00001
00002
00003 #include "pch.h"
00004
00005 #ifndef CRYPTOPP_IMPORTS
00006
00007 #include "cryptlib.h"
00008 #include "misc.h"
00009 #include "filters.h"
00010 #include "algparam.h"
00011 #include "fips140.h"
00012 #include "argnames.h"
00013 #include "fltrimpl.h"
00014
00015 #include <memory>
00016
00017 NAMESPACE_BEGIN(CryptoPP)
00018
00019 CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
00020 CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
00021 CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
00022 #ifdef WORD64_AVAILABLE
00023 CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
00024 #endif
00025 #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
00026 CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
00027 #endif
00028
00029 const std::string BufferedTransformation::NULL_CHANNEL;
00030 const NullNameValuePairs g_nullNameValuePairs;
00031
00032 BufferedTransformation & TheBitBucket()
00033 {
00034 static BitBucket bitBucket;
00035 return bitBucket;
00036 }
00037
00038 Algorithm::Algorithm(bool checkSelfTestStatus)
00039 {
00040 if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
00041 {
00042 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
00043 throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
00044
00045 if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
00046 throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
00047 }
00048 }
00049
00050 void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
00051 {
00052 SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
00053 }
00054
00055 void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv)
00056 {
00057 SetKey(key, length, MakeParameters(Name::IV(), iv));
00058 }
00059
00060 void SimpleKeyingInterface::ThrowIfInvalidKeyLength(const Algorithm &algorithm, size_t length)
00061 {
00062 if (!IsValidKeyLength(length))
00063 throw InvalidKeyLength(algorithm.AlgorithmName(), length);
00064 }
00065
00066 void SimpleKeyingInterface::ThrowIfResynchronizable()
00067 {
00068 if (IsResynchronizable())
00069 throw InvalidArgument("SimpleKeyingInterface: this object requires an IV");
00070 }
00071
00072 void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
00073 {
00074 if (!iv && !(IVRequirement() == INTERNALLY_GENERATED_IV || IVRequirement() == STRUCTURED_IV || !IsResynchronizable()))
00075 throw InvalidArgument("SimpleKeyingInterface: this object cannot use a null IV");
00076 }
00077
00078 const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs ¶ms)
00079 {
00080 const byte *iv;
00081 if (params.GetValue(Name::IV(), iv))
00082 ThrowIfInvalidIV(iv);
00083 else
00084 ThrowIfResynchronizable();
00085 return iv;
00086 }
00087
00088 void BlockTransformation::ProcessAndXorMultipleBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t numberOfBlocks) const
00089 {
00090 unsigned int blockSize = BlockSize();
00091 while (numberOfBlocks--)
00092 {
00093 ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
00094 inBlocks += blockSize;
00095 outBlocks += blockSize;
00096 if (xorBlocks)
00097 xorBlocks += blockSize;
00098 }
00099 }
00100
00101 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
00102 {
00103 assert(MinLastBlockSize() == 0);
00104
00105 if (length == MandatoryBlockSize())
00106 ProcessData(outString, inString, length);
00107 else if (length != 0)
00108 throw NotImplemented("StreamTransformation: this object does't support a special last block");
00109 }
00110
00111 unsigned int RandomNumberGenerator::GenerateBit()
00112 {
00113 return Parity(GenerateByte());
00114 }
00115
00116 void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
00117 {
00118 while (size--)
00119 *output++ = GenerateByte();
00120 }
00121
00122 word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
00123 {
00124 word32 range = max-min;
00125 const int maxBytes = BytePrecision(range);
00126 const int maxBits = BitPrecision(range);
00127
00128 word32 value;
00129
00130 do
00131 {
00132 value = 0;
00133 for (int i=0; i<maxBytes; i++)
00134 value = (value << 8) | GenerateByte();
00135
00136 value = Crop(value, maxBits);
00137 } while (value > range);
00138
00139 return value+min;
00140 }
00141
00142 void RandomNumberGenerator::DiscardBytes(size_t n)
00143 {
00144 while (n--)
00145 GenerateByte();
00146 }
00147
00148
00149 class ClassNullRNG : public RandomNumberGenerator
00150 {
00151 public:
00152 std::string AlgorithmName() const {return "NullRNG";}
00153 byte GenerateByte() {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
00154 };
00155
00156 RandomNumberGenerator & NullRNG()
00157 {
00158 static ClassNullRNG s_nullRNG;
00159 return s_nullRNG;
00160 }
00161
00162 bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
00163 {
00164 ThrowIfInvalidTruncatedSize(digestLength);
00165 SecByteBlock digest(digestLength);
00166 TruncatedFinal(digest, digestLength);
00167 return memcmp(digest, digestIn, digestLength) == 0;
00168 }
00169
00170 void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
00171 {
00172 if (size > DigestSize())
00173 throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
00174 }
00175
00176 unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
00177 {
00178 const BufferedTransformation *t = AttachedTransformation();
00179 return t ? t->GetMaxWaitObjectCount() : 0;
00180 }
00181
00182 void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container)
00183 {
00184 BufferedTransformation *t = AttachedTransformation();
00185 if (t)
00186 t->GetWaitObjects(container);
00187 }
00188
00189 void BufferedTransformation::Initialize(const NameValuePairs ¶meters, int propagation)
00190 {
00191 assert(!AttachedTransformation());
00192 IsolatedInitialize(parameters);
00193 }
00194
00195 bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
00196 {
00197 assert(!AttachedTransformation());
00198 return IsolatedFlush(hardFlush, blocking);
00199 }
00200
00201 bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
00202 {
00203 assert(!AttachedTransformation());
00204 return IsolatedMessageSeriesEnd(blocking);
00205 }
00206
00207 byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
00208 {
00209 if (channel.empty())
00210 return CreatePutSpace(size);
00211 else
00212 throw NoChannelSupport();
00213 }
00214
00215 size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
00216 {
00217 if (channel.empty())
00218 return Put2(begin, length, messageEnd, blocking);
00219 else
00220 throw NoChannelSupport();
00221 }
00222
00223 size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
00224 {
00225 if (channel.empty())
00226 return PutModifiable2(begin, length, messageEnd, blocking);
00227 else
00228 return ChannelPut2(channel, begin, length, messageEnd, blocking);
00229 }
00230
00231 bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
00232 {
00233 if (channel.empty())
00234 return Flush(completeFlush, propagation, blocking);
00235 else
00236 throw NoChannelSupport();
00237 }
00238
00239 bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
00240 {
00241 if (channel.empty())
00242 return MessageSeriesEnd(propagation, blocking);
00243 else
00244 throw NoChannelSupport();
00245 }
00246
00247 lword BufferedTransformation::MaxRetrievable() const
00248 {
00249 if (AttachedTransformation())
00250 return AttachedTransformation()->MaxRetrievable();
00251 else
00252 return CopyTo(TheBitBucket());
00253 }
00254
00255 bool BufferedTransformation::AnyRetrievable() const
00256 {
00257 if (AttachedTransformation())
00258 return AttachedTransformation()->AnyRetrievable();
00259 else
00260 {
00261 byte b;
00262 return Peek(b) != 0;
00263 }
00264 }
00265
00266 size_t BufferedTransformation::Get(byte &outByte)
00267 {
00268 if (AttachedTransformation())
00269 return AttachedTransformation()->Get(outByte);
00270 else
00271 return Get(&outByte, 1);
00272 }
00273
00274 size_t BufferedTransformation::Get(byte *outString, size_t getMax)
00275 {
00276 if (AttachedTransformation())
00277 return AttachedTransformation()->Get(outString, getMax);
00278 else
00279 {
00280 ArraySink arraySink(outString, getMax);
00281 return (size_t)TransferTo(arraySink, getMax);
00282 }
00283 }
00284
00285 size_t BufferedTransformation::Peek(byte &outByte) const
00286 {
00287 if (AttachedTransformation())
00288 return AttachedTransformation()->Peek(outByte);
00289 else
00290 return Peek(&outByte, 1);
00291 }
00292
00293 size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
00294 {
00295 if (AttachedTransformation())
00296 return AttachedTransformation()->Peek(outString, peekMax);
00297 else
00298 {
00299 ArraySink arraySink(outString, peekMax);
00300 return (size_t)CopyTo(arraySink, peekMax);
00301 }
00302 }
00303
00304 lword BufferedTransformation::Skip(lword skipMax)
00305 {
00306 if (AttachedTransformation())
00307 return AttachedTransformation()->Skip(skipMax);
00308 else
00309 return TransferTo(TheBitBucket(), skipMax);
00310 }
00311
00312 lword BufferedTransformation::TotalBytesRetrievable() const
00313 {
00314 if (AttachedTransformation())
00315 return AttachedTransformation()->TotalBytesRetrievable();
00316 else
00317 return MaxRetrievable();
00318 }
00319
00320 unsigned int BufferedTransformation::NumberOfMessages() const
00321 {
00322 if (AttachedTransformation())
00323 return AttachedTransformation()->NumberOfMessages();
00324 else
00325 return CopyMessagesTo(TheBitBucket());
00326 }
00327
00328 bool BufferedTransformation::AnyMessages() const
00329 {
00330 if (AttachedTransformation())
00331 return AttachedTransformation()->AnyMessages();
00332 else
00333 return NumberOfMessages() != 0;
00334 }
00335
00336 bool BufferedTransformation::GetNextMessage()
00337 {
00338 if (AttachedTransformation())
00339 return AttachedTransformation()->GetNextMessage();
00340 else
00341 {
00342 assert(!AnyMessages());
00343 return false;
00344 }
00345 }
00346
00347 unsigned int BufferedTransformation::SkipMessages(unsigned int count)
00348 {
00349 if (AttachedTransformation())
00350 return AttachedTransformation()->SkipMessages(count);
00351 else
00352 return TransferMessagesTo(TheBitBucket(), count);
00353 }
00354
00355 size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
00356 {
00357 if (AttachedTransformation())
00358 return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
00359 else
00360 {
00361 unsigned int maxMessages = messageCount;
00362 for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
00363 {
00364 size_t blockedBytes;
00365 lword transferredBytes;
00366
00367 while (AnyRetrievable())
00368 {
00369 transferredBytes = LWORD_MAX;
00370 blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
00371 if (blockedBytes > 0)
00372 return blockedBytes;
00373 }
00374
00375 if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
00376 return 1;
00377
00378 bool result = GetNextMessage();
00379 assert(result);
00380 }
00381 return 0;
00382 }
00383 }
00384
00385 unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
00386 {
00387 if (AttachedTransformation())
00388 return AttachedTransformation()->CopyMessagesTo(target, count, channel);
00389 else
00390 return 0;
00391 }
00392
00393 void BufferedTransformation::SkipAll()
00394 {
00395 if (AttachedTransformation())
00396 AttachedTransformation()->SkipAll();
00397 else
00398 {
00399 while (SkipMessages()) {}
00400 while (Skip()) {}
00401 }
00402 }
00403
00404 size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
00405 {
00406 if (AttachedTransformation())
00407 return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
00408 else
00409 {
00410 assert(!NumberOfMessageSeries());
00411
00412 unsigned int messageCount;
00413 do
00414 {
00415 messageCount = UINT_MAX;
00416 size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
00417 if (blockedBytes)
00418 return blockedBytes;
00419 }
00420 while (messageCount != 0);
00421
00422 lword byteCount;
00423 do
00424 {
00425 byteCount = ULONG_MAX;
00426 size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
00427 if (blockedBytes)
00428 return blockedBytes;
00429 }
00430 while (byteCount != 0);
00431
00432 return 0;
00433 }
00434 }
00435
00436 void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
00437 {
00438 if (AttachedTransformation())
00439 AttachedTransformation()->CopyAllTo(target, channel);
00440 else
00441 {
00442 assert(!NumberOfMessageSeries());
00443 while (CopyMessagesTo(target, UINT_MAX, channel)) {}
00444 }
00445 }
00446
00447 void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
00448 {
00449 if (AttachedTransformation())
00450 AttachedTransformation()->SetRetrievalChannel(channel);
00451 }
00452
00453 size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
00454 {
00455 PutWord(false, order, m_buf, value);
00456 return ChannelPut(channel, m_buf, 2, blocking);
00457 }
00458
00459 size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
00460 {
00461 PutWord(false, order, m_buf, value);
00462 return ChannelPut(channel, m_buf, 4, blocking);
00463 }
00464
00465 size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
00466 {
00467 return ChannelPutWord16(NULL_CHANNEL, value, order, blocking);
00468 }
00469
00470 size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
00471 {
00472 return ChannelPutWord32(NULL_CHANNEL, value, order, blocking);
00473 }
00474
00475 size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
00476 {
00477 byte buf[2] = {0, 0};
00478 size_t len = Peek(buf, 2);
00479
00480 if (order)
00481 value = (buf[0] << 8) | buf[1];
00482 else
00483 value = (buf[1] << 8) | buf[0];
00484
00485 return len;
00486 }
00487
00488 size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
00489 {
00490 byte buf[4] = {0, 0, 0, 0};
00491 size_t len = Peek(buf, 4);
00492
00493 if (order)
00494 value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
00495 else
00496 value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
00497
00498 return len;
00499 }
00500
00501 size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
00502 {
00503 return (size_t)Skip(PeekWord16(value, order));
00504 }
00505
00506 size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
00507 {
00508 return (size_t)Skip(PeekWord32(value, order));
00509 }
00510
00511 void BufferedTransformation::Attach(BufferedTransformation *newOut)
00512 {
00513 if (AttachedTransformation() && AttachedTransformation()->Attachable())
00514 AttachedTransformation()->Attach(newOut);
00515 else
00516 Detach(newOut);
00517 }
00518
00519 void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
00520 {
00521 GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
00522 }
00523
00524 class PK_DefaultEncryptionFilter : public Unflushable<Filter>
00525 {
00526 public:
00527 PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs ¶meters)
00528 : m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
00529 {
00530 Detach(attachment);
00531 }
00532
00533 size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00534 {
00535 FILTER_BEGIN;
00536 m_plaintextQueue.Put(inString, length);
00537
00538 if (messageEnd)
00539 {
00540 {
00541 size_t plaintextLength;
00542 if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
00543 throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
00544 size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
00545
00546 SecByteBlock plaintext(plaintextLength);
00547 m_plaintextQueue.Get(plaintext, plaintextLength);
00548 m_ciphertext.resize(ciphertextLength);
00549 m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
00550 }
00551
00552 FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
00553 }
00554 FILTER_END_NO_MESSAGE_END;
00555 }
00556
00557 RandomNumberGenerator &m_rng;
00558 const PK_Encryptor &m_encryptor;
00559 const NameValuePairs &m_parameters;
00560 ByteQueue m_plaintextQueue;
00561 SecByteBlock m_ciphertext;
00562 };
00563
00564 BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs ¶meters) const
00565 {
00566 return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
00567 }
00568
00569 class PK_DefaultDecryptionFilter : public Unflushable<Filter>
00570 {
00571 public:
00572 PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs ¶meters)
00573 : m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
00574 {
00575 Detach(attachment);
00576 }
00577
00578 size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
00579 {
00580 FILTER_BEGIN;
00581 m_ciphertextQueue.Put(inString, length);
00582
00583 if (messageEnd)
00584 {
00585 {
00586 size_t ciphertextLength;
00587 if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
00588 throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
00589 size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
00590
00591 SecByteBlock ciphertext(ciphertextLength);
00592 m_ciphertextQueue.Get(ciphertext, ciphertextLength);
00593 m_plaintext.resize(maxPlaintextLength);
00594 m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
00595 if (!m_result.isValidCoding)
00596 throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
00597 }
00598
00599 FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
00600 }
00601 FILTER_END_NO_MESSAGE_END;
00602 }
00603
00604 RandomNumberGenerator &m_rng;
00605 const PK_Decryptor &m_decryptor;
00606 const NameValuePairs &m_parameters;
00607 ByteQueue m_ciphertextQueue;
00608 SecByteBlock m_plaintext;
00609 DecodingResult m_result;
00610 };
00611
00612 BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs ¶meters) const
00613 {
00614 return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
00615 }
00616
00617 size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
00618 {
00619 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00620 return SignAndRestart(rng, *m, signature, false);
00621 }
00622
00623 size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
00624 {
00625 std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00626 m->Update(message, messageLen);
00627 return SignAndRestart(rng, *m, signature, false);
00628 }
00629
00630 size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
00631 const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
00632 {
00633 std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
00634 InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
00635 m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00636 return SignAndRestart(rng, *m, signature, false);
00637 }
00638
00639 bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
00640 {
00641 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00642 return VerifyAndRestart(*m);
00643 }
00644
00645 bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
00646 {
00647 std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00648 InputSignature(*m, signature, signatureLength);
00649 m->Update(message, messageLen);
00650 return VerifyAndRestart(*m);
00651 }
00652
00653 DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
00654 {
00655 std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
00656 return RecoverAndRestart(recoveredMessage, *m);
00657 }
00658
00659 DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage,
00660 const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
00661 const byte *signature, size_t signatureLength) const
00662 {
00663 std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
00664 InputSignature(*m, signature, signatureLength);
00665 m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
00666 return RecoverAndRestart(recoveredMessage, *m);
00667 }
00668
00669 void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00670 {
00671 GeneratePrivateKey(rng, privateKey);
00672 GeneratePublicKey(rng, privateKey, publicKey);
00673 }
00674
00675 void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00676 {
00677 GenerateStaticPrivateKey(rng, privateKey);
00678 GenerateStaticPublicKey(rng, privateKey, publicKey);
00679 }
00680
00681 void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
00682 {
00683 GenerateEphemeralPrivateKey(rng, privateKey);
00684 GenerateEphemeralPublicKey(rng, privateKey, publicKey);
00685 }
00686
00687 NAMESPACE_END
00688
00689 #endif