
Gretl Manual

Gnu Regression, Econometrics and Time-series Library

Allin Cottrell
Department of Economics

Wake Forest University

October, 2003

Gretl Manual: Gnu Regression, Econometrics and Time-series Library
by Allin Cottrell

Copyright © 2001–2003 Allin Cottrell

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.1 or any later version published by the Free Software Foundation (see

http://www.gnu.org/licenses/fdl.html).

iii

Table of Contents
1. Introduction... 1

Features at a glance ... 1
Acknowledgements .. 1
Installing the programs... 2

2. Getting started .. 4

Let’s run a regression .. 4
Estimation output... 6
The main window menus.. 7
The gretl toolbar... 10

3. Modes of working .. 12

Command scripts ... 12
The gretl console .. 13
The “session” concept ... 14

4. Data files ... 17

Native format .. 17
Other data file formats.. 17
Binary databases... 17
Creating a data file from scratch .. 18
Missing data values .. 20

5. Panel data ... 21

Panel structure .. 21
Dummy variables.. 21
Using lagged values with panel data .. 22
Pooled estimation... 23
Illustration: the Penn World Table.. 23

6. Graphs and plots .. 25

Gnuplot graphs ... 25
Boxplots.. 26

7. Nonlinear least squares .. 28

Introduction and examples .. 28
Initializing the parameters ... 28
NLS dialog window... 28
Analytical and numerical derivatives... 29
Controlling termination .. 29
Details on the code... 30
Numerical accuracy.. 30

8. Loop constructs .. 32

Monte Carlo simulations... 32
Iterated least squares .. 33
Indexed loop.. 35

9. Options, arguments and path-searching.. 36

gretl ... 36
gretlcli ... 37
Path searching... 38

10. Command Reference... 40

Introduction... 40
gretl commands .. 40
Estimators and tests: summary... 64

iv

11. Troubleshooting gretl... 67

Bug reports .. 67
Auxiliary programs .. 67

12. The command line interface ... 68

Gretl at the console.. 68
Changes from Ramanathan’s ESL.. 68

A. Data file details... 70

Basic native format .. 70
Traditional ESL format .. 70
Binary database details ... 71

B. Technical notes... 73

C. Numerical accuracy... 74

D. Advanced econometric analysis with free software ... 75

E. Listing of URLs .. 76

Bibliography... 78

v

List of Tables
7-1. Nonlinear regression: the NIST tests ... 31
9-1. Default path settings... 38
10-1. Examples of use of genr command.. 48
10-2. Estimators ... 65
10-3. Tests for models .. 65

List of Figures
2-1. Practice data files window.. 4
2-2. Main window, with a practice data file open.. 5
2-3. Model specification dialog ... 5
2-4. Model output window ... 6
3-1. Script window, editing a command file ... 12
3-2. Icon view: one model and one graph have been added to the default icons 14
3-3. Example of model table .. 15
6-1. gretl’s gnuplot controller ... 25
7-1. NLS dialog box .. 29

List of Examples
5-1. Lags with panel data.. 22
5-2. Use of the Penn World Table ... 24
7-1. Consumption function from Greene.. 28
7-2. Nonlinear function from Russell Davidson.. 28
8-1. Simple Monte Carlo loop .. 32
8-2. Nonlinear consumption function ... 33
8-3. ARMA 1, 1 .. 34
8-4. Indexed loop example ... 35
8-5. Second indexed loop example... 35

1

Chapter 1. Introduction

Features at a glance

gretl is an econometrics package, including a shared library, a command-line client program
and a graphical user interface.

User-friendly

gretl offers an intuitive user interface; it is very easy to get up and running with econo-
metric analysis. Thanks to its association with the econometrics textbooks by Ramu Ra-
manathan and Jeffrey Wooldridge the package offers many practice data files and com-
mand scripts. These are well annotated and accessible.

Flexible

You can choose your preferred point on the spectrum from interactive point-and-click to
batch processing, and can easily combine these approaches.

Cross-platform

gretl’s home platform is Linux, but it is also available for MS Windows. I have compiled it
on AIX and it should work on any unix-like system that has the appropriate basic libraries
(see Appendix B).

Open source

The full source code for gretl is available to anyone who wants to critique it, patch it, or
extend it. The author welcomes any bug reports.

Reasonably sophisticated

gretl offers a full range of least-squares based estimators, including two-stage least
squares and nonlinear least squares. It also offers (binomial) logit and probit estimation,
and has a loop construct for running Monte Carlo analyses or iterative estimation of non-
linear models. While it does not include all the estimators and tests that a professional
econometrician might require, it supports the export of data to the formats of (GNU R)
and (GNU Octave) for further analysis (see Appendix D).

Accurate

gretl has been thoroughly tested on the NIST reference datasets. See Appendix C.

Internet ready

gretl can access and fetch databases from a server at Wake Forest University. The MS
Windows version comes with an updater program which will detect when a new version
is available and offer the option of auto-updating.

International

gretl will produce its output in English, Spanish or French, depending on your computer’s
native language setting.

Acknowledgements

My primary debt is to Professor Ramu Ramanathan of the University of California, San Diego.
A few years back he was kind enough to provide me with the source code for his program ESL
(“Econometrics Software Library”), which I ported to Linux, and since then I have collaborated
with him on updating and extending the program. For the gretl project I have made extensive
changes to the original ESL code. New econometric functionality has been added, and the

Introduction 2

graphical interface is entirely new. Please note that Professor Ramanathan is not responsible
for any bugs in gretl.

I am grateful to William Greene, author of Econometric Analysis, for permission to include in
the gretl distribution some of the data sets analysed in his text, and to Jeffrey Wooldridge
for helping me prepare a gretl version of the data sets from his Introductory Econometrics: A
Modern Approach.

With regard to the internationalization of gretl, I wish to thank Ignacio Díaz-Emparanza and
Michel Robitaille, who prepared the Spanish and French translations respectively.

I have benefitted greatly from the work of numerous developers of open-source software: for
specifics please see Appendix B to this manual. My thanks are due to Richard Stallman of
the Free Software Foundation, for his support of free software in general and for agreeing to
“adopt” gretl as a GNU program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection
particular thanks are due to Ignacio Díaz-Emparanza and Dirk Eddelbuettel, who maintains
the gretl package for Debian GNU/Linux.

Installing the programs

Linux

On the Linux1 platform you have the choice of compiling the gretl code yourself or making
use of a pre-built package. Ready-to-run packages are available in rpm format (suitable for
Red Hat Linux and related systems) and also deb format (Debian GNU/Linux). I am grateful to
Dirk Eddelbüttel for making the latter. If you prefer to compile your own (or are using a unix
system for which pre-built packages are not available) here is what to do.

1. Download the latest gretl source package from gretl.sourceforge.net.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar -xvfz gretl-N.tar.gz (replace N with the specific version number of the
file you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gretl-1.1.5).

4. The basic routine is then

./configure
make
make check
make install

However, you should probably read the INSTALL file first, and/or do ./configure --help
first to see what options are available. One option you way wish to tweak is --prefix.
By default the installation goes under /usr/local but you can change this. For example
./configure --prefix=/usr will put everything under the /usr tree. In the event that a
required library is not found on your system, so that the configure process fails, please
take a look at Appendix B of this manual.

As of version 0.97 gretl offers support for the gnome desktop. To take advantage of this
you should compile the program yourself (as described above). If you want to suppress the
gnome-specific features you can pass the option --without-gnome to configure.

1. Terminology is a bit of a problem here, but in this manual I will use “Linux” as shorthand to refer to the GNU/Linux
operating system. What is said herein about Linux mostly applies to other unix-type systems too, though some local modifi-
cations may be needed.

Introduction 3

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter
of downloading gretl_install.exe and running this program. You will be prompted for a
location to install the package (the default is c:\userdata\gretl).

Updating

If your computer is connected to the Internet, then on start-up gretl can query its home
website at Wake Forest University to see if any program updates are available; if so, a window
will open up informing you of that fact. If you want to activate this feature, check the box
marked “Tell me about gretl updates” under gretl’s “File, Preferences, General” menu.

The MS Windows version of the program goes a step further: it tells you that you can update
gretl automatically if you wish. To do this, follow the instructions in the popup window:
close gretl then run the program titled “gretl updater” (you should find this along with the
main gretl program item, under the Programs heading in the Windows Start menu). Once the
updater has completed its work you may restart gretl.

4

Chapter 2. Getting started

Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter
10 and Chapter 12 below for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment
let’s not do that: just fire up the program.1 You should see a main window (which will hold
information on the data set but which is at first blank) and various menus, some of them
disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open
a data file, create a new data file, read the help items, or open a command script. For now
let’s browse the supplied data files. Under the File menu choose “Open data, sample file, Ra-
manathan. . . ”. A second window should open, presenting a list of data files supplied with the
package (see Figure 2-1). The numbering of the files corresponds to the chapter organization
of Ramanathan (2002), which contains discussion of the analysis of these data. The data will
be useful for practice purposes even without the text.

Figure 2-1. Practice data files window

If you select a row in this window and click on “Info” this pops open the the “header file”
for the data set in question, which tells you something about the source and definition of the
variables. If you find a file that is of interest, you may open it by clicking on “Open”, or just
double-clicking on the file name. For the moment let’s open data3-6.

In gretl windows containing lists, double-clicking on a line launches a default action for the
associated list entry: e.g. displaying the values of a data series, opening a file.

1. For convenience I will refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gretl_x11 while on MS
Windows it is gretlw32.exe. On Linux systems a wrapper script named gretl is also installed — see also Chapter 9.

Getting started 5

This file contains data pertaining to a classic econometric “chestnut”, the consumption func-
tion. The data window should now display the name of the current data file, the overall data
range and sample range, and the names of the variables along with brief descriptive tags —
see Figure 2-2.

Figure 2-2. Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explana-
tory. For now we’ll dip into the Model menu; a brief tour of all the main window menus is
given in the Section called The main window menus below.

gretl’s Model menu offers numerous various econometric estimation routines. The simplest
and most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling
for a model specification — see Figure 2-3.

Figure 2-3. Model specification dialog

Getting started 6

To select the dependent variable, highlight the variable you want in the list on the left and
click the “Choose” button that points to the Dependent variable slot. If you check the “Set as
default” box this variable will be pre-selected as dependent when you next open the model
dialog box. Shortcut: double-clicking on a variable on the left selects it as dependent and also
sets it as the default. To select independent variables, highlight them on the left and click the
“Add” button (or click the right mouse button over the highlighted variable). To select several
variable in the list box, drag the mouse over them; to select several non-contiguous variables,
hold down the Ctrl key and click on the variables you want.

To run a regression with consumption as the dependent variable and income as independent,
click Ct into the Dependent slot and add Yt to the Independent variables list.

Estimation output

Once you’ve specified a model, a window displaying the regression output will appear. The
output is reasonably comprehensive and in a standard format (Figure 2-4).

Figure 2-4. Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to reprint the regression output in LaTeX format. You
can print the results in a tabular format (similar to what’s in the output window, but properly
typeset) or as an equation, across the page. For each of these options you can choose to
preview the typeset product, or save the output to file for incorporation in a LaTeX document.
Previewing requires that you have a functioning TeX system on your computer.

To import gretl output into a word processor, you may copy and paste from an output
window, using its Edit menu (or Copy button, in some contexts) to the target program. Many

Getting started 7

(not all) gretl windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”)
or as LaTeX. If you are pasting into a word processor, RTF may be a good option because the
tabular formatting of the output is preserved.2 Alternatively, you can save the output to a
(plain text) file then import the file into the target program. When you finish a gretl session
you are given the option of saving all the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command
to send the output directly to a printer.

When pasting or importing plain text gretl output into a word processor, select a monospaced or
typewriter-style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font
(10-point Courier should do) to prevent the output lines from being broken in the wrong place.

The main window menus

Reading left to right along the main window’s menu bar, we find the File, Utilities, Session,
Data, Sample, Variable, Model and Help menus.

§ File menu

—Open data: Open a native gretl data file or import from other formats. See Chapter 4.

—Append data: Add data to the current working data set, from a comma-separated or
spreadsheet file.

—Save data: Save the currently open native gretl data file.

—Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

—Export data: Write out the current data set in Comma Separated Values (CSV) format, or
the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix D.

—Clear data set: Clear the current data set out of memory. Generally you don’t have to do
this (since opening a new data file automatically clears the old one) but sometimes it’s
useful (see the Section called Creating a data file from scratch in Chapter 4).

—Browse databases: See the Section called Binary databases in Chapter 4 and the Section
called Creating a data file from scratch in Chapter 4.

—Create data set: Initialize the built-in spreadsheet for entering data manually. See the
Section called Creating a data file from scratch in Chapter 4.

—View command log: Open a window containing a record of the commands executed so
far.

—Open command file: Open a file of gretl commands, either one you have created yourself
or one of the practice files supplied with the package. If you want to create a command
file from scratch use the next item, New command file.

—Preferences: Set the paths to various files gretl needs to access. Choose the font in which
gretl displays text output. Select or unselect “expert mode”. (If this mode is selected

2. Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into applications
that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also that there appears to be
a bug in some versions of Windows, whereby the paste will not work properly unless the “target” application (e.g. MS Word)
is running prior to copying the material in question.

Getting started 8

various warning messages are suppressed.) Activate or suppress gretl’s messaging about
the availability of program updates. Configure or turn on/off the main-window toolbar.
See Chapter 9 for details.

—Exit: Quit the program. If expert mode is not selected you’ll be prompted to save any
unsaved work.

§ Utilities menu

—Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin–Watson).

—p-value finder: Open a window which enables you to look up p-values from the Gaussian,
t, chi-square, F or gamma distributions. See also the pvalue command in Chapter 10.

—Test statistic calculator: Calculate test statistics and p-values for a range of common
hypothesis tests (population mean, variance and proportion; difference of means, vari-
ances and proportions). The relevant sample statistics must be already available for entry
into the dialog box. For some simple tests that take as input data series rather than
pre-computed sample statistics, see “Difference of means” and “Difference of variances”
under the Data menu.

—Gretl console: Open a “console” window into which you can type commands as you would
using the command-line program, gretlcli (as opposed to using point-and-click). See
Chapter 10.

—Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix D.

§ Session menu

— Icon view: Open a window showing the current gretl session as a set of icons. For details
see the Section called The “session” concept in Chapter 3.

—Open: Open a previously saved session file.

—Save: Save the current session to file.

—Save as: Save the current session to file under a chosen name.

§ Data menu

—Display values: pops up a window with a simple (not editable) printout of the values of
the variables (either all of them or a selected subset).

—Edit values: pops up a spreadsheet window where you can make changes, add new vari-
ables, and extend the number of observations.

—Sort variables: Rearrange the listing of variables in the main window, either by ID number
or alphabetically by name.

—Graph specified vars: Gives a choice between a time series plot, a regular X–Y scatter
plot, an X–Y plot using impulses (vertical bars), an X–Y plot “with factor separation” (i.e.
with the points colored differently depending to the value of a given dummy variable)
and boxplots. Serves up a dialog box where you specify the variables to graph. Gnuplot is
used to render the graph (except for the boxplots option).

—Multiple scatterplots: Show a collection of (at most six) pairwise plots, with either a given
variable on the y axis plotted against several different variables on the x axis, or several
y variables plotted against a given x. May be useful for exploratory data analysis.

Getting started 9

—Read info, Edit info: “Read info” just displays the header file information for the current
data file; “Edit info” allows you to make changes to it (if you have permission to do so).

—Summary statistics: shows a fairly full set of descriptive statistics for all variables in the
data set.

—Correlation matrix: shows the pairwise correlation coefficients for the variables in the
data set.

—Difference of means: calculates the t statistic for the null hypothesis that the population
means are equal for two selected variables and shows its p-value.

—Difference of variances: calculates the F statistic for the null hypothesis that the popula-
tion variances are equal for two selected variables and shows its p-value.

—Add variables gives a sub-menu of standard transformations of variables (logs, lags,
squares, etc.) that you may wish to add to the data set. Also gives the option of adding
random variables, and (for time-series data) adding seasonal dummy variables (e.g. quar-
terly dummy variables for quarterly data). Includes an item for seeding the program’s
pseudo-random number generator.

—Refresh window Sometimes gretl commands generate new variables. The “refresh” item
ensures that the listing of variables visible in the main data window is in sync with the
program’s internal state.

§ Sample menu

—Set range: Select a different starting and/or ending point for the current sample, within
the range of data available.

—Restore full range: self-explanatory.

—Set frequency, startobs: Impose a particular interpretation of the data in terms of fre-
quency and starting point. This may be useful with panel data; see Chapter 5.

—Compact data: For time-series data of higher than annual frequency, gives you the option
of compacting the data to a lower frequency, using one of four compaction methods
(average, sum, start of period or end of period).

—Define, based on dummy: Given a dummy (indicator) variable with values 0 or 1, this
drops from the current sample all observations for which the dummy variable has value
0.

—Restrict, based on criterion: Similar to the item above, except that you don’t need a pre-
defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the sample is
restricted to observations satisfying that condition. See the help for genr in Chapter 10
for details on the Boolean operators that can be used.

—Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see the Section called Missing data values
in Chapter 4).

—Count missing values: Give a report on observations where data values are missing. May
be useful in examining a panel data set, where it’s quite common to encounter missing
values.

—Set missing value code: Set a numerical value that will be interpreted as “missing” or “not
available”.

—Add case markers: Prompts for the name of a text file containing “case markers” (short
strings identifying the individual observations) and adds this information to the data set.
See Chapter 4.

Getting started 10

— Interpret as time series: Opens a dialog box which enables you to set a time-series inter-
pretation for data that were read in as undated.

— Interpret as panel: Opens a dialog box which enables you to fix the interpretation of a
panel data set as either stacked time series or stacked cross sections (see Chapter 5).

—Restructure panel: Allows the conversion of a panel data set in stacked cross-section form
into stacked time series. (Unlike the previous item, this one changes the organization of
the data.)

§ Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most options
will be self-explanatory. Note that you can rename a variable and can edit its descriptive la-
bel under “Edit attributes”. You can also “Define a new variable” via a formula (e.g. involving
some function of one or more existing variables). For the syntax of such formulae, look at
the online help for “Generate variable syntax” or see the genr command in Chapter 10. One
simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

§ Model menu For details on the various estimators offered under this menu please con-
sult the Section called Estimators and tests: summary in Chapter 10 and Chapter 10 below,
and/or the online help under “Help, Estimation”. Also see Chapter 7 regarding the estima-
tion of nonlinear models.

§ Help menu Please use this as needed! It gives details on the syntax required in various dialog
entries.

The gretl toolbar

At the bottom left of the main window sits the toolbar.

The icons have the following functions, reading from left to right:

1. Launch a calculator program. A convenience function in case you want quick access to
a calculator when you’re working in gretl. The default program is calc.exe under MS
Windows, or xcalc under the X window system. You can change the program under the
“File, Preferences, General” menu, “Programs” tab.

2. Start a new script. Opens an editor window in which you can type a series of commands
to be sent to the program as a batch.

3. Open the gretl console. A shortcut to the “Gretl console” menu item (the Section called
The main window menus above).

4. Open the gretl session window.

5. Open the gretl website in your web browser. This will work only if you are connected to
the Internet and have a properly configured browser.

6. Open the current version of this manual, in PDF format. As with the previous item, this
requires an Internet connection; it also requires that your browser knows how to handle
PDF files.

Getting started 11

7. Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

8. Open the dialog box for defining a graph.

9. Open the dialog box for estimating a model using ordinary least squares.

10. Open a window listing the datasets associated with Ramanathan’s Introductory Economet-
rics (and also the datasets from Jeffrey Wooldridge’s text, if these are installed — see
Chapter 9).

If you don’t care to have the toolbar displayed, you can turn it off under the “File, Preferences,
General” menu. Go to the Toolbar tab and uncheck the “show gretl toolbar” box.

12

Chapter 3. Modes of working

Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those com-
mands are recorded in the form of a “script” or batch file. Such scripts can be edited and
re-run, using either gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “View command
log” under the File menu. This log file is called session.inp and it is overwritten whenever
you start a new session. To preserve it, save the script under a different name. Script files will
be found most easily, using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Open command file” menu
item; to create a script from scratch use the “File, New command file” item or the “new script”
toolbar button. In either case a script window will open (see Figure 3-1).

Figure 3-1. Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1)
Save the file; (2) Save the file under a specified name; (3) Print the file (under Windows or the
gnome desktop only); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste
the selected text; (7) Find and replace text; (8) Undo the last Paste or Replace action; (9) Help
(if you place the cursor in a command word and press the question mark you will get help on
that command); (10) Close the window.

When you click the Execute icon or choose the “File, Run” menu item all output is directed to
a single window, where it can be edited, saved or copied to the clipboard.

To learn more about the possibilities of scripting, take a look at the gretl Help item “Script
commands syntax,” or start up the command-line program gretlcli and consult its help, or
consult Chapter 10 in this manual. In addition, the gretl package includes over 70 “practice”
scripts. Most of these relate to Ramanathan (2002), but they may also be used as a free-
standing introduction to scripting in gretl and to various points of econometric theory. You

Modes of working 13

can explore the practice files under “File, Open command file, practice file” There you will find
a listing of the files along with a brief description of the points they illustrate and the data
they employ. Open any file and run it to see the output.

Note that long commands in a script can be broken over two or more lines, using backslash
as a continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting
each method where it offers greater convenience. Here are two suggestions.

§ Open a data file in the GUI. Explore the data — generate graphs, run regressions, perform
tests. Then open the Command log, edit out any redundant commands, and save it under
a specific name. Run the script to generate a single file containing a concise record of your
work.

§ Start by establishing a new script file. Type in any commands that may be required to set up
transformations of the data (see the genr command in Chapter 10 below). Typically this sort
of thing can be accomplished more efficiently via commands assembled with forethought
rather than point-and-click. Then save and run the script: the GUI data window will be
updated accordingly. Now you can carry out further exploration of the data via the GUI. To
revisit the data at a later point, open and rerun the “preparatory” script first.

When you estimate a model using point-and-click, the model results are displayed in a sep-
arate window, offering menus which let you perform tests, draw graphs, save data from the
model, and so on. Ordinarily, when you estimate a model using a script you just get a non-
interactive printout of the results. You can, however, arrange for models estimated in a script
to be “captured”, so that you can examine them interactively when the script is finished. Here
is an example of the syntax for achieving this effect:

Model1 <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment
arrow”, then the model command. You may use names that have embedded spaces if you like,
but such names must always be wrapped in double quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl session window (see the Section
called The “session” concept) after the script is executed. In addition, you can arrange to have
a named model displayed (in its own window) automatically as follows:

Model1.show

Again, if the name contains spaces it must be quoted:

"Model 1".show

The same commands can be used for graphs. For example the following will create a plot of
Ct against Yt, save it under the name “CrossPlot”, and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

The gretl console

A further option is available for your computing convenience. Under gretl’s Utilities menu
you will find the item “Gretl console” (there is also an “open gretl console” button on the
toolbar in the main window). This opens up a window in which you can type commands and
execute them one by one (by pressing the Enter key) interactively. This is essentially the same
as gretlcli’s mode of operation, except that (a) the GUI is updated based on commands

Modes of working 14

executed from the console, enabling you to work back and forth as you wish, and (b) gretl’s
Monte Carlo loop routine (see the Section called Monte Carlo simulations in Chapter 8) is not
at present available in this mode.

In the console, you have “command history”; that is, you can use the up and down arrow keys
to navigate the list of command you have entered to date. You can retrieve, edit and then
re-enter a previous command.

The “session” concept

Introduction

gretl offers the idea of a “session” as a way of keeping track of your work and revisiting
it later. The basic idea is to provide an iconic space containing various objects pertaining to
your current working session (see Figure 3-2). You can add objects (represented by icons) to
this space as you go along. If you save the session, these added objects should be available
again if you re-open the session later.

If you start gretl and open a data set, then select “Icon view” from the Session menu, you
should see the basic default set of icons: these give you quick access to the command script
(“Session”), information on the data set (if any), correlation matrix (“Corrmat”) and descriptive
summary statistics (“Summary”). All of these are activated by double-clicking the relevant
icon. The “Data set” icon is a little more complex: double-clicking opens up the data in the
built-in spreadsheet, but you can also right-click on the icon for a menu of other actions.

In many gretl windows, the right mouse button brings up a menu with common tasks.

Two sorts of objects can be added to the Icon View window: models and graphs.

Figure 3-2. Icon view: one model and one graph have been added to the default icons

To add a model, first estimate it using the Model menu. Then pull down the File menu in
the model window and select “Save to session as icon. . . ” or “Save as icon and close”. Simply
hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the Data menu, “Graph specified vars”, or via one of
gretl’s other graph-generating commands). Click on the graph window to bring up the graph
menu, and select “Save to session as icon”.

Modes of working 15

Once a model or graph is added its icon should appear in the Icon View window. Double-
clicking on the icon redisplays the object, while right-clicking brings up a menu which lets
you display or delete the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent
variable — the models differing in respect of which independent variables are included, or
perhaps in respect of the estimator used. In this situation it is convenient to present the
regression results in the form of a table, where each column contains the results (coefficient
estimates and standard errors) for a given model, and each row contains the estimates for a
given variable across the models.

In the Icon View window gretl provides a means of constructing such a table (and copying it
in plain text, LaTeX or Rich Text Format). Here is how to do it:

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).

3. When you are done estimating the models, open the icon view of your gretl session, by
selecting “Icon view” under the Session menu in the main gretl window, or by clicking the
“session icon view” icon on the gretl toolbar.

4. In session icon view, there is an icon labeled “Model table”. Decide which model you wish
to appear in the left-most column of the model table and add it to the table, either by
dragging its icon onto the Model table icon, or by right-clicking on the model icon and
selecting “Add to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model
selected will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its
icon. Under the Edit menu in the window which appears, you have the option of copying
the table to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3-3.

Modes of working 16

Figure 3-3. Example of model table

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before
quitting gretl select “Save as. . . ” from the Session menu and give a name under which to save
the session. To re-open the session later, either

§ Start gretl then re-open the session file by going to the “Open” item under the Session
menu, or

§ From the command line, type gretl -r sessionfile, where sessionfile is the name
under which the session was saved.

17

Chapter 4. Data files

Native format

gretl has its own format for data files. Most users will probably not want to read or write
such files outside of gretl itself, but occasionally this may be useful and full details on the
file formats are given in Appendix A.

Other data file formats

gretl will read various other data formats.

§ Plain text (ASCII) files. These can be brought in using gretl’s “File, Open Data, Import
ASCII. . . ” menu item, or the import script command. For details on what gretl expects
of such files, see the Section called Creating a data file from scratch.

§ Comma-Separated Values (CSV) files. These can be imported using gretl’s “File, Open Data,
Import CSV. . . ” menu item, or the import script command. See also the Section called Cre-
ating a data file from scratch.

§ Worksheets in the format of either MS Excel or Gnumeric. These are also brought in using
gretl’s “File, Open Data, Import” menu. The requirements for such files are given in the
Section called Creating a data file from scratch.

§ BOX1 format data. Large amounts of micro data are available (for free) in this format via the
Data Extraction Service of the US Bureau of the Census. BOX1 data may be imported using
the “File, Open Data, Import BOX. . . ” menu item or the import -o script command.

When you import data from the ASCII, CSV or BOX formats, gretl opens a “diagnostic”
window, reporting on its progress in reading the data. If you encounter a problem with ill-
formatted data, the messages in this window should give you a handle on fixing the problem.

For the convenience of anyone wanting to carry out more complex data analysis, gretl has a
facility for writing out data in the native formats of GNU R and GNU Octave (see Appendix D).
In the GUI client this option is found under the “File” menu; in the command-line client use
the store command with the flag -r (R) or -m (Octave).

Binary databases

For working with large amounts of data I have supplied gretl with a database-handling rou-
tine. A database, as opposed to a data file, is not read directly into the program’s workspace.
A database can contain series of mixed frequencies and sample ranges. You open the data-
base and select series to import into the working data set. You can then save those series in
a native format data file if you wish. Databases can be accessed via gretl’s menu item “File,
Browse databases”.

For details on the format of gretl databases, see Appendix A.

Online access to databases

As of version 0.40, gretl is able to access databases via the internet. Several databases are
available from Wake Forest University. Your computer must be connected to the internet for
this option to work. Please see the item on “Online databases” under gretl’s Help menu.

RATS 4 databases

Thanks to Thomas Doan of Estima, who provided me with the specification of the database
format used by RATS 4 (Regression Analysis of Time Series), gretl can also handle such data-

Data files 18

bases. Well, actually, a subset of same: I have only worked on time-series databases containing
monthly and quarterly series. My university has the RATS G7 database containing data for the
seven largest OECD economies and gretl will read that OK.

Visit the gretl data page for details and updates on available data.

Creating a data file from scratch

There are five ways to do this: (1) Find, or create using a text editor, a plain text data file and
open it with gretl’s “Import ASCII” option. (2) Use your favorite spreadsheet to establish the
data file, save it in Comma Separated Values format if necessary (this should not be necessary
if the spreadsheet program is MS Excel or Gnumeric), then use one of gretl’s “Import” options
(CSV, Excel or Gnumeric, as the case may be). (3) Use gretl’s built-in spreadsheet. (4) Select
data series from a suitable database. (5) Use your favorite text editor or other software tools
to a create data file in gretl format independently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For gretl to read such data
successfully, certain general conditions must be satisfied:

§ The first row must contain valid variable names. A valid variable name is of 8 characters
maximum; starts with a letter; and contains nothing but letters, numbers and the under-
score character, _. (Longer variable names will be truncated to 8 characters.) Qualifications
to the above: First, in the case of an ASCII or CSV import, if the file contains no row with
variable names the program will automatically add names, v1, v2 and so on. Second, by
“the first row” is meant the first relevant row. In the case of ASCII and CSV imports, blank
rows and rows beginning with a hash mark, #, are ignored. In the case of Excel and Gnu-
meric imports, you are presented with a dialog box where you can select an offset into the
spreadsheet, so that gretl will ignore a specified number of rows and/or columns.

§ Data values: these should constitute a rectangular block, with one variable per column (and
one observation per row). The number of variables (data columns) must match the number
of variable names given. See also the Section called Missing data values.

§ Dates (or observation labels): Optionally, the first column may contain strings such as dates,
or labels for cross-sectional observations. Such strings have a maximum of 8 characters (as
with variable names, longer strings will be truncated). A column of this sort should be
headed with the string obs or date, or the first row entry may be left blank.

For dates to be recognized as such, the date strings must adhere to one or other of a set
of specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit
year, followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit
quarter. Examples: 1997.1, 2002:3, 1947Q1. For monthly data: a 4-digit year, followed by a
period or a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

CSV files can use comma, space or tab as the column separator. When you use the “Import
CSV” menu item you are prompted to specify the separator. In the case of “Import ASCII” the
program attempts to auto-detect the separator that was used.

If you use a spreadsheet to prepare your data you are able to carry out various transformations
of the “raw” data with ease (adding things up, taking percentages or whatever): note, however,

Data files 19

that you can also do this sort of thing easily — perhaps more easily — within gretl, by using
the tools under the “Data, Add variables” menu and/or “Variable, define new variable”.

Appending imported data

You may wish to establish a gretl data set piece by piece, by incremental importation of data
from other sources. This is supported via the “File, Append data” menu items. gretl will check
the new data for conformability with the existing data set and, if everything seems OK, will
merge the data. You can add new variables in this way, provided the data frequency matches
that of the existing data set. Or you can append new observations for data series that are
already present; in this case the variable names must match up correctly. Note that by default
(that is, if you choose “Open data” rather than “Append data”), opening a new data file closes
the current one.

Using the built-in spreadsheet

Under gretl’s “File, Create data set” menu you can choose the sort of data set you want to
establish (e.g. quarterly time series, cross-sectional). You will then be prompted for starting
and ending dates (or observation numbers) and the name of the first variable to add to the data
set. After supplying this information you will be faced with a simple spreadsheet into which
you can type data values. In the spreadsheet window, clicking the right mouse button will
invoke a popup menu which enables you to add a new variable (column), to add an observation
(append a row at the foot of the sheet), or to insert an observation at the selected point (move
the data down and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace
using the spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or for-
mulas. Data transformations are done via the “Data” or “Variable” menus in the main gretl
window.

Selecting from a database

Another alternative is to establish your data set by selecting variables from a database. gretl
comes with a database of US macroeconomic time series and, as mentioned above, the pro-
gram will reads RATS 4 databases.

Begin with gretl’s “File, Browse databases” menu item. This has three forks: “gretl native”,
“RATS 4” and “on database server”. You should be able to find the file bcih.bin in the file
selector that opens if you choose the “gretl native” option — this file is supplied with the
distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data.1 If you do
possess RATS data you should go into gretl’s “File, Preferences, General” dialog, select the
Databases tab, and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake
Forest University) under “on database server”. You can browse these remotely; you also have
the option of installing them onto your own computer. The initial remote databases window
has an item showing, for each file, whether it is already installed locally (and if so, if the local
version is up to date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s
workspace by using the “Import” menu item in the database window (or via the popup menu
that appears if you click the right mouse button).

1. See www.estima.com

Data files 20

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts
of data already in machine readable form. You will, of course, need to study the gretl data
formats (XML format or “traditional” format) as described in Chapter 4.

Further note

gretl has no problem compacting data series of relatively high frequency (e.g. monthly) to
a lower frequency (e.g. quarterly): this is done by averaging. But it has no way of converting
lower frequency data to higher. Therefore if you want to import series of various different
frequencies from a database into gretl you must start by importing a series of the lowest
frequency you intend to use. This will initialize your gretl data set to the low frequency, and
higher frequency data can be imported subsequently (they will be compacted automatically).
If you start with a high frequency series you will not be able to import any series of lower
frequency.

Missing data values

These are represented internally as -999. In a native-format data file they should be repre-
sented as NA. When importing CSV data gretl accepts any of three representations of missing
values: -999, the string NA, or simply a blank cell. Blank cells should, of course, be properly
delimited, e.g. 120.6„5.38, in which the middle value is presumed missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:

§ In calculating descriptive statistics (mean, standard deviation, etc.) under the summary com-
mand, missing values are simply skipped and the sample size adjusted appropriately.

§ In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
time series work due to the inclusion of lags, first differences and so on; missing values at
the end of the range are not uncommon due to differential updating of series and possibly
the inclusion of leads.

§ If gretl detects any missing values “inside” the (possibly truncated) sample range for a
regression it gives an error message and refuses to produce estimates.

Missing values in the middle of a data set are a problem. In a cross-sectional data set it may
be possible to move the offending observations to the beginning or the end of the file, but
obviously this won’t do with time series data. For those who know what they are doing (!), the
misszero function is provided under the genr command. By doing

genr foo = misszero(bar)

you can produce a series foo which is identical to bar except that any -999 values become
zeros. Then you can use carefully constructed dummy variables to, in effect, drop the missing
observations from the regression while retaining the surrounding sample range.2

2. genr also offers the inverse function to misszero, namely zeromiss, which replaces zeros in a given series with the
missing observation code.

21

Chapter 5. Panel data

Panel structure

Panel data (pooled cross-section and time-series) require special care. Here are some pointers.

Consider a data set composed of observations on each of n cross-sectional units (countries,
states, persons or whatever) in each of T periods. Let each observation comprise the values of
m variables of interest. The data set then contains mnT values.

The data should be arranged “by observation”: each row represents an observation; each col-
umn contains the values of a particular variable. The data matrix then has nT rows and m
columns. That leaves open the matter of how the rows should be arranged. There are two
possibilities.1

§ Rows grouped by unit. Think of the data matrix as composed of n blocks, each having T
rows. The first block of T rows contains the observations on cross-sectional unit 1 for each
of the periods; the next block contains the observations on unit 2 for all periods; and so on.
In effect, the data matrix is a set of time-series data sets, stacked vertically.

§ Rows grouped by period. Think of the data matrix as composed of T blocks, each having
n rows. The first n rows contain the observations for each of the cross-sectional units in
period 1; the next block contains the observations for all units in period 2; and so on. The
data matrix is a set of cross-sectional data sets, stacked vertically.

You may use whichever arrangement is more convenient. The first is perhaps easier to keep
straight. If you use the second then of course you must ensure that the cross-sectional units
appear in the same order in each of the period data blocks. Under gretl’s Sample menu you
will find an item “Restructure panel” which allows you to convert from stacked cross-section
form to stacked time series.

In either case you can use the frequency field in the observations line of the data header file
(see Chapter 4) to make life a little easier.

§ Grouped by unit: Set the frequency equal to T . Suppose you have observations on 20 units
in each of 5 time periods. Then this observations line is appropriate: 5 1.1 20.5 (read:
frequency 5, starting with the observation for unit 1, period 1, and ending with the obser-
vation for unit 20, period 5). Then, for instance, you can refer to the observation for unit 2
in period 5 as 2.5, and that for unit 13 in period 1 as 13.1.

§ Grouped by period: Set the frequency equal to n. In this case if you have observations on 20
units in each of 5 periods, the observations line should be: 20 1.01 5.20 (read: frequency
20, starting with the observation for period 1, unit 01, and ending with the observation for
period 5, unit 20). One refers to the observation for unit 2, period 5 as 5.02.

If you decide to construct a panel data set using a spreadsheet program then import the data
into gretl, the program may not at first recognize the special nature of the data. You can
fix this by using the command setobs (see Chapter 10) or the GUI menu item “Sample, Set
frequency, startobs. . . ”.

Dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following
sorts: (a) dummies as unique identifiers for the cross-sectional units, and (b) dummies as
unique identifiers of the time periods. The former may be used to allow the intercept of the
regression to differ across the units, the latter to allow the intercept to differ across periods.

1. If you don’t intend to make any conceptual or statistical distinction between cross-sectional and temporal variation in
the data you can arrange the rows arbitrarily, but this is probably wasteful of information.

Panel data 22

You can use two special functions to create such dummies. These are found under the “Data,
Add variables” menu in the GUI, or under the genr command in script mode or gretlcli.

1. “periodic dummies” (script command genr dummy). The common use for this command
is to create a set of periodic dummy variables up to the data frequency in a time-series
study (for instance a set of quarterly dummies for use in seasonal adjustment). But it
also works with panel data. Note that the interpretation of the dummies created by this
command differs depending on whether the data rows are grouped by unit or by period. If
the grouping is by unit (frequency T) the resulting variables are period dummies and there
will be T of them. For instance dummy_2 will have value 1 in each data row corresponding
to a period 2 observation, 0 otherwise. If the grouping is by period (frequency n) then n
unit dummies will be generated: dummy_2 will have value 1 in each data row associated with
cross-sectional unit 2, 0 otherwise.

2. “panel dummies” (script command genr paneldum). This creates all the dummies, unit and
period, at a stroke. The default presumption is that the data rows are grouped by unit.
The unit dummies are named du_1, du_2 and so on, while the period dummies are named
dt_1, dt_2, etc. The u (for unit) and t (for time) in these names will be wrong if the data
rows are grouped by period: to get them right in that setting use genr paneldum -o (script
mode only).

If a panel data set has the YEAR of the observation entered as one of the variables you can
create a periodic dummy to pick out a particular year, e.g. genr dum = (YEAR=1960). You can
also create periodic dummy variables using the modulus operator, %. For instance, to create
a dummy with value 1 for the first observation and every thirtieth observation thereafter, 0
otherwise, do

genr index
genr dum = ((index-1)%30) = 0

Using lagged values with panel data

If the time periods are evenly spaced you may want to use lagged values of variables in a
panel regression. In this case arranging the data rows by unit (stacked time-series) is definitely
preferable.

Suppose you create a lag of variablex1, using genr x1_1 = x1(-1). The values of this variable
will be mostly correct, but at the boundaries of the unit data blocks they are not unusable:
the “previous” value is not actually the first lag of x1_1 but rather the last observation of x1
for the previous cross-sectional unit. Such values are marked as missing by gretl.

If a lag of this sort is to be included in a regression you must ensure that the first observation
from each unit block is dropped. One way to achieve this is to use Weighted Least Squares
(wls) using an appropriate dummy variable as weight. This dummy (call it lagdum) should have
value 0 for the observations to be dropped, 1 otherwise. In other words, it is complementary
to a dummy variable for period 1. Thus if you have already issued the command genr dummy
you can now do genr lagdum = 1 - dummy_1. If you have used genr paneldum you would now
say genr lagdum = 1 - dt_1. Either way, you can now do

wls lagdum y const x1_1 ...

to get a pooled regression using the first lag of x1, dropping all observations from period 1.

Another option is to use the smpl with the -o flag and a suitable dummy variable. Example
5-2 shows illustrative commands, assuming the unit data blocks each contain 30 observations
and we want to drop the first row of each. You can then run regressions on the restricted data
set without having to use the wls command. If you plan to reuse the restricted data set you
may wish to save it using the store command (see Chapter 10 below).

Panel data 23

Example 5-1. Lags with panel data

(* create index variable *)
genr index
(* create dum = 0 for every 30th obs *)
genr dum = ((index-1)%30) > 0
(* sample based on this dummy *)
smpl -o dum
(* recreate the obs. structure, for 56 units *)
setobs 29 1.01 56.29

Pooled estimation

Having come this far, we can reveal that there is a special purpose estimation command
for use with panel data, the “Pooled OLS” option under the Model menu. This command is
available only if the data set is recognized as a panel. To take advantage of it, you should
specify a model without any dummy variables representing cross-sectional units. The routine
presents estimates for straightforward pooled OLS, which treats cross-sectional and time-
series variation at par. This model may or may not be appropriate. Under the Tests menu in
the model window, you will find an item “panel diagnostics”, which tests pooled OLS against
the principal alternatives, the fixed effects and random effects models.

The fixed effects model adds a dummy variable for all but one of the cross-sectional units,
allowing the intercept of the regression to vary across the units. An F -test for the joint signif-
icance of these dummies is presented: if the p-value for this test is small, that counts against
the null hypothesis (that the simple pooled model is adequate) and in favor of the fixed effects
model.

The random effects model, on the other hand, decomposes the residual variance into two
parts, one part specific to the cross-sectional unit or “group” and the other specific to the
particular observation. (This estimator can be computed only if the panel is “wide” enough,
that is, if the number of cross-sectional units in the data set exceeds the number of parameters
to be estimated.) The Breusch–Pagan LM statistic tests the null hypothesis (again, that the
pooled OLS estimator is adequate) against the random effects alternative.

It is quite possible that the pooled OLS model is rejected against both of the alternatives,
fixed effects and random effects. How, then, to assess the relative merits of the two alter-
native estimators? The Hausman test (also reported, provided the random effects model can
be estimated) addresses this issue. Provided the unit- or group-specific error is uncorrelated
with the independent variables, the random effects estimator is more efficient than the fixed
effects estimator; otherwise the random effects estimator is inconsistent, in which case the
fixed effects estimator is to be preferred. The null hypothesis for the Hausman test is that the
group-specific error is not so correlated (and therefore the random effects model is prefer-
able). Thus a low p-value for this tests counts against the random effects model and in favor
of fixed effects.

For a rigorous discussion of this topic, see Greene (2000), chapter 14.

Illustration: the Penn World Table

The Penn World Table (homepage at pwt.econ.upenn.edu) is a rich macroeconomic panel
dataset, spanning 152 countries over the years 1950–1992. The data are available in gretl
format; please see the gretl data site (this is a free download, although it is not included in
the main gretl package).

Example 5-2 below opens pwt56_60_89.gdt, a subset of the pwt containing data on 120 coun-
tries, 1960–89, for 20 variables, with no missing observations (the full data set, which is also

Panel data 24

supplied in the pwt package for gretl, has many missing observations). Total growth of real
GDP, 1960–89, is calculated for each country and regressed against the 1960 level of real GDP,
to see if there is evidence for “convergence” (i.e. faster growth on the part of countries starting
from a low base).

Example 5-2. Use of the Penn World Table

open pwt56_60_89.gdt
(* for 1989 (last obs), lag 29 gives 1960, the first obs *)
genr gdp60 = RGDPL(-29)
(* find total growth of real GDP over 30 years *)
genr gdpgro = (RGDPL - gdp60)/gdp60
(* restrict the sample to a 1989 cross-section *)
smpl -r YEAR=1989
(* Convergence? Did countries with a lower base grow faster? *)
ols gdpgro const gdp60
(* result: No! Try inverse relationship *)
genr gdp60inv = 1/gdp60
ols gdpgro const gdp60inv
(* No again. Try dropping Africa? *)
genr afdum = (CCODE = 1)
genr afslope = afdum * gdp60
ols gdpgro const afdum gdp60 afslope

25

Chapter 6. Graphs and plots

Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured
graphing program with myriad options. It is available from www.gnuplot.info (but note that
a copy of gnuplot is bundled with the MS Windows version of gretl). gretl gives you direct
access, via a graphical interface, to a subset of gnuplot’s options and it tries to choose sensible
values for you; it also allows you to take complete control over graph details if you wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the
following options.

§ Save as postscript: Save the graph in encapsulated postscript (EPS) format.

§ Save as PNG: Save in Portable Network Graphics format.

§ Save to session as icon: The graph will appear in iconic form when you select "Icon view"
from the Session menu.

§ Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

§ Print: On the Gnome desktop only, lets you print the graph directly.

§ Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications
such as MS Word.1

§ Edit: Opens a controller for the plot which lets you adjust various aspects of its appearance.

§ Close: Closes the graph window.

If you know something about gnuplot and wish to get finer control over the appearance of
a graph than is available via the graphical controller (“Edit” option), you have two further
options.

§ Once the graph is saved as a session icon, you can right-click on its icon for a further pop-
up menu. One of the otions here is “Edit plot commands”, which opens an editing window
with the actual gnuplot commands displayed. You can edit these commands and either save
them for future processing or send them to gnuplot (with the “File/Send to gnuplot” menu
item in the plot commands editing window).

§ Another way to save the plot commands (or to save the displayed plot in formats other
than EPS or PNG) is to use “Edit” item on a graph’s pop-up menu to invoke the graphical
controller, then click on the “Output to file” tab in the controller. You are then presented
with a drop-down menu of formats in which to save the graph.

To find out more about gnuplot see the online manual or www.gnuplot.info.

See also the entry for gnuplot in Chapter 10 below — and the graph and plot commands for
“quick and dirty” ASCII graphs.

1. For best results when pasting graphs into MS Office applications, choose the application’s “Edit, Paste Special...” menu
item, and select the option “Picture (Enhanced Metafile)”.

Graphs and plots 26

Figure 6-1. gretl’s gnuplot controller

Boxplots

Boxplots are not generated using gnuplot, but rather by gretl itself.

These plots (after Tukey and Chambers) display the distribution of a variable. The central box
encloses the middle 50 percent of the data, i.e. it is bounded by the first and third quartiles.
The “whiskers” extend to the minimum and maximum values. A line is drawn across the box
at the median.

In the case of notched boxes, the notch shows the limits of an approximate 90 percent confi-
dence interval. This is obtained by the bootstrap method, which can take a while if the data
series is very long.

Clicking the mouse in the boxplots window brings up a menu which enables you to save the
plots as encapsulated postscript (EPS) or as a full-page postscript file. Under the X window
system you can also save the window as an XPM file; under MS Windows you can copy it to
the clipboard as a bitmap. The menu also gives you the option of opening a summary win-
dow which displays five-number summaries (minimum, first quartile, median, third quartile,
maxmimum), plus a confidence interval for the median if the “notched” option was chosen.

Some details of gretl’s boxplots can be controlled via a (plain text) file named .boxplotrc
which is looked for, in turn, in the current working directory, the user’s home directory (cor-
responding to the environment variable HOME) and the gretl user directory (which is displayed
and may be changed under the “File, Preferences, General” menu). Options that can be set in
this way are the font to use when producing postscript output (must be a valid generic post-
script font name; the default is Helvetica), the size of the font in points (also for postscript
output; default is 12), the minimum and maximum for the y-axis range, the width and height
of the plot in pixels (default, 560 x 448), whether numerical values should be printed for the
quartiles and median (default, don’t print them), and whether outliers (points lying beyond
1.5 times the interquartile range from the central box) should be indicated separately (default,
no). Here is an example:

font = Times-Roman
fontsize = 16
max = 4.0
min = 0

Graphs and plots 27

width = 400
height = 448
numbers = %3.2f
outliers = true

On the second to last line, the value associated with numbers is a “printf” format string as
in the C programming language; if specified, this controls the printing of the median and
quartiles next to the boxplot, if no numbers entry is given these values are not printed. In the
example, the values will be printed to a width of 3 digits, with 2 digits of precision following
the decimal point.

Not all of the options need be specified, and the order doesn’t matter. Lines not matching the
pattern “key = value” are ignored, as are lines that begin with the hash mark, #.

After each variable specified in the boxplot command, a parenthesized boolean expression
may be added, to limit the sample for the variable in question. A space must be inserted
between the variable name or number and the expression. Suppose you have salary figures
for men and women, and you have a dummy variable GENDER with value 1 for men and 0
for women. In that case you could draw comparative boxplots with the following line in the
boxplots dialog:

salary (GENDER=1) salary (GENDER=0)

28

Chapter 7. Nonlinear least squares

Introduction and examples

As of version 1.0.9, gretl supports nonlinear least squares (NLS) using a variant of the Leven-
berg–Marquandt algorithm. The user must supply a specification of the regression function;
prior to giving this specification the parameters to be estimated must be “declared” and given
initial values. Optionally, the user may supply analytical derivatives of the regression function
with respect to each of the parameters. The tolerance (criterion for terminating the iterative
estimation procedure) can be set using the genr command.

The syntax for specifying the function to be estimated is the same as for the genr command.
Here are two examples, with accompanying derivatives.

Example 7-1. Consumption function from Greene

nls C = alpha + beta * Y^gamma
deriv alpha = 1
deriv beta = Y^gamma
deriv gamma = beta * Y^gamma * log(Y)
end nls

Example 7-2. Nonlinear function from Russell Davidson

nls y = alpha + beta * x1 + (1/beta) * x2
deriv alpha = 1
deriv beta = x1 - x2/(beta*beta)
end nls

Note the command words nls (which introduces the regression function), deriv (which intro-
duces the specification of a derivative), and end nls, which terminates the specification and
calls for estimation. If the -o flag is appended to the last line the covariance matrix of the
parameter estimates is printed.

Initializing the parameters

The parameters of the regression function must be given initial values prior to the nls com-
mand. This can be done using the genr command (or, in the GUI program, via the menu item
“Define new variable”). In some cases, where the nonlinear function is a generalization of (or
a restricted form of) a linear model, it may be convenient to run an ols and initialize the pa-
rameters from the OLS coefficient estimates. In relation to the first example above, one might
do:

ols C 0 Y
genr alpha = coeff(0)
genr beta = coeff(Y)
genr gamma = 1

And in relation to the second example one might do:

ols y 0 x1 x2
genr alpha = coeff(0)
genr beta = coeff(x1)

Nonlinear least squares 29

NLS dialog window

It is probably most convenient to compose the commands for NLS estimation in the form
of a gretl script but you can also do so interactively, by selecting the item “Nonlinear Least
Squares” under the Model menu. This opens a dialog box where you can type the function
specification (possibly prefaced by genr lines to set the initial parameter values) and the deriv-
atives, if available. An example of this is shown in Figure 7-1. Note that in this context you do
not have to supply the nls and end nls tags.

Figure 7-1. NLS dialog box

Analytical and numerical derivatives

If you are able to figure out the derivatives of the regression function with respect to the
parameters, it is advisable to supply those derivatives as shown in the examples above. If that
is not possible, gretl will compute approximate numerical derivatives. The properties of the
NLS algorithm may not be so good in this case (see the Section called Numerical accuracy).

If analytical derivatives are supplied, they are checked for consistency with the given nonlinear
function. If the derivatives are clearly incorrect estimation is aborted with an error message.
If the derivatives are “suspicious” a warning message is issued but estimation proceeds. This
warning may sometimes be triggered by incorrect derivatives, but it may also be triggered by
a high degree of collinearity among the derivatives.

Note that you cannot mix analytical and numerical derivatives: you should supply expressions
for all of the derivatives or none.

Controlling termination

The NLS estimation procedure is an iterative process. Iteration is terminated when a conver-
gence criterion is met or when a set maximum number of iterations is reached, whichever
comes first. The maximum number of iterations is 100*(k+1) when analytical derivatives are
given and 200*(k+1) when numerical derivatives are used, where k denotes the number of
parameters being estimated. The convergence criterion is that the relative error in the sum
of squares, and/or the relative error between the the coefficient vector and the solution, is
estimated to be no larger than some small value. This “small value” is by default the machine

Nonlinear least squares 30

precision to the power 3/4, but it can be set with the genr command using the special variable
toler. For example

genr toler = .0001

will relax the tolerance to 0.0001.

Details on the code

The underlying engine for NLS estimation is based on the minpack suite of functions, available
from netlib.org. Specifically, the following minpack functions are called:

lmder Levenberg–Marquandt algorithm with analytical derivatives

chkder Check the supplied analytical derivatives

lmdif Levenberg–Marquandt algorithm with numerical derivatives

fdjac2 Compute final approximate Jacobian when using numerical derivatives

dpmpar Determine the machine precision

On successful completion of the Levenberg–Marquandt iteration, a Gauss–Newton regression
is used to calculate the covariance matrix for the parameter estimates. Since NLS results are
asymptotic, there is room for debate over whether or not a correction for degrees of freedom
should be applied when calculating the standard error of the regression (and the standard
errors of the parameter estimates). For comparability with OLS, and in light of the reasoning
given in Davidson and MacKinnon (1993), the estimates shown in gretl do use a degrees of
freedom correction.

Numerical accuracy

Table 7-1 shows the results of running the gretl NLS procedure on the 27 Statistical Reference
Datasets made available by the U.S. National Institute of Standards and Technology (NIST) for
testing nonlinear regression software.1 For each dataset, two sets of starting values for the
parameters are given in the test files, so the full test comprises 54 runs. Two full tests were
performed, one using all analytical derivatives and one using all numerical approximations.
In each case the default tolerance was used.2

Out of the 54 runs, gretl failed to produce a solution in 4 cases when using analytical deriv-
atives, and in 5 cases when using numeric approximation. Of the four failures in analytical
derivatives mode, two were due to non-convergence of the Levenberg–Marquandt algorithm
after the maximum number of iterations (on MGH09 and Bennett5, both described by NIST as
of “Higher difficulty”) and two were due to generation of range errors (out-of-bounds floating
point values) when computing the Jacobian (on BoxBOD and MGH17, described as of “Higher
difficulty” and “Average difficulty” respectively). The additional failure in numerical approxi-
mation mode was on MGH10 (“Higher difficulty”, maximum number of iterations reached).

The table gives information on several aspects of the tests: the number of outright failures,
the average number of iterations taken to produce a solution and two sorts of measure of the
accuracy of the estimates for both the parameters and the standard errors of the parameters.

For each of the 54 runs in each mode, if the run produced a solution the parameter estimates
obtained by gretl were compared with the NIST certified values. We define the “minimum
correct figures” for a given run as the number of significant figures to which the least accurate
gretl estimate agreed with the certified value, for that run. The table shows both the average

1. For a discussion of gretl’s accuracy in the estimation of linear models, see Appendix C.
2. The data shown in the table were gathered from a pre-release build of gretl version 1.0.9, compiled with gcc 3.3, linked
against glibc 2.3.2, and run under Linux on an i686 PC (IBM ThinkPad A21m).

Nonlinear least squares 31

and the worst case value of this variable across all the runs that produced a solution. The
same information is shown for the estimated standard errors.3

The second measure of accuracy shown is the percentage of cases, taking into account all
parameters from all successful runs, in which the gretl estimate agreed with the certified
value to at least the 6 significant figures which are printed by default in the gretl regression
output.

Table 7-1. Nonlinear regression: the NIST tests

Analytical derivatives Numerical derivatives

Failures in 54 tests 4 5

Average iterations 32 127

Avg. of min. correct figures,
parameters

8.120 6.980

Worst of min. correct figures,
parameters

4 3

Avg. of min. correct figures,
standard errors

8.000 5.673

Worst of min. correct figures,
standard errors

5 2

Percent correct to at least 6
figures, parameters

96.5 91.9

Percent correct to at least 6
figures, standard errors

97.7 77.3

Using analytical derivatives, the worst case values for both parameters and standard errors
were improved to 6 correct figures on the test machine when the tolerance was tightened to
1.0e-14. Using numerical derivatives, the same tightening of the tolerance raised the worst
values to 5 correct figures for the parameters and 3 figures for standard errors, at a cost of
one additional failure of convergence.

Note the overall superiority of analytical derivatives: on average solutions to the test problems
were obtained with substantially fewer iterations and the results were more accurate (most
notably for the estimated standard errors). Note also that the six-digit results printed by
gretl are not 100 percent reliable for difficult nonlinear problems (in particular when using
numerical derivatives). Having registered this caveat, the percentage of cases where the results
were good to six digits or better seems high enough to justify their printing in this form.

3. For the standard errors, I excluded one outlier from the statistics shown in the table, namely Lanczos1. This is an odd
case, using generated data with an almost-exact fit: the standard errors are 9 or 10 orders of magnitude smaller than the
coefficients. In this instance gretl could reproduce the certified standard errors to only 3 figures (analytical derivatives) and
2 figures (numerical derivatives).

32

Chapter 8. Loop constructs

Monte Carlo simulations

gretl offers (limited) support for Monte Carlo simulations. To do such work you should ei-
ther use the GUI client program in “script mode” (see the Section called Command scripts in
Chapter 3 above), or use the command-line client. The command loop opens a special mode
in which the program accepts commands to be repeated a specified number of times. Within
such a loop, only 8 commands can be used: genr, ols, print, printf, sim, smpl, store and
summary. With genr and ols it is possible to do quite a lot. You exit the mode of entering loop
commands with endloop: at this point the stacked commands are executed. Loops cannot be
nested.

The ols command gives special output in a loop context: the results from each individual re-
gression are not printed, but rather you get a printout of (a) the mean value of each estimated
coefficient across all the repetitions, (b) the standard deviation of those coefficient estimates,
(c) the mean value of the estimated standard error for each coefficient, and (d) the standard
deviation of the estimated standard errors. This makes sense only if there is some random
input at each step.

The print command also behaves differently in the context of a loop. It prints the mean and
standard deviation of the variable, across the repetitions of the loop. It is intended for use
with variables that have a single value at each iteration, for example the error sum of squares
from a regression.

The store command (use only one of these per loop) writes out the values of the specified
variables, from each time round the loop, to the specified file. Thus it keeps a complete record
of the variables. This data file can then be read into the program and analysed.

A simple example of Monte Carlo loop code is shown in Example 8-1.

Example 8-1. Simple Monte Carlo loop

(* create a blank data set with series length 50 *)
nulldata 50
genr x = 100 * uniform()
(* open a loop, to be repeated 100 times *)
loop 100

genr u = normal()
(* construct the dependent variable *)
genr y = 10*x + 20*u
(* run OLS regression *)
ols y const x
(* grab the R-squared value from the regression *)
genr r2 = $rsq
(* arrange for statistics on R-squared to be printed *)
print r2
(* save the individual coefficient estimates *)
genr a = coeff(const)
genr b = coeff(x)
(* and print them to file *)
store foo.gdt a b

endloop

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates across the 100 repe-
titions, and also for the R2 values for the 100 regressions. After running the loop, foo.gdt,
which contains the individual coefficient estimates from all the runs, can be opened in gretl
to examine the frequency distribution of the estimates in detail. Please note that while com-
ment lines are permitted in a loop (as shown in the example), they cannot run over more than
one line.

Loop constructs 33

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) opens an empty data set, with only a constant, with a series length
of 50. Constructed variables can then be added using the genr command.

See the seed command in Chapter 10 for information on generating repeatable pseudo-random
series.

Iterated least squares

A second form of loop structure is designed primarily for carrying out iterated least squares.
Greene (2000, ch. 11) shows how this method can be used to estimate nonlinear models.

To open this sort of loop you need to specify a condition rather than an unconditional number
of times to iterate. This should take the form of the keyword while followed by an inequality:
the left-hand term should be the name of a variable that is already defined; the right-hand side
may be either a numerical constant or the name of another predefined variable. For example,

loop while essdiff > .00001

Execution of the commands within the loop (i.e. until endloop is encountered) will continue so
long as the specified condition evaluates as true.

I assume that if you specify a “number of times” loop you are probably doing a Monte Carlo
analysis, and hence you’re not interested in the results from each individual iteration but
rather the moments of certain variables over the ensemble of iterations. On the other hand,
if you specify a “while” loop you’re probably doing something like iterated least squares, and
so you’d like to see the final result — as well, perhaps, as the value of some variable(s) (e.g.
the error sum of squares from a regression) from each time round the loop. The behavior of
the print and ols commands are tailored to this assumption. In a “while” loop print behaves
as usual; thus you get a printout of the specified variable(s) from each iteration. The ols
command prints out the results from the final estimation.

Example 8-2 uses a “while” loop to replicate the estimation of a nonlinear consumption func-
tion of the form C = α + βY γ + ε as presented in Greene (2000, Example 11.3). This script
is included in the gretl distribution under the name greene11_3.inp; you can find it in gretl
under the menu item “File, Open command file, practice file, Greene...”.

Example 8-2. Nonlinear consumption function

open greene11_3.gdt
run initial OLS
ols C 0 Y
genr essbak = $ess
genr essdiff = 1
genr b0 = coeff(Y)
genr gamma0 = 1
form the linearized variables
genr C0 = C + gamma0 * b0 * Y^gamma0 * log(Y)
genr x1 = Y^gamma0
genr x2 = b0 * Y^gamma0 * log(Y)
iterate OLS till the error sum of squares converges
loop while essdiff > .00001

ols C0 0 x1 x2 -o
genr b0 = coeff(x1)
genr gamma0 = coeff(x2)
genr C0 = C + gamma0 * b0 * Y^gamma0 * log(Y)
genr x1 = Y^gamma0 genr x2 = b0 * Y^gamma0 * log(Y)
genr ess = $ess genr
essdiff = abs(ess - essbak)/essbak
genr essbak = ess

Loop constructs 34

endloop
print parameter estimates using their "proper names"
noecho
printf "alpha = %g\n", coeff(0)
printf "beta = %g\n", coeff(x1)
printf "gamma = %g\n", coeff(x2)

Example 8-3 (kindly contributed by Riccardo “Jack” Lucchetti of Ancona University) shows
how a loop can be used to estimate an ARMA model, exploiting the “outer product of the
gradient” (OPG) regression discussed by Davidson and MacKinnon in their Estimation and
Inference in Econometrics.

Example 8-3. ARMA 1, 1

open arma.gdt

genr c = 0
genr a = 0.1
genr m = 0.1

genr e = const * 0.0
genr de_c = e
genr de_a = e
genr de_m = e

genr crit = 1
loop while crit > 1.0e-9

one-step forecast errors
genr e = y - c - a*y(-1) - m*e(-1)

log-likelihood
genr loglik = -0.5 * sum(e^2)
print loglik

partials of forecast errors wrt c, a, and m
genr de_c = -1 - m * de_c(-1)
genr de_a = -y(-1) -m * de_a(-1)
genr de_m = -e(-1) -m * de_m(-1)

partials of l wrt c, a and m
genr sc_c = -de_c * e
genr sc_a = -de_a * e
genr sc_m = -de_m * e

OPG regression
ols const sc_c sc_a sc_m

Update the parameters
genr dc = coeff(sc_c)
genr c = c + dc
genr da = coeff(sc_a)
genr a = a + da
genr dm = coeff(sc_m)
genr m = m + dm

printf " constant = %.8g (gradient = %#.6g)\n", c, dc
printf " ar1 coefficient = %.8g (gradient = %#.6g)\n", a, da
printf " ma1 coefficient = %.8g (gradient = %#.6g)\n", m, dm

Loop constructs 35

genr crit = $T - $ess
print crit

endloop

genr se_c = stderr(sc_c)
genr se_a = stderr(sc_a)
genr se_m = stderr(sc_m)

noecho
print "
printf "constant = %.8g (se = %#.6g, t = %.4f)\n", c, se_c, c/se_c
printf "ar1 term = %.8g (se = %#.6g, t = %.4f)\n", a, se_a, a/se_a
printf "ma1 term = %.8g (se = %#.6g, t = %.4f)\n", m, se_m, m/se_m

Indexed loop

The third form of loop construct offered in gretl is an indexed loop, using the internal vari-
able i. You specify starting and ending values for i, which is incremented by one each time
round the loop. The syntax looks like this: loop i=1..20. Example 8-4 shows one use of this
construct. We have a panel data set, with observations on a number of hospitals for the years
1991 to 2000. We restrict the sample to each of these years in turn and print cross-sectional
summary statistics for variables 1 through 4.

Example 8-4. Indexed loop example

open hospitals.gdt
loop for i=1991..2000

smpl -r (year=i)
summary 1 2 3 4

endloop

The smpl command in the above example illustrates the use of the variable i within a loop. In
addition, you can use the expression $i: in this case the value of i will be substituted before
the command is evaluated. This enables you to construct strings (for example, variable names)
within the loop, as in Example 8-5.

Example 8-5. Second indexed loop example

open bea.dat
loop for i=1987..2001

genr V = COMP$i
genr TC = GOC$i - PBT$i
genr C = TC - V
ols PBT$i const TC V

endloop

The first time round this loop V will be set to equal COMP1987 and the dependent variable for
the ols will be PBT1987, and so on.

36

Chapter 9. Options, arguments and path-searching

gretl

gretl (under MS Windows, gretlw32.exe)1

— Opens the program and waits for user input.

gretl datafile

— Starts the program with the specified datafile in its workspace. The data file may be in
native gretl format, CSV format, or BOX1 format (see Chapter 4 above). The program will
try to detect the format of the file and treat it appropriately. See also the Section called Path
searching below for path-searching behavior.

gretl --help (or gretl -h)

— Print a brief summary of usage and exit.

gretl --version (or gretl -v)

— Print version identification for the program and exit

gretl --run scriptfile (or gretl -r scriptfile)

— Start the program and open a window displaying the specified script file, ready to run. See
the Section called Path searching below for path-searching behavior.

gretl --db database (or gretl -d database)

— Start the program and open a window displaying the specified database. If the database
files (the .bin file and its accompanying .idx file — see the Section called Binary databases
in Chapter 4) is not in the default system database directory, you must specify the full path.

Various things in gretl are configurable under the “File, Preferences” menu.

§ The base directory for gretl’s shared files.

§ The user’s base directory for gretl-related files.

§ The command to launch gnuplot.

§ The command to launch GNU R (see Appendix D).

§ The command with which to view TeX DVI files.

§ The directory in which to start looking for native gretl databases.

§ The directory in which to start looking for RATS 4 databases.

§ The IP number of the gretl database server to access.

§ The IP number and port number of the HTTP proxy server to use when contacting the
database server, if applicable (if you’re behind a firewall).

§ The calculator and editor programs to launch from the toolbar.

§ The monospaced font to be used in gretl screen output.

§ The font to be used for menus and other messages. (Note: this item is not present when
gretl is compiled for the gnome desktop, since the choice of fonts is handled centrally by
gnome.)

There are also some check boxes. Checking the “expert” box quells some warnings that are
otherwise issued. Checking “Tell me about gretl updates” makes gretl attempt to query the
update server at start-up. Unchecking “Show gretl toolbar” turns the icon toolbar off. If your

1. On Linux, a “wrapper” script named gretl is installed. This script checks whether the DISPLAY environment variable is
set; if so, it launches the GUI program, gretl_x11, and if not it launches the command-line program, gretlcli.

Options, arguments and path-searching 37

native language setting is not English and the local decimal point character is not the pe-
riod (“.”), unchecking “Use locale setting for decimal point” will make gretl use the period
regardless.

Finally, there are some binary choices: Under the “Open/Save path” tab you can set where
gretl looks by default when you go to open or save a file — either the gretl user directory
or the current working directory. Under the “Data files” tab you can set the default filename
suffix for data files. The standard suffix is .gdt but if you wish you can set this to .dat, which
was standard in earlier versions of the program. If you set the default to .dat then data files
will be saved in the “traditional” format (see Chapter 4). Also under the “Data files” tab you
can select the action for the little folder icon on the toolbar: whether it should open a listing of
the data files associated with Ramanathan’s textbook, or those associated with Wooldridge’s
text.

Under the “General” tab you may select the algorithm used by gretl for calculating least
squares estimates. The default is Cholesky decomposition, which is fast, relatively economi-
cal in terms of memory requirements, and accurate enough for most purposes. The alternative
is QR decomposition, which is computationally more expensive and requires more temporary
storage, but which is more accurate. You are unlikely to need the extra accuracy of QR de-
composition unless you are dealing with very ill-conditioned data and are concerned with
coefficient or standard error values to more than 7 digits of precision.2

Settings chosen in this way are handled differently depending on the context. Under MS Win-
dows they are stored in the Windows registry. Under the gnome desktop they are stored in
.gnome/gretl in the user’s home directory. Otherwise they are stored in a file named .gretlrc
in the user’s home directory.

gretlcli

gretlcli

— Opens the program and waits for user input.

gretlcli datafile

— Starts the program with the specified datafile in its workspace. The data file may be in na-
tive gretl format, CSV format, or BOX1 format (see Chapter 4). The program will try to detect
the format of the file and treat it appropriately. See also the Section called Path searching for
path-searching behavior.

gretlcli --help (or gretlcli -h)

— Prints a brief summary of usage.

gretlcli --version (or gretlcli -v)

— Prints version identification for the program.

gretlcli --pvalue (or gretlcli -p)

— Starts the program in a mode in which you can interactively determine p-values for various
common statistics.

gretlcli --run scriptfile (or gretlcli -r scriptfile)

— Execute the commands in scriptfile then hand over input to the command line. See the
Section called Path searching for path-searching behavior.

gretlcli --batch scriptfile (or gretlcli -b scriptfile)

2. The option of using QR decomposition can also be activated by setting the environment variable GRETL_USE_QR to any
non-NULL value.

Options, arguments and path-searching 38

— Execute the commands in scriptfile then exit. When using this option you will probably
want to redirect output to a file. See the Section called Path searching for path-searching
behavior.

When using the --run and --batch options, the script file in question must call for a data
file to be opened. This can be done using the open command within the script. For backward
compatibility with Ramanathan’s original ESL program another mechanism is offered (ESL
doesn’t have the open command). A line of the form:

(* ! myfile.gdt *)

will (a) cause gretlcli to load myfile.gdt, but will (b) be ignored as a comment by the original
ESL. Note the specification carefully: There is exactly one space between the begin comment
marker, (*, and the !; there is exactly one space between the ! and the name of the data file.

One further kludge enables gretl and gretlcli to get datafile information from the ESL “prac-
tice files” included with the gretl package. A typical practice file begins like this:

(* PS4.1, using data file DATA4-1, for reproducing Table 4.2 *)

This algorithm is used: if an input line begins with the comment marker, search it for the
string DATA (upper case). If this is found, extract the string from the D up to the next space or
comma, put it into lower case, and treat it as the name of a data file to be opened.

Path searching

When the name of a data file or script file is supplied to gretl or gretlcli on the command
line (see the Section called gretl and the Section called gretlcli), the file is looked for as follows:

1. “As is”. That is, in the current working directory or, if a full path is specified, at the
specified location.

2. In the user’s gretl directory (see Table 9-1 for the default values).

3. In any immediate sub-directory of the user’s gretl directory.

4. In the case of a data file, search continues with the main gretl data directory. In the case
of a script file, the search proceeds to the system script directory. See Table 9-1 for the
default settings.

5. In the case of data files the search then proceeds to all immediate sub-directories of the
main data directory.

Table 9-1. Default path settings

Linux MS Windows

User directory $HOME/gretl PREFIX\gretl\user

System data directory PREFIX/share/gretl/data PREFIX\gretl\data

System script directory PREFIX/share/gretl/scripts PREFIX\gretl\scripts

Note: PREFIX denotes the base directory chosen at the time gretl is installed.

Thus it is not necessary to specify the full path for a data or script file unless you wish to
override the automatic searching mechanism. (This also applies within gretlcli, when you
supply a filename as an argument to the open or run commands.)

When a command script contains an instruction to open a data file, the search order for the
data file is as stated above, except that the directory containing the script is also searched,
immediately after trying to find the data file “as is”.

Options, arguments and path-searching 39

MS Windows

Under MS Windows configuration information for gretl and gretlcli is stored in the Win-
dows registry. A suitable set of registry entries is created when gretl is first installed, and
the settings can be changed under gretl’s “File, Preferences” menu. In case anyone needs to
make manual adjustments to this information, the entries can be found (using the standard
Windows program regedit.exe) under Software\gretl in HKEY_CLASSES_ROOT (the main gretl
directory and the command to invoke gnuplot) and HKEY_CURRENT_USER (all other configurable
variables).

40

Chapter 10. Command Reference

Introduction

The commands defined below may be executed in the command-line client program. They
may also be placed in a “script” file for execution in the GUI, or entered using the latter’s
“console mode”. In most cases the syntax given below also applies when you are presented
with a line to type in a dialog box in the GUI (but see also gretl’s online help), except that
you should not type the initial command word — it is implicit from the context. One other
difference is that you cannot enter the -o flag for regression commands in GUI dialog boxes:
there is a menu item for displaying the coefficient variance–covariance matrix (which is the
effect of -o in regression commands).

The following conventions are used below:

§ A typewriter font is used for material that you would type directly, and also for internal
names of variables.

§ Terms in italics are place-holders: you should substitute something specific, e.g. you
might type income in place of the generic xvar.

§ [-o] means that the flag -o is optional: you may type it or not (but in any case don’t type
the brackets).

§ The phrase “estimation command” means any one of ols, hilu, corc, ar, arch, hsk, tsls,
wls, hccm, add, omit.

Section and Chapter references below are to Ramanathan (2002).

gretl commands

add

Argument: varlist [-o]

Examples: add 5 7 9

add xx yy zz -o

Must be invoked after an estimation command. The variables in varlist are added to the
previous model and the new model estimated. If more than one variable is added, the F statis-
tic for the added variables will be printed (for the OLS procedure only) along with its p-value.
A p-value below 0.05 means that the coefficients are jointly significant at the 5 percent level.
A number of internal variables may be retrieved using the genr command, provided genr is
invoked directly after this command. The -o flag causes the coefficient variance–covariance
matrix to be printed.

addto

Arguments: modelID varlist

Example: addto 2 5 7 9

Works like the add command, except that you specify a previous model (using its ID number,
which is printed at the start of the model output) to take as the base for adding variables. The
example above adds variables number 5, 7 and 9 to Model 2.

Command Reference 41

adf

Arguments: order varname

Example: adf 2 x1

Computes statistics for two Dickey–Fuller tests. In each case the null hypothesis is that the
variable in question exhibits a unit root. The first is a t-test based on the model

(1− L)xt =m+ gxt−1 + εt
The null hypothesis is that g = 0. The second (augmented) test proceeds by estimating an
unrestricted regression (with regressors a constant, a time trend, the first lag of the variable,
and order lags of the first difference) and a restricted version (dropping the time trend and
the first lag). The test statistic is

F2,T−k =
(ESSr − ESSu)/2
ESSu/(T − k)

where T is the sample size, k the number of parameters in the unrestricted model, and the
subscripts u and r denote the unrestricted and restricted models respectively. Note that the
critical values for these statistics are not the usual ones; a p-value range is printed, when it
can be determined.

ar

Arguments: lags ; depvar indepvars [-o]

Example: ar 1 3 4 ; y 0 x1 x2 x3

Computes parameter estimates using the generalized Cochrane–Orcutt iterative procedure
(see Section 9.5 of Ramanathan). Iteration is terminated when successive error sums of squares
do not differ by more than 0.005 percent or after 20 iterations. lags is a list of lags in the
residuals, terminated by a semicolon. In the above example, the error term is specified as

ut = ρ1ut−1 + ρ3ut−3 + ρ4ut−4 + et
depvar is the dependent variable and indepvars is the list of independent variables. If the
-o flag is given, the covariance matrix of regression coefficients is printed. Residuals of the
transformed regression are stored under the name uhat, which can be retrieved by genr. A
number of other internal variables may be retrieved using the genr command, provided genr
is invoked after this command.

arch

Arguments: order depvar indepvars [-o]

Example: arch 4 y 0 x1 x2 x3

Tests the model for ARCH (Autoregressive Conditional Heteroskedasticity) of the lag order
specified in order, which must be an integer. If the LM test statistic has p-value below 0.10,
then ARCH estimation is also carried out. If the predicted variance of any observation in the
auxiliary regression is not positive, then the corresponding squared residual is used instead.
Weighted least square estimation is then performed on the original model. The flag -o calls
for the coefficient covariance matrix.

Command Reference 42

chow

Argument: obs

Examples: chow 25

chow 1988.1

Must follow an OLS regression. Creates a dummy variable which equals 1 from the split point
specified by obs to the end of the sample, 0 otherwise, and also creates interaction terms
between this dummy and the original independent variables. An augmented regression is run
including these terms and an F statistic is calculated, taking the augmented regression as the
unrestricted and the original as restricted. This statistic is appropriate for testing the null
hypothesis of no structural break at the given split point.

coeffsum

Arguments: indepvars

Example: coeffsum xt xt_1 xr_2

Must follow an regression. Calculates the sum of the coefficients on the variables in the inde-
pvars list. Prints this sum along with its standard error and the p-value for the null hypothesis
that the sum is zero.

coint

Arguments: order depvar indepvar

Examples: coint 2 y x

coint 4 y x1 x2

Carries out Augmented Dickey–Fuller tests on the null hypothesis that each of the variables
listed has a unit root, using the given lag order. The cointegrating regression is estimated, and
an ADF test is run on the residuals from this regression. The Durbin–Watson statistic for the
cointegrating regression is also given. Note that none of these test statistics can be referred
to the usual statistical tables.

coint2

Arguments: order depvar indepvar

Examples: coint2 2 y x

coint2 4 y x1 x2 -o

Carries out the Johansen trace test for cointegration among the listed variables for the given
order. For details of this test see Hamilton (1994, Chapter 19). If the -o flag is given the results
of the various auxiliary regressions are printed.

corc

Arguments: depvar indepvars [-o]

Examples: corc 1 0 2 4 6 7

corc -o 1 0 2 4 6 7

corc y 0 x1 x2 x3

corc -o y 0 x1 x2 x3

Command Reference 43

Computes parameter estimates using the Cochrane–Orcutt iterative procedure (see Section
9.4 of Ramanathan) with depvar as the dependent variable and indepvars as the list of in-
dependent variables. Iteration is terminated when successive estimates of the autocorrelation
coefficient do not differ by more than 0.001 or after 20 iterations. If the -o flag is given, the
covariance matrix of regression coefficients is printed. Residuals of this transformed regres-
sion are stored under the name uhat. Various internal variables may be retrieved using the
genr command, provided genr is invoked immediately after this command.

corr

Argument: [varlist]

Examples: corr 1 3 5

corr y x1 x2 x3

Prints the pairwise correlation coefficients for the variables in varlist, or for all variables in
the data set if varlist is not given.

corrgm

Arguments: variable [maxlag]

Prints the values of the autocorrelation function for the variable specified (either by name or
number). See Ramanathan, Section 11.7. It is thus ρ(ut , ut−s) where ut is the tth observation
of the variable u and s is the number of lags.

The partial autocorrelations are also shown: these are net of the effects of intervening lags.
The command also graphs the correlogram and prints the Box-Pierce Q statistic for testing
the null hypothesis that the series is “white noise”. This is asymptotically distributed as chi-
square with degrees of freedom equal to the number of lags used.

If an (optional) integer maxlag value is supplied the length of the correlogram is limited to at
most that number of lags, otherwise the length is determined automatically.

criteria

Arguments: ess T k

Example: criteria 23.45 45 8

Computes the model selection statistics (see Ramanathan, Section 4.3), given ess (error sum
of squares), the number of observations (T), and the number of coefficients (k). T , k, and ess
may be numerical values or names of previously defined variables.

critical

Arguments: dist param1 [param2]

Examples: critical t 20

critical X 5

critical F 3 37

If dist is t, X or F, prints out the critical values for the student’s t, chi-square or F distribution
respectively, for the common significance levels and using the specified degrees of freedom,
given as param1 for t and chi-square, or param1 and param2 for F . If dist is d, prints the
upper and lower values of the Durbin-Watson statistic at 5 percent significance, for the given

Command Reference 44

number of observations, param1, and for the range of 1 to 5 explanatory variables.

cusum

Must follow the estimation of a model via OLS. Performs the CUSUM test for parameter sta-
bility. A series of (scaled) one-step ahead forecast errors is obtained by running a series of
regressions: the first regression uses the first k observations and is used to generate a predic-
tion of the dependent variable at observation at observation k + 1; the second uses the first
k + 1 observations and generates a prediction for observation k + 2, and so on (where k is
the number of parameters in the original model). The cumulated sum of the scaled forecast
errors is printed and graphed. The null hypothesis of parameter stability is rejected at the 5
percent significance level if the cumulated sum strays outside of the 95 percent confidence
band.

The Harvey–Collier t-statistic for testing the null hypothesis of parameter stability is also
printed. See Chapter 7 of Greene’s Econometric Analysis for details.

data

Argument: varlist

Reads the variables in varlist from a database (gretl or RATS 4.0), which must have been
opened previously using the open command. In addition, a data frequency and sample range
must be established using the the setobs and smpl commands prior to using this command.
Here is a full example:

open macrodat.rat
setobs 4 1959:1
smpl ; 1999:4
data GDP_JP GDP_UK

These commands open a database named macrodat.rat, establish a quarterly data set starting
in the first quarter of 1959 and ending in the fourth quarter of 1999, and then import the
series named GDP_JP and GDP_UK.

If the series to be read are of higher frequency than the working data set, you must specify a
compaction method as below:

data (compact=average) LHUR PUNEW

The four available compaction methods are “average” (takes the mean of the high frequency
observations), “last” (uses the last observation), “first” and “sum”.

delete

Argument: varlist

Removes the listed variables (given by name or number) from the dataset. Use with caution:
no confirmation is asked, and any variables with higher ID numbers will be re-numbered.

If no varlist is given with this command, it deletes the last (highest numbered) variable from
the dataset.

diff

Argument: varlist

The first difference of each variable in varlist is obtained and the result stored in a new

Command Reference 45

variable with the prefix d_. Thus diff x y creates the new variables d_x = x(t) - x(t-1) and
d_y = y(t) - y(t-1).

end

Ends a block of commands of some sort. For example, end system terminates an equation
system.

endloop

Terminates a simulation loop. See loop.

equation

Arguments: depvar indepvars

Example: equation y x1 x2 x3 const

Specifies an equation within a system of equations (see the system command). The sytax for
specifying an equation is the same as that for, e.g., the ols command.

eqnprint

Options: [-o] [-f filename]

Must follow the estimation of a model via OLS. Prints the estimated model in the form of a
LaTeX equation. If a filename is specified using the -f flag output goes to that file, otherwise
it goes to a file with a name of the form equation_N.tex, where N is the number of models
estimated to date in the current session. See also the tabprint command.

If the -o flag is given the LaTeX file is a complete document, ready for processing; otherwise
it must be included in a document.

fcast

Argument: [startobs endobs] newvarname

Examples: fcast 1997.1 1999.4 f1

fcast f2

Must follow an estimation command. Forecasts are generated for the specified range (or the
largest possible range if no startobs and endobs are given) and the values saved as new-
varname, which can be printed, graphed, or plotted. The right-hand side variables are those
in the original model. There is no provision to substitute other variables. If an autoregressive
error process is specified (for hilu, corc, and ar) the forecast is conditional one step ahead
and incorporates the error process.

fcasterr

Arguments: startobs endobs [-o]

After estimating an OLS model which includes a constant and at least one independent vari-
able (these restrictions may be relaxed at some point) you can use this command to print out
fitted values over the specified observation range, along with the estimated standard errors
of those predictions and 95 percent confidence intervals. If the -o flag is given the results will

Command Reference 46

also be displayed using gnuplot. The augmented regression method of Salkever (1976) is used
to generate the forecast standard errors.

fit

The fit command (must follow an estimation command) is a shortcut for the fcast command.
It generates fitted values, in a series called autofit, for the current sample, based on the last
regression. In the case of time-series models, fit also pops up a gnuplot graph of fitted and
actual values of the dependent variable against time.

freq

Argument: var

Prints the frequency distribution for var (given by name or number) along with a chi-square
test for normality. In interactive mode a gnuplot graph of the distribution is displayed.

genr

Argument: newvar = formula

Creates new variables, usually through transformations of existing variables. See also diff,
logs, lags, ldiff, multiply and square for shortcuts.

Supported arithmetical operators are, in order of precedence: ^ (exponentiation); *, / and %
(modulus or remainder); + and -.

The available Boolean operators are (again, in order of precedence): ! (negation), & (logical
AND), | (logical OR), >, <, =, >= (greater than or equal), <= (less than or equal) and != (not
equal). The Boolean operators can be used in constructing dummy variables: for instance (x
> 10) returns 1 if x > 10, 0 otherwise. Supported functions fall into these groups:

§ Standard math functions: abs, cos, exp, int (integer part), ln (natural log: log is a synonym),
sin, sqrt.

§ Statistical functions: max (maximum value in a series), min (minimum), mean (arithmetic
mean), median, var (variance) sd (standard deviation), sst (sum of squared deviations from
the mean), sum, cov (covariance), corr (correlation coefficient), pvalue

§ Time-series functions: diff (first difference), ldiff (log-difference, or first difference of nat-
ural logs). To generate lags of a variable x, use the syntax x(-N), where N represents the
desired lag length; to generate leads, use x(+N);

§ Miscellaneous: cum (cumulate), sort, uniform, normal, misszero (replace the missing obser-
vation code in a given series with zeros), zeromiss (the inverse operation to misszero), nobs
(return the number of valid observations in a given data series).

All of the above functions with the exception of cov, corr, pvalue, uniform and normal take as
their single argument either the name of a variable (note that you can’t refer to variables by
their ID numbers in a genr command) or a composite expression that evaluates to a variable
(e.g. ln((x1+x2)/2)). cov and corr both require two arguments, and return respectively the
covariance and the correlation coefficient between two named variables. The pvalue function
takes the same arguments as the pvalue command (see below), but in this context commas
should be placed between the arguments. uniform() and normal(), which do not take ar-
guments, return pseudo-random series drawn from the uniform (0–1) and standard normal
distributions respectively (see also the seed command). Uniform series are generated using
the C library function rand(); for normal series the method of Box and Muller (1958) is used.

Command Reference 47

Besides the operators and functions just noted there are some special uses of genr:

§ genr time creates a time trend variable (1,2,3,. . .) called time. genr index does the same
thing except that the variable is called index.

§ genr dummy creates dummy variables up to the periodicity of the data. E.g. in the case of
quarterly data (periodicity 4), the program creates dummy_1 = 1 for first quarter and 0 in
other quarters, dummy_2 = 1 for the second quarter and 0 in other quarters, and so on.

§ genr paneldum creates a set of special dummy variables for use with a panel data set — see
Chapter 5 above.

§ Various internal variables defined in the course of running a regression can be retrieved
using genr, as follows:

$ess error sum of squares

$rsq unadjusted R-squared

$T number of observations used

$df degrees of freedom

$trsq TR-squared (sample size times R-squared)

$sigma standard error of residuals

$lnl log-likelihood (logit and probit models)

$sigma standard error of residuals

coeff(var) estimated coefficient for variable var

stderr(var) estimated standard error for variable var

rho(i) ith order autoregressive coefficient for residuals

vcv(var1,var2) covariance between coefficients for named variables var1 and
var2

Note: In the command-line program, genr commands that retrieve model-related data always
reference the model that was estimated most recently. This is also true in the GUI program, if
one uses genr in the “gretl console” or enters a formula using the “Define new variable” option
under the Variable menu in the main window. With the GUI, however, you have the option of
retrieving data from any model currently displayed in a window (whether or not it’s the most
recent model). You do this under the “Model data” menu in the model’s window.

The internal series uhat and yhat hold, respectively, the residuals and fitted values from the
last regression.

Three other “internal” variables are available: $nobs holds the number of observations in the
current sample range (note that this may or may not equal the value of $T, the number of
observations used in estimating the last model). The variable t serves as an index of the
observations. Thus for instance genr dum = (t=15) will generate a dummy variable that has
value 1 for observation 15, 0 otherwise. The variable $pd holds the frequency or periodicity of
the data (e.g. 4 for quarterly data).

Table 10-1 gives several examples of uses of genr with explanatory notes; here are a couple of
tips on dummy variables:

§ Suppose x is coded with values 1, 2, or 3 and you want three dummy variables, d1 = 1 if x =
1, 0 otherwise, d2 = 1 if x = 2, and so on. To create these, use the commands:

genr d1 = (x=1)
genr d2 = (x=2)

Command Reference 48

genr d3 = (x=3)

§ To create z = max(x,y) do

genr d = x>y
genr z = (x*d)+(y*(1-d))

Table 10-1. Examples of use of genr command

Command Comment

genr y = x1^3 x1 cubed

genr y = ln((x1+x2)/x3)

genr z = x>y sets z(t) to 1 if x(t) > y(t) else to 0

genr y = x(-2) x lagged 2 periods

genr y = x(2) x led 2 periods

genr y = diff(x) y(t) = x(t) - x(t-1)

genr y = ldiff(x) y(t) = log x(t) - log x(t-1), the
instantaneous rate of growth of x

genr y = sort(x) sorts x in increasing order and stores in y

genr y = -sort(-x) sort x in decreasing order

genr y = int(x) truncate x and store its integer value as y

genr y = abs(x) store the absolute values of x

genr y = sum(x) sum x values excluding missing -999 entries

genr y = cum(x) cumulation: yt =
∑t
τ=1 xτ

genr aa = $ess set aa equal to the Error Sum of Squares from
last regression

genr x = coeff(sqft) grab the estimated coefficient on the variable
sqft from the last regression

genr rho4 = rho(4) grab the 4th-order autoregressive coefficient
from the last model (presumes an ar model)

genr cvx1x2 = vcv(x1, x2) grab the estimated coefficient covariance of
vars x1 and x2 from the last model

genr foo = uniform() uniform pseudo-random variable in range 0–1

genr bar = 3 * normal() normal pseudo-random variable, µ = 0, σ = 3

gnuplot

Arguments: yvars xvar [-o | -m]

Addendum: { literal gnuplot commands }

Alternate form: -z yvar xvar dummy

In the first case the yvars are graphed against xvar. If the flag -o is supplied the plot will
use lines; if the flag -m is given the plot uses impulses (vertical lines); otherwise points will be
used.

Command Reference 49

In the “alternate form” (with -z) yvar is graphed against xvar with the points shown in
different colors depending on whether the value of dummy is 1 or 0.

To make a time-series graph, do gnuplot yvars time. If no variable named time already exists,
then it will be generated automatically. Special dummy variables will be created for plotting
quarterly and monthly data.

In interactive mode the result is piped to gnuplot for display. In batch mode a plot file named
gpttmp01.plt is written. (With subsequent uses of gnuplot similar files are created, with the
number in the file name incremented.) The plots can be generated later using the command
gnuplot gpttmp.plt. (Under MS Windows, start wgnuplot and open the file gpttmp01.plt.)

A further option to this command is available: following the specification of the variables
to be plotted and the option flag (if any), you may add literal gnuplot commands to control
the appearance of the plot (for example, setting the plot title and/or the axis ranges). These
commands should be enclosed in braces, and each gnuplot command must be terminated
with a semi-colon. A backslash may be used to continue a set of gnuplot commands over
more than one line. Here is an example of the syntax:

{ set title ’My Title’; set yrange [0:1000]; }

graph

Arguments: yvars xvar [-o]

ASCII graphics. The yvars (which may be given by name or number) are graphed against xvar
using ASCII symbols. The -o flag will graph with 40 rows and 60 columns. Without it, the
graph will be 20 by 60 (for screen output). See also the gnuplot command.

hausman

This test is available only after estimating a model using the pooled command (see also panel
and setobs). It tests the simple pooled model against the principal alternatives, the fixed
effects and random effects models.

The fixed effects model adds a dummy variable for all but one of the cross-sectional units,
allowing the intercept of the regression to vary across the units. An F -test for the joint signifi-
cance of these dummies is presented. The random effects model decomposes the residual vari-
ance into two parts, one part specific to the cross-sectional unit and the other specific to the
particular observation. (This estimator can be computed only if the number of cross-sectional
units in the data set exceeds the number of parameters to be estimated.) The Breusch–Pagan
LM statistic tests the null hypothesis (that the pooled OLS estimator is adequate) against the
random effects alternative.

The pooled OLS model may be rejected against both of the alternatives, fixed effects and ran-
dom effects. Provided the unit- or group-specific error is uncorrelated with the independent
variables, the random effects estimator is more efficient than the fixed effects estimator; oth-
erwise the random effects estimator is inconsistent and the fixed effects estimator is to be
preferred. The null hypothesis for the Hausman test is that the group-specific error is not so
correlated (and therefore the random effects model is preferable). A low p-value for this test
counts against the random effects model and in favor of fixed effects.

hccm

Arguments: depvar indepvars [-o]

Presents OLS estimates with the heteroskedasticity consistent covariance matrix estimates for
the standard errors of regression coefficients using MacKinnon and White (1985) “jackknife”

Command Reference 50

estimates (see Ramanathan, Section 8.3). The coefficient covariance matrix is printed if the -o
flag is given.

help

Gives a list of available commands. help command describes command (e.g. help smpl). You can
type man instead of help if you like.

hilu

Arguments: depvar indepvars [-o]

Examples: hilu 1 0 2 4 6 7

hilu -o y 0 x1 x2 x3

Computes parameter estimates using the Hildreth–Lu search procedure (fine tuned by the
CORC procedure) with depvar as the dependent variable and indepvars as the list of inde-
pendent variables. The error sum of squares of the transformed model is graphed against the
value of rho from -0.99 to 0.99. If the -o flag is present, the covariance matrix of regression
coefficients will be printed. Residuals of this transformed regression are stored under the
name uhat.

hsk

Arguments: depvar indepvars [-o]

Prints heteroskedasticity corrected estimates (see Ramanathan, ch. 8) and associated statis-
tics. The auxiliary regression predicts the log of the square of residuals (using squares of
independent variables but not their cross products) from which weighted least squares esti-
mates are obtained. If the -o flag is given, the covariance matrix of regression coefficients is
printed. Various internal variables may be retrieved using the genr command, provided genr
is invoked immediately after this command.

if

Flow control for command execution. The syntax is

if condition

commands

else

commands

endif

condition must be a Boolean expression, for the syntax of which see the Section called genr .
The else block is optional; if . . . endif blocks may be nested.

import

Argument: filename [-o]

Without the -o flag, brings in data from a comma-separated values (CSV) format file, such as
can easily be written from a spreadsheet program. The file should have variable names on the
first line and a rectangular data matrix on the remaining lines. Variables should be arranged

Command Reference 51

“by observation” (one column per variable; each row represents an observation). See Chapter
4 for details.

With the -o flag, reads a data file in BOX1 format, as can be obtained using the Data Extraction
Service of the US Bureau of the Census.

info

info prints out any information contained in the header file corresponding to the current
datafile. (This information must be enclosed between (* and *), these markers being placed
on separate lines.)

label

Arguments: varname -d "Descriptive string" -n "display name"

Sets the descriptive label for the given variable (if the -d flag is given, followed by a string in
double quotes) and/or the “display name” for the variable (if the -n flag is given, followed by
a quoted string). If a variable has a display name, this is used when generating graphs.

labels

Prints out the informative labels for any variables that have been generated using genr, and
any labels added to the data set via the GUI.

lad

Arguments: depvar indepvars

Calculates a regression that minimizes the sum of the absolute deviations of the observed
from the fitted values of the dependent variable. Coefficient estimates are derived using the
Barrodale–Roberts simplex algorithm; a warning is printed if the solution is not unique. Stan-
dard errors are derived using the bootstrap procedure with 500 drawings.

lags

Argument: varlist

Creates new variables which are lagged values of each of the variables in varlist. The number
of lagged variables equals the periodicity. For example, if the periodicity is 4 (quarterly), the
command lags x y creates x_1 = x(t-1), x_2 = x(t-2), x_3 = x(t-3) and x_4 x(t-4). Similarly
for y. These variables must be referred to in the exact form, that is, with the underscore.

ldiff

Argument: varlist

The first difference of the natural log of each variable in varlist is obtained and the result
stored in a new variable with the prefix ld_. Thus ldiff x y creates the new variables ld_x =
ln(xt)− ln(xt−1) and ld_y = ln(yt)− ln(yt−1) .

leverage

Must immediately follow an ols command. Calculates the leverage (h, which must lie in the

Command Reference 52

range 0 to 1) for each data point in the sample on which the previous model was estimated.
Displays the residual (u) for each observation along with its leverage and a measure of its
influence on the estimates, uh/(1 − h) . “Leverage points” for which the value of h exceeds
2k/n (where k is the number of parameters being estmated and n is the sample size) are
flagged with an asterisk. For details on the concepts of leverage and influence see Davidson
and MacKinnon (1993, Chapter 2).

lmtest

Must immediately follow an ols command. Prints the Lagrange Multiplier test statistics (and
associated p-values) for nonlinearity and heteroskedasticity (White’s test) or, if the -o flag is
given, the LMF test statistic for serial correlation up to the periodicity (see Kiviet, 1986). The
corresponding auxiliary regression coefficients are also printed out. See Ramanathan, Chap-
ters 7, 8, and 9 for details. In the case of White’s test, only the squared independent variables
are used and not their cross products. In the case of the autocorrelation test, if the p-value of
the LMF statistic is less than 0.05 then serial correlation-robust standard errors are calculated
and displayed. For details on the calculation of these standard errors see Wooldridge (2002,
Chapter 12).

logit

Arguments: depvar indepvars

Binomial logit regression. The dependent variable should be a binary variable. Maximum
likelihood estimates of the coefficients on indepvars are obtained via the EM or Expecta-
tion–Maximization method (see Ruud, 2000, Chapter 27). As the model is nonlinear the slopes
depend on the values of the independent variables: the reported slopes are evaluated at the
means of those variables. The chi-square statistic tests the null hypothesis that all coefficients
are zero apart from the constant.

If you want to use logit for analysis of proportions (where the dependent variable is the
proportion of cases having a certain characteristic, at each observation, rather than a 1 or 0
variable indicating whether the characteristic is present or not) you should not use the logit
command, but rather construct the logit variable (e.g. genr lgt_p = log(p/(1 - p))) and use
this as the dependent variable in an OLS regression. See Ramanathan, Chapter 12.

logs

Agument: varlist

The natural log of each of the variables in varlist is obtained and the result stored in a new
variable with the prefix l_ which is “el” underscore. logs x y creates the new variables l_x =
ln(x) and l_y = ln(y).

loop

Usage: loop number_of_times

loop while condition

loop for i= start.. end

Examples: loop 1000

loop while essdiff > .00001

Command Reference 53

loop for i=1991..2000

Opens a special mode in which the program accepts commands to be repeated either a speci-
fied number of times, or so long as a specified condition holds true, or for successive integer
values of the (internal) index variable i. Within a loop, only 7 commands can be used: genr,
ols, print, sim, smpl, store and summary (store can’t be used in a “while” loop). You exit the
mode of entering loop commands with endloop: at this point the stacked commands are exe-
cuted. Loops cannot be nested. See Chapter 8 for details.

meantest

Arguments: var1 var2 [-o]

Calculates the t statistic for the null hypothesis that the population means are equal for the
variables var1 and var2, and shows its p-value. Without the -o flag, the statistic is computed
on the assumption that the variances are equal for the two variables; with the -o flag the
variances are assumed to be unequal. (The flag will make a difference only if there are different
numbers of non-missing observations for the two variables.)

mpols

Arguments: depvar indepvars

Examples: mpols 1 0 2 4 6 7

mpols y 0 x1 x2 x3

Computes OLS estimates with depvar as the dependent variable and indepvars as the list of
independent variables, using multiple precision floating-point arithmetic. The variables may
be specified by name or number; use the number zero for a constant term. This command is
available only if gretl is compiled with support for the Gnu Multiple Precision library (GMP).

To estimate a polynomial fit, using multiple precision arithmetic to generate the required
powers of the independent variable, use the form, e.g. mpols y 0 x ; 2 3 4 This does a re-
gression of y on x, x squared, x cubed and x to the fourth power. That is, the numbers (which
must be positive integers) to the right of the semicolon specify the powers of x to be used.
If more than one independent variable is specified, the last variable before the semicolon is
taken to be the one that should be raised to various powers.

multiply

Arguments: x suffix varlist

Examples: multiply invpop pc 3 4 5 6

multiply 1000 big x1 x2 x3

The variables in varlist (referenced by name or number) are multiplied by x, which may be
either a numerical value or the name of a variable already defined. The products are named
with the specified suffix (maximum 3 characters). The original variable names are truncated
first if need be. For instance, suppose you want to create per capita versions of certain vari-
ables, and you have the variable pop (population). A suitable set of commands is then: genr
invpop = 1/pop multiply invpop pc income expend which will create incomepc as the prod-
uct of income and invpop, and expendpc as expend times invpop.

Command Reference 54

nls

Performs Nonlinear Least Squares (NLS) estimation using a modified version of the Leven-
berg–Marquandt algorithm. The user must supply a function specification. The parameters of
this function must be declared and given starting values (using the genr command) prior to
estimation. Optionally, the user may specify the derivatives of the regression function with
respect to each of the parameters; if analytical derivatives are not supplied, a numerical ap-
proximation to the Jacobian is computed.

It is easiest to show what is required by example. The following is a complete script to esti-
mate the nonlinear consumption function set out in William Greene’s Econometric Analysis,
in chapter 11 of the 4th edition, or chapter 9 of the 5th. (The numbers to the left of the lines
are for reference and are not part of the commands.)

1 open greene11_3.gdt
2 ols C 0 Y
3 genr alpha = coeff(0)
4 genr beta = coeff(Y)
5 genr gamma = 1.0
6 nls C = alpha + beta * Y^gamma
7 deriv alpha = 1
8 deriv beta = Y^gamma
9 deriv gamma = beta * Y^gamma * log(Y)
10 end nls

It is often convenient to initialize the parameters by reference to a related linear model; that is
accomplished here on lines 2 to 5. The parameters alpha, beta and gamma could be set to any
initial values (not necessarily based on a model estimated with OLS), although convergence of
the NLS procedure is not guaranteed for an arbitrary starting point.

The actual NLS commands occupy lines 6 to 10. On line 6 the nls command is given: a de-
pendent variable is specified, followed by an equals sign, followed by a function specification.
The syntax for the expression on the right is the same as that for the genr command. The
next three lines specify the derivatives of the regression function with respect to each of the
parameters in turn. Each line begins with the keyword deriv, gives the name of a parameter,
an equals sign, and an expression whereby the derivative can be calculated (again, the syntax
here is the same as for genr). These deriv lines are optional, but it is recommended that you
supply them if possible. Line 10, end nls, completes the command and calls for estimation.

For further details on NLS estimation please see Chapter 7.

noecho

Suppresses the echoing of commands and comments (other than those inserted using the
print command) when executing a command script.

nulldata

Argument: series_length

Example: nulldata 100

Establishes a “blank” data set, containing only a constant, with periodicity 1 and the spec-
ified number of observations. This may be used for simulation purposes: some of the genr
commands (e.g. genr uniform(), genr normal(), genr time) will generate dummy data from
scratch to fill out the data set. This command may be useful in conjunction with loop. See
also the seed command.

Command Reference 55

ols

Arguments: depvar indepvars [-o | -q]

Examples: ols 1 0 2 4 6 7

ols -o y 0 x1 x2 x3

ols -q y 0 x1 x2 x3

Computes ordinary least squares (OLS) estimates with depvar as the dependent variable and
indepvars as the list of independent variables. The -o flag calls for printing of the covari-
ance matrix of regression coefficients in addition to the various statistics that are printed by
default. The -q flag suppresses the printing of output.

Variables may be specified by name or number; use the number zero for a constant term.
The program also prints the p-values for t (two-tailed) and F -statistics. A p-value below 0.01
indicates significance at the 1 percent level and is denoted by ***. ** indicates significance
between 1 and 5 percent and * indicates significance between 5 and 10 percent levels. Model
selection statistics (described in Ramanathan, Section 4.3) are also printed. Various internal
variables may be retrieved using the genr command, provided genr is invoked immediately
after this command.

omit

Argument: varlist [-o]

Example: omit 5 7 9

This command must be invoked after an estimation command. The variables in varlist are
omitted from the previous model and the new model estimated. If more than one variable is
omitted, the Wald F -statistic for the omitted variables will be printed along with its p-value
(for the OLS procedure only). A p-value below 0.05 means that the coefficients are jointly
significant at the 5 percent level. Various internal variables may be retrieved using the genr
command, provided genr is invoked immediately after this command. The coefficient covari-
ance matrix is printed if the -o flag is given.

omitfrom

Arguments: modelID varlist

Example: omitfrom 2 5 7 9

Works like the omit command, except that you specify a previous model (using its ID number,
which is printed at the start of the model output) to take as the base for omitting variables.
The example above omits variables number 5, 7 and 9 from Model 2.

open

Argument: datafile

Opens a data file. If a data file is already open, it is replaced by the newly opened one. The
program will try to detect the format of the data file (native, CSV or BOX1).

This command can also be used to open a database (gretl or RATS 4.0) for reading, in which
case it should be followed by the data command to extract particular series from the database.

Command Reference 56

outfile

Argument: [flag] [filename]

Example: outfile -w regress.txt

ols y 0 x1 x2

outfile -c

Divert output to filename, until further notice. Use the flag -a to append output to an existing
file, or -w to start a new file (or overwrite an existing one). Only one file can be opened in this
way at any given time.

The -c flag is used to close an output file that was previously opened as above. Output will
then revert to the default stream.

In the example above, the results of one regression are written to the file regress.txt, which
is then closed.

pca

Argument: varlist [flag]

Rudimentary Principal Components Analysis. Prints the eigenvalues of the correlation matrix
for the variables in varlist along with the proportion of the joint variance accounted for by
each component. Also prints the corresponding eigenvectors (“component loadings”).

If the -o flag is given, components with eigenvalues greater than 1.0 are saved to the dataset
as variables, with names PC1, PC2 and so on. These artificial variables are formed as the sum
of (component loading) times (standardized Xi), where Xi denotes the ith variable in varlist.

If the -a flag is given, all of the components are saved as described above.

panel

Argument: -s or -c

Request that the current data set be interpreted as a panel (pooled cross section and time
series). With no flag, or with the -s flag, the data set is taken to be in the form of stacked time
series (successive blocks of data contain time series for each cross-sectional unit). With the -c
flag, the data set is read as stacked cross-sections (successive blocks contain cross sections
for each time period). See also the Section called setobs.

pergm

Argument: varname [-o]

Computes and displays (and if not in batch mode, graphs) the spectrum of the specified
variable. Without the -o flag the sample periodogram is given; with the flag a Bartlett lag
window of length 2 root T (where T is the sample size) is used in estimating the spectrum
(see Chapter 18 of Greene’s Econometric Analysis). When the sample periodogram is printed, a
t-test for fractional integration of the series (“long memory”) is also given: the null hypothesis
is that the integration order is zero.

plot

Examples: plot x1

Command Reference 57

plot x1 x2

plot -o x1 x2

Plots data values for specified variables, for the range of observations currently in effect, using
ASCII symbols. Each line stands for an observation and the values are plotted horizontally. If
the flag -o is present, x1 and x2 are plotted in the same scale, otherwise x1 and x2 are scaled
appropriately. The -o flag should be used only if the variables have approximately the same
range of values (e.g. observed and predicted dependent variable). See also gnuplot.

pooled

Arguments: depvar indepvars [-o]

Estimates a model via OLS (see ols for details on syntax), and flags it as a pooled or panel
model, so that the hausman test item becomes available.

print

Argument: [varlist] [-o | -t] or [string]

Examples: print

print x y

print 1 2 3 -o

If varlist is given, prints the values of the specified variables; if no list is given, prints the
values of all variables in the current data file. If the -o flag is given the data are printed by
observation, otherwise they are printed by variable. If the -t flag is given the data are printed
by variable to 10 significant digits.

If the argument to print is a literal string (which must start with a double-quote, "), the string
is printed as is.

printf

Prints scalar values under the control of a format string (providing a small subset of the
printf() statement in the C programming language). Recognized formats are %g and %f, in
each case with the various modifiers available in C. Examples: the format %.10g prints a value
to 10 significant figures; %12.6f prints a value to 6 decimal places, with a width of 12 charac-
ters.

The format string itself must be enclosed in double quotes. The values to be printed must
follow the format string, separated by commas. These values should take the form of either (a)
the names of variables in the dataset, or (b) expressions that are valid for the genr command.
The following example prints the values of two variables plus that of a calculated expression:

ols 1 0 2 3
genr b = coeff(2)
genr se_b = stderr(2)
printf "b = %.8g, standard error %.8g, t = %.4f\n", b, se_b, b/se_b

The maximum length of a format string is 127 characters. The escape sequences \n (newline),
\t (tab), \v (vertical tab) and \\ (literal backslash) are recognized. To print a literal percent
sign, use %%.

Command Reference 58

probit

Arguments: depvar indepvars

Probit regression. The dependent variable should be a binary variable. Maximum likelihood
estimates of the coefficients on indepvars are obtained via iterated least squares (the EM
or Expectation–Maximization method). As the model is nonlinear the slopes depend on the
values of the independent variables: the reported slopes are evaluated at the means of those
variables. The chi-square statistic tests the null hypothesis that all coefficients are zero apart
from the constant.

Probit for analysis of proportions is not implemented in gretl at this point.

pvalue

Usage:

pvalue 1 xvalue (normal distribution)

pvalue 2 df xvalue (t distribution)

pvalue 3 df xvalue (chi-square distribution)

pvalue 4 dfn dfd xvalue (F distribution)

pvalue 5 mean variance xvalue (Gamma distribution)

Computes the area to the right of xvalue in the specified distribution. df is the degrees of
freedom, dfn is the d.f. for the numerator, dfd is the d.f. for the denominator. Instead of
the code numbers you can use z, t, X, F and G for the normal, t, chi-square, F , and gamma
distributions respectively.

quit

Exits from the program, giving you the option of saving the output from the session on the
way out.

rename

Arguments: varnumber newname

Changes the name of the variable with identification number varnumber to newname. The
varnumber must be between 1 and the number of variables in the dataset. The new name
must be of 8 characters maximum, must start with a letter, and must be composed of only
letters, digits, and the underscore character.

reset

Must immediately follow the estimation of a model via OLS. Carries out Ramsey’s RESET test
for model specification (non-linearity) by adding the square and the cube of the fitted values
to the regression and calculating the F statistic for the null hypothesis that the parameters
on the two added terms are zero.

rhodiff

Arguments: rholist ; varlist

Examples: rhodiff .65 ; 2 3 4

Command Reference 59

rhodiff r1 r2 ; x1 x2 x3

Creates rho-differenced counterparts of the variables (given by number or by name) in varlist
and adds them to the data set, using the suffix # for the new variables. Given variable v1 in
varlist, and entries r1 and r2 in rholist, v1# = v1(t) - r1*v1(t-1) - r2*v1(t-2) is cre-
ated. The rholist entries can be given as numerical values or as the names of variables
previously defined.

rmplot

Argument: varname

Range–mean plot: this command creates a simple graph to help in deciding whether a time
series, y(t), has constant variance or not. We take the full sample t=1,...,T and divide it into
small subsamples of arbitrary size k. The first subsample is formed by y(1),...,y(k), the second
is y(k+1), ..., y(2k), and so on. For each subsample we calculate the sample mean and range (=
maximum minus minimum), and we construct a graph with the means on the horizontal axis
and the ranges on the vertical. So each subsample is represented by a point in this plane. If
the variance of the series is constant we would expect the subsample range to be independent
of the subsample mean; if we see the points approximate an upward-sloping line this suggests
the variance of the series is increasing in its mean; and if the points approximate a downward
sloping line this suggests the variance is decreasing in the mean.

Besides the graph, gretl displays the means and ranges for each subsample, along with the
slope coefficient for an OLS regression of the range on the mean and the p-value for the
null hypothesis that this slope is zero. If the slope coefficient is significant at the 10 percent
significance level then the fitted line from the regression of range on mean is shown on the
graph.

run

Argument: inputfile

Execute the commands in inputfile then return control to the interactive prompt.

runs

Argument: varname

Carries out the nonparametric “runs” test for randomness of the specified variable. If you
want to test for randomness of deviations from the median, for a variable named x1 with a
non-zero median, you can do the following:

genr signx1 = x1 - median(x1)
runs signx1

scatters

Argument: yvar ; xvarlist

scatters yvarlist ; xvar

Examples: scatters 1 ; 2 3 4 5

scatters 1 2 3 4 5 6 ; time

Command Reference 60

Plots pairwise scatters of yvar against all the variables in xvarlist, or of all the variables in
yvarlist against xvar. The first example above puts variable 1 on the y-axis and draws four
graphs, the first having variable 2 on the x-axis, the second variable 3 on the x-axis, and so on.
The second example plots each of variables 1 through 6 against time. Scanning a set of such
plots can be a useful step in exploratory data analysis. The maximum number of plots is six;
any extra variable in the list will be ignored.

seed

Argument: integer

Sets the seed for the pseudo-random number generator for the uniform() and normal() func-
tions (see the genr command). By default the seed is set when the program is started, using
the system time. If you want to obtain repeatable sequences of pseudo-random numbers you
will need to set the seed manually.

setobs

Arguments: periodicity startobs

Examples: setobs 4 1990.1

setobs 12 1978.03

setobs 20 1.01

Force the program to interpret the current data set as time series or panel, when the data have
been read in as simple undated series. periodicity must be an integer; startobs is a string
representing the date or panel ID of the first observation. See also Chapter 5.

setmiss

Arguments: value [varlist]

Examples: setmiss -1

setmiss 100 x2

Get the program to interpret some specific numerical data value (the first parameter to the
command) as a code for “missing”, in the case of imported data. If this value is the only
parameter, as in the first example above, the interpretation will be applied to all series in the
data set. If value is followed by a list of variables, by name or number, the interpretation
is confined to the specified variable(s). Thus in the second example the data value 100 is
interpreted as a code for “missing”, but only for the variable x2.

shell

Usage: ! shellcommand

A ! at the beginning of a command line is interpreted as an escape to the user’s shell. Thus
arbitrary shell commands can be executed from within the program.

sim

Arguments: [startobs endobs] y a0 a1 a2 . . .

Examples: sim 1979.2 1983.1 y 0 0.9 creates y(t) = 0.9*y(t-1)

Command Reference 61

sim 15 25 y 10 0.8 x creates y(t) = 10 + 0.8*y(t-1) +
x(t)*y(t-2)

sim y 10 0.8 -x creates y(t) = 10 + 0.8*y(t-1) -
x(t)*y(t-2)

Simulates values for y for the current sample range, or for the range startobs through en-
dobs if these optional arguments are given. The variable y must have been defined earlier with
appropriate initial values. The formula used is y(t) = a0(t) + a1(t)*y(t-1) + a2(t)*y(t-
2) + ... The ai(t) may be either numerical constants or variable names previously defined;
these terms may be prefixed with minus sign.

Note that as of gretl 1.2.0, genr (see the Section called genr above) works dynamically, and
you will probably find it easier than sim for creating an autoregressive series. For example

genr y = 0 * const
genr y = .8*y(-1) -.2*y(-2) + normal()

now achieves the same object as (and with greater clarity than):

genr y = 0 * const
genr u = normal()
sim y u .8 -.2

smpl

Arguments: startobs endobs

smpl +i -j

smpl -o dummyvar

smpl -o

smpl -r condition

smpl full

Resets the sample range. In the first form startobs and endobs must be consistent with the
periodicity of the data. In the second form, the integers i and j are taken as offsets relative
to the existing sample range. In the third form dummyvar must be an indicator variable with
values 0 or 1 at each observation; the sample will be restricted to observations where the
value is 1. The fourth form, smpl -o, drops all observations for which values of one or more
variables are missing. The fifth form (-r) restricts the sample to observations that satisfy the
given (Boolean) condition. The last form, smpl full, restores the full data range.

smpl 3 10 data with periodicity 1

smpl 1950 1990 annual data, periodicity 1

smpl 1960.2 1982.4 quarterly data

smpl 1960.04 1985.10 monthly data

smpl 1960.2 ; keep endobs unchanged

smpl ; 1984.3 keep startobs unchanged

smpl +1 -1 advance the starting observation by one; move the ending
observation back one

smpl -o dum1 draw sample of observations where dum1=1

Command Reference 62

smpl -r income > 30000 sample cases where income has a value greater than 30000.

The intenal variable obs may be used in the last-noted form of smpl above, to exclude par-
ticular observations from the sample. For example, smpl -r obs!=4 will drop just the fourth
observation. If the data points are identified by labels, smpl -r obs!="USA" will drop the ob-
servation with label “USA”.

One point should be noted about the -o and -r forms of smpl: Any “structural” information
in the data header file (regarding the time series or panel nature of the data) is lost when this
command is issued. You may reimpose structure with the setobs command.

spearman

Arguments: x y [-o]

Prints Spearman’s rank correlation coefficient for the two variables x and y. The variables do
not have to be ranked manually in advance; the function takes care of this. If the -o flag is
supplied, the original data and the ranked data are printed out side by side.

The automatic ranking is from largest to smallest (i.e. the largest data value gets rank 1). If
you need to invert this ranking, create a new variable which is the negative of the original first.
For example:

genr altx = -x
spearman altx y

square

Argument: varlist [-o]

Generates new variables which are squares and cross products of the variables in varlist (-o
will create the cross products). For example square x y will generate sq_x = x squared, sq_y
= y squared and x_y = x times y. If a particular variable is a dummy variable it is not squared
because we will get the same variable.

store

Argument: datafile [varlist] [flag]

datafile is the name of the file in which the values should be stored.

If varlist is absent, the values of all the data series in the current data set will be stored.
Note that any scalar variables will not be saved automatically: if you wish to save scalars you
must explicitly list them in varlist.

By default storage is in native gretl XML format. There are six valid (mutually exclusive)
flags:

-z The default format, but gzip compressed.

-o Store the data by variables, in binary format using double precision.

-s Store the data by variables, in binary format using single precision.

-c Store the data in CSV (comma-separated values) format. Such data can be
read directly by spreadsheet programs.

-r Store the data in GNU R format.

Command Reference 63

-m Store the data in GNU Octave format.

-t Store the data in “traditional” ESL format, with an ascii data file and a
separate informative header file.

summary

Argument: [varlist]

Print summary statistics for the variables in varlist, or for all the variables in the data set if
varlist is omitted. Output consists of the mean, standard deviation (sd), coefficient of vari-
ation (= sd/mean), median, minimum, maximum, skewness coefficient, and excess kurtosis.

system

Arguments: type=systype [savevars=vars]

Examples: system type=sur

system type=sur save=resids

system type=sur save=resids,fitted

Starts a system of equations. At present the only type of system supported is sur (Seemingly
Unrelated Regressions). In the optional save= field of the command you can specify whether
to save the residuals (resids) and/or the fitted values (fitted). The system must contain at
least two equations specified using the equation command, and it must be terminated with
the line end system.

tabprint

Options: [-o] [-f filename]

Must follow the estimation of a model via OLS. Prints the estimated model in the form of a
LaTeX tabular environment. If a filename is specified using the -f flag output goes to that file,
otherwise it goes to a file with a name of the form model_N.tex, where N is the number of
models estimated to date in the current session. See also the eqnprint command.

If the -o flag is given the LaTeX file is a complete document, ready for processing; otherwise
it must be included in a document.

testuhat

Must follow a model estimation command. Gives the frequency distribution for the residual
from the model along with a chi-square test for normality.

tsls

Arguments: depvar varlist1 ; varlist2 [-o]

Example: tsls y1 0 y2 y3 x1 x2 ; 0 x1 x2 x3 x4 x5 x6

Computes two-stage least squares (TSLS) estimates of parameters. depvar is the dependent
variable, varlist1 is the list of independent variables (including right-hand side endogenous
variables) in the structural equation for which TSLS estimates are needed. varlist2 is the
combined list of exogenous and predetermined variables in all the equations. If varlist2 is

Command Reference 64

not at least as long as varlist1, the model is not identified. The -o flag will print the co-
variance matrix of the coefficients. In the above example, the ys are the endogenous variables
and the xs are the exogenous and predetermined variables. A number of internal variables
may be retrieved using the genr command, provided genr is invoked immediately after this
command.

var

Arguments: order varlist ; detlist

Example: var 4 x1 x2 x3 ; const time

Sets up and estimates (using OLS) a vector autoregression (VAR). The first argument speci-
fies the lag order, then follows the setup for the first equation. Don’t include lags among the
elements of varlist — they will be added automatically. The semi-colon separates the sto-
chastic variables, for which order lags will be included, from deterministic terms in detlist,
such as the constant, a time trend, and dummy variables.

In fact, gretl is able to recognize the more common deterministic variables (constant, time
trend, dummy variables with no values other than 0 and 1) as such, so these do not have to
placed after the semi-colon. More complex deterministic variables (e.g. a time trend interacted
with a dummy variable) must be put after the semi-colon.

A separate regression is run for each variable in varlist. Output for each equation includes
F -tests for zero restrictions on all lags of each of the variables; an F -test for the significance
of the maximum lag; forecast variance decompositions; and impulse response functions.

The variance decompositions and impulse responses are based on the Cholesky decomposi-
tion of the contemporaneous covariance matrix, and in this context the order in which the
(stochastic) variables are given matters. The first variable in the list is assumed to be “most
exogenous” within-period.

varlist

Prints a listing of variables currently available. list and ls are synonyms.

vartest

Arguments: var1 var2

Calculates the F statistic for the null hypothesis that the population variances for the variables
var1 and var2 are equal, and shows its p-value.

wls

Arguments: weightvar depvar indepvars [-o]

Weighted least squares estimates are obtained using weightvar as the weight, depvar as the
dependent variable and indepvars as the list of independent variables. More specifically, an
OLS regression is run on weightvar * depvar against weight * indepvars. If the weightvar
is a dummy variable, this is equivalent to eliminating all observations with the number zero for
weightvar. The flag -o will print the covariance matrix of coefficients. A number of internal
variables may be retrieved using the genr command, provided genr is invoked immediately
after this command.

Command Reference 65

Estimators and tests: summary

Table 10-2 shows the estimators available under the Model menu in gretl’s main window. The
corresponding script command (if there is one available) is shown in parentheses. For details
consult the command’s entry in Chapter 10.

Table 10-2. Estimators

Estimator Comment

Ordinary Least Squares (ols) The workhorse estimator

Weighted Least Squares (wls) Heteroskedasticity, exclusion of selected
observations

HCCM (hccm) Heteroskedasticity corrected covariance
matrix

Heteroskedasticity corrected (hsk) Weighted Least Squares based on predicted
error variance

Cochrane–Orcutt (corc) First-order autocorrelation

Hildreth–Lu (hilu) First-order autocorrelation

Autoregressive Estimation (ar) Higher-order autocorrelation (generalized
Cochrane–Orcutt)

Vector Autoregression (var) Systems of time-series equations

Cointegration test (coint) Long-run relationships between series

Two-Stage Least Squares (tsls) Simultaneous equations

Nonlinear Least Squares (nls) Nonlinear models

Logit (logit) Binary dependent variable (logistic
distribution)

Probit (probit) Binary dependent variable (normal
distribution)

Least Absolute Deviation (lad) Alternative to Least Squares

Rank Correlation (spearman) Correlation with ordinal data

Pooled OLS (pooled) OLS estimation for pooled cross-section, time
series data

Multiple precision OLS (mpols) OLS estimation using multiple precision
arithmetic

Table 10-3 shows the tests that are available under the Tests menu in a model window, after
estimation.

Table 10-3. Tests for models

Test Corresponding command

Omit variables (F -test if OLS) omit

Add variables (F -test if OLS) add

Nonlinearity (squares) lmtest

Nonlinearity (logs) lmtest

Command Reference 66

Test Corresponding command

Nonlinearity (Ramsey’s RESET) reset

Heteroskedasticity (White’s test) lmtest

Influential observations leverage

Autocorrelation up to the data frequency lmtest -o

Chow (structural break) chow

CUSUM (parameter stability) cusum

ARCH (conditional heteroskedasticity) arch

Normality of residual testuhat

Panel diagnostics hausman

67

Chapter 11. Troubleshooting gretl

Bug reports

Bug reports are welcome. I believe you are unlikely to find bugs in the actual calculations done
by gretl (although this statement does not constitute any sort of warranty). You may, how-
ever, come across bugs or oddities in the behavior of the graphical interface. Please remember
that the usefulness of bug reports is greatly enhanced if you can be as specific as possible:
what exactly went wrong, under what conditions, and on what operating system? If you saw
an error message, what precisely did it say?

Auxiliary programs

As mentioned above, gretl calls some other programs to accomplish certain tasks (gnuplot
for graphing, LaTeX for high-quality typesetting of regression output, GNU R). If something
goes wrong with such external links, it is not always easy to produce an informative error
message window. If such a link fails when accessed from the gretl graphical interface, you
may be able to get more information by starting gretl from the command prompt (e.g. from
an xterm under the X window system, or from a “DOS box” under MS Windows, in which case
type gretlw32.exe), rather than via a desktop menu entry or icon. Additional error messages
may be displayed on the terminal window.

Also please note that for most external calls, gretl assumes that the programs in question
are available in your “path” — that is, that they can be invoked simply via the name of the
program, without supplying the program’s full location.1 Thus if a given program fails, try the
experiment of typing the program name at the command prompt, as shown below.

System Graphing Typsetting GNU R

X window system gnuplot latex, xdvi R

MS Windows wgnuplot.exe latex, windvi RGui.exe

If the program fails to start from the prompt, it’s not a gretl issue but rather that the pro-
gram’s home directory is not in your path, or the program is not installed (properly). For
details on modifying your path please see the documentation or online help for your operat-
ing system or shell.

1. The exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is given.

68

Chapter 12. The command line interface

Gretl at the console

The gretl package includes the command-line program gretlcli. On Linux it can be run from
the console, or in an xterm (or similar). Under MS Windows it can be run in a console window
(sometimes inaccurately called a “DOS box”). gretlcli has its own help file, which may be
accessed by typing “help” at the prompt. It can be run in batch mode, sending outout directly
to a file (see the Section called gretlcli in Chapter 9 above).

If gretlcli is linked to the readline library (this is automatically the case in the MS Win-
dows version; also see Appendix B), the command line is recallable and editable, and offers
command completion. You can use the Up and Down arrow keys to cycle through previously
typed commands. On a given command line, you can use the arrow keys to move around, in
conjunction with Emacs editing keystokes.1 The most common of these are:

Keystroke Effect

Ctrl-a go to start of line

Ctrl-e go to end of line

Ctrl-d delete character to right

where “Ctrl-a” means press the “a” key while the “Ctrl” key is also depressed. Thus if you
want to change something at the beginning of a command, you don’t have to backspace over
the whole line, erasing as you go. Just hop to the start and add or delete characters.

If you type the first letters of a command name then press the Tab key, readline will attempt
to complete the command name for you. If there’s a unique completion it will be put in place
automatically. If there’s more than one completion, pressing Tab a second time brings up a
list.

Changes from Ramanathan’s ESL

gretlcli inherits its basic command syntax from Ramu Ramanathan’s ESL, and command
scripts developed for ESL should be usable with few or no changes: the only things to watch
for are multi-line commands and the freq command.

§ In ESL, a semicolon is used as a terminator for many commands. I decided to remove this in
gretlcli. Semicolons are simply ignored, apart from a few special cases where they have a
definite meaning: as a separator for two lists in the ar and tsls commands, and as a marker
for an unchanged starting or ending observation in the smpl command. In ESL semicolon
termination gives the possibility of breaking long commands over more than one line; in
gretlcli this is done by putting a trailing backslash \ at the end of a line that is to be
continued.

§ With freq, you can’t at present specify user-defined ranges as in ESL. A chi-square test for
normality has been added to the output of this command.

Note also that the command-line syntax for running a batch job is simplified. For ESL you
typed, e.g.

esl -b datafile < inputfile > outputfile

while for gretlcli you type:

1. Actually, the key bindings shown below are only the defaults; they can be customized. See the readline manual.

The command line interface 69

gretlcli -b inputfile > outputfile

The inputfile is treated as a program argument; it should specify a datafile to use internally,
using the syntax open datafile or the special comment (* ! datafile *)

70

Appendix A. Data file details

Basic native format

In gretl’s native data format, a data set is stored in XML (extensible mark-up language).
Data files correspond to the simple DTD (document type definition) given in gretldata.dtd,
which is supplied with the gretl distribution and is installed in the system data directory
(e.g. /usr/share/gretl/data on Linux.) Data files may be plain text or gzipped. They contain
the actual data values plus additional information such as the names and descriptions of
variables, the frequency of the data, and so on.

Most users will probably not have need to read or write such files other than via gretl itself,
but if you want to manipulate them using other software tools you should examine the DTD
and also take a look at a few of the supplied practice data files: data4-1.gdt gives a simple
example; data4-10.gdt is an example where observation labels are included.

Traditional ESL format

For backward compatibility, gretl can also handle data files in the “traditional” format inher-
ited from Ramanathan’s ESL program. In this format (which was the default in gretl prior to
version 0.98) a data set is represented by two files. One contains the actual data and the other
information on how the data should be read. To be more specific:

1. Actual data: A rectangular matrix of white-space separated numbers. Each column repre-
sents a variable, each row an observation on each of the variables (spreadsheet style). Data
columns can be separated by spaces or tabs. The filename should have the suffix .gdt. By
default the data file is ASCII (plain text). Optionally it can be gzip-compressed to save disk
space. You can insert comments into a data file: if a line begins with the hash mark (#) the
entire line is ignored. This is consistent with gnuplot and octave data files.

2. Header : The data file must be accompanied by a header file which has the same basename
as the data file plus the suffix .hdr. This file contains, in order:

—(Optional) comments on the data, set off by the opening string (* and the closing string
*), each of these strings to occur on lines by themselves.

—(Required) list of white-space separated names of the variables in the data file. Names
are limited to 8 characters, must start with a letter, and are limited to alphanumeric
characters plus the underscore. The list may continue over more than one line; it is
terminated with a semicolon, ;.

—(Required) observations line of the form 1 1 85. The first element gives the data fre-
quency (1 for undated or annual data, 4 for quarterly, 12 for monthly). The second and
third elements give the starting and ending observations. Generally these will be 1 and
the number of observations respectively, for undated data. For time-series data one can
use dates of the form 1959.1 (quarterly, one digit after the point) or 1967.03 (monthly,
two digits after the point). See Chapter 5 for special use of this line in the case of panel
data.

—The keyword BYOBS.

Here is an example of a well-formed data header file.

(*
DATA9-6:
Data on log(money), log(income) and interest rate from US.
Source: Stock and Watson (1993) Econometrica
(unsmoothed data) Period is 1900-1989 (annual data).

Data file details 71

Data compiled by Graham Elliott.
*)
lmoney lincome intrate ;
1 1900 1989 BYOBS

The corresponding data file contains three columns of data, each having 90 entries.

Three further features of the “traditional” data format may be noted.

1. If the BYOBS keyword is replaced by BYVAR, and followed by the keyword BINARY, this indi-
cates that the corresponding data file is in binary format. Such data files can be written
from gretlcli using the store command with the -s flag (single precision) or the -o flag
(double precision).

2. If BYOBS is followed by the keyword MARKERS, gretl expects a data file in which the first
column contains strings (8 characters maximum) used to identify the observations. This
may be handy in the case of cross-sectional data where the units of observation are iden-
tifiable: countries, states, cities or whatever. It can also be useful for irregular time series
data, such as daily stock price data where some days are not trading days — in this
case the observations can be marked with a date string such as 10/01/98. (Remember the
8-character maximum.) Note that BINARY and MARKERS are mutually exclusive flags. Also
note that the “markers” are not considered to be a variable: this column does not have a
corresponding entry in the list of variable names in the header file.

3. If a file with the same base name as the data file and header files, but with the suffix .lbl,
is found, it is read to fill out the descriptive labels for the data series. The format of the
label file is simple: each line contains the name of one variable (as found in the header
file), followed by one or more spaces, followed by the descriptive label. Here is an example:
price New car price index, 1982 base year

If you want to save data in traditional format, use the -t flag with the store command, either
in the command-line program or in the console window of the GUI program.

Binary database details

A gretl database consists of two parts: an ASCII index file (with filename suffix .idx) contain-
ing information on the series, and a binary file (suffix .bin) containing the actual data. Two
examples of the format for an entry in the idx file are shown below:

G0M910 Composite index of 11 leading indicators (1987=100)
M 1948.01 - 1995.11 n = 575
currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128
characters). On the second line the first field is a frequency code: M for monthly, Q for quarterly,
A for annual, B for business-daily (daily with five days per week) and D for daily (seven days
per week). No other frequencies are accepted at present. Then comes the starting date (N.B.
with two digits following the point for monthly data, one for quarterly data, none for annual),
a space, a hyphen, another space, the ending date, the string “n = ” and the integer number
of observations. In the case of daily data the starting and ending dates should be given in the
form YYYY/MM/DD. This format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (up to 64 characters)
on the source and nature of the data, following a hash mark. For example:

Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that is,
single-precision floating-point numbers, typically taking four bytes apiece. The numbers are

Data file details 72

packed “by variable”, so that the first n numbers are the observations of variable 1, the next
m the observations on variable 2, and so on.

73

Appendix B. Technical notes
Gretl is written in the C programming language. I have abided as far as possible by the
ISO/ANSI C Standard (C89), although the graphical user interface and some other components
necessarily make use of platform-specific extensions.

gretl is being developed under Linux. The shared library and command-line client should
compile and run on any platform that (a) supports ISO/ANSI C and (b) has the zlib (compres-
sion) and libxml (XML manipulation) libraries installed. The homepage for zlib can be found
at info-zip.org. Libxml is at xmlsoft.org. If the GNU readline library is found on the host sys-
tem this will be used for gretcli, providing a much enhanced editable command line. See the
readline homepage.

The graphical client program should compile and run on any system that, in addition to the
above requirements, offers GTK version 1.2.3 or higher (see gtk.org). As of this writing there
are two main variants of the GTK libraries: the 1.2 series and the 2.0 series which was launched
in summer 2002. These variants are mutually incompatible. gretl can be built using either one
— the source code package includes two sub-directories, gui for GTK 1.2 and gui2 for GTK
2.0. I recommend use of GTK 2.0 if it is available, since it offers many enhancements over GTK
1.2.

gretl calls gnuplot for graphing. You can find gnuplot at gnuplot.info. As of this writing the
most recent official release is 3.7.3 (of December, 2002). If you are comfortable compiling
source code I would recommend installing gnuplot 3.8j0 or higher (source package available
from sourceforge.net/projects/gnuplot. The MS Windows version of gretl comes with a Win-
dows version gnuplot 3.8j0; the gretl website also offers an rpm of gnuplot 3.8j0 for x86 Linux
systems.

Some features of gretl make use of Adrian Feguin’s gtkextra library. You can find gtkextra
at gtkextra.sourceforge.net.

A binary version of the program is available for the Microsoft Windows platform (32-bit ver-
sion, i.e. Windows 95 or higher). This version was cross-compiled under Linux using mingw
(the GNU C compiler, gcc, ported for use with win32) and linked against the Microsoft C li-
brary, msvcrt.dll. It uses Tor Lillqvist’s port of GTK 2.0 to win32. The (free, open-source)
Windows installer program is courtesy of Jordan Russell (jrsoftware.org).

I’m hopeful that some users with coding skills may consider gretl sufficiently interesting to
be worth improving and extending. The documentation of the libgretl API is by no means
complete, but you can find some details by following the link “Libgretl API docs” on the gretl
homepage.

74

Appendix C. Numerical accuracy
gretl uses double-precision arithmetic throughout — except for the multiple-precision plugin
invoked by the menu item “Model/High precision OLS” which represents floating-point values
using a number of bits given by the environment variable GRETL_MP_BITS (default value 256).
The normal equations of Least Squares are by default solved via Cholesky decomposition,
which is accurate enough for most purposes (with the option of using QR decomposition
instead). The program has been tested rather thoroughly on the statistical reference datasets
provided by NIST (the U.S. National Institute of Standards and Technology) and a full account
of the results may be found on the gretl website (follow the link “Numerical accuracy”).

In October 2002 I had a useful exchange with Giovanni Baoicchi and Walter Distaso, who
were writing a review of gretl for the Journal of Applied Econonetrics, and James MacKinnon,
software review editor for the journal.1 and I am grateful to Baoicchi and Disasto for their
careful examination of the program, which prompted the following modifications.

1. The reviewers pointed out that there was a bug in gretl’s “p-value finder”, whereby the
program printed the complement of the correct probability for negative values of z. This
was fixed in version 0.998 of the program (released July 9, 2002).

2. They also noted that the p-value finder produced inaccurate results for extreme values of
x (e.g. values of around 8 to 10 in the t distribution with 100 degrees of freedom). This too
was fixed in gretl version 0.998, with a switch to more accurate probability distribution
code.

3. The reviewers noted a flaw in the presentation of regression coefficients in gretl, whereby
some coefficients could be printed to an unacceptably small number of significant figures.
This was fixed in version 0.999 (released August 25, 2002): now all the statistics associated
with a regression are printed to 6 significant figures.

4. It transpired from the reviewer’s tests that the numerical accuracy of gretl on MS Win-
dows was less than on Linux, where I had done my testing. For example, on the Longley
data — a well-known “ill-conditioned” dataset often used for testing econometrics pro-
grams — the Windows version of gretl was getting some coefficients wrong at the 7th
digit while the same coefficients were correct on Linux. This anomaly was fixed in gretl
version 1.0pre3 (released October 10, 2002).

The current version of the gretl source code package contains a tests subdirectory, with a
test suite based on the NIST datasets. This is invoked if you do make check in the top source
directory. You are warned if the numerical accuracy falls short of standard. Please consult the
file README in the tests directory for details.

The NIST test suite is also distributed with the MS Windows version of gretl. You can run the
tests by invoking the program nisttest.exe.

As mentioned above, all regression statistics are printed to 6 significant figures in the current
version of gretl (except when the multiple-precision plugin is used, then results are given to
12 figures). If you want to examine a particular value more closely, first save it (see the Section
called genr in Chapter 10) then print it using print -t (see Chapter 10). This will show the
value to 10 digits.

1. This review has since been published; see Baoicchi and Distaso (2003).

75

Appendix D. Advanced econometric analysis with free software
As mentioned in the main text, gretl offers a reasonably full selection of least-squares based
estimators, plus a few additional estimators such as (binomial) logit and probit and Least
Absolute Deviations. Advanced users may, however, find gretl’s menu of statistical routines
restrictive.

No doubt some advanced users will prefer to write their own statistical code in a fundamental
computer language such as C, C++ or Fortran. Another option is to use a relatively high-
level language that offers easy matrix manipulation and that already has numerous statistical
routines built in, or available as add-on packages. If the latter option sounds attractive, and
you are interested in using free, open source software, I would recommend taking a look at
either GNU R (r-project.org) or (GNU Octave). These programs are very close to the commercial
programs S and Matlab respectively.

Also as mentioned above, gretl offers the facility of exporting data in the formats of both
Octave and R. In the case of Octave, the gretl data set is saved thus: the first variable listed
for export is treated as the dependent variable and is saved as a vector, y, while the remaining
variables are saved jointly as a matrix, X. You can pull the X matrix apart if you wish, once
the data are loaded in Octave. See the Octave manual for details. As for R, the exported data
file preserves any time series structure that is apparent to gretl. The series are saved as
individual structures. The data should be brought into R using the source() command.

Of these two programs, R is perhaps more likely to be of immediate interest to econometri-
cians since it offers more in the way of statistical routines (e.g. generalized linear models,
maximum likelihood estimation, time series methods). I have therefore supplied gretl with
a convenience function for moving data quickly into R. Under gretl’s Session menu, you
will find the entry “Start GNU R”. This writes out an R version of the current gretl data set
(Rdata.tmp, in the user’s gretl directory), and sources it into a new R session. A few details on
this follow.

First, the data are brought into R by writing a temporary version of .Rprofile in the current
working directory. (If such a file exists it is referenced by R at startup.) In case you already have
a personal .Rprofile in place, the original file is temporarily moved to .Rprofile.gretltmp,
and on exit from gretl it is restored. (If anyone can suggest a cleaner way of doing this I’d be
happy to hear of it.)

Second, the particular way R is invoked depends on the internal gretl variable Rcommand,
whose value may be set under the File, Preferences menu. The default command is RGui.exe
under MS Windows. Under X it is either R --gui=gnome if an installation of the Gnome desktop
(gnome.org) was detected at compile time, or xterm -e R if Gnome was not found. Please note
that at most three space-separated elements in this command string will be processed; any
extra elements are ignored.

76

Appendix E. Listing of URLs
Below is a listing of the full URLs of websites mentioned in the text.

Census Bureau, Data Extraction Service

http://www.census.gov/ftp/pub/DES/www/welcome.html

Estima (RATS)

http://www.estima.com/

Gnome desktop homepage

http://www.gnome.org/

GNU Multiple Precision (GMP) library

http://swox.com/gmp/

GNU Octave homepage

http://www.octave.org/

GNU R homepage

http://www.r-project.org/

GNU R manual

http://cran.r-project.org/doc/manuals/R-intro.pdf

Gnuplot homepage

http://www.gnuplot.info/

Gnuplot manual

http://ricardo.ecn.wfu.edu/gnuplot.html

Gretl data page

http://ricardo.ecn.wfu.edu/gretl/gretl_data.html

Gretl homepage

http://gretl.sourceforge.net/

GTK+ homepage

http://www.gtk.org/

GTK+ port for win32

http://www.gimp.org/~tml/gimp/win32/

Gtkextra homepage

http://gtkextra.sourceforge.net/

InfoZip homepage

http://www.info-zip.org/pub/infozip/zlib/

JRSoftware

http://www.jrsoftware.org/

Mingw (gcc for win32) homepage

http://www.mingw.org/

Listing of URLs 77

Minpack

http://www.netlib.org/minpack/

Penn World Table

http://pwt.econ.upenn.edu/

Readline homepage

http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

Readline manual

http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Xmlsoft homepage

http://xmlsoft.org/

78

Bibliography
Baiocchi, G. and Distaso, W. (2003) “GRETL: Econometric software for the GNU generation”,

Journal of Applied Econometrics, 18, pp. 105–10.

Box, G. E. P. and Muller, M. E. (1958) “A Note on the Generation of Random Normal Deviates”,
Annals of Mathematical Statistics, 29, pp. 610–11.

Davidson, R. and MacKinnon, J. G. (1993) Estimation and Inference in Econometrics, New York:
Oxford University Press.

Greene, William H. (2000) Econometric Analysis, 4th edition, Upper Saddle River, NJ: Prentice-
Hall.

Hamilton, James D. (1994) Time Series Analysis, Princeton, NJ: Princeton University Press.

Kiviet, J. F. (1986) “On the Rigour of Some Misspecification Tests for Modelling Dynamic Rela-
tionships”, Review of Economic Studies, 53, pp. 241–261.

MacKinnon, J. G. and White, H. (1985) “Some Heteroskedasticity-Consistent Covariance Matrix
Estimators with Improved Finite Sample Properties”, Journal of Econometrics, 29, pp.
305–25.

R Core Development Team (2000) An Introduction to R, version 1.1.1,

Ramanathan, Ramu (2002) Introductory Econometrics with Applications, 5th edition, Fort Worth:
Harcourt.

Ruud, Paul A. (2000) An Introduction to Classical Econometric Theory, New York and Oxford:
Oxford University Press.

Salkever, D. (1976) “The Use of Dummy Variables to Compute Predictions, Prediction Errors,
and Confidence Intervals”, Journal of Econometrics, 4, pp. 393–7.

Wooldridge, Jeffrey M. (2002) Introductory Econometrics, A Modern Approach, 2nd edition,
Mason, Ohio: South-Western.

	Gretl Manual
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter 1. Introduction
	Features at a glance
	Acknowledgements
	Installing the programs
	Linux
	MS Windows
	Updating

	Chapter 2. Getting started
	Let's run a regression
	Estimation output
	The main window menus
	The gretl toolbar

	Chapter 3. Modes of working
	Command scripts
	The gretl console
	The session concept
	Introduction
	The model table
	Saving and re-opening sessions

	Chapter 4. Data files
	Native format
	Other data file formats
	Binary databases
	Online access to databases
	RATS 4 databases

	Creating a data file from scratch
	Common points on imported data
	Appending imported data
	Using the built-in spreadsheet
	Selecting from a database
	Creating a gretl data file independently
	Further note

	Missing data values

	Chapter 5. Panel data
	Panel structure
	Dummy variables
	Using lagged values with panel data
	Pooled estimation
	Illustration: the Penn World Table

	Chapter 6. Graphs and plots
	Gnuplot graphs
	Boxplots

	Chapter 7. Nonlinear least squares
	Introduction and examples
	Initializing the parameters
	NLS dialog window
	Analytical and numerical derivatives
	Controlling termination
	Details on the code
	Numerical accuracy

	Chapter 8. Loop constructs
	Monte Carlo simulations
	Iterated least squares
	Indexed loop

	Chapter 9. Options, arguments and path-searching
	gretl
	gretlcli
	Path searching
	MS Windows

	Chapter 10. Command Reference
	Introduction
	gretl commands
	add
	addto
	adf
	ar
	arch
	chow
	coeffsum
	coint
	coint2
	corc
	corr
	corrgm
	criteria
	critical
	cusum
	data
	delete
	diff
	end
	endloop
	equation
	eqnprint
	fcast
	fcasterr
	fit
	freq
	genr
	gnuplot
	graph
	hausman
	hccm
	help
	hilu
	hsk
	if
	import
	info
	label
	labels
	lad
	lags
	ldiff
	leverage
	lmtest
	logit
	logs
	loop
	meantest
	mpols
	multiply
	nls
	noecho
	nulldata
	ols
	omit
	omitfrom
	open
	outfile
	pca
	panel
	pergm
	plot
	pooled
	print
	printf
	probit
	pvalue
	quit
	rename
	reset
	rhodiff
	rmplot
	run
	runs
	scatters
	seed
	setobs
	setmiss
	shell
	sim
	smpl
	spearman
	square
	store
	summary
	system
	tabprint
	testuhat
	tsls
	var
	varlist
	vartest
	wls

	Estimators and tests: summary

	Chapter 11. Troubleshooting gretl
	Bug reports
	Auxiliary programs

	Chapter 12. The command line interface
	Gretl at the console
	Changes from Ramanathan's ESL

	Appendix A. Data file details
	Basic native format
	Traditional ESL format
	Binary database details

	Appendix B. Technical notes
	Appendix C. Numerical accuracy
	Appendix D. Advanced econometric analysis with free software
	Appendix E. Listing of URLs
	Bibliography

