
The Apport crash report format
Version 0.2

Martin Pitt <martin.pitt@ubuntu.com>

July 5, 2010

Contents

1 Introduction 2

2 File format 2
2.1 Structure . 2
2.2 Keys . 3
2.3 Textual values . 3
2.4 Binary values . 3
2.5 Ordering . 4
2.6 Example . 4

3 Standard keys 4
3.1 Generic fields . 5
3.2 Process specific data fields . 5
3.3 Signal crash specific data fields . 6
3.4 Package specific data fields . 6
3.5 Kernel specific data fields . 7

1

1 Introduction

Apport is a system for automatic problem reporting and feedback, with the following fea-
tures:

• intercept program crashes right when they happen the first time

• collect potentially useful information about the crash and the OS environment

• can be automatically invoked for unhandled exceptions in other programming languages
(e. g. for Python)

• can be automatically invoked for other problems that can be detected mechanically (such
as package installation/upgrade failures from update-manager)

• easy to understand UI that informs the user about the crash and instructs them on how
to proceed,

• written in a very modular way: user interfaces (such as Gtk/Qt), crash databases (such
as Launchpad/Bugzilla), packaging systems (apt/dpkg/rpm), are all factorized

• independent of a particular desktop environment, Linux flavour, etc.

• very robust due to exhaustive test suite coverage

• includes tools for post-processing crashes, such as post-mortem generation of symbolic
stack traces, tools to create and work in chroots with only user privileges (using fakeroot

and fakechroot)

The Apport home page1 has some more information.

All components of apport (crash interception, enrichment with information, UI presentation,
crash database up/download, crash post-processing) work on a common report file format.
This allows adopters of Apport to use only some parts and combine it with existing project
specific solutions like as Gnome’s bug-buddy, and get the option to eventually merge such
systems.

This document describes the structure of the report files and the pre-defined data fields.

2 File format

2.1 Structure

Apport report files consist of key/value pairs encoded with the standard RFC8222 header
format. Key name and value are separated by a dot and a space (“: ”).

There must not be any blank lines and no lines that start with a non-whitespace character and
do not start with a key name and a colon.

1https://wiki.ubuntu.com/Apport
2http://www.ietf.org/rfc/rfc0822.txt

2

2.2 Keys

Key names consist of numbers (0 – 9), English letters (a – z and A – Z) and dots (.).

2.3 Textual values

Single line textual values directly follow the key name, colon and dot without any further
encoding or escaping. There is no line length limit.

In multi-line textual values, the line feed character (\n, ASCII Code 10) is escaped by append-
ing a single space (ASCII code 32). In other words, every line of a multi-line value but the
first one must be indented by a single space which is not part of the value.

2.4 Binary values

This is a compressed format intended for binary data such as memory dumps. It can optionally
be used for long textual values like large log files if they should be compressed.

A binary value is introduced by the text “base64” and a line break following the key name,
colon, and space. After that, the binary data is encoded as follows:

• Write a gzip header

• Initialize a zlib compressor object.

• Read a block of (at most) 1 MiB (1,048,576 Bytes) of binary data.

• Compress this block with the zlib compressor.

• Generate the base64-encoding of the compressed block

• Write a space and the base64-encoded block to the report file.

• If there is more source data to be encoded, go to 2.

• flush the zlib compressor, append the gzip trailer, base64-encode the tail and write it to
the report file, again with a space prefix.

With this algorithm the binary encoding format obeys the same text line folding convention
than the textual values.

3

2.5 Ordering

In order to keep the report files readable by humans, the following conventions should be
met:

• The textual values should be at the top, the binary values at the bottom of the file. This
eases their inspection in web browsers, even with partial downloads.

• Within each group (textual/binary), the keys should appear in ascending alphabetical
order.

Software that processes Apport crash report files must not rely on those conventions. It is
acceptable to not follow them for performance reasons.

2.6 Example

This table shows an example data set:

Key Value

Short1 Single line value

Date December 24, 2000

Long Multiple lines

with leading

space

TestBin ABABABABABABABABABAB\0\0\0\0\0\0\0\0\0\0ZZZZZZZZZZ

This would be encoded as:

Date: December 24, 2000

Long: Multiple lines

with leading

space

Short1: Single line value

TestBin: base64

eJw=

c3RyxIAMcBAFAG55BXk=

3 Standard keys

In order to provide a basic level of interoperability between all systems using the Apport
report format, a number of standard key names and semantics are defined. This is particularly
important for tools which automatically reprocess problem reports.

Implementations can add additional fields at will, especially if these are mainly aimed at
human examination. Field names which will be processed mechanically should be added to
this standard document eventually.

4

3.1 Generic fields

The following keys apply to all types of problem reports. They classify the problem type and
give information about the date, operating system and user environment.

ProblemType: (required) Classification of the problem type; Currently defined values are
Crash, Kernel, Package (for failed install/upgrade of a software package), and Bug (for
general bug reports)

Date: (required) Date and time of the problem report in ISO format (see asctime(3))

Uname: (required) Output of uname -srm

OS: (optional) Name of the operating system. On LSB compliant systems, this can be deter-
mined with lsb_release -si.

OSRelease: (optional) Release version of the operating system. On LSB compliant systems,
this can be determined with lsb_release -sr.

Architecture: (optional) OS specific notation of processor/system architecture (e. g. i386)

UserGroups: (optional) System groups of the user reporting the problem; for privacy reasons
this should only include IDs smaller than 500, no groups which belong to other real users.

3.2 Process specific data fields

The following fields describe interesting properties of a particular process. This always applies
to ProblemTypes Crash and also to Bug if the bug is reported against a running process (as
opposed to just a package).

ExecutablePath: (required) Contents of /proc/pid/exe for ELF files; if the process is an
interpreted script, this is the script path instead

InterpreterPath: (required for scripts) Contents of /proc/pid/exe if the process is an inter-
preted script

ProcEnviron: (required) A subset of the process’ environment, from /proc/pid/env; this
should only show some standard variables that do not disclose potentially sensitive in-
formation, like $SHELL, $PATH, $LANG, and $LC_*.

ProcCmdline: (required) Contents of /proc/pid/cmdline

ProcStatus: (required) Contents of /proc/pid/status

ProcMaps: (required) Contents of /proc/pid/maps

ProcAttrCurrent: (optional) Contents of /proc/pid/attr/current; this contains the process’
security context if there is a Linux Security module enabled that makes use of that
interface (e.g. SELinux, AppArmor).

5

3.3 Signal crash specific data fields

The following fields describe properties of a process that crashed due to a signal. This applies
to ProblemType Crash if a core dump is available. Note that Crash is also used for unhandled
exceptions of programs written in scripting languages, in which case there is no core dump.

CoreDump: (optional) core dump (binary value); this can also be a ’minidump’ format or any
other useful image of the stack.

Stacktrace: (optional) Stack trace (e. g. produced by gdb’s bt full command or minidump
processor)

ThreadStacktrace: (optional) Threaded stack trace (e. g. produced by the gdb command
thread apply all bt full or minidump processor)

StacktraceTop: (optional) First five frames of Stacktrace with the leading addresses and local
variables removed; this is intended to be evaluated for automatic duplicate detection

Registers: (optional) Register dump (e. g. produced by gdb’s info registers command)

Disassembly: (optional) Disassembly of the code leading to the crash (e. g. produced by gdb’s
x/16i $pc command)

Note that every crash report must contain CoreDump or a symbolic Stacktrace in order to be
useful at all. The recommended approach is to include the stack trace for the initial report,
and drop it once it has been recombined with debug symbols to produce a full Stacktrace.

3.4 Package specific data fields

The following fields describe properties of a package and its dependencies. This applies to
ProblemTypes Crash, Package, and Bug if the bug applies to a particular package (as opposed
to being a generic OS bug).

Package: (required) Package name and version, separated by space

PackageArchitecture: (required if different from Architecture) Processor architecture the
package was built for; there are some architectures (like x86_64 or sparc64) which
support multiple package architectures

Dependencies: (required) Package names and versions of all transitive dependencies of the
package; one line per package

SourcePackage: (optional) The name of the corresponding source package

Optionally, the name and version in Package and Dependencies can be followed by a list of
modified files in that package, enclosed in brackets. Example:

Package: bash 3.2-1

Dependencies: libreadline5 5.2-3 [modified: /lib/libreadline.so.5]

libc6 2.5-1 [modified: /etc/ld.so.conf]

6

3.5 Kernel specific data fields

The following fields describe properties of a kernel oops/crash. This applies to ProblemType

Kernel.

ProcVersion: (required) Contents of /proc/version

ProcCpuinfo: (required) Contents of /proc/cpuinfo

ProcModules: (required) Contents of /proc/modules

ProcCmdline: (required) Contents of /proc/cmdline

Dmesg: (required) Output of dmesg

LsPciVV: (optional) Output of lspci -vv

LsPciVVN: (optional) Output of lspci -vvn

7

