PostgreSQL 14.0 Documentation

The PostgreSQL Global Development Group

PostgreSQL 14.0 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2021 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2021 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “ASIS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PP XXXV
1 What 1S POSIGrESQL? ...ttt ettt e et e s XXXV
2. A Brief History of POSIGreSQLc.uuniiiiiiiiieiiii et XXXV

2.1. The Berkeley POSTGRES PrOJECEcccvuuiiiiiiieiiiii e XXXV
2.2, POSIOrESOS ...t e XXXV
2.3, POSIOrESQL ..ot XXXVi
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et et e et eaar e e e ane e e eenans XXXVi
4. Further INfOrmMationcoouuuiiiiii et XXXVil
5. Bug Reporting GUIEIINESc.uuiiiiiiiie e e et XXXVil
5.1 1deNtifYiNg BUGS ...cevveneiiiiie ettt XXXVil
5.2, WHEL 10 REDPOIT ...ttt XXXVili
5.3. WHEre t0 REPOI BUGJSccevvneeiiiiiieeeeii ettt ettt et e e e e e e et e e e Xl
N T 1o - PP 1
L. GEtING SEAEAen ettt et 3
L1 INSEAITEIION .ottt 3
1.2. Architectural FUNDamMEeNtalScoouuuiiiiiiiie e 3
1.3. Creating @ Dal@haseccoeuuiiiiiiiii e 4
1.4, ACCESSING 8 DAANBSEcoviieiiiii e 5
2. The SQL LBNGUBGE ...cevtueieiit ettt ettt ettt e e e na e e eneans 8
2% W [i oo (8o (o o RO TSP SPPPTPR 8
A O 0] 1= o = PP 8
2.3. Creating @aNew Tableuiiii e 8
2.4. Populating a Table With ROWSccoouuiiiiiiiii e 9
25, QUEYING A TaADIE ..o 10
2.6. J0INS BEWEEN TaDIESuiiiiii e 12
2.7. AQQregate FUNCLIONSccuuuieieiiie ettt ettt e e e na e eeees 14
2.8 UPUELES ...ttt 16
2.9, DEIBLIONS ...t e et et aean 16
3. AGVANCED FEAIUMNEScevu ittt ettt e et e e enb e e eneas 18
I3 B [L oo (8 1o o EO TP PPPPTT 18
2 VT T S PR 18
3.3 FOrEIgN KEBYS ..t 18
B THANSACHIONS ...ttt ettt ettt et e e e e 19
3.5, WINAOW FUNCHIONSovueiiii et 21
3.6, INNEITEANCE ...t 24
7. CONCIUSION ..ttt ettt ettt ettt e et e e e et e e eenen s 26
[1. The SQL LBNQUAJE eeeetiee ettt ettt ettt ettt et et e et et e e e et e e e eaa e e eenens 27
A, SQL SYNEBX t.tteeeetti ettt ettt ettt e ettt ettt e e e e 35
A1, LeXiCal SHUCKUME ...ttt ettt e e e e e et e e eeees 35
4.2, ValUE EXPIESSIONSeeeeiiietieii ettt ettt ettt et e et e e e 44
4.3. CalliNg FUNCLIONS ...ttt ettt eneans 59
5. Data DEFINITION ...oeeiiieii et 62
DL TADIE BASICS ..ttt 62
5.2. DEFAUIT VAIUBS ... e 63
5.3. Generated COIUMNScoouiieiiii e et eeeans 64
B4, CONSITAINTS ...evtneeeeet ettt ettt ettt e et et et e e e e e e ennen s 65
5.5, SYStEM COIUMNS ...ttt 74
5.6. MOAIfTYiNG TaDIESceiiiiieiee e 75
BT PrIVIIEOES ..o 78
5.8. ROW SeCUurity POIICIESuuiiiiiii e 82
5.9, SCREMAS ... 88

PostgreSQL 14.0 Documentation

5.10. INNEITANCE ... et e e et 93
5.11. Table Partitioningoceuuiiiiiiiii e e e e e e e e e 97
I = o (= To o I - A 111
5.13. Other Database ODJECESuuivviiiiii e e 111
5.14. Dependency TraCKingociuuieeii eanaas 112
(SR T = 1Y =T o 10 = 1 o 114
(O 1S g To [- - NP 114
S Lo = (] g o B T - L 115
(SRR D= I (] oo - v U 116
6.4. Returning Data from Modified ROWSccccoviiiiiiiie e, 116
28 8 = = 118
8 T @ = 4T PN 118
7.2. TahlE EXPIrESSIONSivviieiii e e e e e e e e e e et e e st e e e e eaneees 118
SRS = [o B I £ SRR 135
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)covvvvviiviiiiiieveiiiieeeneenn 137
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiiieciii et e e e s 138
L Y B =0 o O o P 139
T.7. VALUES LISES 1ieiiiiieiiii ettt ettt e et e et e e e b 139
7.8. W TH Queries (Common Table EXPreSSions)vvveveeeiiieiiiieeiineeiineesieeeaneens 140
T D= = T Y/ oS PP 150
T80 O N U 0= Lo Y o= 151
8.2, M ONEAY Ty DS ittt ittt et e 157
G O == ot (= g Y/ o= PR 157
8.4. BINAry Dala TYPES ..uuciiiiiii it e et e e e e e e e e e e e e e eaa s 159
R = (=l T (ST Y/ o= P 161
S = T To =T N Y/ o= P 172
A 10001 = =0 B Y/ o= 173
8.8. GEOMELNIC TYPES ..uvitiiii ettt et et e et e e e e e e e e et e e et e e et e e et eeaaeaeens 175
8.9. NEtWOrK AdOreSS TYPES .ovuiiiiieii et et e e e e e e e e e e e e e et e e et e e aanaaes 177
8.10. Bit SIHNG TYPES . uiitnieiie et e e e e e e e e e e et e e et e ea e eaes 180
8.11. TeXt SEACH TYPES o vvun it e e 181
ST 2 U1 1 T I/ o= P 184
ST Q. I 1Y/ o= ST 184
ST N S @ NI Y/ o=~ PP 186
e I N = Y PP 197
8.16. COMPOSITE TYPES .vvuiiiiieein et ettt e et e et e e e e e e e e e e st e e et e e et e e et e e aneeaenns 207
8.7, RANGE TYPES .ottt 214
8.18. DOMAIN TYPES ..uuiiiiiiiii e et e e e e e e e e e e e et e e et e et e e e e aaeeaanns 220
8.19. ObjeCt 1AdENtifier TYPES ..vuiiii i eiiie e e e e e e e ea e 221
<3220 R o To TR =Y 2 T 1Y/ o= TP 224
ST I e =0 (o 0l N o1 224
1 I N 0 Tox [0 5= 0 (o @ o= = 0 226
1S I oo vz B @ o= = (] £ 226
9.2. Comparison FUNCtions and OPEratorsSocvvuieiiiieiiieeii e e e e e e e eannas 227
9.3. Mathematical Functions and OPEratorScc.ovevvrieiiiiieiii e e e e 231
9.4. String FUNCLioNS and OPEIatOrScvvueiiieeiiie e e e e e e e e e e e e eaaes 239
9.5. Binary String FUNctions and OPEratorsSccuuveiuuieeeueeeiiieeiieeeieeraineeaneeaenns 249
9.6. Bit String FUNCtions and OPEratorsccuuvevuiieiiieeiiie e e e e e e e 253
A = 1 (= g TN\ (11 o P 255
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiiii e e 273
9.9. Date/Time FUNCtions and OPEratorSccuueviiieiiiieeiii e e e e e e e eanas 282
9.10. ENum SUPPOIt FUNCLIONScvviciiiiceii e e e e e e 298
9.11. Geometric FUNCtions and OPEratorsScvvueiirnieiiieeeii e ee e e e eaannes 299
9.12. Network Address Functions and OPEratorsScceuueeeueerinierieeeiieeeineesanenns 306

PostgreSQL 14.0 Documentation

9.13. Text Search FUNCtions and OPEratorsSoeeveieiiiieeii e e e e e e e 310
9.14. UUID FUNCLIONSuieieiiieee ittt ettt et e et e e et e e e ea e e eeennas 316
9.15. XML FUNCLIONS ... iieiiiieeiiii ettt e e e e et e e e e b 317
9.16. JSON FUNCLions and OPEraiorsScc.uueveunieeieeeiieeieee e e e e e e e e e e e e aanaas 332
9.17. Sequence Manipulation FUNCLIONSooiuiiiiiiiiciiec e e e e 351
9.18. Conditional EXPrESSIONSuuiiireiiiiieiiieee e e e e e e e e e e e s e e e eaneees 352
9.19. Array FUNCtions and OPEratorsSccuueiiieeiiieeeiiieeiie e e e e e e et e e eeaens 355
9.20. Range/Multirange Functions and OPEratorsScc.ueevuuieeiineeeieesiiieeaneesneens 359
9.21. AQQregate FUNCLIONSccuuiiiii e e e e e e eanaees 365
9.22. WINAOW FUNCLIONSvuiiieiii et e s 372
9.23. SUDQUENY EXPrESSIONSuueiiiiiiiiieeiieeeieeeee e e e e e e e et e e et e e e e e et e e et e eanaeenes 374
9.24. Row and Array COMPAIiSONSeeuueiiieeiieeeiiieeeieesieeeieeeanaeestneestneeenaeenes 377
9.25. Set RetUrNiNg FUNCLIONSuuiiiici e e e e e 380
9.26. System Information Functions and OPEratorsc.uveveiieeieeernieriiieeeneeeenns 383
9.27. System Administration FUNCHIONScouuiiiiiiiiiiie e e 402
9.28. Trigger FUNCLIONSuuiiii i e e e e e e e e e e e e e e e e et e e e eaneees 418
9.29. Event Trigger FUNCLIONSco.uuiiiiicicc e e e e e e e 419
9.30. Statistics INfOrmMation FUNCLIONSviiiiiiiieiiiin e 422
O Y oL @0 0177 = o] o PP 424
FO. 1. OVEIVIBIW Leuieeiiii et et e e e e e e et e e e et e e e e st e e e e eatn e 424
B0.2, P AIONS v uitittt ettt et 425
L0 R T o] o LU 429
O R 1R (o] = o 433
10.5. UNI ON, CASE, and Related CONSIIUCESvvvieviiiiieeeiiiieeeciii e 434
10.6. SELECT OUPUL COIUMNSuueiiiiiieeeiie e ee et e e e e et e e e 436
T o (== SRR 437
0 O 1 1 oo (0 o IR 437
2 1 o L= G Y/ o === 438
11.3. MUItICOIUMN TNAEXES .. .ceeeviieeeeei e 440
11.4. Indexes and ORDER BYccuuuiiiiiiiieieiiiise e e et e et e eeaanns 441
11.5. Combining MUItiple INAEXEScviiiiiiee e 442
12.6. UNIQUE INAEXES ...vueeieee et e e e e e e e e e e e e e aanees 443
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeiiiee e ee e e e e e e e e e e e st e e e eaneees 443
11.8. Partial INAEXES .. .ceeeviieeiii et 444
11.9. Index-Only Scans and Covering INAEXESc.voveviieiiiieiiieceee e 447
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 450
11.11. Indexes and Coll@tioNSoviiieiiiiiiiiii e 451
11.12. EXxamining INAeX USAQEuuiivnieiieii e e e e e e e et eeanae e 452
12, FUIl TEXE SEAICH .o e e e aaen s 454
2 R | 1 oo (0o o IR 454
12.2. TahleS @nd INAEXES .. .cevvviieiiei et e eeeen 458
12.3. Controlling TeXt SEarchcccuiiiiiiiiie e 460
12.4. AddItioNal FEAIUMEScvuiieiii e e e 468
T o T S SUPP 474
12.6. DICHONAITES ..vuieeeitiieee ettt ettt e ettt e et e e ettt e e e et e e e eatn s e e e entnneeeenes 476
12.7. Configuration EXamMPIEcouuiiiiicii e 486
12.8. Testing and Debugging Text Searchcoevviiiiiiiiiie e, 487
12.9. GIN and GIST INAEX TYPES .evvureiieiinieieeiiiieeeei et et e et eeeat e e eaee e eeaaens 492
2250 O T o 1= o ST o oo o P 493
2 O T 1] = o) R SPPPT 496
13. ConCUITENCY CONLION .uuuiiit i e e e e e e e e e e e e e e et e e et e e ean e eanaes 498
G20 O 1 1 oo [0 1o IR 498
13.2. Transaction ISOIAtONcoevuiieiiiii e 498
T o[T o] Vo [504

PostgreSQL 14.0 Documentation

13.4. Data Consistency Checks at the Application Levelccocoiveiiiiiiiiiviineennnn, 510

ST O Y= 512

13.6. LOcKing and INAEXESovvniii e e e s 512
(o 7= 0o =T T 514
14.2. USING EXPLAIL N L.ouiiiiiiiiiee st s s e e e e e et e s e e e e e eenannns 514

14.2. Statistics Used by the Plannercooiiiiiiiii e 527

14.3. Controlling the Planner with Explicit JO N ClauSeSccooevviveviiieiiineeiieeenn, 532

14.4. Populating @ Databaseuevviieiiiieiiie e e 534

14.5. NON-DUrable SEtliNGSuueveriiii e e e e e e e eees 537

ST = = RO = oS 538
15.1. How Parallel QUErY WOTKSiiiiiiiiii e 538

15.2. When Can Parallel Query Be Used?covvvviiiiiieiiiiceiiie e 539

15.3. Parallel PLanScoovviieiiii et e 540

15.4. Parallel SafEYoieeeeieeeeiiiee e 542

RIS o V7= g AN 41T g 1 = (o o PP 544
16. Installation from BiNAIEScccuuuiieiiiiiiee et e et eeean e eeees 551
17. Installation from SOUICE COUEuuuieiiiiiieeeiei et e 552
S oo g Y= = o] o PP 552

A = (V1T 1 1= | 552

17.3. GELHNG thE SOUMCE .. .cvuiii e e e s 554

17.4. InStallation ProCeOUMEevieii e e e e e e e eees 554

17.5. Post-INStallation SELUDuueviiiiii e 567

17.6. Supported Platformsoouiiiii e 569

17.7. Platform-SpeCific NOESuuiiii e 569

18. Ingtallation from Source Code 0N WINAOWSoovveviiiiiiiiieiiiiie e 575
18.1. Building with Visua C++ or the Microsoft Windows SDKcccoceveveiinnnnns 575

19. Server Setup and OPEratioNuiiieieiii e e e e e e e e e e e e e e 581
19.1. The PostgreSQL USEr ACCOUNTuuiiiiiiiii e eeie e e e e e e e e e e e eanas 581

19.2. Creating a Datahase CIUSLEYuoiiiiiiiiii e 581

19.3. Starting the Database SEIVENcevviiiii e 584

19.4. Managing Kernel RESOUICESciuuiiiii e e e e e e e e e e 587

19.5. Shutting DOWN the SEIVEruiiiii e 595

19.6. Upgrading a POStgreSOQL CIUSLErccvvuiiiiieiiiieiie e ee e e e 596

19.7. Preventing Server SPOOfiNgcvuueiiiiieiii e ee e e r e 599

19.8. ENCryption OPLiONS .. .ccuuueiiii e e e e e e e et e e e e e eaaas 600

19.9. Secure TCP/IP Connections With SSLcccvviiiiiiiiiiiii e, 601
19.10. Secure TCP/IP Connections with GSSAPI Encryptioncccooevvivivnnnennnnn. 605
19.11. Secure TCP/IP Connections with SSH Tunnelscoovvvvviiiiiiiiiieeciieeeeee, 605
19.12. Registering Event Log on WIiNdOWSooiviiiiiiieiiiiecin e e 607

20. Server CONfIQUIAIONuuiie e et e e e e e e e e e e e et e e e e e et e e e et e e eanaeeenaes 608
20.1. SEtting ParameterScovn e 608

20.2. FIlE LOCAHONS .. .ceeevieeeeeie ettt e et e et e e e et e e e e et e e e eeae s aeaees 612

20.3. Connections and AUhENtiCaEIONuiieiiiiiiieiii e 613

20.4. ResoUrce CONSUMPLIONuuiiiiii e ee e e e e e e e e e e e e e e e et e e ean e eaa s 620

20.5. WIit€ ANEAA LOQ .. ivviiiiiiei e e e e e e e e e e e 629

P20 N ST = L= o] o= 1o o NS 639
20.7. QUENY Planningcuuueiiiieiii i e e e e e e e 646

20.8. Error Reporting and LOGINGuovevnieiiiieiieeeieeeee e e e e e e e e e eaeeeees 652

20.9. RUN-EIME SEALISHICS cvvvuieeeiiii et e e e e e e e e e e 665
L0 B O RANU 1 (o 0 47 (FoAVA=o: U LW 411 oo 667
20.11. Client ConNeCtion DEFAUITSccuuuiiiiiiiiiee e 669
20.12. LOCK MBNAGEMENLevuniiiteiii et e e e e eaans 679
20.13. Version and Platform Compatibilityccoooiiiiiiiiiiiii e 680

0 I g (o g o =0 To T o P 682

Vi

PostgreSQL 14.0 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

20.15. Preset OPtiONSuuiii e e e et e e e e e e e e e e e aa 683
20.16. CuStOMIZEA OPLIONS .. cevuiiiiieeiiieeeie e e e e e e e e e e e e e e et e e e e e eanees 685
20.17. DeVEIOPEr OPLIONSciiiiiiiie e e e 685
20.18. SNOI OPLIONS ...vuiiiiieiii et e e e e e e e e e e e e e e e et e e et e e e anaeaaneees 690
Client AULRENTICEIION e e e e 691
21.1. The pg_hba. conf File ... 691
212, USEN NAIME MBS . ettt 699
21.3. Authentication MEthOOSuuiiiiiiiie e 700
214, Trust AULNENEICAIION ...evvuiiiiii e 701
21.5. Password AUtNENtICALIONuuiiiiiiiiei e 702
21.6. GSSAPI AULNENtICALION ...ievviieiiiie e 703
21.7. SSPI AUNENEICALION ...eevviiieeiei e e e e s 704
21.8. [dent AULNENTICAIONcevveieeeiiie e e e 705
21.9. Peer AULNENLICALION ... ciiiiiieeieii et e e et eeeae e eees 706
21.10. LDAP AULhENTICAION ...uiiiiiiie ettt e e e e e e e eeaens 706
21.11. RADIUS AURENEICALION ...vevviiieeiis e 709
21.12. Certificate AUNENICALIONutiiiiiiieeeii e e 710
21.13. PAM AULNENLICAION ...ceiiiiieeiiii e 711
21.14. BSD AULNENLICALION ...ueeiiiieeeeiii et e e e e e e e e aa s 711
21.15. Authentication ProblemSiiiiiiiii e 712
DataDase ROIES ... coeeiiiee et e e e 713
22.1. Dat@hase ROIESiiiiiiiee ittt 713
22.2. ROIE ALLIDULES ... e 714
22.3. ROIE MEMDEISNIP «.iviiii e e e e e 715
22.4. Dropping ROIESiii e 717
22.5. Predefined ROIESi i 717
22.6. FUNCLION SECUMLY .vuuiiiieiiieiie e e e e e e e e e e e e e e eaa s 719
MaNaging Dalabasescovuueiiii i 720
P I O Y= g = ST 720
23.2. Creating @ Databaseccuueiuiieiii i e 720
23.3. Template Databasesuveiviieiii e 721
23.4. Database CONfigUIationcc.ueeiiieiiiieii e e e e e e e e ea e eens 723
23.5. Destroying a DatahaSeccvuuiiiiiieii i 723
23.6. TADIESPACES ... ceve et 723
(oo 12 1o o RS OPPTTPN 726
S I e oz LIS o] oo o AP 726
24.2. COll@tion SUPPOITciveeii e e e e e e e e e e e e e e e et e e e e ean s 728
24.3. CharaCter SEt SUPPOIuuevii i e e e e e e e e e e e eaa e eaes 735
Routine Database MaintenanCe TasKSoeeveuenieeriiiiieeeeiiieee et e e et e e e e e e 746
25.1. ROULINE VACUUMING ...uuiiiiieii e e e e e e e e e e e e e e e e st e e e e e s e e enneeennaas 746
25.2. ROULINE REINAEXING ©..cvvveiiiieiiie e e e e e e e e e e e e et e e e aanas 754
25.3. LOg File MAINtENANCEcvvviiiii et e e e e e e e e e e e e e e 755
Backup and RESIOIEuiiiiicii e e e e e e e e 757
26.1. SQL DUMP ittt sttt e e e et e et e e e aae 757
26.2. File System Level Backupccovuiiiiiiiiiiecii e 760
26.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccoooviveviinenines 761
High Availability, Load Balancing, and Replicationccccecviiiiiiiiiiin e, 774
27.1. Comparison of Different SOlUtiONScccuviiiiiiiiii e 774
27.2. Log-Shipping Standby SErVEIScivviiiiiecii e 777
27.3. FIOVEN .oeieiei i 787
27.4. HOt SEANADY ..oovneie e 787
Monitoring Database ACHIVITYcovuiiiiiei e e 796
28.1. Standard UNiX TOOISuuiiiiiiieiiiiie et e e e e e e e e et e e e 796
28.2. The StatisticS COHECONuuieiiiiii e 797

Vii

PostgreSQL 14.0 Documentation

28.3. VIEBWING LOCKS .. .ceviiiii e e e 832

28.4. Progress REPOMINGuivvuieiii e e e e e e e e e e e e e e e e e e et e eaneens 833

28.5. DYNAMIC TraCiNG .vvuuiiiieiiiieiii e e e et e e e e e e e e e e e e e e et e et s e e et e e anneeeanns 841

29. MONItoring DiSK USAQEuuiiiiiiiii i e e e e e e e et e e e eeeas 851
29.1. Determining DiSK USAQgE ...c.uuiiiiieiiieiie e e e e e e e e e e e e e aaaeeaes 851

29.2. Disk FUIl FaIlUMccceeieiiii et e e e e 852

30. Reliability and the Write-AhEad LOgoovvviiiiiiiii e 853
O = = T 1) Y 853
30.2. Data ChECKSUMS ...cevviieeiiii ettt e et e e et r e e e eat e e eenenaeeees 855

30.3. Write-Ahead Logging (WAL) ...coveiii e 855

30.4. ASynchronous COMMITcuuiiuiieiii e e e e e e e e e e e et e et e e e e eaanees 856

30.5. WAL ConfigUurationc...ieiuuieiieeiiiieee e e e e e e e e e e e e et e e e e eanas 857

I O I 141 1= 1 7= R 860

G I oo [or= I 2 3= o] o= [o NS 862
I . o o= 1o S 862

G IS U1 1=] o1 o o P 863

1 G I 0o) Tt £ PP 864

I I (= Ao o) LSRR 865

I IR o 1) (= o 10 (= PP 865

1C 3 ST 1 o g (o oo 866

S o) Y 866

31.8. Configuration SEINGSuivevueiiieiiie e e e e aan s 867

IS T @ U To: = (1o T 867

32. Just-in-Time Compilation (JIT) .ouuiiinieiiii e e e e e e e e e e e e aaeees 869
32.1. What IS JIT compilation?c.ueiiiieiiiiieii e e e e 869

K VAV 01 3 T (TN N S 869

IC22C T ©¢o 011 To 1= 1 (o] o [871

Y = 1= | o] 1) YU 871

T B L= | (= o g 1= =P 873
33.1. RUNNING the TESES ...iviiiiii e e e e e e e e 873

K =S B Y 1 1 o) o TR 877

33.3. Variant Comparison FilEScoouiiiiiiiiiie e 880

T I AN o = £ 881

33.5. Test Coverage EXaminationc.ueiiiiiiieeiiiieeii e e e e e e e e et e e e eaes 881

Y O 1= o 1 1= 4 == PP 883
34, 1IDPG — C LIbrary ..ooouieiiee e 888
34.1. Database Connection Control FUNCLIONSccuuvviiiiiiinieiiii e 888

34.2. ConNeCtion StAtUS FUNCLIONSvuueeiiiiieeiiiie e 905

34.3. Command EXeCUtion FUNCHIONSoiveviiiiiiiiiie e 912

34.4. Asynchronous Command ProCESSINGccuuvernieiiiieiiiieeiiieeeiieeeiieesaieeaneeaens 928

34.5. PIPEINE MOUE .. .ccvniiiiici e e e e e 932

34.6. Retrieving Query Results ROW-bY-ROWcocciiiiiiiiiiiii e, 937

34.7. Canceling QUENES IN PrOGIrESSuuciiiiiiiii e ee e e e e e e eaaes 938

34.8. The Fast-Path INterfaceoovvvviiiiii e 939

34.9. Asynchronous NOEIFICAIIONoeuniiiiiieie e e 940
34.10. Functions Associated with the COPY Commandoveeviiiiieeviiiineeniiinnnnn. 941
34.11. CONIOl FUNCHIONS . .ueeeiiiiseeeeii et e e e e e e e et s e e e eat s e e eeatnneeees 945
34.12. MisCellaneouS FUNCLIONSccuuiiiiiiiiee i et e s e e eeeaa e e 947
G704 T Lo 1 Lo Y o=] o P 951
K Y= | G (1 952
34.15. ENvironment VariableSuiiiiiiiiiiiii e 959
34.16. The PassWord FIleooceeuiiece e 961
34.17. The Connection Service Fileoviiiiiiiiiiii e 961
34.18. LDAP Lookup of Connection Parametersccovevviiiiiiiiciiie e 962

viii

PostgreSQL 14.0 Documentation

34,19, SSL SUPPOIT ..ttt 963
34.20. Behavior in Threaded Programsccoceuieiiiiiiiii e 967
34.21. Building liDpg Programscouueeiiiieiie e e 967
34.22. EXaMPlE PrOQramSciiiicii ettt 969
ST IR (0 (=l @ o] = ox P 981
L300 I g1 1o [0 o 1o o USSP 981
35.2. Implementation FEALUIEScovuiiii e e 981
35.3. CHENt INEITACES ...ovvvvi e 981
35.4. SErVer-Side FUNCLIONScccuuiieiiiie et e e e e s 986
35.5. EXAMPIE PrOgram ... ccuui it e e e e e e e e e e et aaa s 987
36. ECPG — Embedded SQL iN C ..oovviiiiiiiiee et 994
G I N I =T o o= o P 994
36.2. Managing Database CONNECLIONSccvuiiiiii e e e e e eaaas 994
36.3. RUNNiNg SQL COMMANGSeiiiieiiieiiii e e e e e e e e e e eaaes 998
36.4. UsSing HOSt VariahleScovvniiii i 1001
36.5. DYNAMIC SQL .eevuiiiiiiiie it 1016
36.6. POLYPES LIbraryocovniiiii e 1018
36.7. USING DESCIIPLOr ATEBScivvnieiiieeiiieeeie et e et e e e e e e e et e e ea e e aanees 1033
36.8. Error Handlingcccueiiiiiiiii i 1047
36.9. PreproCessor DITECHIVESuuuiiii e e e e e e e e e e aanees 1054
36.10. Processing Embedded SQL Programsccoevvvieeiieeiinieiiieeeiieeeineeeneeeen, 1057
36.11. Library FUNCLIONScuuiiiiiiii e e e s 1058
36.12. Large ObJECES ...cvvuiiii e e e e e e e e 1058
36.13. CH+ APPHICALIONS .. cevuiiiieeii e e e e e e e e e e aans 1060
36.14. Embedded SQL COMMAaNSccouuieiiiieiiiiieeieeei e e e e e e e 1064
36.15. Informix Compatibility MOdEcoovviiiiiii e, 1091
T ST g1 1= 1 1 =SSP 1107
37. The INfOrmation SCHEMAuiiiiiiii e 1110
371 The SChEMA ... i e e e 1110
A DT - B Y oS SPPPSRPRN 1110
37.3.informati on_schema _catal og nameccooccoiviiiniiiin e, 1111
374.adm nistrable role authorizationscccoeviiiiiiiiiiinncneeen, 1111
37.5.applicabl @ rol €S .., 1111
7.6, At LT DUL ES 1o e 1112
A A o] ¢ - Y - o =Y G 1= A T 1114
37.8.check_constraint_routiNe_USageccoeevviveiiiiiiiiieeiiieecie e, 1115
37.9. CheCK_CONSErai NES i e 1116
% 0 o o] N - Y A o) 1= PP 1116
37.11.col l ation_character_set _applicabilitycccoooiiiiiiiiinninnnn. 1116
37.12. COl UM_COl UMN_USAQE .nieiiiiiiciie e e e e 1117
37.13. COl UM_dOMBI N_USAQE ..ievniiiiiieiie e e e e e e e e e e aaes 1117
37.14. COl UNM_OPL i ONS .iiiiiiii e e 1118
37.15. COl UMN_Pri Vil 0SS oo 1118
37.16. COl UNM_UAL _USAQE .uiiiiiieiii et e e e e 1119
B7.17. COL UMMIS Lot e e e e b e e eaeens 1120
37.18.constrai Nt _COl UNM_USAQE ...uuviiiniiiiieiiii e e e e 1123
37.19.constraint _tabl @ USAgeccooceviiiiiiiiiii 1123
37.20. data_type priVvil €0eS .o 1124
37.21. dOMBI N_CONSE T Al NE'S toviiiiiiiii e e 1125
37.22. dOMBI N_UAL _USAQE .uiiiiieiii et e e e e e 1125
72 T o (o] 11 U o K-S SRS 1126
37.24. €l EIMENE L Y PES it 1128
37.25. €Nabl €0 IOl €S .o 1130
37.26.forei gn_data wrapper_Opti ONScooceiviiiiiiiiiiiiiie e, 1130

PostgreSQL 14.0 Documentation

37.27.T0orei gn_dat @ W apPPEI'S cuiiiiiiiiii e 1131
37.28.fOrei gn_Server_OpPti ONS ..coiiiiii i 1131
37.29. f OF BI g S Bl VI S ittt eiiie ettt e e e e 1131
37.30.foreign_tabl e Options ..o 1132
37.3L.forei gn_tabl @S oo 1132
37.32. KEY_COl UM _USAQE .uiiiiiiiiii e e et e e e e e e e et e e 1133
37,38, Par AT B B S ittt e 1134
3734 referential _constrainNts ...o.occooeiiiiiiiiii i 1135
37.35. 10l €_COl UM_grant'S ..ooieuiiiiiiiciie e e 1136
37.36. 10l €_routiNe_grants .oooiiiiiiiiiiie e 1137
37.37.r0l e _tabl e _grants ..o 1137
37.38. 10l €_UAL _grant S c.oiiiiiiiiiii e 1138
37.39. 10l €_USAQE_grant S .iiuiiiiii i 1139
37.40. routi Ne_COl UNT_USAQE .ovuiiiiiiiiiii e e e e 1139
374L routiNe_PrivVil BOBS i 1140
37.42. 1 QUL I NE_TOUL I NE_USAQE cvuiivieiii e eee e e e e e e e e e aeaas 1141
37.43. 10Ut i NE_SEQUENCE _USAQE ..cvvvniirneeinieeiiieeiiieeatieeeteeetneesaneeaneeannns 1141
3744. routine _tabl @ USAQE .coooiiiiiiiiii 1142
L o U A N o 1= PRSP 1143
37.46. SCREMAL @ oiieviii i 1147
Y T =To [T =] g [o =1 PP PPN 1148
37.48. SOl T AL UM BS it 1149
3749.sql _inplenmentation info ..., 1149
37.50. SOl PAIt S ciiiiiiii i 1150
3751 SOl ST ZI N e 1150
37.52. tabl @ CONStrai NES .o 1151
37.53. tabl € Pri Vil €S .o 1151
754, 1 AD] €S v 1152
755, 1 FANST OF ITB oot 1153
37.56.triggered _update Col UMMS ..o 1153
Y A0 W g e [0 =] =T PN 1154
37.58. Ut _Pri Vil @S .o 1155
37.59. USAQE _Pri Vil BOES i 1156
37.60. user _defined tYPeS i 1157
37.61. user _mappPi NQ_OPL i ONS .o 1158
Y S N (Y T G 1= 1 o] o [[o 1 1159
37.63. Vi BW _COl UMM _USAQE civvniiii it e e e e e s 1159
37.64. Vi EBW T OUL T NE_USAQE tovuiiiiieiiiieiie et e e e e e e e e e e e e e an s 1160
37.65. Vi eW t abl € _USAQE .ioiviiiii 1160
706, Vi BWS oeuuiieiiiii ettt e ettt et e e e ettt aaaan s 1161
A S = A= . oo =0 1 411 oo [1163
38. EXIENAING SQL ...eevnieiiiii e e 1169
38.1. How Extensibility WOrKSccooiiiiiiiiii e 1169
38.2. The PostgreSQL TYPE SYSIEM ..cuuiiiiieiie e e e e e e e e e e 1169
38.3. User-Defined FUNCLIONSuiiiiiiiiieiiiii e e e 1173
38.4. User-Defined ProCeAUMESovieeiieieiii et e e e et e e e eanens 1173
38.5. Query Language (SQL) FUNCLIONSccvvniiiiieiie e e e e e 1173
38.6. FUNCtion OVErloadingviiiiiiiiiiciie e e 1191
38.7. Function Volatility CategOriEsuuiiiiiieeiieeiiie e e e e e e e e e 1192
38.8. Procedural Language FUNCLIONSccooviiiiiiiiiccie e 1194
38.9. INternal FUNCLIONSuuiiiiiii e e e e e eeeaes 1194
38.10. C-Language FUNCLIONSciuiiieii e ee e e e e e e e e e e e e e eaneeees 1194
38.11. Function Optimization INfOrmMationcoeveiiiiiiiiieiiie e 1216
38.12. User-Defined AQQregatescuueiunieiiiieeie e e e e e e e e e e e e et e eaneees 1217

PostgreSQL 14.0 Documentation

38.13. USEr-DEfiNEd TYPES ..vueiieiiieieiii ettt e e e et eeaeaa s 1225
38.14. User-Defined OPEratOrsciuueiii et eeii e e s e s e e e e e e e st e e e eanaaees 1229
38.15. Operator Optimization INfOrMationccceuiieiiiieiiin e ee e 1230
38.16. Interfacing EXtENSIoNS tO INAEXESccvviiiiieiii e 1234
38.17. Packaging Related Objects into an EXtENSIONccovvvviviiiiiiciiiec e, 1248
38.18. Extension Building INfrastruCtureccovvviiiiiiii i e 1256
1 T I o o = PPN 1261
39.1. Overview of Trigger BENaVIOrociviiiiiii e 1261
39.2. Visibility of Data Changesucvvuiiiiiiiii e e e 1264
39.3. Writing Trigger FUNCLIONS IN Cu.iiiiiiie e 1264
39.4. A Complete Trigger EXamplecoouiiiiiiiii e e e 1267
O V= o | A o o (= £ PP 1272
40.1. Overview of Event Trigger BEhaviorcc.ccoiviiiiiiiiiieciiecee e 1272
40.2. Event Trigger FIriNg MatriXc..oeiiiiiiiieei e e 1273
40.3. Writing Event Trigger FUNCHIONSIN Covvniiiiiii e 1276
40.4. A Complete Event Trigger EXampleccuuviiiiiiiiieiii e 1278
40.5. A Table Rewrite Event Trigger EXamplecoovveiiiiiiiiii e, 1279
1. The RUIE SYSLEM ...t e e e e e e et 1281
N I 0T @ 111 VA (= = T 1281
41.2. Views and the RUIE SYSIEMcoviiiiiicii e 1283
41.3. MAEri@liZE VIBIWSceeeiiie e e e e 1290
41.4. Rules on | NSERT, UPDATE, and DELETEcccoiiiiiiiinieiiiiieeccie e 1293
41.5. RUIES aNd PriVIIEOES .. ovvii e 1304
41.6. Rules and Command SEALUSuuieiiiiiieiiiiie ettt e e 1306
41.7. RUIES VEISUS THOOES cuuneiiieiii et e e et e e e e e e e e e e e e e et e e e e aan e eens 1307
42. ProCedural LanQUBOESueeuneeiieeiiee e et e e e e et a e et e e e e et e e st e e et e e eaaeeaaneeaens 1310
42.1. Installing Procedural LanQUagEScccuueeiiiiiiiieiiieeeie e e e e e e e e e 1310
43. PL/pgSQL — SQL Procedural LangUagecccuueiuiieiiiieiiiieeiieeeeie e e e e e e 1313
A0, OVEIVIBW ..eevtiieeeiii e et e ettt e ettt e e ettt e e ettt e e ettt s e e e et aeeaeat e eeeentnneeaees 1313
43.2. Structure of PL/PGSQL ..ueivinieii e 1314
A3.3. DECIArAHONS .. ceeevi et e e et e e aae 1316
B q o (== 0] 1 1323
43.5. BASIC SEALEIMENESuieiiiii et e et e et e e e e et e e e et s e e e et aeeeeren e eeees 1323
43.6. CONLTOl SITUCLUMEScieiiieee ettt e et e e e et eeeeeaaaaeeees 1332
A O 1 1o = TP 1347
43.8. TransaCtion ManagemENtcc.ueeiiiieiiii e e e e e e e e e e e aan s 1353
43.9. Errors and MESSA0ESuueieteiiiieiiee et e e e e e e e e e e e e e et e e e e r e a e aaa 1355
43.10. Trigger FUNCHIONSceueiii e e e e e e e e e e e e e e e e e aneees 1357
43.11. PL/pgSQL under the HOOMooviiiiiiiiciii e 1367
43.12. Tips for Developing in PL/PGSQLcvvniiiec e 1370
43.13. Porting from Oracle PL/SQLccovuiiiiiieiii e e e 1374
44, PL/Tcl — Tcl Procedural LanQUagEccvvueiiieeiie e e e e e e e e 1385
A0, OVEIVIEW ..eevtiieeeeti e et e et e e ettt e e ettt e e e e ettt e e et et e e e et s e e eettaeeeestnaeeaees 1385
44.2. PL/Tcl Functions and ArQUMENEScceunriiieiiie e et e e e e e e e e eeanns 1385
44.3. Data Values in PLITCl .ooooveii e 1387
44.4. Globa Datain PLITCl .ouuuiiiii e 1388
44.5. Database AcCesS from PL/ITCl ...oovviiiiiiiiii e 1388
44.6. Trigger FUNCLIONS IN PLITCl .ouviiin e 1391
44.7. Event Trigger FUNCLIONS iN PLITCl c.vviiiici e 1392
44.8. Error Handling in PLITCl ..coovniiii e e 1393
44.9. Explicit SubtransaCtions in PLITClcouviiiiiciiicie e 1394
44.10. Transaction ManagemMENtoeviiiiiiiie e e e 1395
44.11. PL/TCl ConfigUuralionccuuuiiiieeiie eaens 1395
44.12. Tcl Procedure NAIMESuieeeiiieeeeiii e e e e e ea et eeeaan s 1396

Xi

PostgreSQL 14.0 Documentation

45, PL/Perl — Perl Procedural LanQUageccuuuieiuniiiiieiiieeeieeeiie e e e e e e eanaeeaen 1397
45.1. PL/Perl Functions and ArgUMENLSccuuieirnieiiiieeiie e e e e e e e eeaens 1397

45.2. Data Values in PLIPErl ..o 1402
45.3. BUIE-IN FUNCHIONS .eeviccce et 1402
45.4. Globa ValUES iN PLIPENTiiiiiii e 1407

455, Trusted and Untrusted PL/PENuuiiiiiiiiiiiiiie e 1408

N T o I = 4 B e o 1= PN 1410
I o I = I = o A e o (= £ 1411
45.8. PL/Perl Under the HOOieiiiiiiiiiiii e 1412

46. PL/Python — Python Procedural Languagecccovviviiiiieiiiieiii e e 1414
46.1. Python 2 vS. PYthOn 3oee e 1414

46.2. PL/PYthON FUNCHIONScuiiiiii e e e e e 1415
4B.3. DAA VAIUBSuiieiii et 1417

GRS 7=] oo D - - L 1422

46.5. AnonymMouS Code BIOCKSciiiiiiiiiicii e 1423

46.6. Trigger FUNCLIONSciiiiii e e e e e e et e e e e ees 1423

46.7. DAADASE ACCESSvviieeiiii e et e et e e e e e e e e 1424

46.8. EXplicit SUDLraNSACIIONSccuuiiiiieiiieec e e e e e e e ae 1428
46.9. TransaCtion ManagemENtcc.uieiiiieiiii e e e e e e e e e aanas 1429
46.10. Utility FUNCLIONSiieecii e e e e e e e e een 1430
46.11. Environment VariableSooiiiiiiiiiiiii e 1431

47. Server Programming INtErfacecoovvi i 1433
A47.1. INterfaCe FUNCLIONS ... coiiii e e e e e 1433

47.2. Interface SUPPOrt FUNCLIONSccuuiiiiiee e e e e e e e e ee 1476

47.3. MemOry ManagemMENTouuiniieiiiie ettt e e eas 1485
47.4. TransaCtion ManagemENtccuueeiuiieiiiiee e e e e e e e e e e aanas 1495

47.5. Visibility of Data Changesccuoviiiiiiiiiiciii e 1498

A7.6. EXAMPIES ..ottt e aee 1498

48. Background WOTKEr PrOCESSESuuiiiieiiiieeiiie et eeee e e e e e e e e e e e et e e eaneeeanees 1502
L R T o= I D<ol 1 1o PP 1506
49.1. Logical Decoding EXaMPIESccuuiiiiiiiii e 1506

49.2. Logical Decoding CONCEPLSuuivvueiiiieeiii e e e e e e e e e e e e e e eees 1510

49.3. Streaming Replication Protocol Interfaceccooveviiiiiiiiiiiiiiceeeen, 1511

49.4. Logical Decoding SQL INtEIfateccvuviiiiiiiiieeie e 1511
49.5. System Catalogs Related to Logical Decodingceevvnvviiieiiiieiiiiieiieeainns 1511

49.6. Logical Decoding OULPUL PIUGINScovuiiiiieiiiieei e e e e 1512

49.7. Logical Decoding OULPUL WIHTEIScvvueiiieii e eee e 1520

49.8. Synchronous Replication Support for Logical Decodingcoccvvvevvvneeeinnnns 1520

49.9. Streaming of Large Transactions for Logical Decodingccooevvvnvevinnennnnn. 1521
49.10. Two-phase Commit Support for Logical Decodingc.cccovevvviveiineennnnnnn. 1522

50. Replication Progress TraCKinNgeiueeeiiiei e e e e e e e e e e e e e et e eeaneeees 1523
VL REFEIBNCE ...t e et et e e et et e e e eaes 1524
S @ I o 41090 1530
N =1 | PSP 1534
ALTER AGGREGATE ...ttt ettt et e et e eeeata e e e eee 1535
ALTER COLLATION .ttt ettt e et e e et eeaeaan e e eenees 1537
ALTER CONVERSIONottiiiiiiiiiieiiiiisee e e e e e e e e et eeeaaaeeaenanns 1540
ALTER DATABASE ...ttt e e et eeaaens 1542
ALTER DEFAULT PRIVILEGEScoiiiiiiiiii e 1545
ALTER DOMAIN L.ttt e et e e e et e e e e eranneeeee 1549
ALTER EVENT TRIGGERcccttiiiiiiiiiieiiii e 1553
ALTER EXTENSION ...ouiiiiiiiiiiiii ettt e e et e e e et e e e eaan e eeees 1554
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiiie e 1558
ALTER FOREIGN TABLE ..ottt 1560

Xii

PostgreSQL 14.0 Documentation

ALTER FUNCTION ..ottt 1565
ALTER GROUP ..ottt 1569
ALTER INDEX ..o 1571
ALTER LANGUAGE ...t 1574
ALTER LARGE OBJECT ..ottt 1575
ALTER MATERIALIZED VIEWiiiiiiiii e 1576
ALTER OPERATOR ..ot 1578
ALTER OPERATOR CLASS ... 1580
ALTER OPERATOR FAMILY oo 1582
ALTER POLICY oot 1586
ALTER PROCEDUREcooiiiiiiiiic e 1588
ALTER PUBLICATION ..ot 1591
ALTER ROLE ... 1593
ALTER ROUTINEooiiiiii e 1597
ALTER RULE ... e 1599
ALTER SCHEMA .o 1600
ALTER SEQUENCEo 1601
ALTER SERVER ..ot 1604
ALTER STATISTICS ..o 1606
ALTER SUBSCRIPTION ..ottt 1608
ALTER SYSTEM .o 1611
ALTER TABLE ..o 1613
ALTER TABLESPACEo 1631
ALTER TEXT SEARCH CONFIGURATIONcciiiiiiiiiiiiiiiiieiec e, 1633
ALTER TEXT SEARCH DICTIONARY ...ttt 1635
ALTER TEXT SEARCH PARSERccootiiiiiii e 1637
ALTER TEXT SEARCH TEMPLATE ... 1638
ALTER TRIGGER ...t 1639
ALTER TYPE Lo 1641
ALTER USER ..o 1646
ALTER USER MAPPING ..ot 1647
ALTER VIEW .o 1649
ANALYZE ... o 1651
BEGIN . 1654
CALL e 1656
CHECKPOINT . 1658
LS . 1659
CLUSTER e 1661
COMMENT Lo e 1664
COMMIT s 1669
COMMIT PREPAREDcocviiiiiiiiiii e 1670
GO Y 1671
CREATE ACCESS METHODcccviiiiiiiiiiiciee e 1682
CREATE AGGREGATE ... 1684
CREATE CAST o 1692
CREATE COLLATION .ottt eae e 1697
CREATE CONVERSION ..ot 1700
CREATE DATABASE ..o 1702
CREATE DOMAIN L.ooiii e 1706
CREATE EVENT TRIGGERcoiiiiiiiiiiiic e 1709
CREATE EXTENSION ...ooiiiiiiiiiii e 1711
CREATE FOREIGN DATA WRAPPERccoiiiiiiiii e 1714
CREATE FOREIGN TABLE ..., 1716
CREATE FUNCTION L..ouiiiiiiiii e 1721

PostgreSQL 14.0 Documentation

CREATE GROUPcciiiiiiii e 1730
CREATE INDEX ...t 1731
CREATE LANGUAGE ..o, 1740
CREATE MATERIALIZED VIEW ..o 1743
CREATE OPERATOR ...ttt 1745
CREATE OPERATOR CLASS ..o 1748
CREATE OPERATOR FAMILY .ot 1751
CREATE POLICY ..ttt 1752
CREATE PROCEDUREciiiiiiiiiic e 1758
CREATE PUBLICATION ..ottt 1762
CREATE ROLE ..ot 1765
CREATE RULE ..o 1770
CREATE SCHEMA ..o 1773
CREATE SEQUENCEiiiiiiiiiic e 1776
CREATE SERVER ..ot 1780
CREATE STATISTICS ... 1782
CREATE SUBSCRIPTION ..ottt 1786
CREATE TABLE ... 1789
CREATE TABLE AS ..o 1812
CREATE TABLESPACEooiiii e 1815
CREATE TEXT SEARCH CONFIGURATION ..o, 1817
CREATE TEXT SEARCH DICTIONARY ..ot 1819
CREATE TEXT SEARCH PARSER ...t 1821
CREATE TEXT SEARCH TEMPLATE ..ot 1823
CREATE TRANSFORM ..ottt 1825
CREATE TRIGGERoiiiiiiiii 1828
CREATE TYPE .o 1836
CREATE USER ..ot 1846
CREATE USER MAPPING ..ot 1847
CREATE VIEW ..ot 1849
DEALLOCATE ..o 1854
DECLARE ..o 1855
DELETE . o 1859
DISCARD ... 1862
DO 1864
DROP ACCESS METHODccuiiiiiiiiiicii e 1866
DROP AGGREGATE ...t 1867
DROP CAST ot 1869
DROP COLLATION .ottt 1870
DROP CONVERSIONcoiiiiiiiiiiiii e 1871
DROP DATABASE ..o 1872
DROP DOMAIN .ot 1874
DROP EVENT TRIGGERcoiiiiiiiiiiii 1875
DROP EXTENSION ...coiiiiiiiiii e 1876
DROP FOREIGN DATA WRAPPERcooiiiiii e 1878
DROP FOREIGN TABLE ..o 1879
DROP FUNCTION .ot 1880
DROP GROUPociiiiiiici e 1882
DROP INDEX ..o ittt 1883
DROP LANGUAGE ... oottt 1885
DROP MATERIALIZED VIEW ..o 1887
DROP OPERATOR ...ttt 1888
DROP OPERATOR CLASS ... 1890
DROP OPERATOR FAMILY .oiiiiiiiii e 1892

Xiv

PostgreSQL 14.0 Documentation

DROP OWNEDciiiiiiiiiiiii e 1894
DROP POLICY ottt 1896
DROP PROCEDURE ...t 1897
DROP PUBLICATION L..oiiiiiiiiiii et 1900
DROP ROLE ..ot 1901
DROP ROUTINE ...coiiiiiiiii e 1903
DROP RULE ...t 1905
DROP SCHEMA ... e 1906
DROP SEQUENCEciiiiiiiii e 1908
DROP SERVER ..o 1909
DROP STATISTICS ... 1910
DROP SUBSCRIPTION ..ottt 1911
DROP TABLE ... 1913
DROP TABLESPACE ..o 1914
DROP TEXT SEARCH CONFIGURATIONcooiviiiiiiiiiii e 1915
DROP TEXT SEARCH DICTIONARYouiiiiiiiiiiiiiie e 1916
DROP TEXT SEARCH PARSER ..ot 1917
DROP TEXT SEARCH TEMPLATE ... 1918
DROP TRANSFORM ..ottt 1919
DROP TRIGGERouiiiiiiiiiiiii e 1921
DROP TYPE ... 1922
DROP USERottt 1923
DROP USER MAPPING ..ot 1924
DROP VIEW .o e 1925
END e 1926
EXECUTE .o 1927
EXPLAIN Lo 1928
FET CH 1934
GRAIN T 1938
IMPORT FOREIGN SCHEMA ... 1944
INSERT .o 1946
LISTEN o 1954
LOAD o 1956
L O CK i 1957
MOVE .o 1960
NOTIRY e 1962
PREPARE ... 1965
PREPARE TRANSACTIONcciiiiiiiiiiiiii e 1968
REASSIGN OWNEDoiiiiiiiiiii e 1970
REFRESH MATERIALIZED VIEW ..o 1971
REINDEX ... 1973
RELEASE SAVEPOINT ..ot 1978
RE S E T e 1980
REVOKE ..o 1981
ROLLBACK o 1986
ROLLBACK PREPAREDoiiiiiiiiiiiin e 1987
ROLLBACK TO SAVEPOINT ..ot 1988
SAVEPOINT oo 1990
SECURITY LABEL ..ooii e 1992
SE L E T e 1995
SELECT INTO ot 2017
SE T 2019
SET CONSTRAINTS ..o 2022
SET ROLE ..o 2024

XV

PostgreSQL 14.0 Documentation

SET SESSION AUTHORIZATION ..ovuiiiiiiiiieeeei et e e 2026
SET TRANSACTION ..ttt ettt e et e e e e 2028
SHOWY e et aaan 2031
START TRANSACTION ..ouiiiiiiiiieeeii et e et e e e s 2033
TRUNGCATE ..ottt e s e et e e e et e e e eaa s 2034
UNLISTEN Lottt e et e e e et e e e et e e e et eas 2037
UP D A T E ittt e et et e et a e r e aee 2039
VACUUM L.t e e et e e et eeeera s 2044
VALUES ...t 2049
I1. PostgreSQL Client APPlCAIONSuuiiiiciiie et e e e e e e e e 2052
(o1 (o | o PP 2053
(o= 1= | o PP 2056
CTEBLEUSEY ... evuete ettt ettt et et et et e et e e e et e et e et e et e e ea et e et e et e e n e e e e e aeen e 2060
AroPaD oo 2065
(01 0] 11 2068
(< o¢ o o PRSPPI 2071
o101 =0 G 2074
PO _DBSEDACKUD ... 2080
01007 o 2089
oo w0 0 o P 2110
oo 0 L8 T 1o T PN 2113
PO AUMPAIL ..o 2127
Lo TS (= o |V S 2134
Lo T = o= AV L= P 2136
o To T (= w17 oo T NP 2140
10 (== (0] (PP P PSPPI 2144
PO VENTYDACKUD ..veiie e 2154
01 o | P 2157
(=070 1= (o | o P 2202
A= e U110 o o PPN 2206
[11. PostgreSQL Server APPlICaLiONScvuuieiiie e e e e e e e e e 2212
TNIEAD e e 2213
PY_arChiVECIEANUDuiiii e 2218
[oTo e 4= S 0 1S 2220
[oTo T w0011 0] [=1 - P 2222
oo N o | 2223
[T T =5 =11 | 2229
oo T (=111 o PN 2233
Lo T (=S S/ 2237
o Lo === A (140 P 2238
o100 oo =" [T 2242
o102z Lo L1 4o o 2251
01075 0 === PP PPN 2254
1051 = S 2262
RV 1 01 =0T PP 2263
51. Overview of POStOreSQL INtErMalScuvuiiiiiiiii e 2270
51.1. The Path Of @ QUETNYciiiiiiiii e 2270
51.2. How Connections Are Establishedcoooviiiiiiiiiiiinii e 2271
Y G T I 0 Tol s S = [T 2271
51.4. The PostgreSQL RUIE SYStEMuuiiiiiiiiiiiiiie e 2272
51.5. Planner/OptimMizZErcouniiiii e 2272
Y I = o U (o PP 2274
YISV (= 0 (I OF - [0 o PN 2275
YA I O Y= a1 1 PP 2275

XVi

PostgreSQL 14.0 Documentation

52.2. PO_ 00N EAL & L.ttt 2277
Y2 T o Lo - 1o £ PP 2278
Y2 S o Lo = 10 0] o PP 2279
Ly T o To JE= 101 0] S o] o PP 2280
52.6. PO At trdef oo 2280
B2.7. PG _ At tri BUL @ (oo 2281
52.8. PO_AUL NI 0 oo 2283
52.9. pg_aut h_MBNDEIS oo 2284
2.0, PO LA ittt 2285
52,11 PO _Cl @SS ittt 2286
52.12. PG _COl L At i ON covuiiii e 2288
LSy K T o To T o2 oY 1 13 A - Y I o | 2289
oy S o To T oZ oY 0 AVZ=1 G =Y I] o 2291
52.15. Pg_dat @DaS@ ..civuiiiiii 2291
52.16. pg_db rol @ SettinNg ccoveiiiiiiii i 2293
52.17. pg_defaul t _acl ..o 2293
LSy S T o To o =Y 1= o Vo [REU P PI 2293
LSy L I o To o (=YY of g T o} A o o [P 2296
L2 I o To T =T 0 15 1 o PRSP 2296
Sy W o T T =1V =1 0 | GO O T Lo = P 2297
52.22. PY_EXE ENST ON ciiuiiiiiieiii e e e e 2297
52.23. pg_forei gn_dat @ W apPer ...cocceuieiiiiieiiii e 2298
52.24. PG _fOr €1 N _SEBI VI it 2298
52.25. pg foreign _tabl @ .o 2299
Sy T o T T T o [G PN 2299
52.27. PO i NNEI T TS it 2301
Sy S T o 1o T o VIR S 1 YA TS 2301
s I o 1o T B Y 1o [V = Vo = TP 2302
52.30. pg_l argeobj Ct ..o 2303
52.31. pg_largeobject _netadatacccoeeeiiiiiiiiiiii e 2303
52,32, PO _NAIMEB S PACE ottt 2304
52.33. PO _OPCl @SS wuiiiiiiiiiii i 2304
52.34. PO _OPI AL OF et 2305
52.35. PG _OPF @M [Y oo 2306
52.36. pg_partitioned tabl eccoooiiiiiiii 2306
52.37. PO POl i CY et 2307
2. 38, PO Pl OC ittt ittt 2308
52.39. PG _PUDBL i CAti ON oo 2310
52.40. pg_publicati on_rel . 2311
Ly I o o T - 1 [0 1= PP PP 2311
52.42. pg_replicati On_Ori giN i e 2312
YA T o To T G- XsY N A = PN 2312
52.44. pg_secl abel ..o 2313
Y S oo I =To [UT=] o [ol = PPN 2313
52.46. pg_ShAEPENd ...coviiii i 2314
52.47. pg_ShAeSCri PtiON .oiiiiiiii e 2315
52.48. pg_shsecl abel ... 2316
52.49. PO ST AT ST C civviiiiiiiii e 2316
52.50. PG St At i STi C_ XL i 2318
5251. pg_statistic_ext_dataccoooeiiiiiiiiiiiiiii 2318
52.52. PG _SUDSCI I PLI ON covniiiii e e 2319
52.53. pg_SUDSCriptiOn_rel .o 2320
52.54. PGt abl ESPACE ..uiiiiiiiii i 2320
52,55, PG L ranST OF M. 2321

PostgreSQL 14.0 Documentation

Y T o To TR O I Lo 1= PN 2321
B52.57. PO 1S _CONT I G cirriiiii i 2323
52.58. PG tS _CONFi g IMBP «oiiiiii i 2323
52.59. PO 1S i Cl orniiiiiiii i 2324
52,60, PO L S PaI SO ittt 2324
52.61L. PO tS LEMPI Al € oivriii i 2325
2 2 o o T A0V o 1 PP PPPRP 2325
52.63. PO _USEI _ITAPPI NQ corniiiiiieiiii eanaas 2329
52.64. SYSIEM VIBWS ...ttt e e e e e e 2329
52.65. pg_avail abl @ _ext eNSi ONS ...ccccoiiiiiiiiiiii 2331
52.66. pg_avai | abl e_ext ensi On_Versi ONScccoeeviiiiiiiieiineciiiieeieeeann, 2331
52.67. pg_backend mMEMDry CONt eXtS ..coociiiiiiiiiiiiiie e 2332
Lyt S I o To T o2 o 1 | o [P PN 2332
Y21 A o o T o1 1 g o] g T PPN 2333
A (O o To R B =T =X = O A 2 1 2334
Y2 o o o T o | g0 1 U1 o R PSPPI 2334
52.72. pg_hba fil e rul @S . 2335
A (ST o To T T 4 Lo 120 €= PN 2336
B2.74. PO | OCKS it 2336
A (ST o To T .- AV = 1P 2339
YA (T o To T o o] B o =P 2339
52.77. pg_prepared_Stat EMBNES ...coiiiiii i 2340
52.78. pg_prepar €d_XaCL S ..ioiiiiiiiiiiii e 2341
52.79. pg_publication tabl €Sccoooiiiiiiiii 2341
52.80.pg_replication origin_statuscccooviiiiiiiiiiiiiii e, 2341
52.8L.pg replicati on_SIOtS .o 2342
B52.82. PO T Ol BS ittt 2343
YR I o To T G V1 =T PN 2344
52.84. pg_SECl AbBeI S cooniii i 2345
52.85. PO _SEUUEBNCES .ouiitiiiiiieie ettt 2345
YR T o T T =) A A 4 [P 2346
52.87. PO _SNAUOW ...ouiiiiici 2348
52.88. pg_shmem al | 0Cat i ONScocoviiiiiiiii e 2349
52,80, PO St AL S ittt 2349
52.90. PO _St Al S BXt 1ottt 2351
5291, PO_St Al S _BXE X S ittt 2352
52.92. PO _tAbl S oeriiii i 2354
52.93. pg_timezone _abbrevs ... 2354
52.94. Pg_ti MBZONE _NAIMES ..iituiiiiieiii et e et e e e e e e e ean s 2355
2 ST o o T U =1 =] PP 2355
Sy T o T TRV IS =1 a1 Y o1 o L o 1T 2356
e A o To T VA I =1 SN 2356
53. Frontend/Backend ProtOCO!iiiiiiiiieiiiiii e 2358
53,1, OVEIVIBIW ..ttt ettt e e e e e e e et e e e e et e e e e et e e e e aaa s 2358
53.2. MESSAGE FIOW ...vviiiiiiii e e e 2360
53.3. SASL AULNENLICALIONeiiiiiieeiieie e 2373
53.4. Streaming Replication ProtoColccccuiviiiiiiiiiiciie e, 2375
53.5. Logical Streaming Replication Protocolcccoeeeiiiiiiiineie e, 2382
53.6. MESSAgE Dala TYPES ..vuiviiiieiiiii ittt et 2383
53.7. MESSAgE FOMMELS . .viviitiiiitei et ees 2384
53.8. Error and Notice Message FieldSooiviiiiiiiiiii e 2401
53.9. Logical Replication Message FOrMELSccuuveviueiiiiieiiiieciieeeineeeieeeaneeeae 2403
53.10. Summary of Changes since Protocol 2.0cccoeeeiiiiiiiiiiiinc e, 2410
54. PostgreSQL Coding CONVENLIONSuuiiiuieiiieiiieeei e e e e e e e e e e e eeaneeee 2412

PostgreSQL 14.0 Documentation

55.

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

S o 0=] o 2412
54.2. Reporting Errors Within the SErverooveiiiiiii e, 2413
54.3. Error Message StYl€ GUIAEouiiiiiiiiii e 2416
54.4. Miscellaneous Coding CONVENLIONSccvvuieiiiieiiieeiii e e e e 2420
Native Language SUPPOITuu it e e e e e e e e e e e e e e et e et e e et e s e eeaaeeeen 2423
55.1. FOr the TranSlaloruuieiiiiiiieiieie e e e eeeees 2423
55.2. FOr the PrOgramimeriiiii e e e e e e e e aaas 2426
Writing a Procedural Language Handlerccoooviiiiiiiiiin e 2429
Writing a Foreign Data WIaDPEScvvueiiiieiii e e e e e e e e e e et e e et e e e eaaeees 2431
57.1. Foreign Data Wrapper FUNCHIONScovuiiiiieiiie e e 2431
57.2. Foreign Data Wrapper Callback ROULINESooovviiiiiiiiii e 2431
57.3. Foreign Data Wrapper Helper FUNCLIONScccvviiiiiiiiiccie e, 2448
57.4. Foreign Data Wrapper Query Planningcocoiieiiiieiiii e, 2449
57.5. Row Locking in Foreign Data WIappeEr'Sevviieiieeiiiieeie e e e e e e 2452
Writing a Table Sampling Methodcc.oooviiiiii e, 2454
58.1. Sampling Method Support FUNCLIONScocviiiiiiiiiecc e, 2455
Writing a Custom SCan ProVideroiiiiiiiii e 2458
59.1. Creating Custom Scan PathScciiiiiiiiii e 2458
59.2. Creating Custom SCan Planscooiviiiii i 2459
59.3. EXECULING CUSLOM SCANSuvvvieiiiieiiieeeiie e e e e e e e e e e e e e e e ean e eees 2460
GeNEtiC QUENY OPLIMIZEN .uuiiii i e e e e e eees 2463
60.1. Query Handling as a Complex Optimization Problemcooieiiieiins 2463
60.2. GENELIC AlQOTItNMS ... 2463
60.3. Genetic Query Optimization (GEQO) in POStgreSQLccevvvevvveiiiieeiieennnne. 2464
60.4. Further REAINGcccvuiiiiiiii e 2466
Table Access Method Interface Definitioncooviiiiiiiiii e 2467
Index Access Method Interface DeEfiNitionc.uieiiiiiiiiiiiiii e 2468
62.1. Basic APl Sructure for INAEXESccuuuiiiiiiiieei e 2468
62.2. Index Access Method FUNCLIONSoovvveiiiiiiiiiccin e 2471
62.3. INAEX SCANMNING ...evvneeiiieiie e et e e e e e e e e e e e e e e e et e e et e e eanaeeees 2477
62.4. Index Locking CoNSIAErationSoveiuiieiiieiiiieeie e ee e e e e e 2478
62.5. Index Uniqueness ChECKScocuiiiiiiiiie e 2480
62.6. Index Cost EStimation FUNCLIONSuviiiiiiieiiiiieeeciis e 2481
GENENIC WAL RECOIUSvuiieiiii et e e e e e et e e e eees 2484
B-TrEE INUEXES ..vn e et e e e et e s 2486
(57 0 g1 oo (8o [o S 2486
64.2. Behavior of B-Tree Operator ClasseSvvuuiiiiiieiiie e e e e e e 2486
64.3. B-Tree SUpPOrt FUNCHIONScuuiiiiicie e e e e e 2487
64.4. IMPIEMENLBLIONuuiii e e e e e e e e e e e e e eaans 2490
LTI I 1 070 (== PP 2494
L1300 g1 oo (8o o o S 2494
65.2. BUIIt-iN Operator ClaSSeSu.iiuueiiii i ee e e e e e e e e e ean e eeen 2494
L T N (=01] o 1 1 SRR 2497
65.4. IMPIEMENTBLIONvuiiii e e e e e e e e e e e eaans 2511
B5.5. EXAMPIES ...vvviiiei ettt 2511
SP-GIST INAEXES ...evvvviiiie i e e ettt ettt et e e e e et e e e e e e e e et e e e e e e e eeaennnnas 2513
L1200 g1 oo (8o [o S 2513
66.2. BUIIt-iN Operator ClasSeSu.evvueiiiieiiii e e e e e e e e e e e een 2513
ST R I N (=011 o 1 1 SRR 2515
66.4. IMPIEMENLALIONuuiiii e e e e e e e e e e e eaens 2524
B6.5. EXAMPIES ...vvviiiie ettt 2526
GIN TNOEXES ..t e ettt ettt s et e e e e e e e e e s e e e e e e e es et aaaeeeeeennes 2527
L8 1 1 oo (8o o o S 2527
67.2. BUIIt-iN OPerator ClaSSeSu.iiuueiiiieiiii e ee e e e e e e e e e e e e eanaeeeen 2527

XiX

PostgreSQL 14.0 Documentation

67.3. EXENSIDIITY ooeveeeiee e 2528

67.4. IMPIEMENLBLION .. .euuiii e e e e e e e e e e e e e eaans 2531

67.5. GIN TipS aNd TTICKS ..uuuiiiiiciii e e e e e e e eaeas 2532

A I T 4011 = o PP 2533

B7.7. EXBMPIES ..ttt 2533

B8. BRIN INOEXES ...ttt ettt e et e e et e e e et e e e enanns 2534
(61S 00 g1 o (8o (o o S 2534
68.2. BUIIt-iN Operator ClasSeSu.civueiiiieiiii e e e e et e e e eaaaeeeen 2535

68.3. EXLENSIDIITY oevvnieieei e 2543

B9. HESN INUEXES ...t e et e e e e et e e e eateneeeees 2548
1S I @Y= a1 T PP 2548

69.2. IMPIEMENLALION .. .evuiii e e e e e e e e et e e e eaens 2549

70. Database PhySICal SIOraQgEcvvuiiii e e e e e e e e e e e 2550
70.1. Datahase FIle LayOULoceuuiiiiiciii e e e e e e e e e aes 2550

40 2 1@ 7 1 LSRR 2552

T70.3. Free SPaCE M ...uiviiiiei e 2555

T0.4. VISIDIIITY M@ .. 2555

70.5. The INitidiZzation FOTKoviiiiiiiiis e 2556

70.6. Datahase Page LayOuLccouuieiinieiiii e e e e e e e e e e 2556

71. System Catalog Declarations and Initial CONteNtSoeevvvieiiiiieiiineiiiiece e, 2560
71.1. System Catalog Declaration RUIESeeviiiiiiiiiiec e, 2560

71.2. System Catalog INitial Datal........ccovvieiiiiieiiieeiiiieeie e 2561

71.3. BKI Fil@ FOMMEL ...covvieiiiiie e 2566

714 BKI COMIMEANGSceiviiieeiiiee ettt e e a e e et e e e et e e e e aan s 2567
71.5. Structure of the Bootstrap BKI Filec.coeviiiiiiiiiii e, 2568

71.6. BKI EXAMPIE c.eiiiiiei it 2568

72. How the Planner USES SEatiStCS ..ovvvuniiiiiii et e ettt e s 2569
72.1. Row EStimation EXamMPIESoeiiniiiiii i e e e e e 2569

72.2. Multivariate StatisticsS EXampPleScoovviiiiiiiii e 2575

72.3. Planner Statistics and SECUNMLYovvvniiiii e 2579

73. Backup Manifest FOMMELccovuiiiiiicii e e e e e aanas 2580
73.1. Backup Manifest Top-level ObJECEcocvvieiiiiiiiii e, 2580

73.2. Backup Manifest File OBJECtiiviiiiiee e, 2580

73.3. Backup Manifest WAL Range ObJECtcovviiiiiiieiiiieciie e 2581

RV LAY o] =5 o 1= 2582
A. POSIOreSOQL ETOr COUES ...uuuiiiicii et e e e e e e e e e e eaaas 2589
ST BT (T T g LTS T o] oo o 2598
B.1. Date/Time Input INtErpretationoovvviiiiiieiie e e e 2598

B.2. Handling of Invalid or Ambiguous TimesStampsc.ccceveviiieiiiiieiiiiecie e, 2599

B.3. Date/Time K&Y WOIASiviiiiiii e e e e e e e e 2600

B.4. Date/Time Configuration FIlEScocoui i 2601

B.5. POSIX Time Zone SPeCifiCationsuieirieiiii i e e e e e e 2602

B.6. HIiStory Of UNItSiiiiiiiiiii e e e e 2604

B.7. JUAN DAES ...vuiiieiiiii et 2605

C. SOL KEY WOIGSceiieiiieeii ettt et e e e e e e e e e e et e e et e e et e e eaneaeanees 2607
D. SQL CONfOIMMEANCEevuiiieii e e e e e e e e et e e e e e e e e enaeees 2632
D.1. SUPPOIEd FEAIUIES ... ccvueiii e e e e e e e e e aens 2633

D.2. UNSUPPOIEd FEAIUIESuiiiiiiieii e e e e e e e e e e e e e e e e e anes 2645

D.3. XML Limits and Conformance to SQL/XMLccoevviiiiiiiiiiiiciie e, 2653

I e 1=z S N o] (=< P 2657
E.L REEESE 14 ... 2657

E.2. Prior REIEASESuiiiiii i 2681

F. Additional SUpplied MOAUIESuiiiiiii e 2682
= | 01T o= P 2683

XX

PostgreSQL 14.0 Documentation

F.2. @MCNECK ..t 2684
F.3. @UEN_AEIY ..o 2689
0| (o T = o) =1 o PN 2689
FLB. BIOOM Lo e 2692
ST o1 (==Y o 1 o 2696
L A o 1 (==Y o £ P 2697
RS T o) (=4 APPSR 2698
FiO. CUD Lo 2700
[0 0 | o] o PRSP 2705
Nt I o o T | PP 2737
L 2o [A6,/ P 2738
F.13. €arthdiSIaNCE ...oevvieieeii e 2739
L 1T = o P 2741
F.A5. fUZZYSIIMAECKH ..oeeii e e 2744
Nt T 01 o = PP 2747
T 17 o o N 2755
S T 1 - - Y 2756
0t L T 1= o PP 2760
2 o PP 2764
L T == PP 2765
F.22. 0ld SNAPSNOL . .ceuiiii e 2773
(A T 070 (= 1 41 o)< o P 2773
F.24. passWOrdCNECKccouuiiiii e e 2783
F.25. pg BUFfEICACE .. cov e 2784
FL26. POCTYPO ittt 2786
L A oo [=== 0 0= 1 7= 2797
2 A oo [o (= V= 1 [PP P TP PREN 2799
2 oo | 1011 o o PN 2800
F.30. PO_Stal_ SalBMBNES .. e 2801
[B oo £ = 0o T 2809
[oo =01 (= Y PP PPPE 2813
e 3C T oo [1 (0 [0 2815
F.34. PO VISIDIHITY © oo 2821
F.35. POSIOrES FOW ..ovuiiiiicii e e 2822
TSI o PO UPRN 2831
G S oo o | 2834
L T o PP 2842
F.30. SSIINTO ittt 2844
F40. taDIEFUNC ... 2845
[I [OO 2856
[(== o =0 o] oo [P 2857
F.A3. TSN _SYSIBIM TOWS L.ttt e e e e e e e e e en 2858
[V s ISV (= 0 1 0= 2858
FLA5. UNBCCENT ...ttt ettt e e e e e e e e e e nnas 2859
TN 10 0o P 2861
L 41 11 PP 2863
G. Additional SUPPIIEd Programsccuuuieiuieiiiieeie e ee e e e e e e e e eens 2868
G.1. Client APPHICAIONSceei e e e e e eees 2868
G.2. Server APPlICALIONSciiiicii e 2876
[T (= g = I 0= o £ PP 2877
H. L CHENt INEEIFACES .. iveeeiie e 2877
H.2. AdMINIStration TOOISuuuiiiiiiiiieeiiie e 2877
H.3. Procedural LanQUAagESuuiieuniiiiieiiieee e et e e e e e e e e e e eaaes 2878
[I a1 T PPN 2878

XXi

PostgreSQL 14.0 Documentation

I. The Source Code REPOSITOIYccuuiiiieiiieieie e e e e e e e e e et e et e e e eeanaees 2879
[.1. Getting the SOUrCE VI Gtciiiiciiie e e 2879

BN B o o100 01 - 1o o PSP 2880
J L DOCBOOK ...ttt 2880

2. TOOl SELS ..ttt 2880

J.3. Building the DOCUMENLEEIONcovvniiiiiie e e e e e e e 2882

J.4. Documentation AULNOIINGcovuniiiiieii e e 2884

J5. SEYIE GUITE ..cevneiiii e et e e aee 2884

N 0 (o=@ I 1 S 2887
[o {0017/ 1 1 PP PT PPN 2888
TS oY UPPR PP 2895
TR0 oS 0o AP 2908
N.L When Color iSUSEAuiiiiiiiieiiii e e e eanes 2908

N.2. Configuring the COlOrScovuuiiiiie e 2908

O. Obsolete or RENAMEM FEAIUMNESccuviiiiiiiie ettt e e e e e e e eeeens 2909
O.1.recovery. conf filemergedintopostgresqgl.confc..coeveiinennnnn. 2909

0.2. Default Roles Renamed to Predefined ROIEScuvviviiiiiiiiiiiiiieccieecci 2909

0.3. pg_xI ogdunp renamed to pg_wal dunpcooovviiiiiiiiiiii e 2909
0.4.pg_reset x|l og renamedto pg_resetwalccooeoiviiiiiiiiiiiinieees 2909

0.5. pg_recei vexl og renamedtopg_recei vewalccceevviiiiiiiiniiinennnn, 2909

[T o] oo r="o] /N 2911
g0 1= USRS 2913

XXii

List of Figures

60.1. Structure of a Genetic AlGOMTM ..o e
B7.1. GIN INEEIMAIS ...ttt ettt e et e e et e eeaaa e
T0.1. P LAYOULeeeeiitee ittt ettt ettt

XXiii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESceietieiiiti e et e et e et e et e et e et et e e e e et e e e e enaaes 38
4.2. Operator Precedence (highest t0 TOWESE)uiiiiiiiiieiiii e 43
5.1. ACL Privilege ADDreVIGtioNSoiiiiiiieeiiii et e e 80
5.2. SUMMary of ACCESS PriVIIEOESu it 81
S D - = Y o= TP PP 150
8.2, INUMENIC TYPES ..ttt ettt ettt ettt e et r e e e et e e et et e e e e eaa s 152
8.3, IMONELAIY TYPES ..ottt ettt ettt e et e 157
8.4, CAIACLES TYPES ..ot eeiiti ettt ettt ettt ettt e et e e et e ettt e et e e e e e e enaa s 157
8.5. SPECial CharaCler TYPES ..c.vuu ittt ettt ettt e e et e ettt e e et e e e e e bt e e eenaaeeees 159
8.6. BINAIY Daa TYPESvueeieitieeeett ettt e et e ettt e ettt e e et et r e e et et e e et et e e eeat e e eent e eeen 160
8.7. byt ea Literal ESCAPEI OCLELSuiiiiiiieeieii ettt e e 161
8.8. byt ea OUutput ESCAPEd OCLELScceiiiiieeiii et 161
8.9. DAE/TIME TYPES .. eetueeeiiti ettt ettt ettt ettt ettt e et e et e e e e et e e e e b e e eeaans 162
8.10. DB INPUL ...eeeeeet ettt et e et e 163
811, THME INPUL ..ttt ettt ettt ettt e et et e et e e e et e e e et e nb e e ennaas 164
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt et e ettt e e e et e e e e ana e eenees 165
8.13. Special DaE/TIME INPULScevuiiiiiie ettt e e e e e e enanns 166
8.14. DAe/TIME OULPUL SEYIES ...t eeees 167
8.15. Date Order CONVENTIONSeeeetteeeitti e ettt ettt e ettt e et e e ee b e e e e et e e e eete e e eeetanaeeees 167
8.16. 1SO 8601 Interval Unit ADDIreviationSc.uuiiiiiiiiiieii e 170
8.L7. INEIVEl TNPUL ...ttt ettt e e et e e e 170
8.18. Interval Output Style EXaMPIEScoovuiiiiiiii e 171
8.19. BOOIEAN DaLA TYPE ... eeeetieeeeeti ettt ettt ettt e et e et e et e e e e e e e aene 172
8.20. GEOMELNIC TYPES .. eeeti ettt ettt ettt et e et e et e et et e e e e et e eeeaa s 175
8.21. NEIWOIK AQArESS TYPES ... eeetiieteet ettt ettt ettt e e et e et eeena s 177
8.22. Ci dr Type INPUE EXAMPIEScoeiiieiei et 178
8.23. JSON Primitive Types and Corresponding PostgreSQL TYPEScccvvvnieiiiiiiieiiiiiieeeeiiiieeees 188
8.24.] SONPAt h Variahlesiiiiii e 196
8.25.] SONPAL N ACCESSOIS ... eieeetiie ettt ettt ettt ettt e e et et e e et eeaaan s 196
8.26. ODJECE 1dENLITIEr TYPES ... eeeiei ettt 221
827, PSRUUO-TYPES ..ttt ettt 224
9.1. COMPATSON OPEIGIOIS ...eetueeeetie ettt ettt e ettt et e e e et e et e et et e et e e e e e et e e e enn e eeenans 227
9.2. COMPAISON PraEdiCaLEScuuuieiiii ettt et 228
9.3. COmMPAISON FUNCLIONS ...ttt et e eaans 231
9.4. MathematiCal OPEIALOSceeeeueeeeii ettt ettt ettt ettt et et e et e e et e e eeaans 231
9.5. MathematiCal FUNCHIONScuuuuiiiiii ettt ettt e e e e e enaans 233
9.6. RANAOM FUNCLIONSceiiiieieii ettt ettt e et e e e e e e eenanns 236
9.7. TrigONOMELNIC FUNCHIONS ... ittt sttt ettt e e ettt e e e et e e e ena e eeens 237
9.8. HyperboliC FUNCHIONSiiiiiie et 238
9.9. SQL String FUNCLiONS 8N OPEIEIOISuieiiiiieeeiii ettt e ettt e ettt e e et e eeent e e e e e eees 239
9.10. Other SING FUNCHIONSuiiiiiii e e e e 241
9.11. SQL Binary String FUNCtions and OPEraorsSuueiertiieieiiiaeeeiiae e et e e e e 249
9.12. Other Binary String FUNCLIONSc..uuiiiiitiee ittt e e e e e ena e eens 250
9.13. Text/Binary String CONVErsion FUNCLIONSccouuuiiiiiiieeiiii et e e e 252
9.14. Bit SINQG OPEIAIOIS «...vteieeii ettt ettt ettt e et e e et e e et et e e e eaaa s 253
9.15. Bit SINQG FUNCHIONS ...ttt et e et e et e e s 254
9.16. Regular EXpression MatCh OPEIELOrSccuuuu i eiiiiiieeieii ettt e et e e et e e e et e e eeea e eeens 258
9.17. Regular EXPression ATOIMISc.uuu ittt ettt e ettt e et e et e e e et e e e b 263
9.18. Regular EXpression QUANTITIENSuuuiiiiiiie e 264
9.19. Regular EXPression CONSITAINTScvevuueiiiii ettt e et e e 264
9.20. Regular Expression CharaCter-Entry ESCPESocvvuvuieiiiiiieiiiii et 266

XXiV

PostgreSQL 14.0 Documentation

9.21.
9.22.
9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.

Regular Expression Class-Shorthand ESCAPESveiviiiiiiiiiiii e e e e 267
Regular EXpression CoNStraint ESCAPESuvvuuiiinieiiieiiieee e ee e e e e e e e e e e e ean s 268
Regular EXpression Back REFEIENCESocivuiiiii e 268
ARE Embedded-Option LEErS ... couuiiii e e e e e e e e 269
FOrmatting FUNCHIONSovuiiii e e e e e e e e e e e e e eens 273
Template Patterns for Date/Time FOrmMattingcccueeiiiieiiiiieiie e e e e e e 274
Template Pattern Modifiers for Date/Time FOrmattingcocevvveviiiiiiiiieiiiiecineeeeeeeis 276
Template Patterns for NUMeric FOrmattingcc.oveviiiiiiiiiiiii e 279
Template Pattern Modifiers for Numeric FOrmattingcoooevveeiiiiiiiiieiiineeieeceieeeeeeenn, 280
oo = L T 1 o)== 280
Date/TIME OPEIBIOIS ...vueeteeeii et ettt et e e e e e e e e e e e e et e e et e e et e e e e e st e eateeeanaeeannas 282
DA€/ TiME FUNCHIONSvtiiee it e e et e e e e e e e e et e e eenanns 284
AT TIME ZONE VANTANES ..uuiiiiiieeeiiie ettt e s e e a et s e e et e e e et e e e eaan e 295
ENUM SUPPOIt FUNCLIONSciie e e e e e e e e e e e e e ea e e aanees 298
(€100 1= (ol @] 1= - 10 = 299
GEOMELTTC FUNCLIONS ...ttt e et e e ettt e e e et r e e e eetereeeeabn s e eeeatnnaeeees 303
Geometric Type Conversion FUNCLIONSccouuiiiiiieiiie e e e e e e e e e 304
oo (o[£ SN @ o= = (0] £ 307
I[P AdAress FUNCLIONScovviiieiiiis ettt s e et e e e et e e e e at e e e e e 308
MAC AdAreSS FUNCLIONSoeviieiiiiie ettt e e et e e et e e et eeeeae s 309
LS == (o A IO o= = 0] £ TP 310
SRS == T T (o PR 311
Text Search Debugging FUNCLIONScoouuiiiiieii e e e e e e e e e eaaes 315
J SON aNd | SOND OPEIAOIS . .civviiiii e e e e e e e e e e e e et e e et eeanaee 332
Additional | SOND OPEIAIOrSuuiiiiieiii e e e e e e e e eaaees 333
JSON Creation FUNCLIONSciiuiieeiiiiie et e et e e e et s e e e eat s e e e eat e e eeatn s e e aeaanaaaees 335
JSON Processing FUNCLIONSiiiiiiii e e e e e e e et e e e e e e e e aanaees 336
j sonpat h Operators and MEethOOSccoouiiiiiiii e 346
j sonpat h Filter EXpression EIEMENESoiiiiiiiiiii e e e 348
S = [0 1= g Tor Y W o 1T 351
F N = YO o= = (0] £ PRSPPI 356
F N 4 = YA U o 1 o 356
RANGE OB OIS . it iti ittt e et e 359
MUILITANGE OPEIAEOIS . .evueiii i eiii et ettt e e e e et e e et e e e e e e e et e e et e e et e e an e eaaneeaaneeeens 361
[T (= U o o) 363
MUIITANGE FUNCHIONSuiiiii et e e e e e e e e e e et e e e e e aaeeeens 364
General-Purpose Aggregate FUNCLIONSo.uiiiiiiii e e e e e e e eaaes 366
Aggregate FUNCIONS fOr SEAtiStICSvvvuiiiiieiii e e 369
Ordered-Set Aggregate FUNCLIONScovuiiii e e e e e e e e e e e e e e aaneees 370
Hypothetical-Set Aggregate FUNCLIONScouuiiiiiiiciie e e e 371
GroUPING OPEIAtiONS ... cevuieiiieeii e e e e et e e e e e e e e e et e e et e et e e et ee et e e st e eeanaeaannaees 372
General-Purpose Window FUNCLIONSoovuiiiiiiciii e e e e e e e e e eaae e 373
Series Generating FUNCHIONSccuuiiiiiei e e e e e e e e e e et e e ea e eens 380
Subscript Generating FUNCLIONSccuuiiiiiii e e e e e e e e e e eaa s 382
Session INFOrmMation FUNCHIONSuiiiiiii ittt e e 384
Access Privilege Inquiry FUNCLIONSiiiiiiiii e e e 387
= (o I =T 01 @] 1= - (o =P 388
ACT T T E@MIFUNCLIONS ...t e et e ettt e e et e e e erb s e e e eatnneeeees 389
Schema Visibility Inquiry FUNCLIONScuuiiiiiiiii e e 389
System Catalog INformation FUNCHIONSccuuiiiieiii e e e e 390
INAEX COIUMN PrOPEMIES . .ovviiii e e e e e e e e e et e e e eaes 395
F g0 Lo = (0] 0= o 1= 396
Index Access Method Properti€Scuuuiiiii e e 396
Object Information and Addressing FUNCLIONSuiiiiieiiiiiiii e e 396

XXV

PostgreSQL 14.0 Documentation

9.75. Comment INformation FUNCHIONSc.uuuiiiiiiieeieii e e e 397
9.76. Transaction 1D and Snapshot Information FUNCLIONSooeviiieiiiiiiiie e 398
9.77. SNAPSNOt COMPONENESuueitieeii ettt e et e e e e et e e et e e et e e et e e et e e et e eet e e et estn e ranneeannaees 398
9.78. Deprecated Transaction ID and Snapshot Information FUNCLIONSccoeevviviiiieiieeennn, 399
9.79. Committed Transaction Information FUNCLIONSccouuiiiiiiiiiiiee e 400
9.80. CONLrol Data FUNCHIONSeiiiiiieeeeei et e et e et e e et e e e et e e e ee e e e eate s e e eeatnnaeeenes 400
9.81. pg_control _checkpoi nt Output CoOlUMNSccuuiiiiiiiiiii e e e 400
9.82. pg_control _syst emOutput COIUMNSccouuiiiiiieiii e 401
9.83. pg_control _init OUtPUt COIUMNSccvvniiiiieeiie e e e e e e e e e e eaes 401
9.84. pg_control _recovery OUutput ColUMNSccuuiiiiiiiiiii e e e 401
9.85. Configuration Settings FUNCLIONSoiiiiiiii e e e e e 402
9.86. Server SIgnaling FUNCHIONScuuiiiiciii e e e e e e aana e 402
9.87. Backup Control FUNCLIONSuiiiiiiiiicie e e e e e e e e e e e e e e e eaaas 404
9.88. Recovery INformation FUNCLIONScouueiiii e e e e e e e e e e e e e e e e aen 407
9.89. Recovery Control FUNCHIONSiiueieiiii e e ee e e e e e e e e e e e e e e e eaneees 407
9.90. Snapshot Synchronization FUNCHIONSc.uuiiiiiiiiie e e e e e e e 408
9.91. Replication Management FUNCHIONScouuiiiieiiii e e e e e e e e e eens 409
9.92. Database ObJeCt SIZ€ FUNCLIONSuiii i e e e e e e e e e ees 412
9.93. Database Object LOoCation FUNCHIONScovuiiiiiiiiiii e e e e e e e e 413
9.94. Collation Management FUNCLIONScouuuiiiiiii e e e e e e e e e e e aaes 413
9.95. Partitioning INformation FUNCLIONSoiiiiiiiiiciie e e e 414
9.96. Index MaintenanCe FUNCLIONSoiiiiiiiieiii e e e 415
9.97. GeneriC File ACCESS FUNCLIONSccuuiiiiiiiiii ettt e e e e eaees 415
9.98. AdVISOry LOCK FUNCLIONSuiiiiiiiiieii i ee e e e e e e e e e e e e e e e et e e et e e eaaeees 417
9.99. BUIlt-IN Trigger FUNCHIONSciviiiii e e e e e e e e e et e e e e e aanaees 419
9.100. Table Rewrite Information FUNCHIONSuuriiiiiiieiee e 422
12.1. Default Parser's TOKEN TYPES ..vuuiiiieiii it et e e e e e e e e e e et e e e e e e et e e et e e e eanaas 474
13.1. Transaction 1S0l@tion LEVEISuuiiiiiii e 499
13.2. Conflicting LOCK MOOESuuiiiiiiiiieci e e e e e e e e e e e 506
13.3. Conflicting ROW-LEVE LOCKSciuieiiicie e e e e e e e 508
19.1. SYSteM V IPC ParameterSvuiiiiiie et e e e e 588
19.2. SSL SarVEr FilE USAgE ...oui i e e e e e e 603
20.1. synchronous COMIMIt MOOESuiiiiniiiii e e e e e e e e e e e e et e e e e aneees 631
20.2. MESSAE SEVENTY LOVEIS ..uuiiiii i e 658
P0G TS 4 1o A @ (o] N =Y 690
221, PredefiNed ROIESiiiiii ettt et e ettt e e e e a e e e aea 718
24.1. PoStgreSQL Charaller SBLSciuuuiiiiiiiii et e e e e e e e e e e et e et e e et e e aaeeeeas 735
24.2. Built-in Client/Server Character Set CONVEISIONSuuiviiiinieeiiiiieeeeiin e eeiin e eeiin e eeaines 740
24.3. All Built-in CharaCter Set CONVEISIONScvvuuuneriiiiieeeeiieeeeeiineeeetieeeeeiiaeeeeraaeeernns 741
27.1. High Availability, Load Balancing, and Replication Feature MatriXcccooevuveeinneennnnnns 776
28.1. DYNAMIC SEAISHICS VIBWS . ouuiiiiiiecii e e e e e e e e e e e e e et e e et e eeaa e eees 799
28.2. Collected SEAISHCS VIBWS . ..ceeviieeieii e e ettt e et e et e et e e e e et e e e e et aeeeees 800
28.3.pg_Stat _aCti Vi ty VIBW oo e e 802
P2 L T o I/ o= PP 803
28.5. Wait Events Of TYPE ACT 1 Vi LY cuuiiiiiiiii e e e s 804
28.6. Wait Events of Type BUf f €5 Pi N ..o 805
28.7. Wait Events of TYPe Cl i €Nt ..oovuiiii i e e 805
28.8. Wait Events of TYPE EXT @NST ON ..ivviiiiiicii e 805
28.9. Walt EventS Of TYPE I O .ueiiiniiii i e e e e e e e e e aen 806
28.10. Wait Events Of TYPE I PC ..oouiiiiiii ittt e e e aeeens 809
28.11. Wait EVents of TYPE LOCK ...civuiiii e 811
28.12. Wait Events of TYPe LVWLOCK ...vuiiiiiiii it e e e e e e e e 811
28.13. Wait Events of TYPE Ti IMBOUL ..uuiiieiiiiii e e e e e e e e e e e s e eaaees 814
28.14. pg_stat _repliCati ON VIBW ..o e e 815

PostgreSQL 14.0 Documentation

28.15.pg_stat _replicati on_SI OtS VIEBW ..ot 817
28.16. pg_stat _Wal _FeCEI VEI VIBW .ouiiiiiciii i eaa s 818
28.17. pg_stat _SUDSCIipti ON VIBW ..o e 819
28.18. PO ST AL SSI VIO coiiiii i 820
28.19. PG _St At _gSSAPI VIBW couiiiiii i e e 820
28.20. pg_Stat _arChi VEI VIBW oouuiiiiiiiii e e e e e e e e e 821
28.21. pg_Stat _BOWE it &5 VIBW cooueiiii e e e 821
28.22. PG St At WAl VIBW coeeiiiiiii e 822
28.23. pg_stat _dat abase VIieWcccouiiiiiii e 823
28.24. pg_stat _database _confliCts VIBW .oocciiiiiiiiii e 825
28.25. pg_stat _all _tabl @S VIEW oo 825
28.26. pg_stat _all i NAdEXES VIBW ...uiiiii e 826
28.27.pg_statio_all _tabl @S VIEBW ..o 827
28.28. pg_statio_all i NAEXES VIBW ..o e 828
28.29. pg_stati o_all _SeqUENCES VIBW ..ccouuiiiiiiiiii e e e 829
28.30. pg_stat _user _fUNCEi ONS VIBWiiiiiiiiiii e e e 829
28.3L. PG ST At S| FU VIBW i e 830
28.32. Additional StatistiCS FUNCHIONSuuuiiiiiiieiiiie et e e e e e e e e eeees 830
28.33. Per-Backend Statistics FUNCHIONSuuiiiiiiiice st e e 832
28.34. pg_stat_progress_anal YZe VIBWcccciiiiii i 833
28.35. ANALY ZE PhaSBS ..vuu i eiiiiiiiee ettt e e e e e e 834
28.36. pg_stat_progress_create_ i NAeX VIBW ...cc.oiiivii i 834
28.37. CREATE INDEX PhESES ...cetuiiiiiiiieeeiii ettt e et e et s e e et s e e e e s e e eaaan e e ennens 835
28.38. pg_stat _progress_VAaCUUMVIBW ...cc.uiiiii i e e ee e e e e e e e et e e e eaneees 837
28.39. VACUUM PhESESuuiiiiiiiieeteie ettt e et e et e e et s e e et e e e et e e e e et e e e eaen e 837
28.40. pg_stat _progress_ClUSt er VIBWcooiiiiiii i 838
28.41. CLUSTER and VACUUM FULL PhaSEScuuuiiiiiiiiieieiiii e e 839
28.42. pg_stat _progress_basebackup VIeWccooeiiiiiiiiiii e 839
28.43. BaSE DaCKUD PRASES ... cuuiiiii e iiiee et e e e e e e e e e e a e 840
28.44. pg_stat _progress_COPY VIBW oot e e e e e et eeaaeees 841
28.45. BUIlt-iN DTrace ProbEScviiiiiii et 842
28.46. Defined Types Used in Probe Parametersc..veviiiiiiiiiiii e e 848
34.1. SSL MOE DESCIIPLIONSiviieiie e e e e e e e e e e e e e e e e et e e et e e et e e et eeaneeaneees 965
34.2. Libpg/Client SSL FilE@ USAQE ... cvuuiiiiiiiiiie et e e e e e e e e e eanees 966
35.1. SQL-Oriented Large Object FUNCLIONScivuiiiiiiicii e 986
36.1. Mapping Between PostgreSQL Data Typesand C Variable TYypeSc.ccevvveviiveviineeinnennnn. 1004
36.2. Valid Input Formats for PGTYPESdat € from asccocceeveviiiiiiniiin e, 1023
36.3. Vaid Input Formats for PGTYPESdat € fnt_asCcccoooviiiiiii i, 1025
36.4. Valid Input Formats for rdef mtdat @ccoooviiiiiiiiii 1026
36.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoeeevvieiiiiciiiieciceeeennn, 1027
37.1.informati on_schena_catal og_name Columnsccoeeviiiiiiiieiiin e, 1111
37.2.adm ni strabl e _rol e _authorizations Columns...........cccooevviieiiiiiiiinecie e, 1111
37.3. applicabl e rol €5 ColUMNSoiiiiiiiii e e 1112
37.4. At L ri1 DUL €S COIUMNSuiiiiii e e e e e e 1112
37.5.charact er _Set S COlUMNSc.uiiiiiiiiiii e e e e e e e eeas 1115
37.6. check_constraint_routine_usage Columns...........cccoeviiiiiiiiiiiie e, 1115
37.7.check_constrai NtS COlUMNSuiiiiiiiiiii e e e e een 1116
37.8. COl 1 @t i ONS COIUMNSuiiiiiiii e e e e e e eeeaaa s 1116
37.9.col lation_character_set _applicability Columns..........cccooeviviiinininnennnn. 1117
37.10. col um_col umm_usage COlUMNSuiiiiieiii e e e e e e e 1117
37.11. col um_domai N_uSage COIUMNSuiiiiiiiiii e e e e e e 1117
37.12. col UMM_0Pt i ONS COlUMMNS .. .couuiiiicii e e e e e e e e e e eaes 1118
37.13. col um_pri vil €ges ColUMNSccouuiiiiiiiiii e e e 1119
37.14. col um_udt _USaQge COlUMNScoviiii e e e e e eeaae e 1119

PostgreSQL 14.0 Documentation

37.15. COl UMMS COIUMINS ...ttt ettt e e e e et e e et e e e et e e e eaan s 1120
37.16. constrai nt _col unm_usage ColUMNScevviiiiiiiiiiiii e 1123
37.17.constraint _tabl e _usage ColUmMNScccuieiiiiiiiiiiciie e 1124
37.18. data_type privileges ColumMNS........ccoooiiiiiiiiiiiiii e 1124
37.19. domai n_constrai Nts COlUMNScoiiiiiiiie e e e e 1125
37.20. domai N_udt _USAQe COIUMNSccvuiiii e e e e e e e eaa e ees 1125
2 Mo o) 1= T o E-J @] 1110171 o 3P 1126
37.22. el ement _t yPES COIUMNSovuiiiii e e e e e e e e e e e e eaes 1128
37.23. enabl €d_r 0l €S COlUMNSc.uiiiiiii e e e e e e e eaes 1130
37.24.forei gn_data wrapper_opti ons ColUmNScccuiviiiieiiiiieiiii e eeee e, 1130
37.25. foreign_data wappers COlUMNScoooiiiiiiiiiiiii e e 1131
37.26.foreign_server_opti ons ColUMNSociuiiiiiiiiiiiiieiie e e e 1131
37.27.forei gn_Servers COIUMNSiiiiiii i e e e 1132
37.28.foreign_tabl e options ColUMNSccocoviiiiiiiiii e 1132
37.29. forei gn_tabl @5 COlUMNScoouiiiiiiii e e 1133
37.30. key_col umm_uSage COlUMNSuiiii i e e e e e e e e e eaaaeees 1133
37.3L. par anmBt €S COIUMNSiuuiiii e e e e e e e e e et e e et eeaaeeaens 1134
37.32.referential _constraints ColUMNS..........ccoovviiiiiiiiiiii e 1136
37.33.role_col um_grants ColUMNSeiiiiiiiiii e e e e 1136
37.34.role_routine _grants COlUMNSccoeuuiiiiiiiiiii e e e e e e 1137
37.35.r0le_tabl e grants ColUMNSoeiiiiiiiiii i 1138
37.36.r0l e_udt _grants COlUMNSoiiiiiiiiii e e e e e 1138
37.37.r0l e_usage_grants ColUMNSccoeiiiiiiiiiieiiie e e e e e e e e 1139
37.38. routine_col umm_usage COolUMNSc.iiiiiiiiiiiieiie e e e e e 1139
37.39. routine_privileges ColUMNSoeiiiiiiiiii e e 1140
3740.routine_routine_usage COUMNSccociiiiiiiiiiiiii e e 1141
3741 routine_sequence_usage COlUMNScoceuuieiiiieiiiiieiie e e e e e 1141
3742. routine_tabl e _usage ColUMNScccouiiiiiiiiiii e e e e 1142
37.43. T OUL T NES COIUMNS ...oiiiiiieiii e e e et e e et e e e et eeeeaen s 1143
37.44. SChemBt @ COIUMNSouuuiiiiiii et e e e e e e et eeeaen s 1147
37.45. SEqUENCES COIUMNS ...ttt e e e e e e e e e e e e e eaaas 1148
37.46. sql _feat ures COIUMNSco.iiiii e e e e e e e eaas 1149
3747.sql _inmplementation_ info ColumMNS.........ccooiiiiiiiiiiiii e 1149
37.48. 5l _Parts COIUMNSiiiiiiiii e e e e e e e e e eaaas 1150
37.49. Sl _Si ZIi NG COIUMNSiiiiii e e e e e e e e eaans 1150
37.50.tabl e _constrai Nts ColUMNScccuuiiiiiiiiii e e e e 1151
3751 tabl e privileges ColUMNScccociiiiiiiiiiii e e 1151
37.52. t @bl €S COIUMNScoiiiiiiei e 1152
37.53. tranSTf Or B COIUMMNSiiiiiie e e et e e 1153
37.54.triggered update_col ums ColUMNSc.ooeiiiiiiiiiiii e 1153
IS T O e [1= =T @0 1¥ T 410 T 1154
37.56. udt _pri Vil eges COlUMNSccouiiiiiiie e e e e e aes 1156
37.57. usage_pPri Vil eges ColUMNSiiiiiiiiiie e e eae e 1156
37.58. user _defined _types COlUMNSc..ooiiiiiiiiiii e e e e 1157
37.59. user _mappi Ng_0Pti ONS COlUMNScoouiiiiiieiii e e 1159
37.60. user _mBpPi NQGS COIUMNSo e e e e e e e e e e eean e eaes 1159
37.61. vi ew_col umm_usage ColUMNSccuuiiiiiieiiii e e e e e e e eaae e 1160
37.62. view routine_usage COIUMNSc..oeiiiiiiiiii e e e e 1160
37.63. view tabl e_usage ColUmNScoouiiiiiiiiiii e e 1161
37.64. Vi €WS COIUMNS ..uuiiiii et e e e e e e e et e e e et e e e et e e e eaaa s 1161
38.1. POlYMOIPNIC TYPES .ivtiiiiii et e et e e e e e e e et e e e e e e et e e et e eennas 1170
38.2. Equivalent C Types for Built-in SQL TYPESccvuiiiiieiiieiieee e e e e e e e 1198
T T (= I = (=0 == 1235
K o b= I (= o= PR 1235

XXVii

PostgreSQL 14.0 Documentation

38.5. GIST Two-Dimensional “R-treg” Strat@gi€Suveiuuieiiiieiiiieeiie e e e e e e 1236
38.6. SP-GIST POINE SITAEIES ...t eeeeiiiieieiii ettt e e e e e e e e et e e e et eeeaa s 1236
I € NN = YA = (= o = PP 1236
38.8. BRIN MiNMaX SIralEOIES .. cvvuiiiieiiiieiiii et e e e e e e e et e e e e et e e e e e s e e e e e et e e ean e eanaes 1237
38.9. B-Tree SUPPOIt FUNCLIONSiiie e e e e e e e e e e e e eaneees 1237
38.10. Hash SUPPOrt FUNCLIONSuuiiiiici e e e e e e e e e e e eaens 1238
38.11. GiST SUPPOIT FUNCLIONSiviiiii e e e e e e e e e e e e eanns 1238
38.12. SP-GiST SUPPOIT FUNCHIONS ... cvviiiiiicii e e e e e e e e e e e e e e e e et e e aaeeaanas 1238
38.13. GIN SUPPOIt FUNCLIONSiiviiiiiieiie eeenaas 1239
38.14. BRIN SUPPOIt FUNCLIONSuuiiiiiieciiee i ee e e e e e e e e e e e e et e e et e e et s e e e e e aaneeeens 1239
40.1. Event Trigger Support by Command Tagcceuvieiiiiiiiieeii e e e e 1273
43.1. Available DIiagnoSstiCS ItEMSiiiiicii e e e e e e e e e e e ee 1331
43.2. Error DIiagnOStiCS [TEIMS . .uuuiii e e e e e e e e e et e e e e 1346
281. Policies Applied by Command TYPEuuviiinieiiiiciie e e 1755
282. pghench Automatic Variablesccouuiiiiiiii e 2098
283. PODENCH OPEIGLOISevvieei e e e e e e e e e e e e e st e e e et e e et e e eaneeeaes 2100
284, PODENCH FUNCLIONSiiiicii e e e e e e e e e e et e et e e ean e eaas 2102
YA IS Y/ (= 0 (N O v [0 o [2275
52.2. pg_aggregat € COlUMMScoouiiiiiiiii e e e e e e e e et e e e e eaens 2277
YA T o To T = .4 1 o] 0o 0 2278
YA o o JE- T o] o B o 1804 2279
52.5. Pg_anPr OC COlUMMSuuiiiiiii e e e e e e e e e e e e e e e et e e e e e e e eaanas 2280
52.6. pg_attrdef COlUMNSoiiiiii e 2281
52.7.pg_attribut @ COolUMNSciiiiiii e e e e 2281
52.8. pg_aut hi d COlUMNSuiiiiiiii e e e e e e aaaas 2283
52.9. pg_aut h_menber s ColUMNSc..oiiiiiiiiii e e 2284
LSy (O o To T o= =X A @] V1 1 PR 2285
LSy R o To o = £ =T 0 ¥ 41T 2286
52.12. pg_col 1 ati on COIUMNSciuiiiii i e e e e e e eaas 2288
52.13. pg_CONStrai Nt COIUMNSccuuiiiieii e e e e e e e e e eaes 2289
52.14. pg_CONVET Si ON COIUMNSiiuiiiiii i e e e e e e e e e e et e eean e eaes 2291
52.15. pg_dat abase COlUMNScuuiiiiiiiii e e e e e e eans 2292
52.16. pg_db role_setting ColUMNSooeiiiiiiiiiiiii e e 2293
52.17. pg_defaul t _acl CoOlUMNSc.iiiiiiiii e 2293
52.18. pg_depend COIUMNSccuuiiiii e e e e e et e et e e eaaas 2294
52.19. pg_descCri pti on COlUMNScouuiiiiiieii e e e e e e e e e e eaes 2296
oy O I o To =1 10 1 @] 070 1P 2296
52.21. pg_event _trigger COlUMNSoiiiiiiiiiiieiei e e e e e e e e ees 2297
52.22. pg_ext €nsi 0N COIUMNSciuuiiii e e e e e e e e e eaas 2297
52.23. pg_foreign_data wapper ColUMNSccooeiiiiiiiiieiiiieeie e 2298
52.24. pg_forei gn_server ColUMNSccieiiiiiiiiiieiie e e e e e e e e e 2299
52.25. pg_foreign_tabl @ ColUMNSoooiiiiiiii i e 2299
Sy T o T T o 123 G @0 1¥ T 410 TP 2299
52.27. PG i NNEri 1S COlUMNSuuiiiiiieii e e e e e e e e e eens 2301
52.28. pg i Nit _Pri Vs COUMNSciiiiiiieiii e e e e e e e e e e eaes 2302
52.29. pg_| anguage COlUMNSccouuiiiiieii e et e e e e e e e e e e aaeeaens 2302
52.30. pg_| ar geobj €Ct COlUMNSccouiiiiiii e e e e e e 2303
52.31. pg_l argeobj ect_netadat a ColumNSccoevviiiiiiiiiiiecie e 2303
52.32. pg_NAaMESPACE COIUMNSuuiiiiiii e e e e e e e e e e e e e eaas 2304
52.33. PG_0PCI @SS COIUMNSiiiiiiii e e e e e e e e e e e e eaans 2304
52.34. pg_oper at O COlUMMNScoiuuieiiiei e e e e e e e e e et e et e e aaneeeens 2305
52.35. pg_opfam [y COlUMNSociuiieiiiiei e e e e e aans 2306
52.36. pg_partitioned tabl € ColUMNScooiiiiiiiii e 2306
52.37. Pg_POI i CY COIUMNSuiiiiii e e e e e e eaaas 2307

PostgreSQL 14.0 Documentation

yC S T o To T o] e T @] 00 1P 2308
52.39. pg_publ i cati on COlUMNSccouiiiiiiie e e e e e e e e e 2310
52.40. pg_publication_rel ColumnSsccccooiiiiiiiiii e 2311
Ly o To T - Y o L= T @0 1N T 410 TP 2311
52.42.pg_replication_origin ColumNSccocouiiiiiiiiiiiiii e e 2312
52.43. PG reW i t € COIUMNS ...uciiiiiii e e e e et e e e e e e eaens 2312
52.44. pg_secl abel ColUMNSccouiiiiiiei e e eaaas 2313
52.45. pg_SEQUENCE COIUMMS .. .ouuiiiiiieii i ee e e e e e e e e e e e e e s e e et e e et e et e e aaneeeens 2314
52.46. pg_shdepend ColUMNScouuiiiiiiiiii e e e e aans 2314
52.47. pg_shdescri pti on ColUMNSoiiiiiiiiie e e e eae e 2316
52.48. pg_shsecl abel ColumNScc.oiiiiiiiiii e 2316
52.49. pg_Stati StiC COUMNSiiiiii i e eeaas 2317
52.50. pg_stati stiC_ext COlUMNScoiiiiiiiiii e e ea e 2318
5251. pg_statistic_ext_data ColumnSc..couiiiiiiiiiiiiiiiii e 2319
52.52. pg_subscripti on COUMNSccoiiiiii e e 2319
52.53. pg_subscription_rel ColUmMNSc.ccciiiiiiiiiiii e e 2320
52.54. pg_tabl eSpace COlUMNSccouiiiiiiii e e e e eaas 2320
52.55. pg_transf or MCOIUMNScouiii e eaas 2321
52.56. PG _tri gger COIUMNS ... oot e e e e e e et e e e e e eaens 2321
52.57. pg ts_Confi g COUMNSiiiiiii i e 2323
52.58. pg_ts_confi g _mBP COlUMNS ...ttt e e e e e eaa e 2323
52.59. PG tS_di Ct COIUMNS ...t e e e e e e aaas 2324
52.60. pg_tS_parSer COIUMNSccouuiiiii i e e e e e e e eaas 2324
52.61. pg ts tenpl at @ ColUMNScccouiiiiiiiiii e e e e e e e e e e aen 2325
52.62. PG T YPE COIUMNS ..ottt e e e e e e e e e e e e et e e et e e e e eanaas 2326
Y IR VA o Tt =T Fo] YA ©Co o = PP 2328
52.64. pg_user _mappi NG COIUMNSoiiiii e e 2329
5265, SYSIEIM VIBIWS ...ttt ettt e e e e e r e e e et e e e et e e e e et e e e e et 2330
52.66. pg_avai | abl e_ext ensi ons ColUMNSccoeviiiiiiiiiiiie e 2331
52.67. pg_avai |l abl e_extensi on_versi ons ColumNScccoeevuviiiiiieiiieeciiieeine e, 2331
52.68. pg_backend_nmenpry_cont ext s ColUmMNScooevuieiiiieiiiieiii e 2332
52.69. Pg_CONFi g COIUMNSuiiiiiiii e e e e e e e e eaaas 2333
52.70. PG _CUISOI'S COIUMNS ...uiiiiiii e e e e e e e e e e e e e e et e e et eeaaeeaens 2333
52.71. pg _fil e settings ColUMNScooiiiiiiiiiiiiii e e e e e e eae e 2334
LA ¢ o To T e | ge 10 o @0 1N T 410 TSP 2335
52.73. pg_hba file rul s ColumNScccoeiiiiiiiiii e 2335
52.74. Pg_i NAEXES COIUMNSiiiiiii e e e e e e e et e e e e eeaens 2336
52.75. PG |1 OCKS COlUMNS .. .cuuiiiiiiii e e e e e e e e e et e et e e e aanas 2336
52.76. pg_MBAL Vi WS COIUMMNS .. .ouuiiiiiieii e e e e e e e e e e e e e et e et e e aaneeeens 2339
52.77. Pg_POI i CIl €S COlUMNSouuiiiiieii e e e e e e e e e e e e aens 2339
52.78. pg_prepared_stat ement s ColUMNScoouiiiiiiiiiiiieiie e 2340
52.79. pg_prepared _Xact s COolUMNSccuiiiiiiiiiii e e e e e e 2341
52.80. pg_publication_tabl es ColumMNSccoiiiiiiiiiiiii e 2341
52.81l.pg_replication origin_status ColumNS.........cccooeeiiiiiiiiieiiiieeiin e, 2342
52.82.pg_replication_slots ColUMNScoeiiiiiiiiiieiie e 2342
52.83. PG T 0l €S COlUMNS .. .ouuiiiiiiii e e e e e e e e e et e e et e et e e e eaanas 2343
52.84. PG T Ul €S COIUMNS .. .ouuiiiiiiii e e e e e e e e e e et e et e e e e aanas 2344
52.85. pg_secl abel s COlUMNScouuiiiiiiii e 2345
52.86. Pg_SEqUENCES COIUMNSuuiiiiiii e e e e e e e e e e e e e aan e eeas 2345
52.87. Pg_SettiNGS COIUMNScuuiiiiieii e e e e e e e e e e e e eens 2346
52.88. pPg_Shadow COIUMNSccuuiiiii e e e e e eaaas 2348
52.89. pg_shmem al | ocati oNs COlUMNSoiiiiiiiiiii e e 2349
Ly O A o To =) A= L= T o] 1¥ T 210 TP 2350
52.91. pg_stats_ext COIUMNScouiiiii e e e e e e e eaas 2351

XXX

PostgreSQL 14.0 Documentation

52.92. pg_stats_ext _exprs COlUMNSc..oeiiiiiiiiii e e e 2352
52.93. pg_tabl €S COIUMNScouiiiii e e aaaas 2354
52.94. pg_ti mezone_abbrevs COolUMNScccoiiiiiiiiiii e e 2354
52.95. pg_ti mezone _Names COlUMMNScccouuiiiiieiie e e e e e e e e 2355
e ST o T T =] O] 00 1P 2355
52.97. pg_user _nmappi NGS COlUMNSiiiii e e e e e e e eaaeeees 2356
52.98. PG Vi EWS COIUMMS .. .cuuiiiiiii e e e e e e e e e e e e et e e et e e et e e et eeaaneeaanns 2356
65.1. BUilt-iN GIST OPErator ClaSSESuuiiiteiiieeiiiieeiie et e e et e e e e et e e s e e et e et e eaanaaetnaes 2494
66.1. BUilt-in SP-GIST Operator ClaSSsESuciuuiiiiieiiiiieii et e e e e s et e et e e e e aens 2513
67.1. BUIlt-iN GIN OpPErator ClaSSEScuuuiiiiieiiieeiiiie i e e e e e et e e e e e e e e e et e et e eanaeeaen 2527
68.1. BUilt-in BRIN Operator ClassESciuuiiiiieiii e eeeie e e e e e e e e e e e e e e et eeaneeeaes 2535
68.2. Function and Support Numbers for Minmax Operator Classescccevvveiveevinieiiineennnnns 2544
68.3. Function and Support Numbers for Inclusion Operator ClassesSccovevvveiiiieviiieeinnennn, 2545
68.4. Procedure and Support Numbers for Bloom Operator ClasseScvvvvvevvieeiinieiiiieeiieeennn. 2546
68.5. Procedure and Support Numbers for minmax-multi Operator Classesccoeevvvvevivnennnn.. 2546
70.1. CONENES Of PCODAT A L.ttt ittt e e e e et e e e et e e e ettt e e e ettt e e e eatn s eeeeatnaaaees 2550
T0.2. PAOE LAYOULuieeiiii et e e et e e e e e e e 2556
70.3. PageHeaderData LayOULcccuuiiiiniiiiii e e e e e e e e e e e et e e e e e e eanas 2557
70.4. HeapTupleHeaderData LayOULoceuuieiiieiii e e e e e e e s e e e e e e aanas 2558
AL POSIOreSQL ErrOr COUESuuiiiieiiieeie e ettt e e e e e e e e e e e et e et e e et e e eeanns 2589
2300 Vo g 11 I = 0 1= PSP 2600
B.2. Day Of the WEeK NAIMESciiiiiiiiii e e e e e e e e 2600
B.3. Date/Time Field MOGIfIErS ...ooouiieiiiii e e e e eees 2601
C.L. SOL KEY WOKASiiiiieiiieii et e e e e e e e e e et e e et e e et e e et e e et e e eanaas 2607
[- Yo [o o= U Qi U 1 o N 2683
F.2. Cube External REPrESENTAiONScvvvuieiieeii i ee e e e e e e e e e e e e e e s e e e e e eaanns 2701
G R OF oL @ o= = o] £ 2701
Fod. CUDE FUNCLIONS ... it e e et e e e et e e e et e e e e aaa s 2703
F.5. Cube-Based Earthdistance FUNCLIONScoevuiiiiiiiiiecc e 2740
F.6. Point-Based EarthdiStance OPeEratorscouuueiiueiiiiieiie e e e e e e et e e e e eens 2741
O 1S3 o T @ o= = o) £ TN 2748
F.8. NSt Or @ FUNCHIONS ...ceviiei e e et e e e e s 2749
FO. intarray FUNCHONSccouiiii e e e e e e e e e e e e et e e eanaeees 2757
[(ORI oL = L = | VA @ o= = o) £ S 2758
L Y T 7 = T Y/ o= 2760
[2 =Y o I ¥ o o LSRR 2762
[T I B YT @ o= = () £ 2767
[O O T W T o PP 2768
F.15. pg_buffercache Columnscooiiiiiiii e 2784
F.16. Supported Algorithms fOr CryPt () coveveieie e e e 2787
F.17. lIteration Counts fOr CrYPE () covvieiiiiiiii e e e e e 2788
F.18. Hash AlQOrithm SPEEOScieici e e 2788
F.19. Summary of Functionality with and without OpenSSLcccoiviiiiiiii e 2795
F.20. pgr oW 0cks OUtPUL COIUMNSccuuiiii e e e e e eaas 2800
F.21. pg_stat_statements ColUMNScooiiiiiiiiii e e 2802
F.22. pg_stat_statements info ColUMNS.........ccocouiiiiiiiiiiii e, 2805
F.23. pgstatt upl @ OUtPUt COIUMNSuuuiiii e e e e e eees 2810
F.24. pgstatt upl e_appr ox Output ColUMNSuiiiiiiiiiieiie e e e e 2813
2 ST o Yo T O e 1 oo 2815
F.26. POt I OMOPEIELIOIS ...t e aaas 2817
F.27. seg Externa REPreSENtalioNSccuuiiiiiieiiiieiii e e e e e e e e e e e e e e e e e e eanaas 2832
F.28. Examples of Valid SEQ INPULo.ueiiiiiii e e e e eaaas 2832
F.29. SO0 GiST OPEIAIONS . eevuiieuieiitieeei et e et e ettt e e et e et e e et e e et e e et e eat e e st e e st e eetnaeeanaeaes 2833
GO S~ oot | I 1 Tox o) Y 2841

PostgreSQL 14.0 Documentation

F.31. t abl €f UNC FUNCHONSccuviiiiiii i e e e e e e eaan s 2846
F.32. CONNECT DY PalramMEterSciiiieii e e e e e e e e e e aneees 2853
F.33. FUNCtions fOr UUID GENEIAHONcccvvieeiiiiieee ettt e et e e 2862
F.34. Functions Returning UUID CONSLANESccvueiiiieiiiieiiieeeiee e e et se e e s e e e e e eanes 2862
F.35. XTI 2 FUNCHIONS ...ttt et e e et e e et e e e e e 2863
F.36. xpat h_t abl @ ParameterScccouiiiiii e aes 2864
H.1. Externally Maintained Client INterfacesc..ooeviiiiiii i 2877
H.2. Externally Maintained Procedural LanQUagESc.ueeiunieiiiiieiiieeiii e e e e e e e e 2878
K.1. POStgreSQL LimitaliOnSccuuueiiiieiiiieiiii e ee e e e e e e e e e e e s e e et e et e e st e e eaneeeens 2887

XXXii

List of Examples

8.1. USING the CharaCter TYPES ... ittt ettt e e et e e et e e e ert e e eena e eees 159
8.2. USINg the DOOI €8N TYPE ...t 172
8.3. USING the Bit SIHNG TYPES .. ettt ittt ettt et e e e e et e e eebe e eeees 180
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoooiiviiiiiiiiiiiciieccie, 331
10.1. Square Root Operator Type RESOIULIONccevueieiiiii e 427
10.2. String Concatenation Operator Type RESOIULIONcoivviiiiiiiiieicii e 427
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccvuuiieiiiiiiiiiiiiieece e 427
10.4. Array Inclusion Operator TYPe RESOIULIONuuiiiiiiiiiiiiie et 428
10.5. Custom Operator 0N @ DOMaIN TYPEuneiiiiiiee it e et eei e 429
10.6. Rounding Function Argument TYpe RESOIULIONoeiiiiiieiiiiii e 431
10.7. Variadic FUNCtION RESOIULIONciiiitceeii ettt 431
10.8. Substring FUNCtion TYPEe RESOIULIONuuiiiiiiiieieii et 432
10.9. char act er Storage TYPE CONVEISIONcccuuuiieiiiiieeeiii e ettt e et e et e e et eeenaaes 434
10.10. Type Resolution with Underspecified Typesin aUnioncocviiveiiiiniiiiiineeeiie, 435
10.11. Type Resolution in @ SIMPIe UNIONooiiuiiiiiii e 435
10.12. Type Resolution in @ Transposed UNIONccoeuueiiriieeeiiie et eeein e e e eeii e 435
10.13. Type Resolution in @ Nested UNIONuiiiiiiiieiiiiie e e e 435
11.1. Setting up a Partial Index to Exclude Common ValUESuuvieiiiiiieiiiiiieecei e 444
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescoevviieiiiiiiieiiiiiieeceie 445
11.3. Setting up a Partial UNique INOEXccouuuiiiiieie et 446
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccooovevveiiineiiiiinneeiininnnn. 446
21.1. Example pg_hba. cONf ENtrESco.uuiiiiiiii e 697
21.2. An Example pg_i dent . conf File ... 700
34.1. libpg EXampPle Program L et 969
34.2. 1ibpg EXampPle Program 2uu o 972
34.3. 1ibpg EXample Program 3o 975
35.1. Large Objects with libpg Example Program ... 987
36.1. Example SQLDA PrOQraMciiiitieeeiii et e et e et e e et e e e et s e e eebi e e eeaaaeeeees 1043
36.2. ECPG Program Accessing Large ODJECESuuiiiiiiiiiiii e 1059
42.1. Manual Installation oOf PLIPENTccoouuiiii e 1311
43.1. Quoting Values in DYNamiC QUENTESiiiiiriieiiiii e et e et e et eeei e eeees 1329
43.2. Exceptions With UPDATE/I NSERTiiiiiiieiei et 1345
43.3. A PL/PgSQL Trigger FUNCLIONuiiiiiiieieei et 1359
43.4. A PL/pgSQL Trigger Function for AUditingcooeviiieiiiiiieii e 1360
43.5. A PL/pgSQL View Trigger Function for AUditinguiveieriniiiiiiin e 1361
43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccoooveiiiiiiieiennnn, 1362
43.7. Auditing with Transition Tablescooeuuiiiiii e 1365
43.8. A PL/pgSQL Event Trigger FUNCLIONccouuuiiiiiiiieiiii et 1366
43.9. Porting a Simple Function from PL/SQL t0 PL/POSQLiviiiiiieeiiiieeeei e 1375
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1376
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

01015 TSP RSOPPPPRPIN 1377
43.12. Porting a Procedure from PL/SQL t0 PL/PGSQLcvvviiieiiiiieeieiii e 1379
F.1. Create a Foreign Table for POStgreSQL CSV LOGSccvvvunieiiiiiieeiiiiie e 2743

XXXl

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteers in parallel to the development of the PostgreSQL software. It describes al the
functionality that the current version of PostgreSQL officialy supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

Part | isan informal introduction for new users.

Part Il documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

Part 111 describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

Part IV describes the programming interfaces for PostgreSQL client programs.

Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

Part VII contains assorted information that might be of use to PostgreSQL devel opers.

1. What Is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2%, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

data types
functions

operators
aggregate functions

1 https://dsf berkeley.edu/postgres. html

XXXIV

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operationa in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston904], was released to a few externa users in June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: afinancial dataanalysissystem, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/anal ytics/informix
8 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXV

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

» The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

A new program (psql) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

» A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (Theinversion file system was removed.)

» Theinstance-level rule system was removed. Rules were till available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgreso5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the origina POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, asis usual in Tcl.) Braces
({ and}) and vertical lines (|) indicate that you must choose one aternative. Dots (. . .) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should

XXXVi

Preface

not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :

Wiki
The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO' ligt,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL isan open-source project. Assuch, it dependson the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which is not in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining acommercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentation to verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXVii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

» A program terminates with a fatal signal or an operating system error message that would point to a
prablem in the program. (A counterexample might be a*“disk full” message, since you have to fix that
yourself.)

* A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

 PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a hit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL-related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anythinginyour ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

XXXViii

Preface

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
theterminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psal, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to ver bose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do not
keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

» Anything you did at al differently from the installation instructions.

» The PostgreSQL version. You can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 14.0 we will amost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sitesusing
older rel eases of PostgreSQL ; if you require more than we can provide, consider acquiring acommercial
support contract.

» Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have

XXXIX

Preface

installation problems then information about the toolchain on your machine (compiler, make, and so
on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still havetime
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “Postgres’ for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psgl”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for your
email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering a bug
report thisway causesit to be mailed tothe<pgsql - bugs@i st s. post gr esql . or g> mailinglist.

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the user maling lists, such as
<pgsql -sqgl @i sts. postgresql . org> or
<pgsql -general @i sts. postgresqgl.org>. These mailing lists are for answering user
guestions, and their subscribers normally do not wish to receive bug reports. More importantly, they are
unlikely to fix them.

Also, please do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . org>. This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take up
adiscussion about your bug report on pgsqgl - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresqgl . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mall to
<pgsql - hackers@i st s. post gresql . or g>, sowe (and you) can work on porting PostgreSQL
to your platform.

° https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

xl

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xli

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeeeeii e ettt ettt eaaas 3
0 T 1 = = = 1o o 3
1.2. Architectural FUNDamENtalScouiiniii e 3
1.3. Creating @ Dalahaseccouuuieiiii e 4
1.4, ACCESSING 8 DAIANASEvuiieeiiei e 5
2. The SQL LBNGUBGEetun ettt ettt e ettt et e e e e et e e e eab e e eenenas 8
b2 I 1 11 oo U o 1) o [N 8
A O 04 /= o = PP 8
2.3. Creating @ NEW Table ..oo.unii e 8
2.4. Populating @ Table With ROWScoouiiiiiiii et 9
2.5, QUENYING A TADIE ...eeee e 10
2.6. J0INS BEIWEEN TAIESiviitiiiii it 12
2.7. AQOregate FUNCLIONSccutiieieiti ettt ettt et ettt e e et e et e e e et e e eenans 14
2.8 UPUELES ...ttt 16
R B L= = (0] 16
3. AGVANCED FEAIUIMNES .. ouitieeit et e e e e e e e e e et e e e e e ens 18
G 3 O 1 oo U o 11 o [18
I VA= VP 18
3.3 FOrEIgN KBYS ..ttt ettt aee 18
I I =01 o o1 19
3.5, WINAOW FUNCLIONScviiitii ettt e e e e e e e aees 21
IS T 101015 41 7= ot PP 24
G I o g Tox 11 Lo o T 26

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by theoriginal post gr es process. Thus, the supervisor server process
isalwaysrunning, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the instalation
instructions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ.5432"
failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact it.
Adgain, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ. 5432"
failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you arethe administrator, see Chapter 22 for help creating accounts. Y ou will need to become
the operating system user under which PostgreSQL was installed (usually post gr es) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your
operating system user name; in that case you need to use the - U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: error: database creation failed: ERROR pernission denied
to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes
of thistutorial under the user account that you started the server as. 1

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You aways need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so

this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipul ate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part V.

Y ou probably want to start up psql to try the examplesin thistutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psql (14.0)
Type "hel p* for help.

mydb=>

Thelast line could also be:

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls. For
the purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ@. 14.0 on x86_64-pc-I|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nydb=> SELECT 2 + 2;
?col um?

(1 row

The psqgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \ h

To get out of psql , type:

Getting Started

nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psqgl are documented in psgl. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL
language features are extensions to the standard.

In the examplesthat follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutorial /. (Binary distributions of PostgreSQL might not provide thosefiles.) To use thosefiles, first
change to that directory and run make:

$ cd .../src/tutorial
$ nake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of ahierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rows within the tablein any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

Y ou can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- -) introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthe normal integer type. r eal isatype for storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, smal lint, real, doubl e precision,
char (N),varchar (N),dat e,ti me,ti mestanp,andi nt er val , aswell asother types of general
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:

I NSERT | NTO weat her VALUES (' San Franci sco', 46, 50, 0.25,
'1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The SQL Language

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

Y ou canlist the columnsin adifferent order if you wish or even omit some columns, e.g., if the precipitation
is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some datato work with in the following sections.

Y ou could aso have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process, not

the client, since the backend process reads the file directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | date

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (tenp_hi+tenp |lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ o,
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are alowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

11

The SQL Language

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the same time.
Queries that access multiple tables (or multiple instances of the same table) at one time are called join
gueries. They combine rows from one table with rows from a second table, with an expression specifying
which rows are to be paired. For example, to return all the weather records together with the location of
the associated city, the database needs to compare the ci t y column of each row of the weat her table
with the nane column of al rowsintheci ti es table, and select the pairs of rows where these values
match.2 This would be accomplished by the following query:

SELECT * FROM weather JON cities ON city = nang;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of rows,
but thisisinvisible to the user.

12

The SQL Language

e Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matchingentry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin theweat her table. We will see shortly
how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her JO N cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nang;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in thisform:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-datesthe JO NON syntax, which was introduced in SQL-92. The tables are simply listed
in the FROMclause, and the comparison expression is added to the WHERE clause. The results from this
older implicit syntax and the newer explicit JO NON syntax are identical. But for areader of the query,
the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
iscalled an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city = cities. naneg;

city | temp_lo | tenp_hi | prcp | dat e | nane

| location
--------------- T LT T gy
o e e e e oo - - T ——

Haywar d | 37 | 54 | | 1994-11-29 |

|

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

13

The SQL Language

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will have
each of itsrowsin the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercisee Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thetenp_l o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of al other weat her rows. We can do this with the following query:

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wl JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | low | high | city | low | high
--------------- T T LI pupup
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side of
thejoin. You can also use these kinds of aliasesin other queries to save some typing, e.g.:

SELECT *
FROM weat her w JON cities ¢ ON w.city = c.naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and mi n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l 0) FROM weat her;

14

The SQL Language

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_|l o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obvioudly it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isan independent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with;

SELECT city, max(tenp_| 0)
FROM weat her
GROUP BY city;

city | max
_______________ [S,
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ B
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Findly, if we
only care about cities whose names begin with “S”, we might do:

15

The SQL Language

SELECT city, max(tenp_| o)
FROM weat her
VWHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and
aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenmp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DELETE command. Suppose you are ho longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

16

The SQL Language

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without aqualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management and
prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examplesfound in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which isnot repeated here. (Refer
to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of viewsisakey aspect of good SQL database design. Views allow you to encapsul ate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

18

Advanced Features

CREATE TABLE weat her (

city varchar (80) references cities(nane),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransaction isthat
it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance bal ance - 100. 00
VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne

' Bob') ;

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need aguaranteethat if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at al.

19

Advanced Features

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by atransaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction isbusy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COWM T
wrapped around it. A group of statements surrounded by BEA N and COVMM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back
to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

UPDATE accounts SET bal ance
WHERE nane = 'Alice';

SAVEPO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = 'Vally';

COW T,

bal ance - 100. 00

bal ance + 100. 00

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.
3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query resullt.

Here is an example that shows how to compare each employee's salary with the average salary in his or
her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnane | enpno | salary | avg
----------- T fE Ry
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value asthe current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). This is what syntactically distinguishes it from a normal function or non-window
aggregate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ Fom e a - -
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ i,
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVI NG and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If thereis aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

23

Advanced Features

(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example;

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturaly, capitalsare also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

Thisworks OK asfar asquerying goes, but it getsugly when you need to update several rows, for onething.

A better solution isthis:

CREATE TABLE cities (

24

Advanced Features

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

In this case, arow of capi t al s inherits al columns (namne, popul ati on, and el evati on) from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its state
abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ e e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commandsthat we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

25

Advanced Features

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

26

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYINEBX vttt ettt ettt et e et e et e et et et e et e e et e e e 35
A1, LEXIiCal SIUCKUME ...ttt ettt ettt e e e e e enees 35
4.1.1. Identifiers and K&y WOITSuiiiiiiiiieiiii e 35
.02, CONSLANTSoeeeeeeie ettt et ettt 37
4.01.3. OPEIELOIS ...ttt ettt ettt ettt et 42
4.1.4. SPECial CharaCLEN'S ceeiii ettt e e eees 42
.05, COMMEBNES ... eeee ettt ettt e r e e e e e e e e e e en s 43
4.1.6. OPErator PrECEOBNCEceiitiieeiii et 43

4.2, VElUE EXPIESSIONSceiitiieeieii ettt ettt e ettt e et e et e et e et e e e aba s 44
4.2.1. ColUMN REFEIENCES ...ttt et 45
4.2.2. POSItiONal PalraMELErSuuiiiiiiieieei ettt e 45
A.2.3. SUDSCIIPES .. eevteeeeei ettt ettt et 45
424, Field SEIECHON ...ueiiiii e 46
4.2.5. OPErator INVOCELIONSccevuneiiitieee et e ettt et e e e et eeeeneaeeees 46
4.2.6. FUNCHON CallS ...t 47
4.2.7. AQOregate EXPIrESSIONSccuuueiiiiiieieiti ettt ettt ettt e et e e e e 47
4.2.8. WIindow FUNCHION CallSiiiiiiiiiiii e 50
4.2.9. TYPE CaSS .eviiiiieii et 52
4.2.10. Collation EXPreESSIONSoceevrieeiiiti ettt ettt e e e e e eeeans 53
4.2.11. SCAlAr SUDQUENTESceeeieeeeeii ettt ettt ettt e e e e enaens 54
4.2.12. Array CONSITUCLOIScevieitiiierie ettt et e e e e e ea e eees 54
4.2.13. ROW CONSITUCTONSevteeeieiete ettt sttt et e e e e 56
4.2.14. Expression Evaluation RUIESccooiiiiiiiiiii e 57

4.3, CalliNg FUNCLIONSeeeit ettt ettt et e e e e e e enan s 59
4.3.1. Using POSItional NOELIONccvvveieiiiiiieeeeeii et 59
4.3.2. UsiNg NamMed NOLATONccuvuiiiiiiie e 60
4.3.3. USING MiXEA NOLALTONevuieiiiiieeiiiii ettt e een e e e 60

5. Dal@ DEFINITION ..ottt et 62
DL TADIE BASICS .ottt 62
5.2, DEFAUIT VAIUBS ...ttt 63
5.3. Generated COIUMINScoouuiiiiiii ettt et e e e e e 64
B, CONSITAINTS ...ttt ettt ettt e et e et et e et et e et et e e e ena s 65
5.4.1. CheCk CONSITAINTScevuieiiiiie ettt ettt e e e e e e e 65
5.4.2. NO-NUII CONSIFAINES ...eeveieieiii et e e 68
5.4.3. UNIQUE CONSIFEINES ...e.veueieeii ettt ettt ettt e e e 69
B5AA, PHIMEANY KEYS ...ttt e e 70
545, FOrEIgN KEYS ...ttt 71
5.4.6. EXCIUSION CONSITAINTScovtieieiit et e ettt et e et e e e et e e e ene e eeees 74

5.5, SYStEM COIUMMNS ...t et e e 74
5.6. MOAITYING TADIES ...t 75
5.6.1. AddING @ COIUMN ...oiviiiiiiii e 75
5.6.2. ReEMOVING @ COIUMN ...couuiiiiiiii ettt eeans 76
5.6.3. AddING @ CONSIFAINTceevtieeiiiis ettt e e e e et e e e e e eeees 76
5.6.4. RemMOVING @ CONSITAINTccuviiiiiiii e 76
5.6.5. Changing a Column's Default Valuec.oiviiiiiiiiiiiii e 77
5.6.6. Changing a Column's Daa TYPEuueieuunieiiiiiee ittt 77
5.6.7. Renaming @ COIUMIN ... coiiiiiiiiii e 77
5.6.8. RENAMING @ TADIEciiiiiiiiiii e 77

BT PrIVIIEOES ..o 78
5.8. ROW SeCUNtY POIICIES ...oeuuieiiii e 82
5.9, SCREMAS ... 88

28

The SQL Language

5.9.1. Creating @ SCheMAc.uiiiiic e 89
5.9.2. The PUDIIC SChEMEooiiiiiiec e 90
5.9.3. The Schema Search Pathccoooiiiiiiiiiiiii e 90
5.9.4. Schemas and PrivVilEgEScoiuniiii i 92
5.9.5. The System Catalog SChEMAcovuiiiiiiieii e 92
5.0.6. USAQE PallerNSiviiiiii e 92
5.9.7. POMaDIITY ..vviiiiiiieee e 93

oI O T 1=) = Lo PP 93
oI L0 B O Y= (=3P 96
5.11. Table Partitioningiiueeiii i e e e e e e e e e 97
DAL L. OVEIVIBIW ettt e et e e e et e e e et e e e e et e e e e et e e e e eran s 97
5.11.2. Declarative Partitioningccccouiiiiiiiiiiii e 98
5.11.3. Partitioning Using INNEFtanCeccoviiiiiiiiii e 103
5.11.4. Partition PrUniNgc.uoeiuiiiiii e e e e e e e e e e et eeaaaeeaes 108
5.11.5. Partitioning and Constraint EXCIUSIONc.veviiieiiiniiiii e 109
5.11.6. Best Practices for Declarative Partitioningcc.ccoeevviiieiiineeiiieriineecneeenn, 110

I o (= o o B I - PP 111
5.13. Other Database ODJECEScvvieiii e e e e e aens 111
5.14. DePendeNnCy TraCKiNgccuuueiiueiiiiie e e e e e e e e e e e e e e e e e e et e e e eanaeeeen 112
SR T = 1Y =T o 10 = 1 o PN 114
L 1= e (] aTo [D - - Y 114
LS UL = (] oo D = U 115
SRR D= 1 (] oo I - - P 116
6.4. Returning Data from Modified ROWScccuiiiiiiiiiii e 116
2 8 = 1= PN 118
8 T @ = 4T T ORI 118
A - o L=l (0 == Lo 118
7.2.1. ThE FROMCIBUSE ...cceviiiiiiie ettt ettt ettt e et e e e e 119
7.2.2. THE WHERE ClaUSEvvuieiiiiii ettt sttt e et e e e ean s 128
7.2.3. The GROUP BY and HAVI NG ClIaUSEScccvvuiiiiiiieeeiiiie e ee e 129
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPiiiiiiiiieiiieece e 131
7.2.5. Window FUNCEION PrOCESSINGcovuiiiiiieiiieeie e e e e e e e e 135

SRS = 1 o I £ U UPPPTSPPR 135
7.3. 1. SEECE-LISt [TOMS oot e 135
7.3.2. COlUMN LADEIS ...t e e eaans 136
7.3.3. Dl STINCT ettt e e et e e et s e e e et e e e eeaaaeeeees 136

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT) ...cocvviiiiiiiiieeciiieeeceie e 137
7.5. Sorting ROWS (ORDER BY) ...iiuiiiiiiiciie et e e e e e e e e e e e et eeaneeas 138
T6. LIM T @8N0 OFFSET ..oiiiiiiiiie ettt e e e e et e e e as 139
TV A/ I S I I £ PP 139
7.8. W TH Queries (Common Table EXPreSSiONS)cc.uueeeiieiiiieriiieeiiieeiieeeeineesieeeaneens 140
7.8.1L SELECT iNW TH oo a s 140
7.8.2. RECUISIVE QUENIES ...uuiii ittt e e e e e e e e e e e et e e e eeaes 141
7.8.3. Common Table Expression Materializationccoeoviiiiiiiiiiiciiiiecie e 146
7.8.4. Data-Modifying Statements in W TH ..o, 147

S T D= = T Y/ o PRSPPI 150
S0 N [0 0= o Y == 151
e I 1 011 o = Y/ o PP 152
8.1.2. Arbitrary Precision NUMDBEISccoiiiiiiiiii e 152
8.1.3. Floating-POINt TYPES .ovun i e e e 154

ST S g Y/ o= PP 156

S I o g 1< = Y 1Y o< T PRSP 157
TG I O == o (= G Y/ o= PP 157
S = T g A T v T Y/ o 1= 159

29

The SQL Language

8.4.1. byt €a HEX FOIMELccuuiiiiiieii e 160
8.4.2. byt €a ESCApe FOIMAL ...c.uuiiiiiiii e e e e 160
R = =l T (ST Y/ 0= P 161
8.5.1. Date/TImME INPULeveniiiiiii e e e e e e e e e e e e e e e aaneees 163
8.5.2. DAE/TIME OULPULueeeeiiiieeeeeie e et e e e et e et e e et e e e et eeeeren e 167
8.5.3. TIME ZONES ...ttt e et e e et e e e eaa e aaee 168
8.5.4. INterval INPULoiieiii e e 169
8.5.5. INLEIVE OULPULueiiiitiee it e e e e e e e aa e e eannns 171
LS = ToTo =T N Y/ o= PN 172
A 1000 = =0 I Y/ o= 173
8.7.1. Declaration of Enumerated TYPES .. .cvuuiviueiiii e e e e 173
2 @ (o[1 o P 173
B.7.3. TYPE SAFELY eevviieiiii et 174
8.7.4. Implementation DELailScccuuiiiiiii e 174
R €= o 0 4= (o Y 1P 175
B.8. L. POIMES ...ttt e ettt e e a e aae 175
88,2, LINES ettt 175
8.8.3. LiNE SEOMENLSiviiiiii e e e 176
8814 BOXES ..t eiiiii e ettt ettt e et e a et a e aaaes 176
B85, PalNS ..ot 176
8.8.6. POIYQONS .. .ciiiiii i 177
S O] (o =~ PP 177
e I N\ = Y Yo (o (1= S Y o= 177
S35 R T 1= PSPPSR 178
SIS o o | S USRS 178
SR A I 1= VT o3 o | PSPPI 179
S I 1= U= Vo o | USSP 179
8.9.5. IMACATAN 8 .ouiiiiiiii e e e e e 179
IO T S (1o T I3 - 180
B.11. TeEXt SEACH TYPES o evn it 181
S 00 I O T = VT o3 A o PP PTRPTUPT 181
S I 2 A=Y o [U 1= PRSP 182
ST 2 U1 1 R I/ o= PR 184
ST Q. I 1Y/ o= PP 184
8.13.1. Creating XML ValUBSoeiiiiiiieiiiii ettt e e e 185
8.13.2. ENcoding Handlingccouuiiiiiiiii i 185
8.13.3. ACCESSING XML ValUESuiiiiiciii e 186
ST N S O NI Y/ o=~ PP 186
8.14.1. JSON Input and OULPUE SYNEAXevvvnieiieeiiiieciie e e e e e e e e e e eens 188
8.14.2. Designing JSON DOCUMENES .. .c.uuivieieineeiieeei e et e et eeeie e e e e san e eaneeennnas 189
8.14.3.] sonb Containment and EXIStENCEovviiiiiiii e 189
8.14.4. | SOND INUEXING ...evvneiii e e e e e e aaa s 191
8.14.5. | SOND SUBSCIIPLING .vuevvieiiiiee e e e e e e 194
8.14.6. TraNSFOMIS ... ettt ettt e e e e et e e e e 195
8.14.7.]SONPEEN TYPE . e 195
e I LN = Y PPN 197
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeei et e e e e e e e e e e eaneees 197
8.15.2. Array ValUE INPULcovniiii e e e e e e e 198
8.15.3. ACCESSING ATTAYS ..uevtneeiineeiieeete ettt e et e e e e et e et e et e e et e e et e e et e eaneeaens 199
8.15.4. MOAITYING ATTAYS ..vuieiiieii et e e e e e e e e e e e e e e e e eanaeees 202
8.15.5. SEaArChING IN ATTAYS «oovuieiii e e e e e e e e e eaens 205
8.15.6. Array Input and OULPUL SYNEEXccvuneiiieiiiieeiii e e e e e e e e e eaenns 206
8.16. COMPOSITE TYPES ..evueiiueiiiieeit ettt e et e e et e e et e e et e e et eeaa e e st ee et e e et eetnaeesnnaaannaaes 207
8.16.1. Declaration of COmMPOSItE TYPES ...cvvureiiiieiiieeiii e e e e e e e e anas 207

30

The SQL Language

8.16.2. Constructing CompoSIte VAUEScccuuiiiiiieiiii e 208
8.16.3. AcCeSSING COMPOSIEE TYPES ...vvvneiiiiieiiieeiiieeiiie et e e et e e eae e e e eateeeaeeanaas 209
8.16.4. Modifying COmMPOSITE TYPES ...cvvuniiiiieieii e e ee e e e e e e e e aa s 210
8.16.5. Using Composite TYPes iN QUENIESueiiieiiii i e e e e e e e eaaes 210
8.16.6. Composite Type Input and OULPUE SYNEAXccevvvvirnieiiieiiii e e e eenne 213

8.7, RANGE T S ittt ettt 214
8.17.1. Built-in Range and MUItIrange TYPES ...uuevivieii e e e e e 214
8.17.2. EXAMPIES .. ettt 214
8.17.3. Inclusive and EXCIUSIVE BOUNGSuiveiiiiiiieiiiiineeiiiiine et e et e i 215
8.17.4. Infinite (Unbounded) RaNGESocvvuiiiiii e 215
8.17.5. RaNge INPUL/OULPULovvniiiieeii e e e e e e e e e e e aes 215
8.17.6. Constructing Ranges and MUItIrangeSoevvviieiiie e 217
8.17.7. DISCrete RANGE TYPES . ovvniiiiieei et et e e e e e et e e e e e e e e e et e e et e een s 217
8.17.8. Defining New RaNGE TYPES ... cvvuiiiiieeii e e e e e e e e e eaaas 218
B.17.9. INAEXING ...uniiiieii e e 219
8.17.10. CONStraiNtS 0N RANGESuiiviieiiieiieee e ee e e e e e e e e e et eeaaaeeaes 219

ST T I T4 F= T T 1Y o1~ PN 220
8.19. ObJECt 1AENLITIEr TYPES .uuuiiii i e e e et e eaaaees 221
S22 o To TR =Y 0 T 1Y/ o= TN 224
ST I s = (o 0l 1N o1 224
9. FUNCLIONS @NO OPEIAIOIS .. .evvieeeieeei et e et e e e e e e e e e e e e e e e et e e et e e et e e st e eeaneeanaees 226
1o I oo o= @ o= = (] £ PP 226
9.2. Comparison FUNCtions and OPEraLOrScvuvuieerieeiiiieeiiiee e e e e e e e et e eaeeeens 227
9.3. Mathematical FUNCtioNS and OPEratorSc.uvveiuneeiiiieiiiie e e e e e 231
9.4. String FUNCtioNS and OPEIAtOrSuiiieneeiiieiie e e e e e e e e e e aaeeees 239
LS T o T g 112 1 TP TPPTRPPTRN 247

9.5. Binary String FUNctions and OPEraorsSuoveeuuieiiieiiiie e e e e e e eeaieesaneeees 249
9.6. Bit String FUNCLiONS and OPEratorScvvvuiiiiieiiie e e ee e e e e e e e e e e eeanns 253
A = (= g TN\ = (11 o P 255
O.7. 1. LEKE oot aaaan 256
9.7.2. SIM LAR TORegular EXPreSSiONScvuueiiiieriieeiiieeeiieeaeeeaieessineesnneeenns 257
9.7.3. POSIX RegQUIAr EXPIESSIONS ... ccvuiiiiieiiiieeiiieeeiiie et e et s e e et e e e e s e e e eannaas 258

9.8. Data Type Formatting FUNCLIONScovuiiiiiiiii e e 273
9.9. Date/Time FUNCLioNS and OPEratorScceuuiiiiiieiiieeeiie e e e e e e e e e e e eaaeeees 282
9.9.1. EXTRACT, dat € _Part .ouiiiiiiiiiiieeiii e e e e e aanas 288

e 72 - L A =T A ¥ [o o 293
0.9.3. dat @ DI N oo 294
9.9.4. AT TIME ZONE ...iiiiiiiiiii ettt e e e e et e e eeaens 294
9.9.5. CUITENt DAL/ TIME ..uuiiiieii ettt e e e 296
9.9.6. Delaying EXECULIONuuiiiei i eeie e e e e e e e e e e e e e e et e ea e eeas 297

9.10. ENUM SUPPOIt FUNCLIONSiieiiiii et e e e e e e e e e e e e e e eaens 298
9.11. Geometric FUNCiONS and OPEIAtOrSccvuueiiieeiiieeiiie e ee e e e e e e e e eanes 299
9.12. Network Address FUNCtions and OPEratorsc.ueeuuieiiieeiie e e e eeie e e 306
9.13. Text Search FUNCtiONS aNd OPEIELOrSuuueviieeiieeiieeeie e e e e e e et e e e eaaeees 310
.14, UUID FUNCLIONSiieiiiis ettt ettt e ettt e e et e e et e e et e e et s e e e et e e e e enanes 316
9.15. XML FUNCLIONS ... eiiiiiie ettt e e e e e e e et e e e et e e e e et e e e e eaen s 317
9.15.1. Producing XML CONENEccuuiiiiiiiiieeiieeeieee e e e e e e e e e e e e eanaeees 317
9.15.2. XML PradiCates ...ocvvueiiiii ettt e e e e e e s 321
9.15.3. ProcessiNg XML ...uuuiiiiiiieeii ettt 323
9.15.4. Mapping TableS t0 XMLccoviiiiiiii e 328

9.16. JSON FUNCLIONS aNd OPEIELOIScvvvieirieeiiieeeiee e e e e e e e e e e e e et e e et e e e e eennns 332
9.16.1. Processing and Creating JSON Dafal........c..oevvvuieiiiieiiiieeiiieeeiieeee e e e 332
9.16.2. The SQL/JSON Path LanQUAGEccvvvuieiiiiiieeeeiiieeeeeine e et e e et e e 343

9.17. Sequence Manipulation FUNCLIONSccouiiiiiiii e e e e 351

31

The SQL Language

9.18. Conditional EXPIrESSIONScuuueiiiieiiiieeiiieeii e et e e e e e e e e e e e e e e et e e aa e ean s 352
0.18. 1. CASE ...ttt e a e et aaae 353
9.18.2. COALESCEciiitiiieieii ettt ettt e et e e e et e e e e et e e e aatnnaeaee 354
O.18.3. NULLI F ettt e e et e et e e e et n e e e eraneeaees 355
9.18.4. GREATEST a@nd LEAST ...uiiiiiiiieeeee ettt 355

9.19. Array FUNCIONS and OPEIratOrSuiieneeeiiieiiieee e e e e e e e e e e e e et e e e e e e eanaees 355

9.20. Range/Multirange FUNCtions and OPEratorsvvvevueeiiieviiieeiieeeineeeeeeaeeeaenns 359

9.21. AQQregate FUNCLIONSuuiiii e e e e e e e e e e e eaes 365

9.22. WINAOW FUNCHIONSviieiiiiiieeeei et e e e e e e e et e e e et e e e e aaa s 372

SIS Yoo 01c AV o d (= 0] PN 374
S B S Y S TSP 374
S22 3 L N USSP 375
S22 R T\ | T\ ST 375
9.23.4. ANY/SOMEouiiiiiiiii ettt e e e et e e et e e e et a e 376
0,235, AL L ottt et a e e aaaes 376
9.23.6. SINGIE-ROW COMPAITSONceviiiiiieeiiee e e e e e e e e eaa s 377

9.24. Row and Array COMPANISONSceuuieiieerieeratieeeteeeteestneestneestnaeeaneestnaesrnaesnaaees 377
LS T N N PPN 377
2\ | T\ ST 378
9.24.3. ANY/SONE (BITAY) +eevvvtneeeetinieteeiiieeeeiiaeeeeti e eestiaeeease e resse e aesnaeresnnns 378
S I = - Y) OO SPR 378
9.24.5. Row Constructor COMPAIiSONeviuueeiinieiiiieeiieeeeineesieesaneessnaeeeneasnaaes 379
9.24.6. Composite TYPe COMPANISONuuverneeeiieiieeeieeeieeeeeeeeteeeeae e st aeeanaeaanaees 380

9.25. Set REtUrNING FUNCHIONS ... covuiiiiicii e e e e e e e e e et e e e aaa s 380

9.26. System Information FUNCtions and OPEratorsevevveeiiieiiiieeiiieeeieeeieeeaeeenes 383

9.27. System AdminNistration FUNCLIONSccuuiiinieiiii e e e e e e e 402
9.27.1. Configuration Settings FUNCLIONSiiiiiieiiii e e e e 402
9.27.2. Server SIgnaling FUNCLIONSoviiiiiiie e e e e e 402
9.27.3. Backup Control FUNCLIONSuiiiiieiii e e ea s 404
9.27.4. Recovery Control FUNCLIONSocvviiiiiieeii e 406
9.27.5. Snapshot Synchronization FUNCLIONSccuoveiiiieiiin e, 408
9.27.6. Replication Management FUNCLIONScouveiiiiieii e 409
9.27.7. Database Object Management FUNCLIONSovevveeiiieiiineeieeceee e eaane 412
9.27.8. Index MantenanCe FUNCLIONSooviiuiiieeiiiiii e e e et e e e eeeii e eens 414
9.27.9. Generic File ACCESS FUNCLIONSuviiiiiiiee e 415
9.27.10. AdViSOry LOCK FUNCLIONScvvieiiiiciiee e e e e e 417

(S22 T I o o = gl oo 418

9.29. Event Trigger FUNCLIONScouuiiiii e e e e e e e e e e e 419
9.29.1. Capturing Changes at Command ENdcccocoviieiiiniiiiiiciiecee e, 420
9.29.2. Processing Objects Dropped by a DDL Commandcccocevvveviiieiiineeeinnenn. 420
9.29.3. Handling a Table ReWrite EVENtcovviiiiiiii e 422

9.30. Statistics INfOrmMation FUNCLONSiiiiiiiieiiiii e e e e eees 422
9.30.1. INSPECEING MCV LiStS ..uiiiiiiiiiieiii e e e 422

O Y/ oL o017/ = T o PPN 424

L0 @ = 4T Y PSP 424

O @ o< - o = TP 425

L0 R T o] o L P SSP 429

O R 0 IS (o] - o = 433

10.5. UNI ON, CASE, and Related CONSITUCESeviviiieiiiiieeeeiie e eeai e e e 434

10.6. SELECT OULPUL COIUMNSiiiiciii e e e e e e e e e e e e e e e et e e e e e e eanes 436

T o (== SO 437

0 O oo [o PP 437

A 1 o L= G Y/ o === PP 438
O O e I = PP 438

32

The SQL Language

2 o T = o PP 438
2 T 11 RSP 438
S 1 S 439
02 T] PSSP 439
2 G = 1 P 440

11.3. MUItICOIUMN INOEXES ...ttt e et e et e e e et eeeeaeaeeees 440
11.4. Indexes and ORDER BYcocviiiiiiiiiiiiiieeeie st e e e e e e e e e e aaaeaas 441
11.5. Combining MUItiple INAEXESciiiiiiiiece e 442
12.6. UNIQUE INAEXESciiieiiiie et e e e e e e e e e e e e e e et e e e eaaaes 443
11.7. INAEXES ON EXPIrESSIONSivvieiiiieii e e e e e e e e e e e e e et e et e e et e e ean s 443
11.8. Partial INOEXES .. .ceeviiieeeeii ettt e et e et e e et s e e e et e e e eranaaaaes 444
11.9. Index-Only Scans and Covering INAEXESccuuiiviiieeiii e 47
11.10. Operator Classes and Operator Famili€Sooevviiiiiiiiiiiiiei e, 450
11.11. Indexes and COlAIONSuuiiiieiiieiii e 451
11.12. EXamining INAEX USAgEuuivviniiiiieii e e e e e e et e et e e e e aaans 452
I o 1= G = o o PSSP 454
2 O 1 oo (0o o PP 454
12.1.1. What 1S @ DOCUMENE? ...uuiieieii ettt e e e e et e eeeaan e eeees 455
12.1.2. Basic Text MatChingooiiuiiiiiiiii e 456
12.1.3. CONfIQUIBLIONSvuiiiiieii e ce e e e e e e e e e e e e et e e e e e e e eaanas 458

12.2. TAhleS @NA INOEXES ...cevvveieieii ettt e e et e e et e e eaens 458
12.2.1. Searching @ Table ...ocvuii e 458
12.2.2. Creating INAEXEScvvvueii it e e e e e e e e aeas 459

12.3. Controlling TEXt SEAICHiiiiicii e e e e 460
12.3.1. ParSiNg DOCUMENESuiiiiiiii e cei e e e e e e e e e e e e e et e e e e eaens 460
12.3.2. ParSiNG QUETTES .. .cvuciiii e e e e e e e e e e e e e e e e ees 461
12.3.3. Ranking Search RESUILSocivuiiiii e 464
12.3.4. Highlighting RESUILS ... ccvuiiiiiieei e e 467

12,4, AdAItioNal FEALUMESevvneeiiii et e e e e e eaanns 468
12.4.1. Manipulating DOCUMENESuuiiiiiieiiiie e e e e e e e e e e e e e aae e 468
12.4.2. Manipulating QUENIEScvuiciii e e e e e e e e aaas 469
12.4.3. Triggers for Automatic UpPdatesccevueeiiiiiiiieiiie e e e e, 472
12.4.4. Gathering DOCUMENE SEALISHCS ...vvuvvinieiie e eeee e e e e e 473

T T = 474
12.6. DICHONAITES ... eieeeii et ettt ettt e et e et e e e et e e e et s e e e et e et e et neeesaaaeeennen 476
12.6.1. SEOP WOIAS .. .ccvuiiiiieiie et e e e e e e e e e e e et e e et e e e eaaeees a77
12.6.2. SIMPIE DICHIONAIY .vvueiiiieiii e et e e e e e e e aaaas a77
12.6.3. SYNONYM DICHIONGNY ...cvvuieiiiieiiie et e e e e e e e e e e e e e e e aan s 479
12.6.4. TheSaUruS DIiCtIONAIYcvvvniiiiiciii e e e e e eaa s 480
12.6.5. ISPEI DICHONAIY ...cvvniiiiiciie et e e e e e e eaaas 483
12.6.6. SNOWDEIl DICHIONAIYcvveiiiieeei e e e e e e 485

12.7. Configuration EXAMPIEccuuiiiiiciii e e e e e e e e 486
12.8. Testing and Debugging Text Searchoovviiii i, 487
12.8.1. Configuration TESHNGcvvueiiieiiii e e e e e e e e e e e anes 487
T = = i oo 490
R IC T B T Tox o) 4= VA == (o [491

12.9. GIN and GiST INAEX TYPES cvvvvvrunieieeeeieiiiiieise e e e e e eeetn e e e e e e eaeatae e e e e e eaeaarennnns 492
2200 O T o 1= o | o] oo o P 493
2 O R T 1] = o PRSP 496
G @0 o o1l = o [0y o 1 () N 498
G20 1 oo [0 1 o I PP 498
13.2. TransaCtion I1SOIAHONcccuveieiii e 498
13.2.1. Read Commiitted 1SOlation LEVElvviiiiiiiiiiiiiieece e 499
13.2.2. Repeatable Read 1S0lation LEVEccvviiiiiiiiii e 501

33

The SQL Language

13.2.3. Serializable [S0lation LEVE!ccevvviiieiii e 502

T (o[T I (T 504
13.3.1. TADIELEVE LOCKS ...evvniiiiiiieiieii et 504
13.3.2. ROW-LEVEI LOCKS ...euvuiiiiiiiee ettt e et e e e 507
13.3.3. Page-Level LOCKSciiiiiii et 508
13.3.4. DEAAIOCKS ... eeeieeieeiiii ettt s e e et e e e e e e e e e e e e 508
13.3.5. AGVISONY LOCKS ..uuiiiiicii et e e e e e e e e e aeas 509

13.4. Data Consistency Checks at the Application Levelcccoeeiiiiiiiiiiiiiiiceeeis 510
13.4.1. Enforcing Consistency with Serializable Transactionsccooeevveveevinnn. 510
13.4.2. Enforcing Consistency with Explicit Blocking LOckScccccovviiiiiiiinnennnnn. 511

ST O Y= PSR 512
13.6. LOCKINg @nd INAEXESivviiii et e e e e e e e e ees 512
o (o0 1= 0 o= T T = 514
I I U = o T I A P 514
I T o Y Y I VN 27 T P 514
14.2.2. EXPLAI N ANALYZEooviiiii et s e e e e eea e e ananaens 521
I O £ S PUPRR 526

14.2. Statistics Used by the Plannerccooviiiiiii e 527
14.2.1. SINgIE-ColUMN SEALISHCS . .ovvueiiieiiiii e e e e e e eaaes 527
A A 1= 00 (= IS 1 P 529

14.3. Controlling the Planner with Explicit JO N ClIaUSESccovviiiiieiiiieeeiieece e, 532
14.4. Populating @ Databasecvviiiiiii e 534
14.4.1. Disable AULOCOMIMILuuuiiiiiiiiee it e et et e e et e e e eaee e eeeee 534
A U £ Y @ @ P 534
14.4.3. REMOVE INAEXES ...oevvieiiiiie ettt e et e e 535
14.4.4. Remove Foreign Key CONSITaiNtScceuueeiiiiiiieiiieeeiieeeieeeneesieeeaneeenens 535
14.4.5. Increase mai nt enance_WOr K _MBmM.......coooiiiiiiii i, 535
14.4.6. Increase MAX_Wal _Si Z€ ..viiiiiiiiii i 535
14.4.7. Disable WAL Archival and Streaming Replicationccccoeviviiiiiinnennnnn. 535
14.4.8. RUN ANALYZE AFtEIWardScccvvviiiiiiiieeeeeeeieiiie s e e e e e e et e s e e e e eeaannnnn s 536
14.4.9. Some Notes about PO AUMPvuiiiiiii e e ee e e e e e e e 536

14.5. NON-DUrable SElINGSvueieeiiiiei e e e e e e e e e e e e e an s 537
ST = = O = oS 538
15.1. How Parallel QUENY WOTKSciiiiiiii i e e 538
15.2. When Can Parallel Query Be USEO?cuvviiiiiieiiiiiii e 539
15.3. Parallel PlansScccoiiiiiiiis it aaaaaae 540
15.3.1. Parallel SCaNSccuvvuiiiieeiiieiie et e e e e 540
15.3.2. Parallel JOINScovvviiiiei et 540
15.3.3. Parallel AQOregationooiiuiiiiiieii e 541
15.3.4. Parallel APPENGcoviiiii e 541
15.3.5. Parallel Plan TIPS ...ccuuuiieiiiiii et e e e e e e e e 542

15.4. Parallel SafElyoieeeiiieeiii et aaaaa 542
15.4.1. Parallel Labeling for Functions and AQQregatesSc.oovevvieiiiieiiiiieeieeeinnnns 542

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a specia character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”", and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAVEDATAL ENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can be raised by changing the NAMEDATALEN constantinsr ¢/
i ncl ude/ pg_confi g_manual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So" sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from thesethree and each other. (Thefolding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applicationsyou are advised to always quote aparticular name or never quoteit.)

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abacks ash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

4.1.2.

U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes thisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same asadouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

isequivalent to:

SELECT ' f oobar"' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes

37

SQL Syntax

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
quote, e.qg., E' f 0o’ . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent aspecial bytevalue,
asshownin Table4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A-F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x =0-9, A—F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, asingle quote can be included in an escape string by writing \ * , in addition
to the normal way of ' ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. A useful alternative is to use
Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the server
will check that the character conversionis possible.

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recognizes
backslash escapesin both regular and escape string constants. However, as of PostgreSQL 9.1, the
default ison, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f , but it is better to migrate away from using backslash escapes. If you need to use
abackslash escape to represent a specia character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL al so supportsanother type of escape syntax for stringsthat allows specifying arbitrary Unicode
characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for
example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces around the
operator to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by

38

SQL Syntax

writing abackslash followed by the four-digit hexadecimal code point number or alternatively abackslash
followed by a plus sign followed by a six-digit hexadecimal code point number. For example, the string
' dat a' could bewritten as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, a double quote, or a whitespace character.

To include the escape character in the string literaly, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makesthisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queriesin such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside the dollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
ismost commonly used in writing function definitions. For example:

39

SQL Syntax

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence g[\ t \ r\ n\ vi\] g representsadollar-quoted literal string [\ t\ r\n\ vi\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
guote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashesin parsing the original string constant, and then to one when the inner
string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued acrosslinesin the same way asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isone or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

40

SQL Syntax

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseit is presumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwise it istaken to betype nuner i ¢. Constants that contain
decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most casesthe constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ("string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. Theresult is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' stri ng'
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntax isthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for afew data types, but PostgreSQL allows it for all types. The syntax
with: ; ishistorical PostgreSQL usage, asisthe function-call syntax.

41

SQL Syntax

4.1.3.

4.1.4.

Operators

An operator name is a sequence of up to NAVMEDATALEN-1 (63 by default) characters from the following
list:

+-*[<>=~1@#N & | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% & | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named @
you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator names
not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

 Parentheses(()) have their usual meaning to group expressions and enforce precedence. |n some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

e Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

» Thecolon (:) isused to select “dlices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

e Theasterisk (*) isused in some contextsto denote all the fields of atablerow or compositevalue. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

42

SQL Syntax

4.1.5. Comments

4.1.6.

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment beginswith/ * and extendsto the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have the
same precedence and are | eft-associative. The precedence and associativity of the operatorsis hard-wired
into the parser. Add parentheses if you want an expression with multiple operators to be parsed in some
other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETVWEENI NLI KEI LI KESI M LAR range containment, set membership,
string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE, IS NULL,IS
DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
oR left logical digunction

43

SQL Syntax

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator nameis used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dlightly different operator precedence rules. In particular,
<=>= and <> used to be treated as generic operators; | S tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changeswill result in no behavioral change, or perhapsin “no such
operator” failures which can be resolved by adding parentheses. However there are corner cases
in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions

Vaue expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesinl NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimescalled ascalar, to distinguish it from the result of atable expression (which
isatable). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax alows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

A positional parameter reference, in the body of afunction definition or prepared statement
* A subscripted expression

» A field selection expression

» An operator invocation

A function call

» An aggregate expression

* A window function call

e A typecast

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

A collation expression

A scalar subquery

e Anarray constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have aready discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utTmnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dlias for a table
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]

or multiple adjacent elements (an “array dice”) can be extracted by writing

45

SQL Syntax

4.2.4.

4.2.5.

expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nmyt abl e. arraycol umJ 4]

nmyt abl e. two_d_col umm[17] [34]
$1[10: 42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dname

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positiona parameter. For example:

nyt abl e. mycol um
$1. somecol um
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(conposi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e isatable name not a schema name in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(compositecol).*
This notation behaves differently depending on context; see Section 8.16.5 for details.
Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)

46

SQL Syntax

4.2.6.

4.2.7.

oper at or expr essi on (unary prefix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schemm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:
function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
The list of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notationscol (tabl e) andt abl e. col areinterchangeable. Thisbehavior isnot SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields’.
For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter_clause)]

47

SQL Syntax

aggregate _nane ([expression [, ...]]) WTHN GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_narme isapreviously defined aggregate (possibly qualified with aschemaname) and
expr essi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by_cl ause andfi |l t er _cl ause are described below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generaly only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yieldsthetotal number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, ni n produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as ar ray_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order _by_cl ause can be used to specify the desired ordering. The or der _by_cl ause has the
same syntax asfor aquery-level ORDER BY clause, asdescribed in Section 7.5, except that its expressions
are aways just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROM tabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless sinceit's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

48

SQL Syntax

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There is
a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (...), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP
order by cl ause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from
the aggregated argumentslisted intheor der _by_cl ause. Unlikeregular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is.

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncome column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(and filter_cl ause if any) contain only outer-level variables: the aggregate then belongs to the

49

SQL Syntax

4.2.8.

nearest such outer level, and is evaluated over the rows of that query. The aggregate expression asawhole
is then an outer reference for the subquery it appears in, and acts as a constant over any one evaluation
of that subquery. The restriction about appearing only in the result list or HAVI NG clause applies with
respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has accessto all the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nhane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST} 1 [, ---11

[frane_cl ause]

The optional f r ane_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andf ranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

andf rame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

50

SQL Syntax

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is areference to a named window specification defined in the query's W NDOWCclause.
Alternatively, afull wi ndow_defi ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWCclause; seethe SELECT reference page for details. It'sworth
pointing out that OVER wnane is not exactly equivalent to OVER (wname ...); thelatter implies
copying and modifying the window definition, and will berejected if the referenced window specification
includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Thefranme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runsfromtheframe_start tothefrane_end. If
frame_end is omitted, the end defaults to CURRENT ROW

A frane_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, af r ame_st art of CURRENT ROWmeansthe frame startswith the current
row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the current row),
while af rame_end of CURRENT ROWmMmeans the frame ends with the current row's last peer row. In
ROWS5 mode, CURRENT ROWSs mply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of the
of f set depends on the frame mode:

* In ROWE mode, the of f set must yield anon-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

* InGROUPS mode, the of f set again must yield anon-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the of f set expression varies
depending on the data type of the ordering column. For numeric ordering columnsit istypically of the
same type as the ordering column, but for datetime ordering columnsitisani nt er val . For example,
if the ordering columnisof typedat e ort i mest anp, onecould write RANGE BETVEEN ' 1 day'
PRECEDI NG AND ' 10 days' FCOLLOW NG Theof f set isstill required to be non-null and non-
negative, though the meaning of “non-negative’ depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than el sewhere.

51

SQL Syntax

4.2.9.

Notice that in both ROAS and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NG are equivalent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r ame_excl usi on option allowsrowsaround the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER
BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f rame_end cannot be
UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list of
frame_start andfrane_end optionsthanthef rane_st art choice does— for example RANGE
BETWEEN CURRENT ROW AND of fset PRECEDI NGis not alowed. But, for example, ROAS
BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGisallowed, eventhough it would never select any rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.62. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TION BY x ORDER BY vy). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-timetype conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that thisis subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal representsthe initial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

52

SQL Syntax

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

It isalso possible to specify atype cast using afunction-like syntax:

typenane (expression)

However, this only worksfor types whose names are also valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the names i nt er val ,
time,andti mest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, thisis not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expression it appliesto:

expr COLLATE coll ation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column isinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:
SELECT a, b, ¢ FROMtbhl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that has local e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that is applied by the operator or function isderived by considering all arguments, and

53

SQL Syntax

an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 24.2.)
Thus, this gives the same result as the previous example;

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisis an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
typebool ean.

4.2.11. Scalar Subqueries

A scalar subguery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT nmax(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]11);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In thisform, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}

55

SQL Syntax

(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5, 10}}

(1 row)

The subguery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'"this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to alist of the elements
of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if tablet has columnsf 1 and f 2, these are the same:

SELECT RON(t.*, 42) FROMt;
SELECT RON(t.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without . *, for instance RON(t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type — either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

56

SQL Syntax

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesor testarow with1 S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sanme');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

57

SQL Syntax

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws of
Boolean algebra.

When it is essentia to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > O THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 38.7, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > O THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in thetablehasx > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and loca variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN ni n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

58

SQL Syntax

4.3. Calling Functions

4.3.1.

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parametersthat have default values given in the function declaration need not be written
inthecall at al. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of thisfunction definition are not important here (see Chapter 38 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

59

SQL Syntax

4.3.2.

4.3.3.

SELECT concat _| ower _or_upper (' Hello', "Wrld');
concat _| ower _or _upper

hell o world

(1 row

Here, theupper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left solong asthey have defaults.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it isset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld' , uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

60

SQL Syntax

SELECT concat _| ower _or_upper('Hello', '"Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as awindow function).

61

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what datais stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are i nt eger for whole numbers,
numer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i ne for time-
of-day values, and t i nest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

62

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tablesand columns. For instance, thereisachoice of using singular or plural nounsfor table names,
both of which are favored by some theorist or other.

Thereisalimit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusua and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE mny _first _table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A datamanipulation
command can al so request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:
CREATE TABLE products (

product _no i nteger,
name text,

63

Data Definition

price numeric DEFAULT 9. 99
)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columnswhat aview isfor tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage asif it werea
normal column. A virtual generated column occupies no storage and is computed when it isread. Thus, a
virtual generated columnissimilar to aview and astored generated columnissimilar toamaterialized view
(except that it is always updated automatically). PostgreSQL currently implements only stored generated
columns.

Tocreate agenerated column, usethe GENERATED ALWAYS AS clausein CREATE TABLE, for example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _i n numeri ¢ GENERATED ALWAYS AS (height_cm/ 2.54) STORED
)

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot be
specified for agenerated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default is
evaluated once when therow isfirst inserted if no other value was provided; agenerated column is updated
whenever the row changes and cannot be overridden. A column default may not refer to other columns of
the table; a generation expression would normally do so. A column default can use volatile functions, for
exampler andon{) or functionsreferring to the current time; thisis not allowed for generated columns.

64

Data Definition

Several restrictions apply to the definition of generated columns and tables involving generated columns:

» The generation expression can only use immutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.
A generation expression cannot reference a system column, except t abl eoi d.
A generated column cannot have a column default or an identity definition.

* A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance:

« If aparent column is a generated column, a child column must also be a generated column using the
same expression. In the definition of the child column, leave off the GENERATED clause, as it will
be copied from the parent.

« In case of multiple inheritance, if one parent column is a generated column, then all parent columns
must be generated columns and with the same expression.

« |f aparent columnisnot agenerated column, achild column may be defined to be agenerated column
or not.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So, it
is possible to arrange it so that a particular role can read from a generated column but not from the
underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

5.4.1.

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereis no standard datatype that accepts only positive numbers. Another
issueisthat you might want to constrain column datawith respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store datain a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

65

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to
a particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

66

Data Definition

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted price > 0 AND price > discounted price)

)
It's amatter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted _price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-
row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/rel oad problem because pg_dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

67

Data Definition

Note

PostgreSQL assumes that CHECK constraints conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table dataisreally aspecia case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined functionina
CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not noticeif there are rowsin the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such
achangeisto drop the constraint (using ALTER TABLE), adjust the function definition, and re-
add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating acheck constraint CHECK (col unm_nane |'S NOT NULL) , butin PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

68

Data Definition

5.4.3.

)
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no i nteger UNI QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)
when written as a table constraint.
To define aunique constraint for agroup of columns, write it as atable constraint with the column names

separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
);

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAI NT rust_be_different UN QUE,
name text,
price nuneric

)

69

Data Definition

5.4.4.

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A unigqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin thetable. Thisrequires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no i nteger PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unigue B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it isusually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keysreferencing its table.

70

Data Definition

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

L et's al so assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table;

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstabl e isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qguantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a i nteger PRI MARY KEY,
b integer,
c integer,
FOREI GN KEY (b, c¢) REFERENCES other _table (cl, c2)

71

Data Definition

)

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimesit is useful for the “ other table” of aforeign key constraint to be the sametable; thisis called a
self-referential foreign key. For example, if you want rows of atable to represent nodes of atree structure,
you could write

CREATE TABLE tree (
node_id integer PRI MARY KEY,
parent id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, while non-NULL par ent _i d entries would be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disalow deleting areferenced product
» Delete the orders as well
e Something else?

72

Data Definition

To illustrate this, |et's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of
a referenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTI ON allows the check to be deferred until later in
the transaction, whereas RESTRI CT does not.) CASCADE specifies that when areferenced row is deleted,
row(s) referencing it should be automatically deleted as well. There are two other options: SET NULL
and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or
their default values, respectively, when the referenced row is deleted. Note that these do not excuse you
from observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of areferenced column will require a scan of the referencing
tablefor rows matching the old value, it is often agood ideato index the referencing columnstoo. Because
thisis not aways needed, and there are many choices available on how to index, declaration of aforeign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

73

Data Definition

5.4.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting a name will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

tabl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since without
it, it'sdifficult to tell which individual table arow came from. Thet abl eoi d can be joined against
theoi d column of pg_cl ass to obtain the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzeroin avisiblerow version. That usually indicatesthat the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although thect i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Therefore ct i d is useless as a long-term row identifier. A primary key should be used to
identify logical rows.

74

Data Definition

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction 1Ds
to wrap around. Thisis not afatal problem given appropriate maintenance procedures; see Chapter 25 for
details. It is unwise, however, to depend on the uniqueness of transaction I1Ds over the long term (more
than one hillion transactions).

Command identifiers are also 32-bit quantities. This creates ahard limit of 2% (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.6. Modifying Tables

5.6.1.

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that
thisis conceptually distinct from atering the data contained in the table: here we are interested in atering
the definition, or structure, of the table.

You can:

* Add columns

* Remove columns

» Add constraints

* Remove constraints

» Change default values

» Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN descri ption text;

Thenew columnisinitially filled with whatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. |nstead,
the default value will be returned the next time the row is accessed, and applied when the tableis
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default valueisvolatile (e.g., cl ock_ti mest anp()) each row will need to be
updated with the value calculated at thetime ALTER TABLE is executed. To avoid a potentially
lengthy update operation, particularly if you intend tofill the column with mostly nondefault values

75

Data Definition

5.6.2.

5.6.3.

5.6.4.

anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <>
)

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.14 for a description of the general mechanism behind this,

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_nane UNI QUE (product no);

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as atable constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

76

Data Definition

5.6.5.

5.6.6.

5.6.7.

5.6.8.

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunique or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUMWN price TYPE nuneric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
congtraints that involve the column. But these conversions might fail, or might produce surprising results.
It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

Renaming a Table

77

Data Definition

To rename atable:

ALTER TABLE products RENAMVE TO iterns;

5.7. Privileges

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or a superuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCRARY, EXECUTE, and USAGE. The privileges
applicableto aparticular object vary depending on the object'stype (table, function, etc). More detail about
the meanings of these privileges appears below. The following sections and chapters will also show you
how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 22.3.)

An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE tabl e_nane OANER TO new_owner ;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the object
(or amember of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role” name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 22.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege “with grant option”, which givesthe recipient theright to grant it in turn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make atable read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

78

Data Definition

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is a'so needed to reference existing
columnvaluesin UPDATE or DEL ETE. For sequences, this privilege also allowsuse of thecur r val
function. For large objects, this privilege allows the object to be read.

| NSERT

Allows | NSERT of anew row into atable, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the | NSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of atable, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR
UPDATE and SELECT ... FOR SHARE aso require this privilege on at least one column, in
addition to the SELECT privilege. For sequences, this privilege alows use of the next val and
set val functions. For large objects, this privilege allows writing or truncating the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publications to be created within the database, and alows
trusted extensions to be installed within the database.

For schemas, alows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

79

Data Definition

TEMPORARY
Allows temporary tables to be created while using the database.

EXECUTE

Allows calling afunction or procedure, including use of any operatorsthat are implemented on top of
the function. Thisis the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, alows use of the language for the creation of functions in that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own
privilege requirements are also met). Essentialy this allows the grantee to “look up” objects within
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements that
have previously performed thislookup, so thisisnot acompletely secure way to prevent object access.

For sequences, allows use of the cur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control al “usage” of the type, such asvalues of the
type appearing in queries. It only prevents objects from being created that depend on the type. The
main purpose of this privilege is controlling which users can create dependencies on a type, which
could prevent the owner from changing the type later.)

For foreign-data wrappers, alows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create, alter,
or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on sometypes of objectsto PUBLI Cby default when the objects are created.
No privilegesaregranted to PUBL | Cby default ontables, table columns, sequences, foreign datawrappers,
foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default privileges
granted to PUBLI C are as follows: CONNECT and TEMPORARY (create temporary tables) privileges for
databases, EXECUTE privilege for functions and procedures; and USAGE privilege for languages and data
types (including domains). The object owner can, of course, REVOKE both default and expressly granted
privileges. (For maximum security, issue the REVOKE in the same transaction that creates the object; then
there is no window in which another user can use the object.) Also, these default privilege settings can be
overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 showsthe one-letter abbreviationsthat are used for these privilege typesin ACL (Access Control

List) values. You will see these lettersin the output of the psgl commands listed below, or when looking
at ACL columns of system catalogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and
table-like objects), table column

| NSERT a (“append”) TABLE, table column

80

Data Definition

Privilege Abbreviation Applicable Object Types

UPDATE w (“write”) LARCGE OBJECT, SEQUENCE, TABLE, table
column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEVA, TABLESPACE

CONNECT (o] DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI QN, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA,
SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psgl command that can be used to examine privilege settings for each object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psgl Command
Privileges
DATABASE CTc Tc \
DOVAI N u u \ dD+
FUNCTI ON or PROCEDURE X X \ df +
FOREI GN DATA WRAPPER U none \ dew+
FORElI GN SERVER U none \ des+
LANGUAGE u u \dL+
LARGE OBJECT rw none
SCHEMA uc none \ dn+
SEQUENCE rwJ none \dp
TABLE (and table-like objects) ar wdDxt none \dp
Table column ar wx none \dp
TABLESPACE C none \ db+
TYPE U U \dT+

The privileges that have been granted for a particular object are displayed asalist of acl i t ementries,
where each acl i t emdescribes the permissions of one grantee that have been granted by a particular
grantor. For example, cal vi n=r *w hobbes specifiesthat therolecal vi n hasthe privilege SELECT
(r) with grant option (*) as well as the non-grantable privilege UPDATE (W), both granted by the role
hobbes. If cal vi n aso has some privileges on the same object granted by a different grantor, those
would appear asaseparateacl i t ementry. An empty granteefieldinanacl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:

81

Data Definition

GRANT SELECT ON nytabl e TO PUBLI C,
GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;
GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- T
oo e e e e oo oo - S
public | nytable | table | mriamrarwdDxt/mriam+| col 1:

+|

| | | =r/mriam +| mriamrw=srw

mriam |

| | | adm n=arw/ mriam |
|
(1 row

If the “ Access privileges’ column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type,
as explained above. The first GRANT or REVOKE on an object will instantiate the default privileges
(producing, for example, mi r i amrar wdDxt / mi r i an) and then modify them per the specified request.
Similarly, entries are shown in “Column privileges’ only for columns with nondefault privileges. (Note:
for this purpose, “default privileges’ always means the built-in default privileges for the object's type.
An object whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES command will
always be shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rows can be returned by normal queriesor inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By default,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rowswithin it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
al normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (The only exceptionstothisrulearel eakpr oof functions, which are guaranteed to

82

Data Definition

not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table owners normally bypass row security as well, though atable owner can choose to
be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

Policiesare created using the CREATE POLICY command, atered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
usethe ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to alow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesa W TH CHECK clause identical to its USI NG clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or
DELETE existing rows belonging to a different manager) and to rows modified by a command (so rows
belonging to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users on the
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_nanme = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,
multiple policies can be combined. This pair of policies would allow al users to view all rows in the
user s table, but only modify their own:

CREATE PCLI CY user_sel _policy ON users

83

Data Definition

FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The tablepasswd
emulates a Unix password file:

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admin', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies

-- Adm nistrator can see all rows and add any rows

CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);

-- Nornmal users can view all rows

CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);

-- Normal users can update their own records, but

-- limt which shells a normal user is allowed to set

CREATE PCLI CY user _nmod ON passwd FOR UPDATE

84

Data Definition

USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user _name, uid, gid, real _name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for relation passwd

post gres=> sel ect

user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

85

Data Definition

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh

(3 rows)

post gr es=> update passwd set user_nane = 'joe';

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

All of the policies constructed thusfar have been permissive policies, meaning that when multiple policies
are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | hone_phone | extra_info
| home_dir | shell

86

Data Definition

(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such asunique or primary key constraints and foreign key references, always
bypass row security to ensure that data integrity is maintained. Care must be taken when devel oping
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could alow information
leskage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),

87

Data Definition

('very secret', 5);
ALTER TABLE i nfornati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decidesthat mal | ory
should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id = 1 WHERE user_nane = '"mallory';

UPDATE i nformation SET info = 'secret frommallory' WHERE group_id =
2;

COW T;

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there is arace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or nmat i on row just after al i ce'sdoes. It blockswaiting
for al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (hereuser s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT
could be embedded into a security definer function.) Also, heavy concurrent use of row share locks on
the referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSI VE
lock on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of the
referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

88

Data Definition

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and afew other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe intwo databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas a so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schenal and myschenma can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschenmm;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

89

Data Definition

5.9.2.

5.9.3.

CREATE TABLE myschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschema CASCADE;
See Section 5.14 for a description of the general mechanism behind this,

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your usersto well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public”. Every new database contains such
aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public. products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is alist
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internas, adding a schema to sear ch_pat h effectively trusts al users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create

90

Data Definition

objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

Thefirst schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tableswill be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschenms;

Then we no longer have accessto the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipul ate the schema search path.

The search path worksin the same way for data type names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

91

Data Definition

5.9.4.

5.9.5.

5.9.6.

OPERATOR(schemma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USAGE privilege on the schema To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can aso beallowed to create objectsin someone el se's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schemapubl i c. Thisalowsall usersthat are able to connect to a given database to create objectsin
itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit isakey word, hence the different capitalization; recall the guidelinesfrom
Section4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tablesand all the built-in datatypes, functions, and operators. pg_cat al og isalways
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it isbest to avoid such names to ensure that you won't suffer a
conflict if somefuture version definesasystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. Therearea
few usage patterns easily supported by the default configuration:

 Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create aschemafor each user with the same name asthat user.
Recall that the default search path starts with $user , which resolves to the user name. Therefore, if

92

Data Definition

5.9.7.

5.10

each user has a separate schema, they accesstheir own schemas by default. After adopting thispatternin
adatabase where untrusted users had already logged in, consider auditing the public schemafor objects
named like objects in schemapg_cat al og. This pattern is a secure schema usage pattern unless an
untrusted user is the database owner or holds the CREATEROLE privilege, in which case no secure
schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ability to
create objectsin the public schema, but only qualified names will choose those objects. While qualified
table references are fine, cals to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, thisis secure unless an untrusted user is the database owner or holds the CREATEROLE

privilege.

» Keep the default. All users access the public schema implicitly. This simulates the situation where
schemasare not availableat all, giving asmooth transition from the non-schema-aware world. However,
thisisnever asecure pattern. It is acceptable only when the database has asingle user or afew mutually-
trusting users.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schemaname, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoes not exist.
Moreover, some implementations do not allow you to create schemas that have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
to really consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define atypeinheritance feature, which differsin many respectsfrom the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

CREATE TABLE cities (

93

Data Definition

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM cities
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ o,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ N,
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can aso writethetable namewith atrailing * to explicitly specify that descendant tables areincluded:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * isnot necessary, since thisbehavior is awaysthe default. However, this syntax is till supported
for compatibility with older releases where the default could be changed.

94

Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.relnane, c.nanme, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolically:

SELECT c. tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tablesin
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
| NSERT alwaysinsertsinto exactly thetable specified. In some casesit is possibleto redirect the insertion
using arule (see Chapter 41). However that does not help for the above case because theci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique,
primary key, and foreign key constraints) are not inherited.

95

Data Definition

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“merged” so that thereisonly one such columninthe child table. To be merged, columns
must have the sasme datatypes, else an error israised. Inheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way can
have a new parent relationship added, using the | NHERI T variant of ALTER TABLE. To do thisthe new
child table must already include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child isto use the L1 KE
clausein CREATE TABLE. This creates a new table with the same columns as the source table. If there
are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to
LI KE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and al of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columnsthat are depended on by other tablesis only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission ontheci t i es table implies permission to update rowsinthe capi t al s tableas
well, when they are accessed through ci t i es. This preserves the appearance that the data is (also) in
the parent table. But the capi t al s table could not be updated directly without an additional grant. In
asimilar way, the parent tabl€e's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child tabl€e's policies, if any, are applied only when it isthe table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tablesand
do not support recursing over inheritance hierarchies. Therespective behavior of each individual command
is documented in its reference page (SQL Commands).

96

Data Definition

5.11.

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both the referencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

e Ifwedeclaredci t i es.nanme tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi tal s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
congtraint at al, and so could contain multiple rows with the same name. You could add a unique
congtraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if we were to specify that ci t i es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nanme) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable careis needed in deciding whether partitioning with legacy inheritanceis useful
for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in asingle partition or a small number of partitions. Partitioning
effectively substitutes for the upper tree levels of indexes, making it more likely that the heavily-used
parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be improved
by using a sequential scan of that partition instead of using an index, which would require random-
access reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern is
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or doing
ALTER TABLE DETACH PARTI TI ON, is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although arule of thumb
isthat the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date

97

Data Definition

ranges, or by ranges of identifiersfor particular business objects. Each range's bounds are understood
as being inclusive at the lower end and exclusive at the upper end. For example, if one partition's
rangeisfrom1 to 10, and the next one'srangeisfrom 10 to 20, then value 10 belongs to the second
partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, aternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allowsyou to declare that atableisdivided into partitions. Thetablethat isdivided isreferred
to as a partitioned table. The declaration includes the partitioning method as described above, plus alist
of columns or expressions to be used as the partition key.

The partitioned table itself isa“virtual” table having no storage of its own. Instead, the storage belongs to
partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition stores
a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table will be
routed to the appropriate one of the partitions based on the values of the partition key column(s). Updating
the partition key of arow will cause it to be moved into a different partition if it no longer satisfies the
partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own indexes,
constraints and default values, distinct from those of other partitions. See CREATE TABLE for more
details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible
to add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; this can simplify and speed up many
maintenance processes. See ALTER TABLE to learn more about the ATTACH PARTI TI ONand DETACH
PARTI Tl ON sub-commands.

Partitions can aso be foreign tables, although they have some limitations that normal tables do not; see
CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day aswell asice cream sales in each region. Conceptually, we want atable like:

CREATE TABLE neasurenent (
city id int not null,
| ogdat e date not null,

98

Data Definition

peakt enmp int,
uni t sal es i nt

)

We know that most querieswill accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:
1. Create the measur enment table as a partitioned table by specifying the PARTI TI ON BY clause,

which includes the partitioning method (RANGE in this case) and the list of column(s) to use as the
partition key.

CREATE TABLE neasurenent (

city_id int not null,
| ogdat e date not null,
peakt ermp i nt,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdat e);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at atime. So the commands might look like:

CREATE TABLE neasur enent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01");

CREATE TABLE neasur enent _y2006n03 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-03-01') TO ('2006-04-01");

CREATE TABLE nmeasurenent _y2007mll PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE nmeasurenent _y2007nml2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enment _y2008n01 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
W TH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

99

Data Definition

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clausein the commands
used to create individual partitions, for example:

CREATE TABLE nmeasur enment _y2006n02 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any data inserted into neasur enent
that is mapped to neasurement y2006nD2 (or data that is directly inserted into
measur enent _y2006n02, which is allowed provided its partition constraint is satisfied) will be
further redirected to one of its partitions based on the peakt enrp column. The partition key specified
may overlap with the parent's partition key, although care should be taken when specifying the bounds
of a sub-partition such that the set of data it accepts constitutes a subset of what the partition's own
bounds allow; the system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditionsfor
partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual dataisin child indexes on the individual partition tables.

CREATE | NDEX ON measur enent (| ogdate);
4., Ensure that the enable partition pruning configuration parameter is not disabled in
post gresqgl . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain static.
It is common to want to remove partitions holding old data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasur enent _y2006n02;

Thiscan very quickly delete millions of records because it doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

Another option that is often preferableisto remove the partition from the partitioned table but retain access
toitasatableinitsown right. This has two forms:

100

Data Definition

ALTER TABLE measur enment DETACH PARTI TI ON measur enment _y2006nD2;
ALTER TABLE measur enment DETACH PARTI TI ON measur ement _y2006n02
CONCURRENTLY;

These alow further operations to be performed on the data before it is dropped. For example, thisis often
a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful time
to aggregate datainto smaller formats, perform other data manipulations, or run reports. The first form of
the command requires an ACCESS EXCLUSI VE lock on the parent table. Adding the CONCURRENTLY
qualifier asin the second form allowsthe detach operation to require only SHARE UPDATE EXCLUSI VE
lock on the parent table, but see ALTER TABLE ... DETACH PARTI Tl ON for details on the
restrictions.

Similarly we can add anew partition to handle new data. We can create an empty partition in the partitioned
table just as the origina partitions were created above:

CREATE TABLE neasurenent _y2008nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it aproper partition later. This allows new datato be loaded, checked, and transformed prior to it
appearing in the partitioned table. The CREATE TABLE ... LI KEoptionishelpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01');

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE neasur enent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

The ATTACH PARTI TI ON command requires taking a SHARE UPDATE EXCLUSI VE lock on the
partitioned table.

Before running the ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-redundant CHECK
congtraint after the ATTACH PARTI Tl ONis complete. If the table being attached is itself a partitioned
table then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table hasa DEFAULT partition, it isrecommended to create a CHECK constraint
which excludesthe to-be-attached partition's constraint. If thisisnot done then the DEFAULT partition will
be scanned to verify that it contains no records which should belocated in the partition being attached. This

101

Data Definition

operation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe DEFAULT partition.
If the DEFAULT partition isitself a partitioned table then each of its partitionswill be recursively checked
in the same way as the table being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically totheentire hierarchy. Thisisvery convenient, asnot only will the existing partitionsbecome
indexed, but also any partitions that are created in the future will. One limitation isthat it's not possible to
use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock times, it is
possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index ismarked invalid, and the
partitions do not get theindex applied automatically. The indexes on partitions can be created individually
using CONCURRENTLY, and then attached to theindex on the parent using ALTER | NDEX .. ATTACH
PARTI Tl ON. Once ind