 |
My Project
UNKNOWN_GIT_VERSION
|
Go to the documentation of this file.
14 if (
f.inCoeffDomain() ||
g.inCoeffDomain())
29 if (
pi.isUnivariate())
72 return gcd_univar_ntlp(
pi, pi1 ) * C;
103 C *=
gcd (oldPi, oldPi1);
115 C *=
gcd (oldPi, oldPi1);
124 bi =
LC(
pi,
v ) * powHi*Hi;
126 bi = -
LC(
pi,
v ) * powHi*Hi;
133 C *=
gcd (oldPi, oldPi1);
146 if (!
pi.isUnivariate())
180 pi1 = pi1 / Ci1;
pi =
pi / Ci;
191 return gcd_univar_ntl0(
pi, pi1 ) * C;
195 return gcd_poly_univar0(
pi, pi1,
true ) * C;
CanonicalForm psr(const CanonicalForm &rr, const CanonicalForm &vv, const Variable &x)
CanonicalForm psr ( const CanonicalForm & f, const CanonicalForm & g, const Variable & x )
CanonicalForm subResGCD_0(const CanonicalForm &f, const CanonicalForm &g)
subresultant GCD over Z.
bool gcd_test_one(const CanonicalForm &f, const CanonicalForm &g, bool swap, int &d)
Coprimality Check. f and g are assumed to have the same level. If swap is true, the main variables of...
bool isPurePoly(const CanonicalForm &f)
bool delta(X x, Y y, D d)
#define GaloisFieldDomain
Rational abs(const Rational &a)
CanonicalForm gcd_univar_flint0(const CanonicalForm &F, const CanonicalForm &G)
static const int SW_USE_FF_MOD_GCD
set to 1 to use modular GCD over F_q
CanonicalForm subResGCD_p(const CanonicalForm &f, const CanonicalForm &g)
subresultant GCD over finite fields. In case things become too dense we switch to a modular algorithm
template CanonicalForm tmax(const CanonicalForm &, const CanonicalForm &)
factory's class for variables
static const int SW_USE_EZGCD_P
set to 1 to use EZGCD over F_q
CanonicalForm gcd_univar_flintp(const CanonicalForm &F, const CanonicalForm &G)
const Variable & v
< [in] a sqrfree bivariate poly