
Using Subversion
Berthold Gunreben

<berthold.gunreben AT suse DOT de>
Thomas Schraitle

<thomas.schraitle AT suse DOT de>

$Id: svndoc.xml 217 2006-08-21 13:00:48Z thomas-schraitle $

Contents
1 Quick Start . 2
2 Basic Work Cycle . 3
3 Requirements . 4
4 Setting up your Subversion Working Environment 5
5 Checking out . 6
6 Updating your Working Directory 7
7 Examine your Changes . 7
8 Diffing your Changes . 9
9 Tagging your current trunk . 10
10 Adding and Removing Files . 10
11 Copying and Renaming Files . 11
12 Reverting Changes . 11
13 Resolving Conflicts . 12
14 Checking in your Modifications 13
15 Viewing History . 14
16 Restore an old Revision . 15

Links 15

1 Quick Start
Subversion is, like CVS, a tool for managing source files. It keeps track of your work
and changes in a set of files and directories. It allows developers and writers to collab-
orate. The common area is the repository, where all files are stored. The repository can
reside on a local directory, but it is usually accessible over a network.

Working with Subversion involves the following steps:

1 You check out your working directory from the repository. This needs to be done
only once.

2 Youmodify your files, for example, insert new sections or delete some paragraphs.

2

3 You can check the status of your working directory.

4 If you have write permission, you check in your changes to the repository. With
read access only, you must find someone with write permission if you want to
keep these changes.

5 At the same time, other users with write access to the repository might check in
their modifications. To get these changes, update your working directory.

6 If you change a file and another person changed it too, you might get conflicts
with the next update. This rare case occurs if two people edit the same lines of
the same file. Subversion cannot decide which version is better, so you must re-
solve the conflict manually.

For more information, see [svn]. Although you can work with Subversion onWindows,
this guide is targeted to Linux.

2 Basic Work Cycle
For your daily work, use the svn command. It knows --help. You can even get the
options for a certain Subversion command, for example svn update --help. This
prints the available options for the update procedure of Subversion.

A typical work cycle looks like this (taken from the Subversion Book):

Procedure 1 A typical Work Cycle during Development

1 Update your working copy

• svn update, see Section 6, “Updating your Working Directory” (page 7)

2 Make changes

• svn add, see Section 10, “Adding and Removing Files” (page 10)

• svn delete, see Section 10, “Adding and Removing Files” (page 10)

• svn copy, see Section 11, “Copying and Renaming Files” (page 11)

Using Subversion 3

• svn move, see Section 11, “Copying and Renaming Files” (page 11)

3 Examine your changes

• svn status, see Section 7, “Examine your Changes” (page 7)

• svn diff, see Section 8, “Diffing your Changes” (page 9)

• svn revert, see Section 12, “Reverting Changes” (page 11)

4 Merge others' changes

• svn merge

• svn resolved, see Section 13, “Resolving Conflicts” (page 12)

5 Commit your changes

• svn commit, see Section 14, “Checking in your Modifications” (page 13)

6 Tag your work after finishing

• svn copy, see Section 9, “Tagging your current trunk” (page 10)

3 Requirements
Before you start, you should know about Subversion:

1. Subversion is platform neutral; it runs on Linux, MacOS, Windows and some
others

2. You can run Subversion with the help of a GUI (graphical user interface) or by
typing the respective commands in a shell

There are some packages that are essential or might be useful if you work with Subver-
sion:

4

Table 1 Essential and useful packages

DescriptionPackage

This is essential. You can not work without this packagesubversion

The documentation of Subversion. If you need in-depth
information, this is the right place to look.

subversion-doc

GUI for Subversion. This let you access the repository
through a GUI.

kdesvn

The configure check needs additional packages:

• make

• automake

• autoconf

4 Setting up your SubversionWorking
Environment

Before you work with Subversion, you should check whether all relevant packages are
installed. Proceed as follows:

Procedure 2 Setting up your Subversion Working Environment

1 Find a place where you have lots of free space and write access. It is important
that you do not run out of space. Between 2 and 3 GB should be enough, but
more is always better.

2 Configure Subversion

• Check, if you have a directory .subversion in your home directory. If
not, create it:
mkdir ~/.subversion

Using Subversion 5

3 Insert the following line into your ~/.bashrc or ~/.bashrc.local:
export SVNROOT="https://forgesvn1.novell.com/svn/novdoc"

This simplifies the typing of your commands.

5 Checking out
The first step when working with Subversion is to check out your files from a repository.
This step must be done only once, but it is essential.

Procedure 3 Checking out

1 Open a shell

2 Check out an init script that does most of the tedious work (one line):
svn cat $SVNROOT/trunk/bin/initdoc.py > initdoc.py

You have to enter the password anonymous twice.

3 Set the excecution permission:
chmod +x initdoc.py

4 Run the command. Use as first parameter the directory where you want to store
the hole stylesheets and book source codes:
./initdoc.py WORKING_DIRECTORY

This script creates a directory SUSEDOC/ inside WORKING_DIRECTORY.

Change the language

Your language is determined by the LANG environment
variable.

5 Change to your directory:
cd WORKING_DIRECTORY

6

6 Updating your Working Directory
From time to time, you should update your working directory to get changes others
have made:

1 Open a shell and go to the directory where the book file resides, for example,
books:
cdWORKING_DIRECTORY/doc/trunk/books/

2 Run the update process:
svn update

The svn updatemight give an output, see Section 7, “Examine your Changes”
(page 7) for more information.

The next action depends on the status of the file. If you have modified a file, you
probably want to check in your changes. If your file is added or removed, a commit
would solve this problem. For files with a conflict, resolve the conflict before handing
it to Subversion.

7 Examine your Changes
Before you checking in your changes, it is always a good idea to take a look at exactly
what you have changed. Subversion prints the status of your working directory with
svn status. The output of this commands contains six columns:

First column (content, file and directory changes)
This is the most important column

(space) no modifications

AddedA

ConflictedC

DeletedD

Using Subversion 7

MergedG

IgnoredI

ModifiedM

ReplacedR

item is unversioned, but is used by an external definitionX

item is not under version control?

item is missing (removed by non-svn command) or incom-
plete

!

versioned item obstructed by some item of a different kind~

Second column (Property changes)
This is probably the second most important column.

(space) no modifications

ConflictedC

ModifiedM

Third column (working directory locked?)

(space) not locked

LockedL

Fourth column (history)

(space) no history scheduled with commit

history scheduled with commit+

8

Fifth column (Switching)
Only used for switching and is not relevant for us at the moment. See svn status
--help for more information.

Sixth column (Repository lock token)
Not relevant for us at the moment. See svn status --help for more informa-
tion.

8 Diffing your Changes
If you do not know, which changes did you make, try svn diff. You can diff your
files even if you are not online—Subversion holds a copy of the last revision.

To get the differences between your current, modified file and the last revision, run:
svn diff foo

To get the difference between your working copy and the trunk revision, run:
svn diff

However, you can also diff between revisions that are already checked in. Subversion
knows the following revision keywords:

Revision Keywords (taken from the Subversion Book)

HEAD
The latest revision in the repository.

BASE
The revision you last updated to

COMMITTED
The revision of the latest change to the file when you last updated. Or in other
words: The last revision in which an item changed before (or at) BASE.

PREV
The revision just before the last revision in which an item changed. (Technically,
COMMITTED − 1.)

Here are some examples (taken from the Subversion Book):

Using Subversion 9

svn diff --revision PREV:COMMITED foo
shows the last change committed to foo

svn log --revision HEAD
shows log message for the latest repository commit

svn diff --revision BASE:HEAD
shows all commit logs since you last updated

9 Tagging your current trunk
This section is probably useful to SUSE employees only. However it can be informative
for other as well.

Tags are “snapshots of a project in time”. To create a tag for our books, enter:
svn copy $SVNROOT/trunk/books/en \
 $SVNROOT/tags/books/en/TAG_NAME

Replace TAG_NAME with an appropriate name.

10 Adding and Removing Files
If you need to add new files or remove old files, use the commands svn add and svn
remove.

To add a new file, enter:
svn addNEW_FILE

To delete an old file, enter:
svn removeOLD_FILE

If you are finished with adding or deleting files, commit your changes:
svn commit

10

11 Copying and Renaming Files
Unless CVS, Subversion can copy a file and retain its history. Subversion copies a file
from a source to a destination. There are four possibilities where the source and desti-
nation are located:

• From a working copy to a working copy (WC -> WC)

• From a working copy to an URL (WC -> URL)

• From an URL to a working copy (URL -> WC)

• From an URL to an URL (URL -> URL). Used to branch & tag

In general, you can copy a file A to a file B with the following command:
svn copy A B

After a svn status you can see the new file B is scheduled for addition. It looks
like if you have added and removed a file.

To rename or move a file from a source to a destination, use svn move or svn
rename (the two commands are the same, they are just synonyms.) For example:
svn rename X Y

This renames X to Y. After a svn status you can see the renamed file is scheduled
for addition.

After you copied or renamend the files, you must check in if you want to save it in the
repository:
svn ci -m"Copied file" A B
svn ci -m"Renamend file" X Y

12 Reverting Changes
If you want to discard your local changes, you can use the svn revert command.
It reverts any local changes to a file, directory or any property changes. It can revert
scheduling operations like addition, renaming or deletion only. For example:

Using Subversion 11

svn add foo
svn revert foo

svn rename foo bar
svn revert foo bar

svn delete foo
svn revert foo

No targets to svn revert is a protection

The Subversion book [svn] (page 15) says: “If you provide no target
to svn revert, it will do nothing—to protect you from acciden-
tally losing changes in your working copy, svn revert requires
you to provide at least one target.”

13 Resolving Conflicts
Conflicts occur only when all of the following conditions are met:

• Two users edit the same file.

• These two users also edit the same line.

• One of them commits the changes and the other updates.

If you update your working directory and Subversion detects a conflict, it changes the
contents of the file and inserts “conflict marks”:
<<<<<<< .mine
 This is a nice line.
=======
 This is a short line.
>>>>>>> .r4

You have the following possibilities:

1. Remove your version and update the file. You get the latest version from Sub-
version. This solution works if you do not want to keep your changes. Or

2. Resolve the conflict.

To resolve the conflict, proceed as follows:

12

1 Open the file containing the conflict.

2 Search for conflict marks. These marks have the general format:
<<<<<<< FILENAME

=======

>>>>>>>.last revision number from repository

3 Decide which version is preferred (yours or the repository's), or merge the two
lines, delete the conflict marks, and save the result.

4 Remove the conflict state with:
svn resolvedFILENAME

The command svn resolved fixes some bookkeeping data.

5 Check in your changes
svn ciFILENAME

14 Checking in your Modifications
After you have changed, added, or removed files in your local working directory, you
have to commit your files back to the Subversion repository:

1 Change your directory to the book sources.

2 Run:
svn ciNAME_OF_YOUR_FILE(S)

Replace NAME_OF_YOUR_FILE(S) with the name of your changed file(s).
The editor vi opens.

Check the files before commit

It is possible to check in with the command svn ci. Howev-
er, practice showed, that you get modified files that you do
not want to check in at this stage. For this reason it is proba-

Using Subversion 13

bly a good idea to always insert the files in the command
line.

3 Press i to insert your login message.

4 Close the editor with : – w – q . Subversion commits your file(s) with your
commit message.

5 If you want to cancel the commit, press : – q – ! in the vi editor. Subversion
lets you determine your actions. Abort with a .

Checking in is always a good Idea

Do not hesitate to check in your changes. If you have checked your
changes back in our Subversion repository, you are protected from
hard disk crash or other loss of data. In other words: Subversion
is your backup system.

Please make sure that you always check in valid XML.

15 Viewing History
If you want to see the history of your files use the svn log command. For example:
svn log xml/help.xml
--
r2913 | tom | 2005-12-19 13:34:17 +0100 (Mo, 19 Dez 2005) | 1 line

docmanager: Property »doc:status« set to »proofed«
--
r2912 | tom | 2005-12-19 13:33:19 +0100 (Mo, 19 Dez 2005) | 2 lines

worked on comments

--
r2877 | rwalter | 2005-12-18 18:52:07 +0100 (So, 18 Dez 2005) | 1 line

docmanager: Property »doc:status« set to »comments«
--
r2876 | rwalter | 2005-12-18 18:49:53 +0100 (So, 18 Dez 2005) | 3 lines

14

proofing and comments
...

It is more convenient to pipe it to less to browse a long history:
svn log xml/help.xml | less

Quit with q .

16 Restore an old Revision
Sometimes you need to restore an old revision from the Subversion repository. Do the
following:

1 Check if your respective file is unchanged. If there are changes that you do not
want to loose, check in first otherwise run svn revert FILENAME

2 Determine your revision with svn log. See also Section 15, “Viewing History”
(page 14).

3 Restore your revision and save it; for example (replace REVISION from the last
step):
svn cat -rREVISION \
 $SVNROOT/trunk/books/en/xml/foo.xml > xml/foo.xml

4 Check in your changes with a meaningful log message.

Links
[svn] Version Control with Subversion. http://svnbook.red-bean.com/ .

Ben Collins-Sussman. Brian W. Fitzpatrick. Michael Pilato.

Using Subversion 15

http://svnbook.red-bean.com/

	Using Subversion
	Contents
	1. Quick Start
	2. Basic Work Cycle
	3. Requirements
	4. Setting up your Subversion Working Environment
	5. Checking out
	6. Updating your Working Directory
	7. Examine your Changes
	8. Diffing your Changes
	9. Tagging your current trunk
	10. Adding and Removing Files
	11. Copying and Renaming Files
	12. Reverting Changes
	13. Resolving Conflicts
	14. Checking in your Modifications
	15. Viewing History
	16. Restore an old Revision
	Links

