Building Books

A Guide to Transforming Novdoc Documents or “Don't panic!”

Berthold Gunreben

<berthold DOT gunreben AT suse DOT de>
Thomas Schraitle

<thomas DOT schraitle AT suse DOT de>

$1d: susemakedoc.xml 216 2006-08-21 12:36:46Z thomas-schraitle $

— [Produc tionol § VSE Boolis

——

€oed \'JWL,
i”f ik we wighk
wneed just a lilkle 2 ’
\N\O‘(Qdolt'l’(l;\ ﬁa\,*%_ 2
here,

Revision History

Revision 1.0 2005-05
Initial version
Revision 1.41 2005-06-08
Updated with suggestions from Dublin
Revision 1.46 2005-06-13
Updating information about make targets
Revision 1.50 2005-06-21
Added information about how to configure hyphenation

Revision 1.55 2005-07-11

Reinserted accidently delete validation section from bg again
Revision 1.60 2005-07-13

Added new section about Checking in and Quick Start
Revision 2005-10-11

Added XEP installation, more task oriented descriptions. Reorganized the structure.

Removed CVS section and moved it into a separate article.

Contents
1 Quick Start L 3
2 Requirementso 3
3 Installing XEP 5
4 Setting Up and Checking Your XML Build Environment 7
5 Using the SUSE Make Mechanic 8
6 Troubleshooting 12
7 Background Information 14
8 Notes on Administration 18
9 Notes on Translations 20

A Adding a New Project 22

B Make Targets Reference 23
buildbooks 24
Glossary 26
Links 27

1T Quick Start

Configuring your system enables you to build books from SUSE. Proceed as follows:
1 Check your requirements (see Section 2 (page 3))
2 Install XEP (see Section 3 (page 5))
3 Setting up your XML environment (see Section 4 (page 7))
4 Build your books (see Section 5 (page 8))

5 Publish your PDF

2 Requirements

Before you start, you should be aware of some prerequisites. You need:
1. A Linux system with KDE or GNOME

2. Some rudimentary Linux knowledge. This article cannot explain the basics of
Linux.

3. Some knowledge about XML and Subversion (where needed). This article cannot

go in-depth into these two technologies, but we provide some links for further
information. (See Links (page 27).)

Building Books

4. Install some packages from our distribution:

Table 1 Needed packages

Package

Description

autoconf, automake, make

subversion

inkscape

libxml2, libxslt

docbook-xsl-stylesheets

ImageMagick

svg-dtd

xfig

xml-commons—-resolver

agfa-fonts

Tools
Tools to generate the conf igure script

A tool to work with Subversion reposito-
ries

An SVG editor. Needed to convert our
SVG graphics into PNG

Essential libraries for parsing, validating
and transforming XML

This package is essential for building
HTML and XSL-FO

This package provides the convert
command that is needed for image ma-
nipulation

The SVG DTD that is needed by our
SVG files

Needed to convert our old files in FIG
format into SVG

Needed for XEP with XML catalog
support

Fonts

Essential package that contains our fonts

Package Description

freefont Some other fonts that are needed
sazanami-fonts Needed for Japanese books
ttf-arphic Fonts for Chinese books

ttf-founder-simplified Fonts for Chinese books

ttf-founder-traditional Fonts for Chinese books

It might be possible to install further packages depending on what installation
scenario you selected on SUSE Linux.

3 Installing XEP

Before you even go further, you should take a few minutes to install your FO formatter.
You should have two files:

1. The XEP ZIP archive with the name xep-X.Y-DATE-docbench.zip. The
placeholders X and Y are major and minor number of the XEP release, DATE
corresponds to the date in the format YearMonthDay.

This file contains the XEP formatter and the XML editor 0Xygen. You can use
both independently of each other.

2. The license key with the name 1icense.xml which is mailed to you after
purchasing XEP.

To install XEP on your system do the following:
Procedure 1 Installing XEP on your system

1 Log into your system as you normally do with your prefered user.

Building Books

O XEP and user root
Do not install XEP as root. Installing XEP as root makes it

difficult to track errors and other weird combinations.

2 Open a terminal window with [Alt] + [F2] and enter konsole.

3 Copy your XEP ZIP archive to /tmp:

cp xep-X.Y-DATE-docbench.zip /tmp

4 Change the directory:

cd /tmp

5 Unzip the archive:

unzip xep-X.Y-DATE-docbench.zip

It gives you two files: a README . t xt and a file named setup-X
.Y-DATE-docbench.zip.

6 Start the installation dialog with:

java —-jar setup-X.Y-DATE-docbench. jar

7 Choose the correct directory where you want to install XEP and the 0Xygen
XML Editor and select the path to the license file. Proceed with Install twice to
start the installation process.

Home directory accessed with NFS

Install XEP always in a directory which resides on your local
harddisc. Don't install XEP in a directory which is accessed
by NFS (Network File System). This is the case if you work in
a network environment where /home is mounted from a
server. Otherwise choose a neutral one, like /1ocal. Make
sure you have write permissions to this directory.

8 Delete the copied archive and the extracted files under /tmp where neccessary.

9 Extend to PATH environment variable with your installation directory from XEP.
Open ~/ .bashrc or ~/ .bashrc.local and insert:

export PATH="XEP INSTALLTION_ PATH:$PATH"

Replace XEP_INSTALLTION_PATH with your XEP installation directory.

4 Setting Up and Checking Your XML
Build Environment

Before you build a book, you should check whether all relevant packages are installed.
Because it can be a bit difficult to know all packages, we have created a setup script
that checks your system for the correct versions.

We assume in this section, you use the directory /1ocal for the storage of your files.
Whenever you see there is this directory, replace it with your choice.

Proceed as follows:
Procedure 2 Setting up your XML Build Environment
1 Access the source code:

+ Ifyou have access to the SUSE Subversion repository, see the separate
documentation Using Subversion [using.svn] (page 27).

+ Ifyou don't have access to our Subversion repository, you get an archive
from us. Unpack it and move it to your desired location.

2 Change the directory:

cd /local/suselx/novdoc/

3 Run the following commands:

./autogen.sh && ./configure && make

First it generates the configure and Makefile files. If this was successful
the conf igure script checks for certain packages and programs, for example:

checking for inkscape... inkscape

Building Books

4 Install further packages, if you get an error. The script tells you what you have
to install. See also Table 1, “Needed packages” (page 4).

5 Run the following command if everything was successful:

make install-xep

This installs configuration and hyphenation files into the XEP installation direc-
tory.

5 Using the SUSE Make Mechanic

This section explains how to use our build system to create books in HTML and PDF.
The entire process of building books from XML sources contains the steps in Figure 1,
“Overview of the Entire Process” (page 8).

Figure 1 Overview of the Entire Process

> HTML
XML
XML _ source
source (profiled)
> PDF or
I_' XSL-FO PostScript

The build process looks like:

1. First, you need to access the files from our repository. This gives you a set of
directories.

2. You configure your settings in your current shell

3. Make sure that your XML files are valid. You cannot build HTML or PDF with
invalid files.

4. Your XML source code is profiled according to your settings. Find more in
Section 7.2, “Profiling Books” (page 14).

5. The profiled XML sources are transformed into HTML or XSL-FO.

5.1 Building HTML

To build a HTML from the XML source code, you will see the following steps:
1. According to your settings, the XML source codes will be profiled first
2. The profiled XML sources are validated
3. After the validation, the XML sources are transformed into HTML

To build HTML do the following:

Procedure 3 Building HTML

1 Open a shell with [Alt] + [F2] and type konsole

2 Change the directory to your directory structure:

cdPATH_TO_YOUR_DIRECTORY

3 Set up your shell to configure your environment. In general this is done with:

source ENV-SLPROF-html

4 Enter:

make html
This will profile the XML sources and transform this into HTML.

5 Open a browser and access the HTML files under htm1l.

5.2 Building PDF

To build a PDF from the XML source code, you will see the following steps:
1. According to your settings, the XML source codes will be profiled first

2. The profiled XML sources are validated

Building Books

10

3. After a successful validation, the XML sources are transformed into a FO file.
This is an intermediate format

4. XEP reads the FO file, renders it in memory and save it as PDF
To build a PDF do the following;:
Procedure 4 Building PDF

1 Open a shell with [Alt] + [F2] and type konsole

2 Change the directory to your directory structure:

cdPATH_TO_YOUR_DIRECTORY

3 Set up your shell to configure your environment. In general this is done with:

source ENV-SLPROF-print

4 Build your PDF with or without cropmarks:

* With cropmarks:

make pdf

+ Without cropmarks:

make color-pdf

5.3 Transforming Only a Portion of the Book

If you work on only one chapter, transforming the whole book is a waste of time. You
can save time if you use the ROOT ID parameter. For example, if you have a chapter
with an id attribute value of chap. foo, run make with:

Procedure 5 Transforming Only a Portion of the Book

1 Open a shell with [Alt] + [F2] and type konsole

2 Set up your shell to configure your environment. In general this is done with:

source ENV-SLPROF-print

or

source ENV-SLPROF-online
depending on your desired output

3 Open the chapter, appendix, glossary or preface that you are working on.

4 Check your id value by looking at the root element. Memorize this id.

Check Your id Attribute

This mechanism only works if one of the top level elements
(chapter, appendix, preface, or glossary) hasan id
attribute. You cannot select a chapter without it. Insert an
id attribute into your top level element. Naming conventions
are described in the style guide.

5 Build your output format:

. For HTML.:

ROOTID=THE_ROOT_ID VALUE make html

. For PDF:

ROOTID=THE_ROOT_ID_VALUE make pdf

6 Open the result file as THE_ROOT_ID_VALUE.html or THE_ROOT_ID
_VALUE.pdf

Be aware that for HTML a chapter is spread over different files. The file THE

_ROOT_ID_VALUE.html is just the beginning. However this files contains
links to everything inside the chapter.

5.4 Debugging PDFs

In a PDF with lots of pages, it can be difficult to find the correct file if you find an error.
For this purpose, we inserted the Debugging Mechanism.

Building Books

11

12

You only need to set an environment variable, and the process automatically generates
a PDF with filenames in it. Of course, this PDF is only for debugging purposes and is
not to be published!

To create a PDF with filenames in it, do the following:
1 Set the environment variable DRAFT to yes:

export DRAFT="yes"

2 Make sure that each root element in each file contains the attribute xml : base
with the filename in it:

<sectl id="sec.foo" xml:base="foo.xml"> ...

3 Re-create the PDF by running:

make force

4 The environment variable is now set. The PDF contains filenames in it.

6 Troubleshooting

6.1 Fixing Errors

Validation errors are fatal when they appear in the profiled source code. If some error
occurs, you must modify the original source code in a way that the profiled code becomes
valid. Therefore, you have to fix the error in a completely different file than where it
is found in the first place. There are two mechanisms that may be used to validate the
profiled source code:

1. make validate
2. make bigfile

The target make bigfile isa workaround for a bug in xm11int that occurs in
versions before 2.6.15. When you use this target, you find the complete book in tmp /
$ (BOOK) . xml. The only way to handle errors then is to look up the error in this huge
file, and then find the same error somewhere in the xml sources to fix it.

Ifyoucallmake validate, all validation errors will be listed with the filename and
line number of the profiled sources. This means that, depending on the profiling options,
the error might be exactly at the same place in the source files, or in a later line. If you
have problems finding the error, you can look up the profiled sources at the specified
line number and then find the same lines in the original files.

If you get an error that says that, some element does not follow the DTD, you have
another way to search for the problem:

Element table content does not follow the DTD, expecting

(title , tgroup), got (tgroup)

Document profiled/x86-amd64-em64t_slprof-slpers_0_0/MAIN.box.xml does not
validate

In this example, the error first says, that the problem occurs in a table. The error also
tells you which XML structure has been found, and what was expected. In this case,

the DTD expected a title element inside the table before starting with the actual table
content.

Another common problem is having data outside of XML tags. Such an error may looks
like the following:

Element table content does not follow the DTD, expecting

(title , tgroup), got (title CDATA tgroup)

Document profiled/x86-amd64-em64t_slprof-slpers_0_0/MAIN.box.xml does not
validate

In this example, there is a character, that is not whitespace between the title of a table
and the table content. Please note that sometimes such characters are not displayed be-
cause they might not be a printable characters. In such cases, the easiest fix is to remove
all whitespace, and then format the xml again.

Most of the problems are found by make validate,buta view things are not detected
by this method. The FO-processor XEP detects at least one more type of problem:
whether index ranges have matching start and end elements. This kind of error is quite
clearly described in the output of XEP. If you have any doubt, please compare the
specified elements with the original English version.

Building Books

13

14

6.2 Missing Font during build PDF

If you build a PDF and XEP complains about some missing fonts you didn't install the
configuration file for XEP. Look at Building PDF (page 10) and begin with Step 2

(page 10).

7 Background Information

You need this section only, if you need more in-depth information of some background
information.

7.1 Using make

The command line utility make reads a file Makefile that includes a rule set for
creating and converting files. The Makefile in a project directory just includes the
file common .mk in suselx/novdoc/make.

First, select which project to work on. This is done by sourcing an EN V- file that contains
the needed information to build a certain book.

source ENV-styleguide

After this, you can use the build environment in your current shell.

7.2 Profiling Books

Some Basics

Before you create your HTML or PDF, you have to make a decision about profiling.
Profiling describes a method that manages different “versions” in one file.

For example, think of a chapter about installing a program on different processor archi-
tectures. Each must use different setup utilities and paths. One solution would be to
write one chapter for each architecture. The problem is that there are more things that
are similar than things that are different. Maintaining files that only differ in some minor
paragraphs or sections is a nightmare.

A solution is to use profiling. In general, you insert each architecture into one file and
distinguish the different platforms with an XML attribute. The only drawback is that
you have to extract the correct version that is “buried” in the file.

To tell the build mechanics about the needed architectures, you need to make sure that
the variables PROFARCH and PROFOS are set properly in your ENV- file. Example 1,
“A ENV-* file” (page 15) shows you the content of the ENV- file that sets variables
for this document. (See also Appendix A, Adding a New Project (page 22).)

Example 1 A ENV-*file

export DTDROOT=$(cd ../novdoc; pwd
. SDTDROOT/etc/system-profile

o

export MAIN=MAIN.makedoc.xml
export BOOK=makedoc

export PROFOS="slprof;slpers"
export PROFCONDITION="print"

)
(2
(3
(4
export PROFARCH="x86;amd64;em64t" @
(6
o
export ENVFILES="BOX-Profile" (8]

(O

export DISTVER=9.3

©® Determine the path of the novdoc directory. This variablen is mandatory, and
must be at the beginning of this file.

® Includes other system relevant information and unsets the variables that can be
set below. This is mandatory, and must be called at the beginning of this file after
setting the DTDROOT. All other variables may be set in the following in any order.

® Sets the main file that contains “references” to other chapters, appendixes, etc.
This variable is mandatory.

® Sets the name of the book. Several filenames are dependend on this variable. The
resulting pdf will also be named like the content of this variable. This variable is
mandatory.

® Selects the architecture profiling information. This is an optional variable, but is
most likely used in our books.

® Selects the operating system profiling information. This is an optional variable,
but is most likely used in our books.

@ Selects those parts of the book that are to be printed or made available online.
Currently used parameters are print and online.

Building Books

15

16

® Ifyouneed to reference another book, you can set the respective environment file
here. If you set this variable to an ENV- file, a toc file will be created that contains
all references that are available in that book. These are then used to resolve the
references that are missing in the current book. References that are not available
in both books must be profiled manually. This variable is optional and should
only be set when needed.

® Sets the version of the current distribution. This is used to distinguish versions
built with make dist.

As an author or user, you do not need to do anything special. The make process knows
which files have been modified and must be profiled again. When changing profiling
variables, the ENV- file has to be sourced again, and a make force command will redo
the profiling.

Changes in MAIN* files

The make mechanics can be used not only for Novdoc but for DocBook as well. For
this reason, mechanic has to know which stylesheet to use for profiling. We have to
use different stylesheets, because we have different DTDs. Each DTD needs a separate
profiling stylesheet. In general, tey are all the same, but they differ in one part: which
DOCTYPE they generate.

To use it, insert the following line into the MAIN, right after the XML declaration:

<?xml-stylesheet
href="urn:x-suse:xslt:profiling:docbook43-profile.xsl"
type="text/xml"
title="Profiling step"?>

The second line can be only one of the following:

urn:x-suse:xslt:profiling:novdoc-profile.xsl
urn:x-suse:xslt:profiling:docbook43-profile.xsl

The first line is the default and should be used. Insert the second line only if you use
DocBook V4.3.

7.3 Validating Books

Before you transform your XML document, you must take care that the complete doc-
ument is valid. If only one file is invalid, the process stops and you do not get your

desired output format. This has nothing to do with the make process itself. It is the design
of XML. You can only get predicted results if the input files adhere to a certain structure.

If you want to validate your document without building, use the command

make validate

The make process takes care of profiling the files then validates the entire document.
To validate only single files, use:

make validatesingle

O Validating Single Files
Validating single files can give unexpected results. In general, some
sections or files depend on others. This can make validation difficult.

7.4 Adding Images

Add new images under images/src in the subdirectory of the correct format. Cur-
rently, two formats are supported.

PNG (Portable Network Graphic)
This is a bitmap format that is used in our online versions (HTML) for all kinds of
graphics. In the printed books, it is used for screenshots too.

SVG (Scalable Vector Graphic)
This is a vector format that is used in our books (PDF) when available. It can be
scaled to different resolutions and you always get very high quality.

If you have a format that is not listed above, convert it into the supported format. For
historical reasons, there is a FIG format, too. New files should be created and saved as
SVG or PNG.

0 Support for Other Formats
There is no need to use formats other than PNG. Other bitmap

formats, like JPEG or GIF, can easily be converted into PNG. Make
sure that you always use PNG.

Building Books

17

18

For other vector formats, check if your graphic program allows
exporting SVG. If this is not possible, export to PNG. When in doubt,
ask the authors of this guide.

7.5 Transforming Books

Our books can be transformed into two target formats: HTML and PDF. Use HTML
for online versions and PDF for a nice printout. To create HTML, type:

make html

To create PDF, type:

make pdf

This creates lots of messages. The HTML files are saved into html. To view it, point
a browser to index.html in this directory.

For creating a PDF, just enter make. The resulting PDF appears in the current directory
and has the name $ (BOOK) . pdf. This variable is set in Example 1, “A ENV-~* file”
(page 15) in line @ (page 15). In our example this leads to the filename makedoc
.pdf.

8 Notes on Administration

You need this section only, if you need more in-depth information of configuration and
administration of the whole build mechanic.

8.1 Hyphenation

You need to read this section only if you want to support a new language that is not
available in our Subversion repository. Other users can skip this section.

XEP supports hyphenation in different languages. It uses the same algorithm as LaTeX.
Therefore you can use the same files from LaTeX in XEP.

We distinguish between these two possible options:

+ Support a new language

+ Provide exceptions to hyphenated words in a supported language

Support a new Language

The hyphenation algorithm uses hyphenation patterns to determine possible positions
in a word. XEP stores this information in the files hyphen/* . tex.

If you want to support a new language, proceed with following steps:

1

Copy the respective hyphenation pattern from LaTeX into hyphen in your XEP
installation directory.

Open the XEP configuration file, usually xep—suse . xml.

Search for the following line:

<languages default-language="en-US" xml:base="hyphen/">

Insert after this line the following XML code:

<language name="Czech" codes="cz">
<hyphenation pattern="czhyphen_rx.tex"/>

In this example, you insert hyphenation patterns for Czech. The information can
be found in file czhyphen_rx.tex.

Repeat Step 1 (page 19) to Step 4 (page 19), if you have other languages.

Save the configuration file.

Exceptions of Hyphenation

Sometimes, the algorithm creates unwanted results. For this reason, you can insert ex-
ceptions of hyphenation. Do the following;:

1

Open the respective file for your language, for example hyphen . tex for En-
glish.

2 Ifthere is no line beginning with \hyphenation, insert the following code:

Building Books

19

20

\hyphenation{%

3 Insert in the next line as many exceptions as you like. Each exception contains
dashes to indicate the possible locations of hyphens. For example:

ap-pen-dix$%
man-u-script$%
man-u-scripts$%

4 Terminate the line with:

}

5 Save the file.

9 Notes on Translations

If you are a translator, you probably need more specific information. This section gives
a brief overview of what you need to know. If in doubt, contact the authors of this
document.

9.1 Comments and Remarks

Our XML source code contains comments in two forms: as XML comments and as
remark elements. Both are used frequently and look like this:

<!-- This is an XML comment -->

<remark>Here comes a remark comment</remark>

You do not need to translate comments. They are only informative text for writers or
even for you. Sometimes there is language-specific information, so we inform you
about these issues in a comment or remark.

9.2 Screens

Computer output and input often contains whitespace (space and linebreaks). Make
sure that you do not insert or delete spaces inside a screen element. Every space here
is considered essential.

In general, screen contents should be translated only in rare cases.

9.3 Entities

Entities are placeholders for text or other XML structures. An entity name must never
be translated! An entity looks like: &entityname;.

9.4 IDs in Elements

Copy id attributes from the original English source code to the target language. This
is important. If you omit this step, correct references cannot be created. An id attribute
looks like this (bold text):

<sectl id="sec.foo">

</sectl

9.5 Be aware of Text between Tags

The “normal” text occurs inside the par a element. However, there are some locations
where text is not allowed. For example, a description of a menu item is marked up with
menuchoice and guimenu. See Example 2, “Correct use of menuchoice”

(page 21).

Example 2 Correct use of menuchoice

<menuchoice>
<guimenu>Alt</guimenu>
<guimenu>F2</guimenu>

</menuchoice>

Don't insert text between </ guimenu> and <guimenu> like in Example 3, “Incorrect
use of menuchoice” (page 21).

Example 3 Incorrect use of menuchoice

<menuchoice>
<guimenu>Alt</guimenu> with
<guimenu>F2</guimenu>
</menuchoice>

Building Books

21

22

A. Adding a New Project

When adding a new project, you can distinguish two cases. First, you want to reuse
some of the existing chapters and, therefore, only need to create a new MAIN* . xm1
and a new ENV-* file. If you want to create a completely new project, you need to set
up the directory structure and also put the Makefile in place.

The main task of the Makefile is to include the ruleset provided in a system makefile
named common . mk. You can copy the Makefile from another project and make sure
that the path to novdoc is correct.

In the ENV-* file you need to set several parameters, the following are mandatory:

DTDROOT
This variable contains the absolute path to the novdoc directory on your system.
This is usually done with a line like:

export DTDROOT=$(cd ../../novdoc; pwd)

MAIN
This is the MAIN file. The top level file of your document. All required files are
included directly in this file, or in one of the included files. This file must exist in
the xm1 subdirectory.

BOOK
Use this variable to give your project a name. The resulting PDF will be named
like that variable, extended by . pdf.

Some necessary variables that are needed by the system must be loaded from the system
profile. The current ENV—* contains the line:

. SDTDROOT/etc/system-profile

There are also several optional parameters you can set in this file. It is very important
that you set the optional parameters after loading the system profile. The system profile
removes all previously set optional values in order to have a clean environment. The
following list gives an overview over currently available optional parameters.

PROFOS and PROFARCH
When using profiling attributes in your document, you need to select the needed
parts by setting these variables.

FOPOPTIONS
The default value of FOPOPTIONS is —q. This changes the behaviour of the FO-
Processor (XEP and FOP) to be less verbose about what it does.

COMMENTS
You might want to print the comments you include in a document. To print your
remakrs in the PDF, set COMMENTS variable to 1.

For the various transforming processes, make needs several directories are needed by
make. These have to be provided in each project directory.

B. Make Targets Reference

Building Books 23

24

22?TITLE???

buildbooks -- Building Books with make

1 Make Targets

Use the following syntax:
make [TARGET]
make ROOTID= {ID_VALUE} [BUILDTARGET]

The optional TARGET argument can be a BUILDTARGET, or some other target. The
BUILDTARGETS can have one or more of the following names:

pdf
Creates PDF with cropmarks and with grey images. This is the default target.

color-pdf
Creates PDF without cropmarks and with color images.

force
This is just like the pdf target, but every source file is profiled again. This is useful
when you make changes to the build environment that make cannot detect.

html
Creates HTML. The resulting document can be found in the html subdirectory with
index.html being the starting point. If you use a ROOTID, the starting point will
be html/$§(ID_VALUE).html.

The following are common targets where ROOTID does not have any effect:

check
Print the values of several variables that are used in the Makefile.

clean
Remove all profiled files as well as temporary files. Does not remove books that
have been made.

configure
Starts a reconfiguration of the currently used xep—suse script. This is necessary
after an update, when a change in the xep—suse . xm1 file has changed. If unsure,
just run the command. See also the target update.

directories
Create a template directory structure. When creating a completely new project, you
may just create the main directory, and copy the file Makef ile from an existing
project. Make sure that the path to common . mk in Makefile is correct and run
make directories.

dist-html
Create html and desktop packages. These are needed to submit the packages of the
distribution. Resulting files are $(BOOK) $(LANG)-desktop.tar.bz2 and
$(BOOK)_$(LANG)-html.tar.bz2 where $(LANG) is selected by the lang attribute
of S(MAIN).

filelist
Creates a list of all xml files used in the current book. You might want to add the
entity file to complete this list.

dist-xml
Create packages of the unprofiled xml files and of the profiled xml files in .zip
archives. The resulting name is $(BOOK) $(LANG)-src.zip for the unprofiled xml
and $(BOOK)_ $(LANG).zip for the profiled version. If one of these files already
exists, it is renamed with the old script.

dist—-graphics
Create package of the PNG and SVG files that are used in the current project. The
name of the archive is $(BOOK)_$(LANG)-graphics.tar.bz2 where $(LANG) is
selected by the lang attribute of $(MAIN).

showgfx
Print a list of the images that are missing from the currently selected book.

show-remarks
Show all the remarks in a selected book. In 0Xygen, the displayed xpath may also
be used to jump to the remark in the source xml file.

Building Books

25

26

update
Get all updates of the stylesheets and make mechanics. After this, the profiling step
of all source files is performed during the next rebuild. See also the target
configure.

validate
Update the profiling step and validate the profiled book.

validatesingle
Validate each individual file of the XML source, rather than the entire book.

The variable ID_ VALUE can contain any chapter or section id. In this case, the basename
of the resulting pdf or html will be this id.

Glossary

DTD (Document Type Definition)
A document type definition (DTD) is a set of declarations that conform to a partic-
ular markup syntax. It describes a class, or type, of SGML or XML documents.
With a DTD, XML documents can be validated. This is useful if you want to check
the allowed structure for a certain XML instance.

profiling
Profiling describes a filtering mechanism. An XML document can hold different
versions in one file, like different architectures, platforms, operating systems, or
user levels. The author inserts profiling information into XML documents at spe-
cific places and the profiling mechanism selects only those parts that are relevant.
This solves the problem of having lots of files with only minor differences. The
author has to maintain only one file, but has to take care of the correct profiling
information.

Profiling information is inserted with the attributes os and arch.

project profile
Project profiles contain information needed to select the correct profiling informa-
tion. The first step to build a book is to source the project profile in your current
shell. This sets all the relevant variables needed by our Makefiles.
See Also profiling.

valid
Valid means that an XML document is well-formed and adheres to a certain DTD.
See Also DTD (Document Type Definition), well-formed.

well-formed
An XML document is well-formed if a start tag and an end tag have the same name,
each tag contains only valid characters according to the XML specification, the
nesting is correct (every start tag must have a corresponding end tag), and attribute
values are enclosed by single (') or double quotes (").

XSL-FO (XSL Formatting Objects)
XSL-FO (or just FO) is a specification for describing page layouts. The book pro-
duction process needs it as an intermediary file for building PDFs.

Links

[docbook-tdg] DocBook—The Definitive Guide. http://www.docbook.org/
tdg/en/html/docbook.html. Norman Walsh and Leonard Muellner.

[cvs] Version Control with Subversion. http://svnbook.red-bean.com/. Ben
Collins-Sussman, Brian W. Fitzpatrick, and Michael Pilato.

[using.svn] Using Subversion. Berthold Gunreben and Thomas Schraitle. .

Building Books

27

http://www.docbook.org/tdg/en/html/docbook.html
http://www.docbook.org/tdg/en/html/docbook.html
http://svnbook.red-bean.com/

	Building Books
	Contents
	1. Quick Start
	2. Requirements
	3. Installing XEP
	4. Setting Up and Checking Your XML Build Environment
	5. Using the SUSE Make Mechanic
	5.1. Building HTML
	5.2. Building PDF
	5.3. Transforming Only a Portion of the Book
	5.4. Debugging PDFs

	6. Troubleshooting
	6.1. Fixing Errors
	6.2. Missing Font during build PDF

	7. Background Information
	7.1. Using make
	7.2. Profiling Books
	Some Basics
	Changes in MAIN* files

	7.3. Validating Books
	7.4. Adding Images
	7.5. Transforming Books

	8. Notes on Administration
	8.1. Hyphenation
	Support a new Language
	Exceptions of Hyphenation

	9. Notes on Translations
	9.1. Comments and Remarks
	9.2. Screens
	9.3. Entities
	9.4. IDs in Elements
	9.5. Be aware of Text between Tags

	A. Adding a New Project
	B. Make Targets Reference
	buildbooks
	Make Targets

	Glossary
	Links

