5381  }
5382  // -------------------
5383  if (!change) h=h->next;
5384  }
5385  return ord;
5386 }
5387 
5388 
5390 {
5391  int last = 0, o=0, n = 1, i=0, typ = 1, j;
5392  ord=rOptimizeOrdAsSleftv(ord);
5393  sleftv *sl = ord;
5394 
5395  // determine nBlocks
5396  while (sl!=NULL)
5397  {
5398  intvec *iv = (intvec *)(sl->data);
5399  if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5400  i++;
5401  else if ((*iv)[1]==ringorder_L)
5402  {
5403  R->wanted_maxExp=(*iv)[2]*2+1;
5404  n--;
5405  }
5406  else if (((*iv)[1]!=ringorder_a)
5407  && ((*iv)[1]!=ringorder_a64)
5408  && ((*iv)[1]!=ringorder_am))
5409  o++;
5410  n++;
5411  sl=sl->next;
5412  }
5413  // check whether at least one real ordering
5414  if (o==0)
5415  {
5416  WerrorS("invalid combination of orderings");
5417  return TRUE;
5418  }
5419  // if no c/C ordering is given, increment n
5420  if (i==0) n++;
5421  else if (i != 1)
5422  {
5423  // throw error if more than one is given
5424  WerrorS("more than one ordering c/C specified");
5425  return TRUE;
5426  }
5427 
5428  // initialize fields of R
5429  R->order=(rRingOrder_t *)omAlloc0(n*sizeof(rRingOrder_t));
5430  R->block0=(int *)omAlloc0(n*sizeof(int));
5431  R->block1=(int *)omAlloc0(n*sizeof(int));
5432  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5433 
5434  int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5435 
5436  // init order, so that rBlocks works correctly
5437  for (j=0; j < n-1; j++)
5438  R->order[j] = ringorder_unspec;
5439  // set last _C order, if no c/C order was given
5440  if (i == 0) R->order[n-2] = ringorder_C;
5441 
5442  /* init orders */
5443  sl=ord;
5444  n=-1;
5445  while (sl!=NULL)
5446  {
5447  intvec *iv;
5448  iv = (intvec *)(sl->data);
5449  if ((*iv)[1]!=ringorder_L)
5450  {
5451  n++;
5452 
5453  /* the format of an ordering:
5454  * iv[0]: factor
5455  * iv[1]: ordering
5456  * iv[2..end]: weights
5457  */
5458  R->order[n] = (rRingOrder_t)((*iv)[1]);
5459  typ=1;
5460  switch ((*iv)[1])
5461  {
5462  case ringorder_ws:
5463  case ringorder_Ws:
5464  typ=-1; // and continue
5465  case ringorder_wp:
5466  case ringorder_Wp:
5467  R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5468  R->block0[n] = last+1;
5469  for (i=2; i<iv->length(); i++)
5470  {
5471  R->wvhdl[n][i-2] = (*iv)[i];
5472  last++;
5473  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5474  }
5475  R->block1[n] = si_min(last,R->N);
5476  break;
5477  case ringorder_ls:
5478  case ringorder_ds:
5479  case ringorder_Ds:
5480  case ringorder_rs:
5481  typ=-1; // and continue
5482  case ringorder_lp:
5483  case ringorder_dp:
5484  case ringorder_Dp:
5485  case ringorder_rp:
5486  R->block0[n] = last+1;
5487  if (iv->length() == 3) last+=(*iv)[2];
5488  else last += (*iv)[0];
5489  R->block1[n] = si_min(last,R->N);
5490  if (rCheckIV(iv)) return TRUE;
5491  for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5492  {
5493  if (weights[i]==0) weights[i]=typ;
5494  }
5495  break;
5496 
5497  case ringorder_s: // no 'rank' params!
5498  {
5499 
5500  if(iv->length() > 3)
5501  return TRUE;
5502 
5503  if(iv->length() == 3)
5504  {
5505  const int s = (*iv)[2];
5506  R->block0[n] = s;
5507  R->block1[n] = s;
5508  }
5509  break;
5510  }
5511  case ringorder_IS:
5512  {
5513  if(iv->length() != 3) return TRUE;
5514 
5515  const int s = (*iv)[2];
5516 
5517  if( 1 < s || s < -1 ) return TRUE;
5518 
5519  R->block0[n] = s;
5520  R->block1[n] = s;
5521  break;
5522  }
5523  case ringorder_S:
5524  case ringorder_c:
5525  case ringorder_C:
5526  {
5527  if (rCheckIV(iv)) return TRUE;
5528  break;
5529  }
5530  case ringorder_aa:
5531  case ringorder_a:
5532  {
5533  R->block0[n] = last+1;
5534  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5535  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5536  for (i=2; i<iv->length(); i++)
5537  {
5538  R->wvhdl[n][i-2]=(*iv)[i];
5539  last++;
5540  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5541  }
5542  last=R->block0[n]-1;
5543  break;
5544  }
5545  case ringorder_am:
5546  {
5547  R->block0[n] = last+1;
5548  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5549  R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5550  if (R->block1[n]- R->block0[n]+2>=iv->length())
5551  WarnS("missing module weights");
5552  for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5553  {
5554  R->wvhdl[n][i-2]=(*iv)[i];
5555  last++;
5556  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5557  }
5558  R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5559  for (; i<iv->length(); i++)
5560  {
5561  R->wvhdl[n][i-1]=(*iv)[i];
5562  }
5563  last=R->block0[n]-1;
5564  break;
5565  }
5566  case ringorder_a64:
5567  {
5568  R->block0[n] = last+1;
5569  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5570  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5571  int64 *w=(int64 *)R->wvhdl[n];
5572  for (i=2; i<iv->length(); i++)
5573  {
5574  w[i-2]=(*iv)[i];
5575  last++;
5576  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5577  }
5578  last=R->block0[n]-1;
5579  break;
5580  }
5581  case ringorder_M:
5582  {
5583  int Mtyp=rTypeOfMatrixOrder(iv);
5584  if (Mtyp==0) return TRUE;
5585  if (Mtyp==-1) typ = -1;
5586 
5587  R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5588  for (i=2; i<iv->length();i++)
5589  R->wvhdl[n][i-2]=(*iv)[i];
5590 
5591  R->block0[n] = last+1;
5592  last += (int)sqrt((double)(iv->length()-2));
5593  R->block1[n] = si_min(last,R->N);
5594  for(i=R->block1[n];i>=R->block0[n];i--)
5595  {
5596  if (weights[i]==0) weights[i]=typ;
5597  }
5598  break;
5599  }
5600 
5601  case ringorder_no:
5602  R->order[n] = ringorder_unspec;
5603  return TRUE;
5604 
5605  default:
5606  Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5607  R->order[n] = ringorder_unspec;
5608  return TRUE;
5609  }
5610  }
5611  if (last>R->N)
5612  {
5613  Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5614  R->N,last);
5615  return TRUE;
5616  }
5617  sl=sl->next;
5618  }
5619  // find OrdSgn:
5620  R->OrdSgn = 1;
5621  for(i=1;i<=R->N;i++)
5622  { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5623  omFree(weights);
5624 
5625  // check for complete coverage
5626  while ( n >= 0 && (
5627  (R->order[n]==ringorder_c)
5628  || (R->order[n]==ringorder_C)
5629  || (R->order[n]==ringorder_s)
5630  || (R->order[n]==ringorder_S)
5631  || (R->order[n]==ringorder_IS)
5632  )) n--;
5633 
5634  assume( n >= 0 );
5635 
5636  if (R->block1[n] != R->N)
5637  {
5638  if (((R->order[n]==ringorder_dp) ||
5639  (R->order[n]==ringorder_ds) ||
5640  (R->order[n]==ringorder_Dp) ||
5641  (R->order[n]==ringorder_Ds) ||
5642  (R->order[n]==ringorder_rp) ||
5643  (R->order[n]==ringorder_rs) ||
5644  (R->order[n]==ringorder_lp) ||
5645  (R->order[n]==ringorder_ls))
5646  &&
5647  R->block0[n] <= R->N)
5648  {
5649  R->block1[n] = R->N;
5650  }
5651  else
5652  {
5653  Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5654  R->N,R->block1[n]);
5655  return TRUE;
5656  }
5657  }
5658  return FALSE;
5659 }
5660 
5662 {
5663 
5664  while(sl!=NULL)
5665  {
5666  if ((sl->rtyp == IDHDL)||(sl->rtyp==ALIAS_CMD))
5667  {
5668  *p = omStrDup(sl->Name());
5669  }
5670  else if (sl->name!=NULL)
5671  {
5672  *p = (char*)sl->name;
5673  sl->name=NULL;
5674  }
5675  else if (sl->rtyp==POLY_CMD)
5676  {
5677  sleftv s_sl;
5678  iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5679  if (s_sl.name != NULL)
5680  {
5681  *p = (char*)s_sl.name; s_sl.name=NULL;
5682  }
5683  else
5684  *p = NULL;
5685  sl->next = s_sl.next;
5686  s_sl.next = NULL;
5687  s_sl.CleanUp();
5688  if (*p == NULL) return TRUE;
5689  }
5690  else return TRUE;
5691  p++;
5692  sl=sl->next;
5693  }
5694  return FALSE;
5695 }
5696 
5697 const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5698 
5699 ////////////////////
5700 //
5701 // rInit itself:
5702 //
5703 // INPUT: pn: ch & parameter (names), rv: variable (names)
5704 // ord: ordering (all !=NULL)
5705 // RETURN: currRingHdl on success
5706 // NULL on error
5707 // NOTE: * makes new ring to current ring, on success
5708 // * considers input sleftv's as read-only
5709 ring rInit(leftv pn, leftv rv, leftv ord)
5710 {
5711  int float_len=0;
5712  int float_len2=0;
5713  ring R = NULL;
5714  //BOOLEAN ffChar=FALSE;
5715 
5716  /* ch -------------------------------------------------------*/
5717  // get ch of ground field
5718 
5719  // allocated ring
5720  R = (ring) omAlloc0Bin(sip_sring_bin);
5721 
5722  coeffs cf = NULL;
5723 
5724  assume( pn != NULL );
5725  const int P = pn->listLength();
5726 
5727  if (pn->Typ()==CRING_CMD)
5728  {
5729  cf=(coeffs)pn->CopyD();
5730  leftv pnn=pn;
5731  if(P>1) /*parameter*/
5732  {
5733  pnn = pnn->next;
5734  const int pars = pnn->listLength();
5735  assume( pars > 0 );
5736  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5737 
5738  if (rSleftvList2StringArray(pnn, names))
5739  {
5740  WerrorS("parameter expected");
5741  goto rInitError;
5742  }
5743 
5744  TransExtInfo extParam;
5745 
5746  extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5747  for(int i=pars-1; i>=0;i--)
5748  {
5749  omFree(names[i]);
5750  }
5751  omFree(names);
5752 
5753  cf = nInitChar(n_transExt, &extParam);
5754  }
5755  assume( cf != NULL );
5756  }
5757  else if (pn->Typ()==INT_CMD)
5758  {
5759  int ch = (int)(long)pn->Data();
5760  leftv pnn=pn;
5761 
5762  /* parameter? -------------------------------------------------------*/
5763  pnn = pnn->next;
5764 
5765  if (pnn == NULL) // no params!?
5766  {
5767  if (ch!=0)
5768  {
5769  int ch2=IsPrime(ch);
5770  if ((ch<2)||(ch!=ch2))
5771  {
5772  Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5773  ch=32003;
5774  }
5775  #ifndef TEST_ZN_AS_ZP
5776  cf = nInitChar(n_Zp, (void*)(long)ch);
5777  #else
5778  mpz_t modBase;
5779  mpz_init_set_ui(modBase, (long)ch);
5780  ZnmInfo info;
5781  info.base= modBase;
5782  info.exp= 1;
5783  cf=nInitChar(n_Zn,(void*) &info);
5784  cf->is_field=1;
5785  cf->is_domain=1;
5786  cf->has_simple_Inverse=1;
5787  #endif
5788  }
5789  else
5790  cf = nInitChar(n_Q, (void*)(long)ch);
5791  }
5792  else
5793  {
5794  const int pars = pnn->listLength();
5795 
5796  assume( pars > 0 );
5797 
5798  // predefined finite field: (p^k, a)
5799  if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5800  {
5801  GFInfo param;
5802 
5803  param.GFChar = ch;
5804  param.GFDegree = 1;
5805  param.GFPar_name = pnn->name;
5806 
5807  cf = nInitChar(n_GF, &param);
5808  }
5809  else // (0/p, a, b, ..., z)
5810  {
5811  if ((ch!=0) && (ch!=IsPrime(ch)))
5812  {
5813  WerrorS("too many parameters");
5814  goto rInitError;
5815  }
5816 
5817  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5818 
5819  if (rSleftvList2StringArray(pnn, names))
5820  {
5821  WerrorS("parameter expected");
5822  goto rInitError;
5823  }
5824 
5825  TransExtInfo extParam;
5826 
5827  extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5828  for(int i=pars-1; i>=0;i--)
5829  {
5830  omFree(names[i]);
5831  }
5832  omFree(names);
5833 
5834  cf = nInitChar(n_transExt, &extParam);
5835  }
5836  }
5837 
5838  //if (cf==NULL) ->Error: Invalid ground field specification
5839  }
5840  else if ((pn->name != NULL)
5841  && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5842  {
5843  leftv pnn=pn->next;
5844  BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5845  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5846  {
5847  float_len=(int)(long)pnn->Data();
5848  float_len2=float_len;
5849  pnn=pnn->next;
5850  if ((pnn!=NULL) && (pnn->Typ()==INT_CMD))
5851  {
5852  float_len2=(int)(long)pnn->Data();
5853  pnn=pnn->next;
5854  }
5855  }
5856 
5857  if (!complex_flag)
5858  complex_flag= (pnn!=NULL) && (pnn->name!=NULL);
5859  if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5860  cf=nInitChar(n_R, NULL);
5861  else // longR or longC?
5862  {
5863  LongComplexInfo param;
5864 
5865  param.float_len = si_min (float_len, 32767);
5866  param.float_len2 = si_min (float_len2, 32767);
5867 
5868  // set the parameter name
5869  if (complex_flag)
5870  {
5871  if (param.float_len < SHORT_REAL_LENGTH)
5872  {
5875  }
5876  if ((pnn == NULL) || (pnn->name == NULL))
5877  param.par_name=(const char*)"i"; //default to i
5878  else
5879  param.par_name = (const char*)pnn->name;
5880  }
5881 
5882  cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5883  }
5884  assume( cf != NULL );
5885  }
5886 #ifdef HAVE_RINGS
5887  else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5888  {
5889  // TODO: change to use coeffs_BIGINT!?
5890  mpz_t modBase;
5891  unsigned int modExponent = 1;
5892  mpz_init_set_si(modBase, 0);
5893  if (pn->next!=NULL)
5894  {
5895  leftv pnn=pn;
5896  if (pnn->next->Typ()==INT_CMD)
5897  {
5898  pnn=pnn->next;
5899  mpz_set_ui(modBase, (long) pnn->Data());
5900  if ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5901  {
5902  pnn=pnn->next;
5903  modExponent = (long) pnn->Data();
5904  }
5905  while ((pnn->next!=NULL) && (pnn->next->Typ()==INT_CMD))
5906  {
5907  pnn=pnn->next;
5908  mpz_mul_ui(modBase, modBase, (int)(long) pnn->Data());
5909  }
5910  }
5911  else if (pnn->next->Typ()==BIGINT_CMD)
5912  {
5913  number p=(number)pnn->next->CopyD();
5914  n_MPZ(modBase,p,coeffs_BIGINT);
5916  }
5917  }
5918  else
5919  cf=nInitChar(n_Z,NULL);
5920 
5921  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_sgn1(modBase) < 0))
5922  {
5923  WerrorS("Wrong ground ring specification (module is 1)");
5924  goto rInitError;
5925  }
5926  if (modExponent < 1)
5927  {
5928  WerrorS("Wrong ground ring specification (exponent smaller than 1");
5929  goto rInitError;
5930  }
5931  // module is 0 ---> integers ringtype = 4;
5932  // we have an exponent
5933  if (modExponent > 1 && cf == NULL)
5934  {
5935  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5936  {
5937  /* this branch should be active for modExponent = 2..32 resp. 2..64,
5938  depending on the size of a long on the respective platform */
5939  //ringtype = 1; // Use Z/2^ch
5940  cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5941  }
5942  else
5943  {
5944  if (mpz_sgn1(modBase)==0)
5945  {
5946  WerrorS("modulus must not be 0 or parameter not allowed");
5947  goto rInitError;
5948  }
5949  //ringtype = 3;
5950  ZnmInfo info;
5951  info.base= modBase;
5952  info.exp= modExponent;
5953  cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5954  }
5955  }
5956  // just a module m > 1
5957  else if (cf == NULL)
5958  {
5959  if (mpz_sgn1(modBase)==0)
5960  {
5961  WerrorS("modulus must not be 0 or parameter not allowed");
5962  goto rInitError;
5963  }
5964  //ringtype = 2;
5965  ZnmInfo info;
5966  info.base= modBase;
5967  info.exp= modExponent;
5968  cf=nInitChar(n_Zn,(void*) &info);
5969  }
5970  assume( cf != NULL );
5971  mpz_clear(modBase);
5972  }
5973 #endif
5974  // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5975  else if ((pn->Typ()==RING_CMD) && (P == 1))
5976  {
5977  TransExtInfo extParam;
5978  extParam.r = (ring)pn->Data();
5979  extParam.r->ref++;
5980  cf = nInitChar(n_transExt, &extParam);
5981  }
5982  //else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5983  //{
5984  // AlgExtInfo extParam;
5985  // extParam.r = (ring)pn->Data();
5986 
5987  // cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5988  //}
5989  else
5990  {
5991  WerrorS("Wrong or unknown ground field specification");
5992 #if 0
5993 // debug stuff for unknown cf descriptions:
5994  sleftv* p = pn;
5995  while (p != NULL)
5996  {
5997  Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5998  PrintLn();
5999  p = p->next;
6000  }
6001 #endif
6002  goto rInitError;
6003  }
6004 
6005  /*every entry in the new ring is initialized to 0*/
6006 
6007  /* characteristic -----------------------------------------------*/
6008  /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
6009  * 0 1 : Q(a,...) *names FALSE
6010  * 0 -1 : R NULL FALSE 0
6011  * 0 -1 : R NULL FALSE prec. >6
6012  * 0 -1 : C *names FALSE prec. 0..?
6013  * p p : Fp NULL FALSE
6014  * p -p : Fp(a) *names FALSE
6015  * q q : GF(q=p^n) *names TRUE
6016  */
6017  if (cf==NULL)
6018  {
6019  WerrorS("Invalid ground field specification");
6020  goto rInitError;
6021 // const int ch=32003;
6022 // cf=nInitChar(n_Zp, (void*)(long)ch);
6023  }
6024 
6025  assume( R != NULL );
6026 
6027  R->cf = cf;
6028 
6029  /* names and number of variables-------------------------------------*/
6030  {
6031  int l=rv->listLength();
6032 
6033  if (l>MAX_SHORT)
6034  {
6035  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6036  goto rInitError;
6037  }
6038  R->N = l; /*rv->listLength();*/
6039  }
6040  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6041  if (rSleftvList2StringArray(rv, R->names))
6042  {
6043  WerrorS("name of ring variable expected");
6044  goto rInitError;
6045  }
6046 
6047  /* check names and parameters for conflicts ------------------------- */
6048  rRenameVars(R); // conflicting variables will be renamed
6049  /* ordering -------------------------------------------------------------*/
6050  if (rSleftvOrdering2Ordering(ord, R))
6051  goto rInitError;
6052 
6053  // Complete the initialization
6054  if (rComplete(R,1))
6055  goto rInitError;
6056 
6057 /*#ifdef HAVE_RINGS
6058 // currently, coefficients which are ring elements require a global ordering:
6059  if (rField_is_Ring(R) && (R->OrdSgn==-1))
6060  {
6061  WerrorS("global ordering required for these coefficients");
6062  goto rInitError;
6063  }
6064 #endif*/
6065 
6066  rTest(R);
6067 
6068  // try to enter the ring into the name list
6069  // need to clean up sleftv here, before this ring can be set to
6070  // new currRing or currRing can be killed beacuse new ring has
6071  // same name
6072  pn->CleanUp();
6073  rv->CleanUp();
6074  ord->CleanUp();
6075  //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
6076  // goto rInitError;
6077 
6078  //memcpy(IDRING(tmp),R,sizeof(*R));
6079  // set current ring
6080  //omFreeBin(R, ip_sring_bin);
6081  //return tmp;
6082  return R;
6083 
6084  // error case:
6085  rInitError:
6086  if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
6087  pn->CleanUp();
6088  rv->CleanUp();
6089  ord->CleanUp();
6090  return NULL;
6091 }
6092 
6093 ring rSubring(ring org_ring, sleftv* rv)
6094 {
6095  ring R = rCopy0(org_ring);
6096  int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
6097  int n = rBlocks(org_ring), i=0, j;
6098 
6099  /* names and number of variables-------------------------------------*/
6100  {
6101  int l=rv->listLength();
6102  if (l>MAX_SHORT)
6103  {
6104  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
6105  goto rInitError;
6106  }
6107  R->N = l; /*rv->listLength();*/
6108  }
6109  omFree(R->names);
6110  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
6111  if (rSleftvList2StringArray(rv, R->names))
6112  {
6113  WerrorS("name of ring variable expected");
6114  goto rInitError;
6115  }
6116 
6117  /* check names for subring in org_ring ------------------------- */
6118  {
6119  i=0;
6120 
6121  for(j=0;j<R->N;j++)
6122  {
6123  for(;i<org_ring->N;i++)
6124  {
6125  if (strcmp(org_ring->names[i],R->names[j])==0)
6126  {
6127  perm[i+1]=j+1;
6128  break;
6129  }
6130  }
6131  if (i>org_ring->N)
6132  {
6133  Werror("variable %d (%s) not in basering",j+1,R->names[j]);
6134  break;
6135  }
6136  }
6137  }
6138  //Print("perm=");
6139  //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
6140  /* ordering -------------------------------------------------------------*/
6141 
6142  for(i=0;i<n;i++)
6143  {
6144  int min_var=-1;
6145  int max_var=-1;
6146  for(j=R->block0[i];j<=R->block1[i];j++)
6147  {
6148  if (perm[j]>0)
6149  {
6150  if (min_var==-1) min_var=perm[j];
6151  max_var=perm[j];
6152  }
6153  }
6154  if (min_var!=-1)
6155  {
6156  //Print("block %d: old %d..%d, now:%d..%d\n",
6157  // i,R->block0[i],R->block1[i],min_var,max_var);
6158  R->block0[i]=min_var;
6159  R->block1[i]=max_var;
6160  if (R->wvhdl[i]!=NULL)
6161  {
6162  omFree(R->wvhdl[i]);
6163  R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
6164  for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
6165  {
6166  if (perm[j]>0)
6167  {
6168  R->wvhdl[i][perm[j]-R->block0[i]]=
6169  org_ring->wvhdl[i][j-org_ring->block0[i]];
6170  //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
6171  }
6172  }
6173  }
6174  }
6175  else
6176  {
6177  if(R->block0[i]>0)
6178  {
6179  //Print("skip block %d\n",i);
6180  R->order[i]=ringorder_unspec;
6181  if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
6182  R->wvhdl[i]=NULL;
6183  }
6184  //else Print("keep block %d\n",i);
6185  }
6186  }
6187  i=n-1;
6188  while(i>0)
6189  {
6190  // removed unneded blocks
6191  if(R->order[i-1]==ringorder_unspec)
6192  {
6193  for(j=i;j<=n;j++)
6194  {
6195  R->order[j-1]=R->order[j];
6196  R->block0[j-1]=R->block0[j];
6197  R->block1[j-1]=R->block1[j];
6198  if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
6199  R->wvhdl[j-1]=R->wvhdl[j];
6200  }
6201  R->order[n]=ringorder_unspec;
6202  n--;
6203  }
6204  i--;
6205  }
6206  n=rBlocks(org_ring)-1;
6207  while (R->order[n]==0) n--;
6208  while (R->order[n]==ringorder_unspec) n--;
6209  if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
6210  if (R->block1[n] != R->N)
6211  {
6212  if (((R->order[n]==ringorder_dp) ||
6213  (R->order[n]==ringorder_ds) ||
6214  (R->order[n]==ringorder_Dp) ||
6215  (R->order[n]==ringorder_Ds) ||
6216  (R->order[n]==ringorder_rp) ||
6217  (R->order[n]==ringorder_rs) ||
6218  (R->order[n]==ringorder_lp) ||
6219  (R->order[n]==ringorder_ls))
6220  &&
6221  R->block0[n] <= R->N)
6222  {
6223  R->block1[n] = R->N;
6224  }
6225  else
6226  {
6227  Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6228  R->N,R->block1[n],n);
6229  return NULL;
6230  }
6231  }
6232  omFree(perm);
6233  // find OrdSgn:
6234  R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
6235  //for(i=1;i<=R->N;i++)
6236  //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
6237  //omFree(weights);
6238  // Complete the initialization
6239  if (rComplete(R,1))
6240  goto rInitError;
6241 
6242  rTest(R);
6243 
6244  if (rv != NULL) rv->CleanUp();
6245 
6246  return R;
6247 
6248  // error case:
6249  rInitError:
6250  if (R != NULL) rDelete(R);
6251  if (rv != NULL) rv->CleanUp();
6252  return NULL;
6253 }
6254 
6255 void rKill(ring r)
6256 {
6257  if ((r->ref<=0)&&(r->order!=NULL))
6258  {
6259 #ifdef RDEBUG
6260  if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6261 #endif
6262  int j;
6263  for (j=0;j<myynest;j++)
6264  {
6265  if (iiLocalRing[j]==r)
6266  {
6267  if (j==0) WarnS("killing the basering for level 0");
6268  iiLocalRing[j]=NULL;
6269  }
6270  }
6271 // any variables depending on r ?
6272  while (r->idroot!=NULL)
6273  {
6274  r->idroot->lev=myynest; // avoid warning about kill global objects
6275  killhdl2(r->idroot,&(r->idroot),r);
6276  }
6277  if (r==currRing)
6278  {
6279  // all dependend stuff is done, clean global vars:
6280  if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6282  {
6284  }
6285  //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6286  //{
6287  // WerrorS("return value depends on local ring variable (export missing ?)");
6288  // iiRETURNEXPR.CleanUp();
6289  //}
6290  currRing=NULL;
6291  currRingHdl=NULL;
6292  }
6293 
6294  /* nKillChar(r); will be called from inside of rDelete */
6295  rDelete(r);
6296  return;
6297  }
6298  rDecRefCnt(r);
6299 }
6300 
6302 {
6303  ring r = IDRING(h);
6304  int ref=0;
6305  if (r!=NULL)
6306  {
6307  // avoid, that sLastPrinted is the last reference to the base ring:
6308  // clean up before killing the last "named" refrence:
6309  if ((sLastPrinted.rtyp==RING_CMD)
6310  && (sLastPrinted.data==(void*)r))
6311  {
6312  sLastPrinted.CleanUp(r);
6313  }
6314  ref=r->ref;
6315  if ((ref<=0)&&(r==currRing))
6316  {
6317  // cleanup DENOMINATOR_LIST
6318  if (DENOMINATOR_LIST!=NULL)
6319  {
6321  if (TEST_V_ALLWARN)
6322  Warn("deleting denom_list for ring change from %s",IDID(h));
6323  do
6324  {
6325  n_Delete(&(dd->n),currRing->cf);
6326  dd=dd->next;
6328  DENOMINATOR_LIST=dd;
6329  } while(DENOMINATOR_LIST!=NULL);
6330  }
6331  }
6332  rKill(r);
6333  }
6334  if (h==currRingHdl)
6335  {
6336  if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6337  else
6338  {
6340  }
6341  }
6342 }
6343 
6344 static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
6345 {
6346  idhdl h=root;
6347  while (h!=NULL)
6348  {
6349  if ((IDTYP(h)==RING_CMD)
6350  && (h!=n)
6351  && (IDRING(h)==r)
6352  )
6353  {
6354  return h;
6355  }
6356  h=IDNEXT(h);
6357  }
6358  return NULL;
6359 }
6360 
6361 extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6362 
6363 static void jjINT_S_TO_ID(int n,int *e, leftv res)
6364 {
6365  if (n==0) n=1;
6366  ideal l=idInit(n,1);
6367  int i;
6368  poly p;
6369  for(i=rVar(currRing);i>0;i--)
6370  {
6371  if (e[i]>0)
6372  {
6373  n--;
6374  p=pOne();
6375  pSetExp(p,i,1);
6376  pSetm(p);
6377  l->m[n]=p;
6378  if (n==0) break;
6379  }
6380  }
6381  res->data=(char*)l;
6382  setFlag(res,FLAG_STD);
6383  omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6384 }
6386 {
6387  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6388  int n=pGetVariables((poly)u->Data(),e);
6389  jjINT_S_TO_ID(n,e,res);
6390  return FALSE;
6391 }
6392 
6394 {
6395  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6396  ideal I=(ideal)u->Data();
6397  int i;
6398  int n=0;
6399  for(i=I->nrows*I->ncols-1;i>=0;i--)
6400  {
6401  int n0=pGetVariables(I->m[i],e);
6402  if (n0>n) n=n0;
6403  }
6404  jjINT_S_TO_ID(n,e,res);
6405  return FALSE;
6406 }
6407 
6408 void paPrint(const char *n,package p)
6409 {
6410  Print(" %s (",n);
6411  switch (p->language)
6412  {
6413  case LANG_SINGULAR: PrintS("S"); break;
6414  case LANG_C: PrintS("C"); break;
6415  case LANG_TOP: PrintS("T"); break;
6416  case LANG_MAX: PrintS("M"); break;
6417  case LANG_NONE: PrintS("N"); break;
6418  default: PrintS("U");
6419  }
6420  if(p->libname!=NULL)
6421  Print(",%s", p->libname);
6422  PrintS(")");
6423 }
6424 
6426 {
6427  intvec *aa=(intvec*)a->Data();
6428  sleftv tmp_out;
6429  sleftv tmp_in;
6430  leftv curr=res;
6431  BOOLEAN bo=FALSE;
6432  for(int i=0;i<aa->length(); i++)
6433  {
6434  tmp_in.Init();
6435  tmp_in.rtyp=INT_CMD;
6436  tmp_in.data=(void*)(long)(*aa)[i];
6437  if (proc==NULL)
6438  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6439  else
6440  bo=jjPROC(&tmp_out,proc,&tmp_in);
6441  if (bo)
6442  {
6443  res->CleanUp(currRing);
6444  Werror("apply fails at index %d",i+1);
6445  return TRUE;
6446  }
6447  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6448  else
6449  {
6450  curr->next=(leftv)omAllocBin(sleftv_bin);
6451  curr=curr->next;
6452  memcpy(curr,&tmp_out,sizeof(tmp_out));
6453  }
6454  }
6455  return FALSE;
6456 }
6458 {
6459  WerrorS("not implemented");
6460  return TRUE;
6461 }
6463 {
6464  WerrorS("not implemented");
6465  return TRUE;
6466 }
6468 {
6469  lists aa=(lists)a->Data();
6470  sleftv tmp_out;
6471  sleftv tmp_in;
6472  leftv curr=res;
6473  BOOLEAN bo=FALSE;
6474  for(int i=0;i<=aa->nr; i++)
6475  {
6476  tmp_in.Init();
6477  tmp_in.Copy(&(aa->m[i]));
6478  if (proc==NULL)
6479  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6480  else
6481  bo=jjPROC(&tmp_out,proc,&tmp_in);
6482  tmp_in.CleanUp();
6483  if (bo)
6484  {
6485  res->CleanUp(currRing);
6486  Werror("apply fails at index %d",i+1);
6487  return TRUE;
6488  }
6489  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6490  else
6491  {
6492  curr->next=(leftv)omAllocBin(sleftv_bin);
6493  curr=curr->next;
6494  memcpy(curr,&tmp_out,sizeof(tmp_out));
6495  }
6496  }
6497  return FALSE;
6498 }
6500 {
6501  res->Init();
6502  res->rtyp=a->Typ();
6503  switch (res->rtyp /*a->Typ()*/)
6504  {
6505  case INTVEC_CMD:
6506  case INTMAT_CMD:
6507  return iiApplyINTVEC(res,a,op,proc);
6508  case BIGINTMAT_CMD:
6509  return iiApplyBIGINTMAT(res,a,op,proc);
6510  case IDEAL_CMD:
6511  case MODUL_CMD:
6512  case MATRIX_CMD:
6513  return iiApplyIDEAL(res,a,op,proc);
6514  case LIST_CMD:
6515  return iiApplyLIST(res,a,op,proc);
6516  }
6517  WerrorS("first argument to `apply` must allow an index");
6518  return TRUE;
6519 }
6520 
6522 {
6523  // assume a: level
6524  if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6525  {
6526  if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6527  char assume_yylinebuf[80];
6528  strncpy(assume_yylinebuf,my_yylinebuf,79);
6529  int lev=(long)a->Data();
6530  int startlev=0;
6531  idhdl h=ggetid("assumeLevel");
6532  if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6533  if(lev <=startlev)
6534  {
6535  BOOLEAN bo=b->Eval();
6536  if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6537  if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6538  if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6539  }
6540  }
6541  b->CleanUp();
6542  a->CleanUp();
6543  return FALSE;
6544 }
6545 
6546 #include "libparse.h"
6547 
6548 BOOLEAN iiARROW(leftv r, char* a, char *s)
6549 {
6550  char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6551  // find end of s:
6552  int end_s=strlen(s);
6553  while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6554  s[end_s+1]='\0';
6555  char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6556  sprintf(name,"%s->%s",a,s);
6557  // find start of last expression
6558  int start_s=end_s-1;
6559  while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6560  if (start_s<0) // ';' not found
6561  {
6562  sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6563  }
6564  else // s[start_s] is ';'
6565  {
6566  s[start_s]='\0';
6567  sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6568  }
6569  r->Init();
6570  // now produce procinfo for PROC_CMD:
6571  r->data = (void *)omAlloc0Bin(procinfo_bin);
6572  ((procinfo *)(r->data))->language=LANG_NONE;
6573  iiInitSingularProcinfo((procinfo *)r->data,"",name,0,0);
6574  ((procinfo *)r->data)->data.s.body=ss;
6575  omFree(name);
6576  r->rtyp=PROC_CMD;
6577  //r->rtyp=STRING_CMD;
6578  //r->data=ss;
6579  return FALSE;
6580 }
6581 
6583 {
6584  char* ring_name=omStrDup((char*)r->Name());
6585  int t=arg->Typ();
6586  if (t==RING_CMD)
6587  {
6588  sleftv tmp;
6589  tmp.Init();
6590  tmp.rtyp=IDHDL;
6591  idhdl h=rDefault(ring_name);
6592  tmp.data=(char*)h;
6593  if (h!=NULL)
6594  {
6595  tmp.name=h->id;
6596  BOOLEAN b=iiAssign(&tmp,arg);
6597  if (b) return TRUE;
6598  rSetHdl(ggetid(ring_name));
6599  omFree(ring_name);
6600  return FALSE;
6601  }
6602  else
6603  return TRUE;
6604  }
6605  else if (t==CRING_CMD)
6606  {
6607  sleftv tmp;
6608  sleftv n;
6609  n.Init();
6610  n.name=ring_name;
6611  if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6612  if (iiAssign(&tmp,arg)) return TRUE;
6613  //Print("create %s\n",r->Name());
6614  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6615  return FALSE;
6616  }
6617  //Print("create %s\n",r->Name());
6618  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6619  return TRUE;// not handled -> error for now
6620 }
6621 
6622 static void iiReportTypes(int nr,int t,const short *T)
6623 {
6624  char buf[250];
6625  buf[0]='\0';
6626  if (nr==0)
6627  sprintf(buf,"wrong length of parameters(%d), expected ",t);
6628  else
6629  sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6630  for(int i=1;i<=T[0];i++)
6631  {
6632  strcat(buf,"`");
6633  strcat(buf,Tok2Cmdname(T[i]));
6634  strcat(buf,"`");
6635  if (i<T[0]) strcat(buf,",");
6636  }
6637  WerrorS(buf);
6638 }
6639 
6640 BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6641 {
6642  int l=0;
6643  if (args==NULL)
6644  {
6645  if (type_list[0]==0) return TRUE;
6646  }
6647  else l=args->listLength();
6648  if (l!=(int)type_list[0])
6649  {
6650  if (report) iiReportTypes(0,l,type_list);
6651  return FALSE;
6652  }
6653  for(int i=1;i<=l;i++,args=args->next)
6654  {
6655  short t=type_list[i];
6656  if (t!=ANY_TYPE)
6657  {
6658  if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6659  || (t!=args->Typ()))
6660  {
6661  if (report) iiReportTypes(i,args->Typ(),type_list);
6662  return FALSE;
6663  }
6664  }
6665  }
6666  return TRUE;
6667 }
6668 
6669 void iiSetReturn(const leftv source)
6670 {
6671  if ((source->next==NULL)&&(source->e==NULL))
6672  {
6673  if ((source->rtyp!=IDHDL)&&(source->rtyp!=ALIAS_CMD))
6674  {
6675  memcpy(&iiRETURNEXPR,source,sizeof(sleftv));
6676  source->Init();
6677  return;
6678  }
6679  if (source->rtyp==IDHDL)
6680  {
6681  if ((IDLEV((idhdl)source->data)==myynest)
6682  &&(IDTYP((idhdl)source->data)!=RING_CMD))
6683  {
6684  iiRETURNEXPR.Init();
6685  iiRETURNEXPR.rtyp=IDTYP((idhdl)source->data);
6686  iiRETURNEXPR.data=IDDATA((idhdl)source->data);
6687  iiRETURNEXPR.flag=IDFLAG((idhdl)source->data);
6689  IDATTR((idhdl)source->data)=NULL;
6690  IDDATA((idhdl)source->data)=NULL;
6691  source->name=NULL;
6692  source->attribute=NULL;
6693  return;
6694  }
6695  }
6696  }
6697  iiRETURNEXPR.Copy(source);
6698 }
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:411
ring r
Definition: algext.h:37
struct for passing initialization parameters to naInitChar
Definition: algext.h:37
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:132
void atSet(idhdl root, char *name, void *data, int typ)
Definition: attrib.cc:153
long int64
Definition: auxiliary.h:68
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
int BOOLEAN
Definition: auxiliary.h:87
#define TRUE
Definition: auxiliary.h:100
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
CanonicalForm num(const CanonicalForm &f)
CanonicalForm den(const CanonicalForm &f)
CanonicalForm Lc(const CanonicalForm &f)
int l
Definition: cfEzgcd.cc:100
int m
Definition: cfEzgcd.cc:128
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
int i
Definition: cfEzgcd.cc:132
int k
Definition: cfEzgcd.cc:99
Variable x
Definition: cfModGcd.cc:4084
int p
Definition: cfModGcd.cc:4080
CanonicalForm cf
Definition: cfModGcd.cc:4085
CanonicalForm b
Definition: cfModGcd.cc:4105
void mu(int **points, int sizePoints)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:504
FILE * f
Definition: checklibs.c:9
unsigned char * proc[NUM_PROC]
Definition: checklibs.c:16
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:311
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:914
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1537
int * Zp_roots(poly p, const ring r)
Definition: clapsing.cc:2048
int get_num_si()
Definition: GMPrat.cc:138
int get_den_si()
Definition: GMPrat.cc:152
char name() const
Definition: variable.cc:122
Variable next() const
Definition: factory.h:153
char * buffer
Definition: fevoices.h:69
char * filename
Definition: fevoices.h:63
long fptr
Definition: fevoices.h:70
Matrices of numbers.
Definition: bigintmat.h:51
Definition: idrec.h:35
idhdl get(const char *s, int lev)
Definition: ipid.cc:72
int typ
Definition: idrec.h:43
idhdl next
Definition: idrec.h:38
attr attribute
Definition: idrec.h:41
Definition: intvec.h:23
void makeVector()
Definition: intvec.h:102
void show(int mat=0, int spaces=0) const
Definition: intvec.cc:149
int min_in()
Definition: intvec.h:121
int length() const
Definition: intvec.h:94
int rows() const
Definition: intvec.h:96
int & rows()
Definition: matpol.h:23
int & cols()
Definition: matpol.h:24
Definition: ipid.h:56
virtual number getSubDet()
Definition: mpr_base.h:37
virtual ideal getMatrix()
Definition: mpr_base.h:31
virtual IStateType initState() const
Definition: mpr_base.h:41
void solve_all()
Definition: mpr_numeric.cc:857
bool success()
Definition: mpr_numeric.h:162
void arrange()
Definition: mpr_numeric.cc:882
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:66
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:299
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
int getAnzRoots()
Definition: mpr_numeric.h:97
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:436
int getAnzElems()
Definition: mpr_numeric.h:95
Definition: attrib.h:21
attr get(const char *s)
Definition: attrib.cc:93
void * CopyA()
Definition: subexpr.cc:2100
int atyp
Definition: attrib.h:27
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:195
intvec * zrovToIV()
BOOLEAN mapFromMatrix(matrix m)
int icase
Definition: mpr_numeric.h:201
void compute()
matrix mapToMatrix(matrix m)
intvec * posvToIV()
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
void * CopyD(int t)
Definition: subexpr.cc:710
int Typ()
Definition: subexpr.cc:1011
const char * name
Definition: subexpr.h:87
int rtyp
Definition: subexpr.h:91
void * Data()
Definition: subexpr.cc:1154
void Init()
Definition: subexpr.h:107
BOOLEAN RingDependend()
Definition: subexpr.cc:418
leftv next
Definition: subexpr.h:86
int listLength()
Definition: subexpr.cc:51
void Copy(leftv e)
Definition: subexpr.cc:685
void * data
Definition: subexpr.h:88
void CleanUp(ring r=currRing)
Definition: subexpr.cc:348
attr * Attribute()
Definition: subexpr.cc:1454
BITSET flag
Definition: subexpr.h:90
Subexpr e
Definition: subexpr.h:105
const char * Name()
Definition: subexpr.h:120
attr attribute
Definition: subexpr.h:89
Definition: lists.h:24
sleftv * m
Definition: lists.h:46
void Clean(ring r=currRing)
Definition: lists.h:26
INLINE_THIS void Init(int l=0)
int nr
Definition: lists.h:44
spectrumPolyNode * root
Definition: splist.h:60
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
Definition: semic.h:64
int mu
Definition: semic.h:67
void copy_new(int)
Definition: semic.cc:54
Rational * s
Definition: semic.h:70
int mult_spectrum(spectrum &)
Definition: semic.cc:396
int n
Definition: semic.h:69
int pg
Definition: semic.h:68
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
int * w
Definition: semic.h:71
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:63
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3059
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2921
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
@ denseResMat
Definition: mpr_base.h:65
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:29
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:93
number * interpolateDense(const number *q)
Solves the Vandermode linear system \sum_{i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:146
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
Definition: coeffs.h:548
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:452
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:863
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition: coeffs.h:840
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:987
int GFDegree
Definition: coeffs.h:96
@ n_R
single prescision (6,6) real numbers
Definition: coeffs.h:32
@ n_GF
\GF{p^n < 2^16}
Definition: coeffs.h:33
@ n_Q
rational (GMP) numbers
Definition: coeffs.h:31
@ n_Znm
only used if HAVE_RINGS is defined
Definition: coeffs.h:46
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:36
@ n_Zn
only used if HAVE_RINGS is defined
Definition: coeffs.h:45
@ n_long_R
real floating point (GMP) numbers
Definition: coeffs.h:34
@ n_Z2m
only used if HAVE_RINGS is defined
Definition: coeffs.h:47
@ n_Zp
\F{p < 2^31}
Definition: coeffs.h:30
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:39
@ n_Z
only used if HAVE_RINGS is defined
Definition: coeffs.h:44
@ n_long_C
complex floating point (GMP) numbers
Definition: coeffs.h:42
short float_len2
additional char-flags, rInit
Definition: coeffs.h:103
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:856
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:552
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:723
const char * par_name
parameter name
Definition: coeffs.h:104
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:358
const unsigned short fftable[]
Definition: ffields.cc:31
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:437
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:802
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:754
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:456
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
Definition: coeffs.h:543
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:539
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:934
short float_len
additional char-flags, rInit
Definition: coeffs.h:102
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:74
const char * GFPar_name
Definition: coeffs.h:97
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:918
int GFChar
Definition: coeffs.h:95
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:942
Creation data needed for finite fields.
Definition: coeffs.h:94
#define Print
Definition: emacs.cc:80
#define Warn
Definition: emacs.cc:77
#define WarnS
Definition: emacs.cc:78
return result
Definition: facAbsBiFact.cc:75
const CanonicalForm int s
Definition: facAbsFact.cc:51
CanonicalForm res
Definition: facAbsFact.cc:60
const CanonicalForm & w
Definition: facAbsFact.cc:51
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
bool found
Definition: facFactorize.cc:55
CanonicalForm buf2
Definition: facFqBivar.cc:73
CFList tmp2
Definition: facFqBivar.cc:72
const ExtensionInfo & info
< [in] sqrfree poly
int j
Definition: facHensel.cc:110
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
Definition: factory.h:196
VAR short errorreported
Definition: feFopen.cc:23
void WerrorS(const char *s)
Definition: feFopen.cc:24
VAR int yylineno
Definition: febase.cc:40
VAR char my_yylinebuf[80]
Definition: febase.cc:44
VAR int myynest
Definition: febase.cc:41
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:30
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:164
VAR Voice * currentVoice
Definition: fevoices.cc:47
const char * VoiceName()
Definition: fevoices.cc:56
const char sNoName_fe[]
Definition: fevoices.cc:55
void VoiceBackTrack()
Definition: fevoices.cc:75
@ BT_execute
Definition: fevoices.h:23
@ BT_proc
Definition: fevoices.h:20
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
Definition: gen_maps.cc:87
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:140
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:301
#define STATIC_VAR
Definition: globaldefs.h:7
#define VAR
Definition: globaldefs.h:5
@ PLUSPLUS
Definition: grammar.cc:274
@ MINUSMINUS
Definition: grammar.cc:271
@ IDEAL_CMD
Definition: grammar.cc:284
@ MATRIX_CMD
Definition: grammar.cc:286
@ BIGINTMAT_CMD
Definition: grammar.cc:278
@ GE
Definition: grammar.cc:269
@ EQUAL_EQUAL
Definition: grammar.cc:268
@ MAP_CMD
Definition: grammar.cc:285
@ PROC_CMD
Definition: grammar.cc:280
@ LE
Definition: grammar.cc:270
@ INTMAT_CMD
Definition: grammar.cc:279
@ MODUL_CMD
Definition: grammar.cc:287
@ SMATRIX_CMD
Definition: grammar.cc:291
@ VECTOR_CMD
Definition: grammar.cc:292
@ NOTEQUAL
Definition: grammar.cc:273
@ DOTDOT
Definition: grammar.cc:267
@ COLONCOLON
Definition: grammar.cc:275
@ NUMBER_CMD
Definition: grammar.cc:288
@ POLY_CMD
Definition: grammar.cc:289
@ RING_CMD
Definition: grammar.cc:281
const char * currid
Definition: grammar.cc:171
int yyparse(void)
Definition: grammar.cc:2111
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:386
STATIC_VAR poly last
Definition: hdegree.cc:1150
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1078
VAR int hMu
Definition: hdegree.cc:27
VAR omBin indlist_bin
Definition: hdegree.cc:28
VAR int hMu2
Definition: hdegree.cc:27
VAR int hCo
Definition: hdegree.cc:27
VAR indset ISet
Definition: hdegree.cc:352
VAR indset JSet
Definition: hdegree.cc:352
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:34
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:569
monf hCreate(int Nvar)
Definition: hutil.cc:999
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:31
VAR varset hvar
Definition: hutil.cc:18
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1013
VAR int hNexist
Definition: hutil.cc:19
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:143
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:624
VAR scfmon hwork
Definition: hutil.cc:16
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:177
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:568
VAR scmon hpure
Definition: hutil.cc:17
VAR scfmon hrad
Definition: hutil.cc:16
VAR int hisModule
Definition: hutil.cc:20
VAR monf radmem
Definition: hutil.cc:21
VAR int hNpure
Definition: hutil.cc:19
VAR int hNrad
Definition: hutil.cc:19
VAR scfmon hexist
Definition: hutil.cc:16
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:414
VAR int hNvar
Definition: hutil.cc:19
scmon * scfmon
Definition: hutil.h:15
indlist * indset
Definition: hutil.h:28
int * varset
Definition: hutil.h:16
int * scmon
Definition: hutil.h:14
int binom(int n, int r)
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:176
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition: ideals.h:60
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:33
ideal * resolvente
Definition: ideals.h:18
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
Definition: interval.cc:257
#define IMATELEM(M, I, J)
Definition: intvec.h:85
intvec * ivCopy(const intvec *o)
Definition: intvec.h:135
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:9461
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:9049
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1964
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:435
idhdl ggetid(const char *n)
Definition: ipid.cc:571
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:437
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:278
VAR package basePack
Definition: ipid.cc:58
void ipListFlag(idhdl h)
Definition: ipid.cc:609
VAR proclevel * procstack
Definition: ipid.cc:52
VAR idhdl currRingHdl
Definition: ipid.cc:59
VAR package currPack
Definition: ipid.cc:57
VAR idhdl currPackHdl
Definition: ipid.cc:55
idhdl packFindHdl(package r)
Definition: ipid.cc:821
VAR coeffs coeffs_BIGINT
Definition: ipid.cc:50
#define IDMAP(a)
Definition: ipid.h:135
#define IDMATRIX(a)
Definition: ipid.h:134
#define IDSTRING(a)
Definition: ipid.h:136
#define IDNEXT(a)
Definition: ipid.h:118
EXTERN_VAR omBin sleftv_bin
Definition: ipid.h:145
#define IDDATA(a)
Definition: ipid.h:126
#define IDPROC(a)
Definition: ipid.h:140
#define setFlag(A, F)
Definition: ipid.h:113
#define IDINTVEC(a)
Definition: ipid.h:128
#define IDIDEAL(a)
Definition: ipid.h:133
#define IDFLAG(a)
Definition: ipid.h:120
#define IDPOLY(a)
Definition: ipid.h:130
#define IDID(a)
Definition: ipid.h:122
#define IDROOT
Definition: ipid.h:19
#define IDINT(a)
Definition: ipid.h:125
#define FLAG_QRING_DEF
Definition: ipid.h:109
#define IDPACKAGE(a)
Definition: ipid.h:139
#define IDLEV(a)
Definition: ipid.h:121
#define IDRING(a)
Definition: ipid.h:127
#define IDTYP(a)
Definition: ipid.h:119
#define FLAG_STD
Definition: ipid.h:106
#define IDLIST(a)
Definition: ipid.h:137
#define IDATTR(a)
Definition: ipid.h:123
VAR int iiRETURNEXPR_len
Definition: iplib.cc:471
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
Definition: iplib.cc:1045
INST_VAR sleftv iiRETURNEXPR
Definition: iplib.cc:470
VAR ring * iiLocalRing
Definition: iplib.cc:469
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:193
lists rDecompose(const ring r)
Definition: ipshell.cc:2157
semicState
Definition: ipshell.cc:3519
@ semicListWrongNumberOfNumerators
Definition: ipshell.cc:3534
@ semicListPGWrong
Definition: ipshell.cc:3548
@ semicListFirstElementWrongType
Definition: ipshell.cc:3526
@ semicListPgNegative
Definition: ipshell.cc:3539
@ semicListSecondElementWrongType
Definition: ipshell.cc:3527
@ semicListMilnorWrong
Definition: ipshell.cc:3547
@ semicListMulNegative
Definition: ipshell.cc:3542
@ semicListFourthElementWrongType
Definition: ipshell.cc:3529
@ semicListWrongNumberOfDenominators
Definition: ipshell.cc:3535
@ semicListNotMonotonous
Definition: ipshell.cc:3545
@ semicListNotSymmetric
Definition: ipshell.cc:3544
@ semicListNNegative
Definition: ipshell.cc:3533
@ semicListDenNegative
Definition: ipshell.cc:3541
@ semicListTooShort
Definition: ipshell.cc:3523
@ semicListTooLong
Definition: ipshell.cc:3524
@ semicListThirdElementWrongType
Definition: ipshell.cc:3528
@ semicListMuNegative
Definition: ipshell.cc:3538
@ semicListNumNegative
Definition: ipshell.cc:3540
@ semicMulNegative
Definition: ipshell.cc:3521
@ semicListWrongNumberOfMultiplicities
Definition: ipshell.cc:3536
@ semicOK
Definition: ipshell.cc:3520
@ semicListFifthElementWrongType
Definition: ipshell.cc:3530
@ semicListSixthElementWrongType
Definition: ipshell.cc:3531
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6425
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6385
lists rDecompose_list_cf(const ring r)
Definition: ipshell.cc:2026
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:121
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4512
VAR idhdl iiCurrProc
Definition: ipshell.cc:81
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:946
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:366
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1380
STATIC_VAR BOOLEAN iiNoKeepRing
Definition: ipshell.cc:84
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1202
static void rRenameVars(ring R)
Definition: ipshell.cc:2490
void iiCheckPack(package &p)
Definition: ipshell.cc:1636
void rKill(ring r)
Definition: ipshell.cc:6255
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6640
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6499
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:425
VAR BOOLEAN iiDebugMarker
Definition: ipshell.cc:1063
ring rInit(leftv pn, leftv rv, leftv ord)
Definition: ipshell.cc:5709
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:615
int iiRegularity(lists L)
Definition: ipshell.cc:1037
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4762
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1955
static void rDecomposeC_41(leftv h, const coeffs C)
Definition: ipshell.cc:1825
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:847
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6548
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4595
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3256
void killlocals(int v)
Definition: ipshell.cc:386
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6467
idhdl rDefault(const char *s)
Definition: ipshell.cc:1650
static void rDecomposeC(leftv h, const ring R)
Definition: ipshell.cc:1859
int exprlist_length(leftv v)
Definition: ipshell.cc:552
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:3177
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1612
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4268
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:5163
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6363
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1103
VAR leftv iiCurrArgs
Definition: ipshell.cc:80
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4905
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3431
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1735
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
Definition: ipshell.cc:6462
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:149
void list_error(semicState state)
Definition: ipshell.cc:3552
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:3155
BOOLEAN iiBranchTo(leftv, leftv args)
Definition: ipshell.cc:1277
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:980
spectrumState
Definition: ipshell.cc:3635
@ spectrumWrongRing
Definition: ipshell.cc:3642
@ spectrumOK
Definition: ipshell.cc:3636
@ spectrumDegenerate
Definition: ipshell.cc:3641
@ spectrumUnspecErr
Definition: ipshell.cc:3644
@ spectrumNotIsolated
Definition: ipshell.cc:3640
@ spectrumBadPoly
Definition: ipshell.cc:3638
@ spectrumNoSingularity
Definition: ipshell.cc:3639
@ spectrumZero
Definition: ipshell.cc:3637
@ spectrumNoHC
Definition: ipshell.cc:3643
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6521
void iiSetReturn(const leftv source)
Definition: ipshell.cc:6669
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6582
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4554
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3894
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1707
void iiDebug()
Definition: ipshell.cc:1065
syStrategy syConvList(lists li)
Definition: ipshell.cc:3340
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:4217
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1264
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2345
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1592
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:1064
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3653
const short MAX_SHORT
Definition: ipshell.cc:5697
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3233
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:6093
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3385
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5270
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5389
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
Definition: ipshell.cc:2576
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3468
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
Definition: ipshell.cc:6344
void test_cmd(int i)
Definition: ipshell.cc:514
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3369
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6622
void rDecomposeRing(leftv h, const ring R)
Definition: ipshell.cc:1923
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3424
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1416
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3444
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:330
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
Definition: ipshell.cc:4739
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4337
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:295
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4635
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4653
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1607
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
Definition: ipshell.cc:2868
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4647
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
Definition: ipshell.cc:6457
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:1001
const char * lastreserved
Definition: ipshell.cc:82
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
Definition: ipshell.cc:5661
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3268
void type_cmd(leftv v)
Definition: ipshell.cc:254
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:588
void paPrint(const char *n, package p)
Definition: ipshell.cc:6408
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:936
void rSetHdl(idhdl h)
Definition: ipshell.cc:5210
const char * iiTwoOps(int t)
Definition: ipshell.cc:88
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3407
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2397
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1514
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:967
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:4186
lists getList(spectrum &spec)
Definition: ipshell.cc:3480
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:5006
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6393
void rDecomposeRing_41(leftv h, const coeffs C)
Definition: ipshell.cc:1895
static BOOLEAN rComposeVar(const lists L, ring R)
Definition: ipshell.cc:2531
STATIC_VAR jList * T
Definition: janet.cc:30
STATIC_VAR Poly * h
Definition: janet.cc:971
STATIC_VAR jList * Q
Definition: janet.cc:30
VAR BITSET validOpts
Definition: kstd1.cc:60
VAR BITSET kOptions
Definition: kstd1.cc:45
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2430
VAR denominator_list DENOMINATOR_LIST
Definition: kutil.cc:84
denominator_list next
Definition: kutil.h:65
#define pi
Definition: libparse.cc:1145
if(yy_init)
Definition: libparse.cc:1420
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
Definition: old.gring.cc:2682
VAR omBin slists_bin
Definition: lists.cc:23
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:315
char * lString(lists l, BOOLEAN typed, int dim)
Definition: lists.cc:380
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:216
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:163
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:45
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:37
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:64
#define MATELEM(mat, i, j)
1-based access to matrix
Definition: matpol.h:29
ip_smatrix * matrix
Definition: matpol.h:43
#define MATROWS(i)
Definition: matpol.h:26
#define MATCOLS(i)
Definition: matpol.h:27
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:647
#define assume(x)
Definition: mod2.h:387
#define pIter(p)
Definition: monomials.h:37
#define pNext(p)
Definition: monomials.h:36
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
#define pSetCoeff0(p, n)
Definition: monomials.h:59
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3190
@ mprOk
Definition: mpr_base.h:98
EXTERN_VAR size_t gmp_output_digits
Definition: mpr_base.h:115
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:327
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:704
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:60
slists * lists
Definition: mpr_numeric.h:146
void report(const char *fmt, const char *name)
Definition: shared.cc:666
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nDelete(n)
Definition: numbers.h:16
#define nIsZero(n)
Definition: numbers.h:19
#define nSetMap(R)
Definition: numbers.h:43
#define nIsMOne(n)
Definition: numbers.h:26
#define nCopy(n)
Definition: numbers.h:15
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
#define nInvers(a)
Definition: numbers.h:33
#define SHORT_REAL_LENGTH
Definition: numbers.h:57
#define nIsOne(n)
Definition: numbers.h:25
#define nInit(i)
Definition: numbers.h:24
#define omStrDup(s)
Definition: omAllocDecl.h:263
#define omfree(addr)
Definition: omAllocDecl.h:237
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
#define omAlloc(size)
Definition: omAllocDecl.h:210
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
#define omFree(addr)
Definition: omAllocDecl.h:261
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define NULL
Definition: omList.c:12
VAR unsigned si_opt_2
Definition: options.c:6
VAR unsigned si_opt_1
Definition: options.c:5
#define V_DEF_RES
Definition: options.h:49
#define BVERBOSE(a)
Definition: options.h:34
#define TEST_V_ALLWARN
Definition: options.h:143
#define Sy_bit(x)
Definition: options.h:31
#define V_REDEFINE
Definition: options.h:44
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4158
poly p_One(const ring r)
Definition: p_polys.cc:1308
#define __pp_Mult_nn(p, n, r)
Definition: p_polys.h:962
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:861
static unsigned pLength(poly a)
Definition: p_polys.h:191
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1280
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1467
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:931
void rChangeCurrRing(ring r)
Definition: polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
Compatiblity layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
Definition: polys.h:282
#define pTest(p)
Definition: polys.h:415
#define pDelete(p_ptr)
Definition: polys.h:186
#define pSetm(p)
Definition: polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition: polys.h:238
#define pNeg(p)
Definition: polys.h:198
#define pDiff(a, b)
Definition: polys.h:296
#define pSub(a, b)
Definition: polys.h:287
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition: polys.h:115
#define pGetVariables(p, e)
Definition: polys.h:251
#define pSetComp(p, v)
Definition: polys.h:38
void wrp(poly p)
Definition: polys.h:310
void pWrite(poly p)
Definition: polys.h:308
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:363
#define pIsPurePower(p)
Definition: polys.h:248
#define pSetExp(p, i, v)
Definition: polys.h:42
#define pCopy(p)
return a copy of the poly
Definition: polys.h:185
#define pOne()
Definition: polys.h:315
poly * polyset
Definition: polys.h:259
#define pDecrExp(p, i)
Definition: polys.h:44
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:191
int IsPrime(int p)
Definition: prime.cc:61
void PrintS(const char *s)
Definition: reporter.cc:284
void PrintLn()
Definition: reporter.cc:310
void Werror(const char *fmt,...)
Definition: reporter.cc:189
EXTERN_VAR int traceit
Definition: reporter.h:24
#define TRACE_SHOW_RINGS
Definition: reporter.h:36
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:77
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3400
int rTypeOfMatrixOrder(const intvec *order)
Definition: ring.cc:185
VAR omBin sip_sring_bin
Definition: ring.cc:43
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4600
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1363
BOOLEAN rCheckIV(const intvec *iv)
Definition: ring.cc:175
rRingOrder_t rOrderName(char *ordername)
Definition: ring.cc:506
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:449
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
Definition: ring.cc:1660
void rSetSyzComp(int k, const ring r)
Definition: ring.cc:5033
static int sign(int x)
Definition: ring.cc:3377
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:486
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:520
static int rBlocks(ring r)
Definition: ring.h:570
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:531
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:511
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:502
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:547
static ring rIncRefCnt(ring r)
Definition: ring.h:844
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:627
static BOOLEAN rField_is_Zn(const ring r)
Definition: ring.h:514
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:601
static int rInternalChar(const ring r)
Definition: ring.h:691
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411
rRingOrder_t
order stuff
Definition: ring.h:68
@ ringorder_lp
Definition: ring.h:77
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:541
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:508
static void rDecRefCnt(ring r)
Definition: ring.h:845
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:544
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:517
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:523
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:594
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition: ring.h:762
#define rTest(r)
Definition: ring.h:787
idrec * idhdl
Definition: ring.h:21
void myychangebuffer()
Definition: scanner.cc:2331
VAR int sdb_flags
Definition: sdb.cc:31
#define mpz_sgn1(A)
Definition: si_gmp.h:13
int status int void size_t count
Definition: si_signals.h:59
int status int void * buf
Definition: si_signals.h:59
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:35
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
Definition: simpleideals.h:23
#define R
Definition: sirandom.c:27
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
ip_package * package
Definition: structs.h:48
sleftv * leftv
Definition: structs.h:62
char * char_ptr
Definition: structs.h:58
@ isNotHomog
Definition: structs.h:41
#define BITSET
Definition: structs.h:20
#define loop
Definition: structs.h:80
int * int_ptr
Definition: structs.h:59
VAR omBin procinfo_bin
Definition: subexpr.cc:42
INST_VAR sleftv sLastPrinted
Definition: subexpr.cc:46
VAR BOOLEAN siq
Definition: subexpr.cc:48
@ LANG_MAX
Definition: subexpr.h:22
@ LANG_SINGULAR
Definition: subexpr.h:22
@ LANG_NONE
Definition: subexpr.h:22
@ LANG_C
Definition: subexpr.h:22
@ LANG_TOP
Definition: subexpr.h:22
BOOLEAN RingDependend(int t)
Definition: subexpr.h:142
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:770
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:355
intvec ** hilb_coeffs
Definition: syz.h:46
resolvente minres
Definition: syz.h:58
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1495
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1641
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1755
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2199
short list_length
Definition: syz.h:62
resolvente res
Definition: syz.h:47
resolvente fullres
Definition: syz.h:57
intvec ** weights
Definition: syz.h:45
ssyStrategy * syStrategy
Definition: syz.h:35
resolvente orderedRes
Definition: syz.h:48
int length
Definition: syz.h:60
#define IDHDL
Definition: tok.h:31
@ ALIAS_CMD
Definition: tok.h:34
@ BIGINT_CMD
Definition: tok.h:38
@ CRING_CMD
Definition: tok.h:56
@ LIST_CMD
Definition: tok.h:118
@ INTVEC_CMD
Definition: tok.h:101
@ PACKAGE_CMD
Definition: tok.h:149
@ CMATRIX_CMD
Definition: tok.h:46
@ DEF_CMD
Definition: tok.h:58
@ CNUMBER_CMD
Definition: tok.h:47
@ LINK_CMD
Definition: tok.h:117
@ QRING_CMD
Definition: tok.h:158
@ STRING_CMD
Definition: tok.h:185
@ INT_CMD
Definition: tok.h:96
#define ANY_TYPE
Definition: tok.h:30
struct for passing initialization parameters to naInitChar
Definition: transext.h:88
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:20
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:108
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:78