Trees | Indices | Help |
|
---|
|
Module containing bunch of functions for information metrics and a ranker to rank bits
|
|||
BitCorrMatGenerator A class to generate a pariwise correlation matrix between a list of bits The mode of operation for this class is something like this >>> cmg = BitCorrMatGenerator() >>> cmg.SetBitList(blist) >>> for fp in fpList: >>> cmg.CollectVotes(fp) >>> corrMat = cmg.GetCorrMatrix() |
|||
InfoBitRanker A class to rank the bits from a series of labelled fingerprints A simple demonstration may help clarify what this class does. |
|||
InfoType |
|
|||
|
|||
|
|||
|
|
|||
BIASCHISQUARE = rdkit.ML.InfoTheory.rdInfoTheory.InfoType.BIAS
|
|||
BIASENTROPY = rdkit.ML.InfoTheory.rdInfoTheory.InfoType.BIASEN
|
|||
CHISQUARE = rdkit.ML.InfoTheory.rdInfoTheory.InfoType.CHISQUARE
|
|||
ENTROPY = rdkit.ML.InfoTheory.rdInfoTheory.InfoType.ENTROPY
|
|||
__package__ = None
|
|
ChiSquare( (AtomPairsParameters)arg1) -> float : Calculates the chi squared value for a variable ARGUMENTS: - varMat: a Numeric Array object varMat is a Numeric array with the number of possible occurances of each result for reach possible value of the given variable. So, for a variable which adopts 4 possible values and a result which has 3 possible values, varMat would be 4x3 RETURNS: - a Python float object C++ signature : double ChiSquare(boost::python::api::object) |
InfoEntropy( (AtomPairsParameters)arg1) -> float : calculates the informational entropy of the values in an array ARGUMENTS: - resMat: pointer to a long int array containing the data - dim: long int containing the length of the _tPtr_ array. RETURNS: a double C++ signature : double InfoEntropy(boost::python::api::object) |
InfoGain( (AtomPairsParameters)arg1) -> float : Calculates the information gain for a variable ARGUMENTS: - varMat: a Numeric Array object varMat is a Numeric array with the number of possible occurances of each result for reach possible value of the given variable. So, for a variable which adopts 4 possible values and a result which has 3 possible values, varMat would be 4x3 RETURNS: - a Python float object NOTES - this is a dropin replacement for _PyInfoGain()_ in entropy.py C++ signature : double InfoGain(boost::python::api::object) |
|
BIASCHISQUARE
|
BIASENTROPY
|
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 | http://epydoc.sourceforge.net |