
n

Novell Common Authentication Services Adapter (CASA)
Novell

ovdocx (en) 6 April 2007
w w w . n o v e l l . c o m

Common Authentication
Services Adapter (CASA)

1 . 7
S e p t e m b e r 2 8 , 2 0 0 7

A D M I N I S T R A T I O N G U I D E

novdocx (en) 6 April 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1993-2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on theNovell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or more
additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

novdocx (en) 6 April 2007
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

Novell Modular Authentication Services (NMAS)TM software includes support for a number of login methods from
third-party authentication developers. Refer to the NMAS Partners Web site (http://www.novell.com/products/nmas/
partners/) for a list of authorized NMAS partners and a description of their login methods.

Each NMAS partner addresses network authentication with unique product features and characteristics. Therefore,
each login method will vary in its actual security properties. Novell has not evaluated the security methodologies of
these partner products, and while these products may have qualified for the Novell Yes, Tested and Approved or
Novell Directory Enabled logos, those logos only relate to general product interoperability. Novell encourages you to
carefully investigate each NMAS partner's product features to determine which product will best meet your security
needs. Also, some login methods require addtional hardware and software not included with the NMAS product.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (en) 6 April 2007

Contents

novdocx (en) 6 April 2007
About This Guide 7

1 Getting Started 9
1.1 Credentials. 10
1.2 Sharing Credentials . 10

2 CASA on Linux 11
2.1 Linux Components. 11

2.1.1 CASA Identity Development Kit. 11
2.1.2 miCASA. 11
2.1.3 Login Credential Capture Module . 11
2.1.4 CASA Linux Packages . 12
2.1.5 Linux Directories and Files . 12

2.2 Using CASA with Linux . 14
2.2.1 Linux Command Line Installation . 14
2.2.2 Starting, Stopping, and Restarting CASA on Linux . 14
2.2.3 Starting CASA Manager . 15
2.2.4 Linux Uninstallation . 15
2.2.5 Linux YaST Installation . 15
2.2.6 Accessing CASA Manager: Linux . 19
2.2.7 Avoiding Conflicting Service Realms. 20

3 CASA on Windows 21
3.1 Windows Components . 21

3.1.1 Windows Directories and Files . 21
3.2 Using CASA with Windows . 22

3.2.1 Installing CASA on Windows. 23
3.2.2 Starting CASA on Windows. 23
3.2.3 Accessing CASA Manager . 23
3.2.4 Uninstalling CASA on Windows . 24

4 CASA Manager Administration 25
4.1 CASA Manager GUI Components . 26

4.1.1 Credential Store Tab . 27
4.1.2 Secret-ID Window . 27
4.1.3 Native Information Window . 28

4.2 Editing CASA Manager Options . 29
4.2.1 Assigning Single Sign-on Preferences . 29
4.2.2 Setting Persistent Storage. 32
4.2.3 Changing Your Master Password . 33
4.2.4 Setting CASA Preferences . 33
4.2.5 Creating Secret Policies . 34

4.3 CASA Manager Functionality. 35
4.3.1 Creating Secrets . 36
4.3.2 Refreshing Credential Stores . 36
4.3.3 Locking and Unlocking Secrets . 37
4.3.4 Destroying Secrets . 37
Contents 5

6 Novell Com

novdocx (en) 6 April 2007
4.3.5 Exporting User Secrets . 38
4.3.6 Importing User Secrets . 39
4.3.7 Viewing Secret Values . 40
4.3.8 Linking Secrets. 40
4.3.9 Copying Secrets. 42
4.3.10 Finding and Replacing Secrets . 45
4.3.11 Editing Secrets . 49
4.3.12 Deleting Secrets. 50

4.4 Resetting the CASA Master Password. 51

5 Functions 55
miCASAGetCredential. 56
miCASAOpenSecretStoreCache. 58
miCASAReadBinaryKey . 59
miCASAReadKey . 61
miCASARemoveCredential . 63
miCASARemoveKey . 64
miCASASetCredential . 66
miCASAWriteBinaryKey . 68
miCASAWriteKey . 70

6 Structures 73
SSCS_BASIC_CREDENTIAL . 74
SSCS_SECRET_ID_T . 75

A CASA Error Codes 77

B CASA Security Guidelines 81
B.1 CASA Security Administration . 81
B.2 CASA User Security . 82
B.3 Security Considerations for CASA Developers . 83

C Revision History 85
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
About This Guide

The Common Authentication Service Adapter (CASA) provides a common authentication and
security package for client authentication across the Linux* and Microsoft* Windows* desktops.
Novell® products such as GroupWise®, GroupWise Messenger, iPrint, Novell iFolder®, and the
Novell clients for Windows and Linux are integrated with the miCASA interface and can take
advantage of the credential store that provides the cornerstone for CASA.

This guide contains the following sections:

Chapter 1, “Getting Started,” on page 9
Chapter 2, “CASA on Linux,” on page 11
Chapter 3, “CASA on Windows,” on page 21
Chapter 4, “CASA Manager Administration,” on page 25
Chapter 5, “Functions,” on page 55
Chapter 6, “Structures,” on page 73
Appendix C, “Revision History,” on page 85

Audience

This guide is intended for advanced application developers who want to enable single sign-on to an
enterprise network. In order to deploy this API on your applications, you should be familiar with
Linux and Windows development platforms, as well as understand authentication and security
development concepts.

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of the CASA documentation, visit the Novell Common Authentication
Service Adapter Web site (http://forge.novell.com/modules/xfmod/project/?casa).

Additional Documentation

For documentation on other authentication and Novell SecretStore® issues, see the Novell
SecretStore product documentation (http://www.novell.com/documentation/secretstore33/
index.html) and the Novell SecretStore Developer Kit for C (http://developer.novell.com/ndk/
ssocomp.htm) Web sites. The CASA SDK replaces the SecretStore Developer Kit.

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.
About This Guide 7

http://forge.novell.com/modules/xfmod/project/?casa
http://forge.novell.com/modules/xfmod/project/?casa
http://www.novell.com/documentation/secretstore33/index.html
http://www.novell.com/documentation/secretstore33/index.html
http://developer.novell.com/ndk/ssocomp.htm

8 Novell Com

novdocx (en) 6 April 2007
A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX*, should use forward slashes as required by your software.
mon Authentication Services Adapter (CASA)

1
novdocx (en) 6 April 2007
1Getting Started

The Novell® Common Authentication Services Adaptor (CASA) is a common authentication and
security package that provides a set of libraries for application and service developers to enable
single sign-on to an enterprise network. CASA 1.7 provides a local, session-based credential store,
called miCASA, that is populated with desktop and network login credentials on the following
workstations:

Novell Linux Desktop (NLD SP2)
Windows XP Home/Professional
Windows 2000 Professional

Within the CASA framework, the miCASA credential store is the component you incorporate and
enable on your applications.

Figure 1-1 CASA Architectural Structure

The miCASA credential service is implemented in C# with API bindings in C, C#, and Java*.
CASA also provides a Network Credential class to enable single sign-on in .NET framework
applications

Applications that require credentials also require some type of credential management logic. The
miCASA framework provides applications a place to securely store their credentials and the ability
to share those credentials with other applications. This reduces the number of credentials that are
being managed and provides a single sign-on experience to the end user.

Section 1.1, “Credentials,” on page 10
Getting Started 9

10 Novell Com

novdocx (en) 6 April 2007
Section 1.2, “Sharing Credentials,” on page 10

1.1 Credentials
A credential stored in the miCASA framework is given a unique name known as the SecretID.
Currently, a credential consists of a username and a password. The username can be any of the
following forms:

Common Name (CN). For example, John Smith.
Distinguished Name (DN_NDAP). For example, admin.novell.
Fully Distinguished Name (FDN_NDAP). For example, cn=admin,.o=novell.
Fully Distinguished LDAP Name (DN_LDAP). For example, cn=admin, o=novell.

The miCASA framework is capable of storing all of these forms under the same credential name or
SecretID. This type of secret is known as a Credential Set, or SS_CredSet.

The SecretID should be unique for each application using the miCASA API. We suggest the
following naming convention:
Company.ApplicationName for example,
Novell.Groupwise or Novell.iFolder.

If your application needs to store more than one credential, you can append additional strings to the
end of the SecretID.

1.2 Sharing Credentials
Credentials that are used by an application authenticate against some type of realm. This realm,
which is defined by the network administrator, can be an eDirectoryTM tree, an Active Directory*
domain, a managed database, or even a combination of all of these. Multiple applications commonly
authenticate to the same realm and the miCASA functions enable applications to share
authentication credentials.

Discovering the Realm

In order for credential sharing to take place, your application either must be able to discover the
authentication realm or be configured to use the name of the authentication realm.

The miCASA API functions described in this guide provide a sharedSecretID parameter that you
can use to leverage credential requirements of applications used within the realm. Although not
required, this parameter assists the API in accessing the proper credential. Novell iPrint is an
example of an application that discovers the Tree name or authentication realm of a chosen network
printer.

NOTE: The miCASA framework is designed so that the user or network administrator can override
the sharedSecretID that is used by a given application. However, this feature is not yet functional.
mon Authentication Services Adapter (CASA)

2
novdocx (en) 6 April 2007
2CASA on Linux

This section contains information on using the Common Authentication Service Adapter (CASA)
developer kit on Linux.

Section 2.1, “Linux Components,” on page 11
Section 2.2, “Using CASA with Linux,” on page 14

For information on using CASA with Microsoft Windows, see Chapter 3, “CASA on Windows,” on
page 21.

2.1 Linux Components
The main components of CASA on Linux are:

Section 2.1.1, “CASA Identity Development Kit,” on page 11
Section 2.1.2, “miCASA,” on page 11
Section 2.1.3, “Login Credential Capture Module,” on page 11
Section 2.1.4, “CASA Linux Packages,” on page 12
Section 2.1.5, “Linux Directories and Files,” on page 12

2.1.1 CASA Identity Development Kit
Use the functions within this kit to write user/application credentials to the credential store. These
functions internally store the credentials passed to them by the applications in miCASA. There are
C, C++, C# and Java bindings available for the functions within this kit. See Section 2.1, “Linux
Components,” on page 11 and Section 3.1, “Windows Components,” on page 21.

2.1.2 miCASA
miCASA is an active CASA component that starts during boot time. It stores and provides
credentials or secrets based on the Linux user identifier (uid) of the process that makes the IDK API
calls. On Linux, miCASA is available in the run-levels 1, 2, 3, and 5. It runs with root privileges and
is active as long as the system is up.

Credentials are enycrpted by the deskop password and stored on the user’s file system. When the
user logs back into the workstation, the encrypted credentials are decrypted and reloaded in memory.
Applications can then use these credentials to authenticate to additional services.

2.1.3 Login Credential Capture Module
On Linux, the login credential capture module is implemented as a pluggable authentication module
(PAM) (http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html). This PAM
module captures the user’s desktop login credentials and stores them in miCASA using the IDK
functions.
CASA on Linux 11

http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html
http://www.novell.com/documentation/oes/sles_admin/data/cha-pam.html

12 Novell Com

novdocx (en) 6 April 2007
This PAM module is placed as the last module in the auth and session stacks of xdm, gdm, kdm,
login, and sshd PAM configuration files. In the auth stack, the functionality of this module is to store
the credentials in miCASA and in the session stack, then close the user’s session with miCASA.

IMPORTANT: Any PAM module that uses the Identity Development Kit must temporarily set its
effective user ID to that of the user logging in (the user returned by calling pam_get_user), if the
credentials need to be stored against that user. However, there might be cases where the user
obtained by calling pam_get_user is not the user against whom the PAM module actually intends to
store credentials.

2.1.4 CASA Linux Packages
CASA consists of the following Linux packages:

CASA-1.7.xxx.i586.rpm: Installs miCASA, the startup scripts, the Login Credential Capture
PAM module, and the relevant libraries required by any application that is using the CASA
API.
CASA-devel-1.7.xxx.i586.rpm: Installs the relevant header files that developers need to write
applications to the CASA functions. This is dependent on CASA-1.5.xxx.i586.rpm.
CASA-gui-1.7.xxx.i586.rpm: Installs CASA Manager, which allows the end user to add, edit,
and delete secrets. CASA Manager also allows the user to temporally suspend or lock the
miCASA credential store.

2.1.5 Linux Directories and Files
CASA Linux files are located in the following directories:

“/usr/share/doc/packages/CASA” on page 12
“/usr/lib or /usr/lib64” on page 13
“/lib/security or /lib64/security” on page 13
“/usr/bin” on page 13
“/usr/share/doc/packages/CASA/images” on page 13
“/etc/init.d” on page 14
“/usr/include” on page 14

/usr/share/doc/packages/CASA

This directory contains the following files:

File Description

CASA_Reference_Guide.pdf This document.

README.txt The Readme file, which contains information about any last-minute
updates.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
/usr/lib or /usr/lib64

This directory contains the following files for 32-bit machines (/usr/lib) or 64-bit machines (/
opt/novell/CASA/lib64):

/lib/security or /lib64/security

This directory contains the following file for 32-bit machines (/lib/security) or 64-bit
machines (/lib64/security):

/usr/bin

This directory contains the following files:

/usr/share/doc/packages/CASA/images

This directory contains all images used by CASA Manager.

File Description

libmiCASA.so.[version number] The miCASA C/C++ developer kit library.

miCASA.jar The miCASA Java developer kit jar file.

libjmiCASA.so.* The miCASA Java developer kit library.

Novell.CASA.miCASAWrapper.dll The miCASA C# developer kit library, which
is based on Mono®.

Novell.CASA.Common.dll A common .NET library used by miCASA
and CASAManager.

Novell.CASA.A-D.dll A .NET library that collects secrets from
other credential stores.

Novell.CASA.DataEngines.GnomeKeyRing.dll A C# wrapper to interact with GNOME*
Keyring.

Novell.CASA.DataEngines.KWallet.dll A C# wrapper to interact with the KDE
Wallet.

Novell.CASAS.Policy.dll A .NET library to configure the policies for
miCASA.

File Description

pam_miCASA.so The miCASA login credential capture module that is inserted in the auth and
session stacks of the PAM configuration files of xdm, gdm, kdm, login, and sshd.

File Description

miCASA.exe The miCASA daemon that starts at runlevels 1, 2, 3, and 5. It is based on Mono.

miCASA.sh A script that starts miCASA.exe.

CASAManager.exe The management console used to view, edit, and delete secrets.

CASAManager.sh The script file that starts CASAManager.
CASA on Linux 13

14 Novell Com

novdocx (en) 6 April 2007
/etc/init.d

This directory contains the following file:

/usr/include

This directory contains the following files:

2.2 Using CASA with Linux
Section 2.2.1, “Linux Command Line Installation,” on page 14
Section 2.2.2, “Starting, Stopping, and Restarting CASA on Linux,” on page 14
Section 2.2.3, “Starting CASA Manager,” on page 15
Section 2.2.4, “Linux Uninstallation,” on page 15
Section 2.2.5, “Linux YaST Installation,” on page 15
Section 2.2.6, “Accessing CASA Manager: Linux,” on page 19
Section 2.2.7, “Avoiding Conflicting Service Realms,” on page 20

2.2.1 Linux Command Line Installation
CASA is preinstalled on the Novell Linux Desktop SP2 operating system.

On other distributions, use the following commands to install all of the required CASA components:
rpm -Uvh CASA-1.7.xxx.i586.rpm (CASA product installation)
rpm -Uvh CASA-devel-1.7.xxx.i586.rpm (CASA NDK installation)
rpm -Uvh CASA-gui-1.7.xxx.i586.rpm (CASA Manager installation)

2.2.2 Starting, Stopping, and Restarting CASA on Linux
Use the following command to start, stop, and restart the CASA service:

File Description

miCASA The miCASAad startup script. This script is started in runlevels 1, 2, 3, and 5.
There are links to this script from the appropriate runlevel directories (/etc/
rc1.d, /etc/rc2.d, /etc/rc3.d, and /etc/rc5.d). This script calls the /
opt/novell/CASA/bin/miCASA.sh script to start the daemon.

File Description

miCASA.h The low-level header file that lists the C/C++ functions.

miCASA_mgmd.h The main header file for C/C++ developers.

casa_status.h The header file for the CASA auth-token functions.

micasa_types.h The common header file defining supported types.

sscs_string.h The header file that contains common string operations.

sscs_utf8.h The header file for common UTF8 string operations.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
/etc/init.d/miCASA [start|stop|restart]

2.2.3 Starting CASA Manager
Use the following command to start CASA Manager:
/bin/CASAManager.sh

2.2.4 Linux Uninstallation
Use the following commands to uninstall the CASA packages:
rpm -e CASA-gui
rpm -e CASA-devel
rpm -e CASA

2.2.5 Linux YaST Installation
1 Log in to Linux as the root user.
2 Open a browser and navigate to the Novell Common Authentication Service Adapter (http://

developer.novell.com/wiki/index.php/Casa) download site > click CASA_1.7 > click CASA >
click downloads > click binaries.
CASA on Linux 15

http://developer.novell.com/wiki/index.php/Casa

16 Novell Com

novdocx (en) 6 April 2007
3 Choose the latest CASA-1.7.x.i586.rpm package > click download.

4 Click Open with zen-installer (default) > click OK.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
If you did not log in as the root user, you will be prompted for the root password. If
required, enter the root password and click continue. Otherwise, after the CASA package
downloads, you will be prompted to install the package.

5 Click Install.
The selected CASA rpm is installed to the Linux install directory.
CASA on Linux 17

18 Novell Com

novdocx (en) 6 April 2007
6 After the software installs successfully, click Close.

7 Navigate to the CASA application in your Linux application directory.
SLED 10.x: On the Linux desktop, click Computer > More Applications, then scroll down in
the System directory for the Novell CASA Manager icon.
Alternatively, you can search for the CASA program by typing CASA in the Application
Browser Filter.

8 Click the Novell CASA Manager icon.
You will be prompted to configure CASA.

9 Click Configure CASA then click OK after YaST configures CASA successfully.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
10 To install CASA-kwallet (the CASA aggregation and distribution KWallet plugin), repeat Step 7
through Step 9.

After the CASA components are installed, go to “Accessing CASA Manager: Linux” on page 19.

2.2.6 Accessing CASA Manager: Linux
1 To run CASA Manager, login as root, navigate to the CASA Manager program, then click the

Novell CASA Manager application.

2 The first time you run CASA Manager, you will be prompted to set a master password. This is
used to encrypt and secure your persistent credentials. The master password must be at least
eight characters in length.

Figure 2-1 Set your master password when you start CASA Manager.
CASA on Linux 19

20 Novell Com

novdocx (en) 6 April 2007
Figure 2-2 From the Novell CASA Manager application, you administer all secrets associated with the current user.

See also Chapter 4, “CASA Manager Administration,” on page 25.

2.2.7 Avoiding Conflicting Service Realms
Currently, the YaST module for configuring the CASA auth-token service allows multiple realms to
be added with the same realm name, which can lead to confusion. For example, if you add two
realms both named “adam” with different configurations, both realms appear in YaST and you
cannot differentiate between them. Moreover, when you delete one of the “adam” realms, the
configuration information for the remaining realm named “adam” also is deleted.

To prevent this conflict, make sure to uniquely name any realm added to the service when you
configure CASA.
mon Authentication Services Adapter (CASA)

3
novdocx (en) 6 April 2007
3CASA on Windows

This section contains information on using the Common Authentication Service Adapter (CASA) on
Microsoft Windows.

Section 3.1, “Windows Components,” on page 21
Section 3.2, “Using CASA with Windows,” on page 22

For information on using CASA with Linux, see Chapter 2, “CASA on Linux,” on page 11.

3.1 Windows Components
CASA consists of one Windows package, CASA.msi, which is the installation module that
contains the following components that match their Linux counterparts (see Section 2.1, “Linux
Components,” on page 11):

CASA-gui.msm

CASA.msm

A separate Windows package called CASA-devel.msi installs the CASA development kit.

3.1.1 Windows Directories and Files
CASA Windows files are located in the following directories:

“\Program Files\Novell\CASA\bin” on page 21
“\Program Files\Novell\CASA\include” on page 21
“\Program Files\Novell\CASA\lib” on page 22
“\Program Files\Novell\CASA\doc” on page 22
“\windows\system32(64)” on page 22

\Program Files\Novell\CASA\bin

Tjos directory contains the following files:

\Program Files\Novell\CASA\include

This directory contains the following files:

File Description

CASAManager.exe A management console for adding, editing, and deleting secrets.

lcredmgr.dll The login capture, login extension, and logout for Novell® Client32TM.

miCASA.exe The miCASA service for Windows.

Other supporting
libraries

See linux section for complete list of files.
CASA on Windows 21

22 Novell Com

novdocx (en) 6 April 2007
\Program Files\Novell\CASA\lib

This directory contains the following files:

\Program Files\Novell\CASA\doc

This directory contains the following files:

\windows\system32(64)

This directory contains the following files:

3.2 Using CASA with Windows
Section 3.2.1, “Installing CASA on Windows,” on page 23
Section 3.2.2, “Starting CASA on Windows,” on page 23
Section 3.2.3, “Accessing CASA Manager,” on page 23
Section 3.2.4, “Uninstalling CASA on Windows,” on page 24

File Description

miCASA.h The low-level header file that lists the C/C++ functions.

miCASA_mgmd.h The main header file for C/C++ developers.

File Description

miCASA.lib The miCASA C/C++ developer kit front-end dynamic
library for linking.

miCASA.jar The miCASA Java developer kit jar file.

Novell.CASA.miCASAWrapper.dll The miCASA C# developer kit library, which is based on
.NET.

File Description

CASA_Reference_Guide.pdf This document.

README.txt The readme file, which contains information about any last-
minute updates.

File Description

miCASA.dll The miCASA C/C++ developer kit dynamic library.

miCASAcache.dll The miCASA library that allows the developer kit to talk to the miCASA service.

jmiCASA.dll The miCASA JNI library for the Java interface.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
3.2.1 Installing CASA on Windows
1 Before installing CASA on Windows, make sure your system is configured with the Microsoft

.NET Framework and the Gtk# components that CASA requires (see “Windows Components”
on page 21). The CASA installation will determine if these software packages are already
installed.

2 To install CASA on the Windows operating system, double-click the CASA.msi file, which is
located in the CASA installation directory.

3.2.2 Starting CASA on Windows
After installing CASA, the CASA service should be running. If not, you can start the Novell
Identity Store service by either of the following methods:

1 Click Start > Settings > Control Panel > Administrative Tools > Services > Novell Identity Store

or

Reboot your machine to start CASA automatically.

3.2.3 Accessing CASA Manager
To run CASA Manager:

1 In the Windows Start menu, click Programs > Novell CASA.
2 (Optional) Run the CASA Launcher.exe file found in the [Program

files]\Novell\CASA\bin directory.
3 The first time you run CASA Manager, you are prompted to set a master password.

This is used to encrypt and secure your persistent credentials. The master password must be at
least eight characters in length.

See also Chapter 4, “CASA Manager Administration,” on page 25.
CASA on Windows 23

24 Novell Com

novdocx (en) 6 April 2007
3.2.4 Uninstalling CASA on Windows
To uninstall CASA, click Start > Control Panel > Add/Remove Programs, select CASA, then follow
the instructions.
mon Authentication Services Adapter (CASA)

4
novdocx (en) 6 April 2007
4CASA Manager Administration

CASA Manager is the graphical user interface that enables you to access and manage the
authentication credentials (secrets) of the programs and services installed on your Linux or
Windows devices. CASA Manager also enables you to manually create new secrets or to manage
secrets that have been previously created by programs that integrate with CASA.

WARNING: Because CASA collects and displays security credentials from secure applications
running on your system, this software should not be used in any public environment where security
might be compromised.

In addition, because CASA is integrated with your workstation login and other resident applications
that require authentication credentials, you should create confidential passwords that are not easily
broken.

For more information about enhancing security when using CASA, see Appendix B, “CASA
Security Guidelines,” on page 81.

To install CASA Manager on Linux, see Section 2.2, “Using CASA with Linux,” on page 14. To
install CASA Manager on Windows, see Section 3.2, “Using CASA with Windows,” on page 22.

User credentials (secrets) are created automatically when installing and instantiating many routine
applications and services on a system, such “name” and “password” values. For example, user
secrets for SS_CredSet:GroupWise are created when the Novell® GroupWise® application is used,
as shown in the Secrets-ID window in Figure 4-1 on page 26.

SS_CredSet identifies that a credential has one or more sets of key-value pairs assigned to it. The
miCASA credential store and Firefox Password Manager store are supported on Linux and
Windows. CASA Manager also supports KDE Wallet and GNOME Keyring on Linux. CASA
Manager enables you to manage secrets in other credential stores or third-party applications (such as
the Firefox application, as shown in Figure 4-1).
CASA Manager Administration 25

26 Novell Com

novdocx (en) 6 April 2007
Figure 4-1 CASA Manager GUI Showing a Sample Credential Directory and Third-party Application

CASA Manager allows the user to view, edit, and add secrets stored in the miCASA store.
Applications such as Novell GroupWise, iPrint, iFolder®, Firefox are CASA enabled and can store
secrets in the miCASA store.

For CASA 1.0, secrets are stored in miCASA only in memory. In CASA 1.5 or later versions, secrets
are stored in miCASA and persistently on the file system. Through configuration, secrets can be
tagged as session-based or non-persistent.

Session-based secrets imply secrets that are stored in an in-memory cache, are available only as long
as the user is in session on the desktop, and are destroyed when the miCASA daemon is restarted or
the user logs off the workstation.

This section discusses the following topics:

Section 4.1, “CASA Manager GUI Components,” on page 26
Section 4.2, “Editing CASA Manager Options,” on page 29
Section 4.3, “CASA Manager Functionality,” on page 35
Section 4.4, “Resetting the CASA Master Password,” on page 51

4.1 CASA Manager GUI Components
CASA Manager has the following components:

Section 4.1.1, “Credential Store Tab,” on page 27
Section 4.1.2, “Secret-ID Window,” on page 27
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
Section 4.1.3, “Native Information Window,” on page 28

4.1.1 Credential Store Tab
In Figure 4-1 on page 26, the miCASA tab lists all secrets stored in the miCASA cache when CASA
Manager is run. The following example identifies three secrets cached on a Windows machine:

Figure 4-2 CASA Manager Credential Store Tab

However, suppose that CASA is installed on a Linux machine where KDE Wallet, GNOME
Keyring, and Firefox credential stores are supported. As shown in Figure 4-3 on page 27, three
additional tabs are enabled to access all credentials cached in each of those stores. To access the
secrets stored in each of these credential stores, you simply click the individual tab.

Figure 4-3 In Linux, navigate between enabled credential stores by clicking on their individual tabs.

4.1.2 Secret-ID Window
After you select a credential store tab, the Secret-ID window displays the names of all secrets cached
in the enabled credential store of your machine, as shown in the example in Figure 4-4 on page 28.
CASA Manager Administration 27

28 Novell Com

novdocx (en) 6 April 2007
Figure 4-4 Secret-ID Example

You can select a secret to manage by either of two methods:

Right-click the Secret-ID item listed in the window and select the task you want to perform.
This method allows you to do the following tasks:

Create new secrets
Create new keys
View and manage secrets and key-value pairs
Link keys and value pairs among secrets
Copy the selected secrets to a location you select
Delete secrets stored in the session cache

Click the Secret-ID item you want to manage, then click one of the File/Edit/Options/Help
functions in the menu.

4.1.3 Native Information Window
The Native Information window displays the attributes and information for the secret that is
currently selected.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
Figure 4-5 Native Information Window

The Native Information window displays information about the secret. The information in this
window will vary depending on which credential store is being viewed.

4.2 Editing CASA Manager Options
Section 4.2.1, “Assigning Single Sign-on Preferences,” on page 29
Section 4.2.2, “Setting Persistent Storage,” on page 32
Section 4.2.3, “Changing Your Master Password,” on page 33
Section 4.2.4, “Setting CASA Preferences,” on page 33
Section 4.2.5, “Creating Secret Policies,” on page 34

4.2.1 Assigning Single Sign-on Preferences
On Linux, CASA Manager enables you to configure and store user sign-on information for the
following services:

“Konquerer Web Services” on page 29
“CASA Network Manager” on page 32

Konquerer Web Services

The CASA Konquerer Web utility allows you to select a preconfigured CASA template to help you
provide the user credentials required to access a particular service:

A generic Web site that you designate
Any number of Novell Web sites
Gmail*
Yahoo! Mail*
MSN Hotmail*

After configuring a template, the user’s sign-in credentials are automatically entered into the
username and password fields, thus providing a seamless single sign-on user experience. When
configuring the CASA template, the KDE wallet subsystem might prompt you to allow CASA
Manager to access its storage system.
CASA Manager Administration 29

30 Novell Com

novdocx (en) 6 April 2007
Here’s an example how to configure single sign-on for a user accessing a Novell Innerweb account:

1 In CASA Manager, click Options > Application SSO > Konquerer.

The KDE Wallet wizard opens and prompts you for user information for a Web service.
2 In the drop-down Templates menu, click Novell Innerweb (innerweb.novell.com), then fill in

the values for the username and password.
The template automatically fills in the proper login URL for this Web site:

3 Click OK.
4 The following dialog might appear indicating that CASA Manager is attempting to modify the

contents of the KDE Wallet.

To allow CASA Manager to interact with KDE wallet, select Allow Once or Allow Always.
This setting can be changed later by repeating this procedure for the Web page and changing
your preference.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
5 Open a browser and enter the URL of the Web page you configured in Step 2. The user name
and password are automatically filled in, if you allowed this option in the previous step.
CASA Manager Administration 31

32 Novell Com

novdocx (en) 6 April 2007
CASA Network Manager

The CASA NetworkManager utility enables single sign-on to the Linux NetworkManager and the
Nautilus network browser using the following procedure:

1 In CASA Manager, click Options > Application SSO > NetworkManager. The GNOME
Keyring window opens.

2 Enter the appropriate server and user information details required to establish a single sign-on
network connection:
Server type: The type of server connection. Specify SSH, FTP (with login), or Windows
Share.
Server: The name of the server. Specify the fully designated name of the server to which you
want to connect.
Username: Enter the name of the authorized user accessing the network.
Password: Enter the user’s password.
Port: Specify the assigned port number to access the network.

3 Click OK.
The user is now provisioned to access the specified server using single sign-on.

4.2.2 Setting Persistent Storage
CASA automatically stores your secrets on your computer’s hard drive and retrieves them the next
time you log in. Your secrets are encrypted using the password you used for login, as well as the
master password required to use CASA Manager.

When the desktop password changes, you must enter your master password to retrieve your saved
secrets. This occurs when you run CASAManager the first time after booting the computer.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
4.2.3 Changing Your Master Password
To change your master password:

1 Click Options > select Change Master Password.
2 Enter your old master password, enter your new master password twice, then click OK.

Your master password must be at least eight characters long.

4.2.4 Setting CASA Preferences
Manage CASA preferences using the following procedure:

1 From the CASA Manager page, click Options > Preferences.

2 Select the CASA preference settings you desire.

With CASA 1.7, you can select where miCASA stores credentials persistently. By default, your
secrets are stored in the following locations:

Linux: /home/.casa/[username]
Windows: /Documents and Settings/casa

You can configure whether or not to show the CASA icon in the task bar. If selected, you can also
configure the action when you click the icon. The default action is to display CASA Manager when
the icon is clicked.

You can also change that action to lock and unlock the miCASA store. This prevents applications
from reading and writing secrets temporally, until unlocked or when the workstation is restarted.
CASA Manager Administration 33

34 Novell Com

novdocx (en) 6 April 2007
CASA Manager supports miCASA, Firefox, KDE Wallet (Linux only), and GNOME Keyring
(Linux only) credential stores. The three preference options are:

miCASA
KDE Wallet
GNOME Keyring

On Windows, you can only enable or disable the Firefox Password Manager.

The miCASA store is always active and cannot be removed. You can select additional credential
stores to use in CASA Manager (that is, Firefox Password Manager, KDE Wallet, GNOME Keyring,
or other credential stories that are available to CASA Manager).

4.2.5 Creating Secret Policies
After creating user secrets in the credential stores, CASA Manager enables you to quickly designate
whether or not those secrets are stored as persistent or non-persistent secrets.

Persistent secrets are miCASA credentials that are stored on the file system and available for
authenticating to Web and network services after restarting the workstation. Non-persistent secrets
are not stored on the file system and are removed when a machine is shut down or CASA is
restarted. Use the following procedure to change the persistence status of user secrets:

1 In CASA Manager, click Options > Policies, or press the F3 key.

Figure 4-6 All of the user’s secrets are displayed in a two-panel window.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
2 Double-click each secret you want to change from a persistent to non-persistent policy, or you
can click a secret, then click the green arrow to change the persistence of the secret.

3 Click Apply to accept and save the policy, then click OK. The designated persistence policy is
applied immediately and will remain until you change it using this procedure.

4.3 CASA Manager Functionality
Secrets for each of the services shown in the Secret-ID window (Figure 4-1 on page 26), which are
cached in miCASA, can be managed in the following ways:

Section 4.3.1, “Creating Secrets,” on page 36
Section 4.3.2, “Refreshing Credential Stores,” on page 36
Section 4.3.3, “Locking and Unlocking Secrets,” on page 37
Section 4.3.4, “Destroying Secrets,” on page 37
Section 4.3.5, “Exporting User Secrets,” on page 38
Section 4.3.6, “Importing User Secrets,” on page 39
Section 4.3.7, “Viewing Secret Values,” on page 40
Section 4.3.8, “Linking Secrets,” on page 40
Section 4.3.9, “Copying Secrets,” on page 42
Section 4.3.10, “Finding and Replacing Secrets,” on page 45
Section 4.3.11, “Editing Secrets,” on page 49
Section 4.3.12, “Deleting Secrets,” on page 50
CASA Manager Administration 35

36 Novell Com

novdocx (en) 6 April 2007
4.3.1 Creating Secrets
To manually create a new secret:

1 In CASA Manager, click File > New > New Secret.

2 Fill in the following fields:
Secret ID: Type the name that identifies the new secret such as, Example Secret.
Key: Type the name of the key such as Password.
Value: Type the name of the key’s value such as testpassword.

3 Click the + button to add the newly formed key-value pair for the new secret.
In the example shown in Step 1 on page 36, the value of the password key is shown in clear
text, that is “testpassword.” The password value is always shown in encrypted form (that is, in
asterisk characters) to help secure confidential information unless you select Show passwords
in clear text. You are then prompted to enter your master password to enable a single instance
display of the password in the Value field.

4 Click OK to add the new secret, with its corresponding key-value pairs, to the credential store.
The secret now displays in the Secret-ID window, indicating that it has been added to the
miCASA credential store.

4.3.2 Refreshing Credential Stores
The Refresh Stores menu option in CASA Manager is used to re-read all secrets in each of the
configured stores. The miCASA and Firefox Password Manager credential stores are supported on
Linux and Windows. KDE Wallet and GNOME Keyring are additional stores supported on Linux.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
4.3.3 Locking and Unlocking Secrets
To prevent individuals and other applications from viewing or manipulating your secrets, CASA
Manager enables you to lock secrets. The Lock Secrets menu option temporarily disables the
functionality of the miCASA store, so CASA-enabled applications cannot read or write secrets to
the miCASA store.

1 Click File > Lock Secrets.

All credential store tabs (miCASA, Firefox, KDE Wallet, and GNOME Keyring) and cached
secrets are dimmed when CASA is locked.

To unlock and restore functionality to CASA:

1 Click File > Unlock Secrets.
2 Enter your master password.

4.3.4 Destroying Secrets
Use the following procedure to clear your cache and destroy all credentials that are stored in
miCASA:

1 Click the tab for the credential store you want to clear.

2 Click File > Destroy Secrets > OK.
CASA Manager Administration 37

38 Novell Com

novdocx (en) 6 April 2007
2a (Option) In the Secret ID window, right-click on the credential you want to clear > click
Delete > click OK.

You can restore your secrets manually by creating new secrets or by using CASA Manager or
CASA-enabled applications to store your credentials in the miCASA store.

4.3.5 Exporting User Secrets
You can export your miCASA secrets to a specific directory you select, either with or without
encryption, using the following procedure:

1 Click File > Export Secrets.

The CASA - Export Secrets window prompts you for your master password and whether or not
to encrypt the secrets when they are exported. To enhance security, secrets are encrypted by
default and you must check Do not encrypt export file to export secrets in clear text.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
2 Select a directory in which to export your miCASA secrets, enter a file name, then click OK.

In this example, the secrets are exported to the Desktop with the name of test_export.

NOTE: External storage devices, such as portable USB drives, also can be used to store
exported secrets. It is strongly recommended that secrets always be encrypted when stored on
any external storage device.

4.3.6 Importing User Secrets
CASA Manager Administration 39

40 Novell Com

novdocx (en) 6 April 2007
You can import user secrets from a file where they have been previously saved using the following
procedure:

1 Click File > Import Secrets. CASA Manager opens the Save Secrets window, listing all
directories available to the user.

2 Navigate to the directory where the user secrets were previously exported, as explained in
Section 4.3.5, “Exporting User Secrets,” on page 38. These stored files are identified with the
.casa extension in the file name.

3 Click the file (in this example, test_export.casa) > OK..
4 If requested, enter the master password used to encrypt this file, then click OK..

User secrets are then imported to and the information advisory window displays Import
Complete.

5 Click Close to return to CASA Manager.

4.3.7 Viewing Secret Values
You can view the key-value pairs of all secrets cached in each cpmfogired credential store.

1 In CASA Manager, click the tab of the credential store you want to view.
2 In the main Secret-ID window, click the secret you want to view.
3 Click Edit > View or press F2.
4 By default, key values are encrypted and displayed as asterisks. To show the value in clear text,

click Show Values in clear text and enter your master password.

4.3.8 Linking Secrets
You can link two or more secret keys so that their respective values are synchronized. For example,
you can link the CN of one secret to the password of another secret, all of the keys with one secret to
each other, or any combination to synchronize all your secrets.

Currently, CASA only provides the ability to link keys within the miCASA credential store.

To link secrets:

1 Select the secret you want to link, then press F2 or select Edit > Link. This opens the Edit
Secret and Key-Value Pairs window.

2 Double-click a key in the Key field to open the Link management window.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
This CASA utility enables you to link the key of any secret to the key of any other secret
contained in the miCASA store.

3 Click the Secret-ID you want to link. This displays all keys associated to this secret.
4 Click the key you want to link, then click the + button to link the selected key-value pair.
5 Repeat Step 4 to add and link as many secrets as you want.

All linked secrets and keys are displayed in the Existing Linked Keys window.
6 To verify if a secret is linked, view its status in the Edit Secret pairs window by following any

one of these steps:
Double-click the secret.
Right-click the secret, then click View.
Select a secret from the main window, then press the F2 key.

The Link field displays either Yes or No.
CASA Manager Administration 41

42 Novell Com

novdocx (en) 6 April 2007
7 To unlink selected secrets, click any of the Secret-ID components listed in the Existing Linked
Keys window, then click the – button.
The selected secret is deleted from the Existing Linked Keys window.

4.3.9 Copying Secrets
CASA enables you to copy existing user secrets from your miCASA store to other stores that are
enabled in your system. Use the following procedure to copy secrets between credential stores that
are enabled on the system.

1 In the Linux CASA Manager page, click the tab of any one of the stores that are enabled on
your system. In this example, we’ve selected the miCASA tab.

2 Right-click the secret you want to copy in the Secret ID panel. In this example, we’ve selected
the user’s Desktop credentials as shown in the figure below:
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
3 In the CASA - Copy Secret window, check one or more of the available stores where you want
to copy your secrets.

In this step, we’ve selected to copy secrets to the KDE Wallet store.
3a Click OK and the KDE Wallet Wizard opens if the Wallet has not been configured

previously.

KWallet enables you to store user secrets on a disk in an encrypted file. The wizard helps
you to configure KWallet and we suggest you select the Basic setup option until you
become familiar with the KDE Wallet system.
CASA Manager Administration 43

44 Novell Com

novdocx (en) 6 April 2007
3b Click the Next button to open the Password Selection window of the KDE Wallet Wizard.

If you want your applications to use KDE Wallet to store user secrets, you enable it by
checking Yes in the Password Selector wizard and entering a new password and password
verification in the fields.

NOTE: To enhance security of your system, we recommend something other than your
master password. The password you choose cannot be recovered if it is lost and will allow
anyone who knows it to obtain all of the information contained in KDE Wallet.

3c Click Finish and the KDE Daemon will open and prompt you for the password you
created in Step 5.

3d Enter the password and click OK. An information window will indicate that the secrets
were copied successfully.

3e Click Close.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
For copying secrets to credential stores other than KDE Wallet, use the following procedure:

1 Click the credential store into which you want to copy the secrets selected in Step 2.

2 Change the name of the secret if needed.
3 Click OK. The Information advisory window will return a Success message.
4 Click Close.

4.3.10 Finding and Replacing Secrets
This feature enables you to find any password or value saved in the miCASA credential store and
change it to any value you desire. To search all values, enter an asterisk (*):

1 In CASA Manager, click Edit > Find and Replace (Ctrl+F).
CASA Manager Administration 45

46 Novell Com

novdocx (en) 6 April 2007
2 Enter your master password to confirm, then click OK. The CASA Find and Replace window
opens:

3 In the Find value with: field, enter all or a portion of the case-sensitive password value you
seek, or enter * to display all values.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
In this example, we enter the value test_pass and click the Find button.

In the SecretID pane, the utility lists every credential and location where the value (test_pass) is
found. If you want to view the value in clear text, click the Show Values in clear text box.

4 To replace the existing password value, select one or more of the secrets listed in the SecretID
panel.
CASA Manager Administration 47

48 Novell Com

novdocx (en) 6 April 2007
You can select a single secret by clicking it or select multiple secrets by using Ctrl+click,
Shift+click, or Ctrl+A.

5 Click the Replace Selected button, then click the Apply button to save the new value or click the
Revert button to revert to the old value without saving the new value.

6 Click the Cancel or OK button when you are finished using the utility.
7 To verify the change, in this example, follow Step 1 through Step 3. In Step 3, type “changed”

in the Find value with: after clicking the clear text box and entering your master password.

The new value you set (changed_pass) has replaced your original password value.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
IMPORTANT: If you are using the examples in this documentation to test the functionality of
CASA Manager, make sure you revert any test password values back to your original values.

4.3.11 Editing Secrets

NOTE: The Copy Secrets feature is available in CASA 1.7 or greater.

1 Click the tab of the credential store you want to manage.
2 In the main Secret-ID window, double-click the secret you want to edit.
CASA Manager Administration 49

50 Novell Com

novdocx (en) 6 April 2007
3 Edit the secret by adding new or changing existing key-value pairs.

In this example, a second password key and corresponding password value were added by
typing “Password2” and “testpassword2” in the Key and Value fields, then clicking the +
button.
In this example, the value is encrypted and displays as asterisks for the new Password2 key. To
show the value in clear text, click Show Values in clear text. You are then prompted to enter
your master password before the values are displayed.

4 To edit the password value, click the Value field, type your new value, then click OK.
The new password value is saved in the miCASA credential store.

After they are created, Secret ID names cannot be edited.

4.3.12 Deleting Secrets
1 Click the tab of the credential story you want to manage.
2 In the main Secret-ID window, right-click the secret you want to delete, then click Delete.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
Alternatively, select Edit > Delete in the main menu.

3 Click Yes to delete the selected secret and all of its associated key-value pairs.

4.4 Resetting the CASA Master Password
There are instances when you might need to reset a user’s master password, such as when they
forget it. You do this by deleting all of the user’s stored miCASA credentials. After performing the
following procedure, CASA Manager will request the user to re-enter a new master password
described in Section 3.2.3, “Accessing CASA Manager,” on page 23:

1 Shut down the CASA service.
CASA Manager Administration 51

52 Novell Com

novdocx (en) 6 April 2007
In Windows:
1. In the Windows 2000 control bar, click Start > Settings > Control Panel.

In Windows XP, click Start > Control Panel > Administration Tools > Services.
2. In Windows 2000, double-click Administrative Tools, then double-click Services.

3. Stop the Novell Identity Store service either by:
Right-clicking on the service and selecting Stop
Clicking on the service and then clicking the Action menu > Stop
or
Clicking the Stop Service button icon in the Services tool bar

Windows will stop the CASA identity store, which is necessary before you can remove the
user’s credentials explained in Step 2. Leave the Services panel open because you will
restart the Novell Identity Store after you delete the user’s old credentials in Step 2.

In Linux:
1. Stop the micasad service by running the following command as the root user:

/etc/init.d/micasad stop

2. Locate the user’s Home directory where the miCASA data files are stored.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
IMPORTANT: Be certain your system settings are configured to Show hidden files
and folders or the .miCASA* files will not be viewable.

In Windows 2000:
1. Right-click on the My Computer desktop icon > Open.
2. In the My Computer address field, type C:\Documents and Settings\[user’s name]\casa.

This will list all of the documents and settings associated with the home user.

Figure 4-7 Navigate to the user’s home directory and delete the .miCASA* and .CASAPolicy.xml files.

In WindowsXP:
1. On the desktop, click Start > My Computer.
2. Right-click Local Disk > Open.
3. Right-click Documents and Settings > Open.
4. Right-click User’s folder > Open.

This will list all of the documents and settings associated with the home user.
2 Select all of the user’s .miCASA* data files, including the .CASAPolicy.xml file, as

shown in Figure 4-7 on page 53, then Delete.
3 Restart system Services by following the procedure described in Step 1, but select Start Service

instead of Stop Service.
4 On Linux, execute run /etc/init.d/micasad start.
5 Locate and start CASA Manager.
6 Enter a new Master Password to encrypt and secure your persistent credentials.
CASA Manager Administration 53

54 Novell Com

novdocx (en) 6 April 2007
The master password must be at least eight characters in length.
mon Authentication Services Adapter (CASA)

5
novdocx (en) 6 April 2007
5Functions

The following functions allow an application that requires credentials to get, set, and clear a
credential:

“miCASAGetCredential” on page 56
“miCASAOpenSecretStoreCache” on page 58
“miCASAReadBinaryKey” on page 59
“miCASAReadKey” on page 61
“miCASARemoveCredential” on page 63
“miCASARemoveKey” on page 64
“miCASASetCredential” on page 66
“miCASAWriteBinaryKey” on page 68
“miCASAWriteKey” on page 70

All strings must be miCASA terminated, and their length must include the miCASA byte.

For a list of possible error codes, see the micasa_mgmd.h header file located in the default install
directory or Appendix A, “CASA Error Codes,” on page 77.
Functions 55

56 Novell Com

novdocx (en) 6 April 2007
miCASAGetCredential
Allows an application to get a credential.

Syntax
int miCASAGetCredential
(
 uint32_t ssFlags,
 SSCS_SECRET_ID_T *appSecretID,
 SSCS_SECRET_ID_T *sharedSecretID,
 int32_t *credentialType,
 void *credential,
 SSCS_EXT_T *ext
);

Parameters
ssFlags

(IN) Set to 0 for this release.

appSecretID
(IN) Points to a structure of a unique string that represents the name of the service that is
requesting the credentials, such as Novell.GroupWise or Novell.iFolder.

sharedSecretID
(IN) Optional. Points to a structure of the shared name of the back-end authentication realm
that relates a group of services. This ID allows multiple applications to find and store a shared
credential, such as Novell_Collaboration. You can set this parameter to NULL.

credentialType
(IN/OUT) Points to the type of credential that is being used. Supported types are:

credential
(OUT) Points to the credential structure SSCS_BASIC_CREDENTIAL (page 74).

Value Description

SSCS_CRED_TYPE_BASIC_F The basic structure consists of a Username and a Password
(see the micasa_mgmd.h header file).

SSCS_CRED_TYPE_SERVER_F This credential type is used by services running on the
workstation. Credentials stored and retrieved using this flag
are not visible by CASA Manager, and are available after a
reboot without user authentication.

On Linux install the CASA command line interface (CLI)
package to manage these credentials.

SSCS_CRED_TYPE_BINARY_F The binary structure consists of a Key ID, the binary data, and
a length parameter (see the micasa_mgmd.h header file).
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
ext
Reserved for future use.

Return Values
If successful, returns one of the following:

The credential for the sharedSecretID, if one is requested and found.
The credential for the appSecretID, if the sharedSecretID is not found or not requested.
The default credential if no other credential is available.
Functions 57

58 Novell Com

novdocx (en) 6 April 2007
miCASAOpenSecretStoreCache
Allows an application to open a SecretStore cache.

Syntax
SSCS_GLOBAL_LIBCALL_PTR(void) miCASAOpenSecretStoreCache
(
 SSCS_SECRETSTORE_T *ssid,
 uint32_t ssFlags,
 SSCS_EXT_T *ext
);

Parameters
ssid

(IN) Points to the SecretStore structure found in micasa.h that defines the name of the store
to be opened. For this release, use the default value defined in the micasa.h header file.

ssFlags
(IN) Set to 0 for this release.

ext
Reserved for future use.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
miCASAReadBinaryKey
Allows an application to read a key for a secret that contains binary data.

Syntax
int32_t miCASAReadBinaryKey
(
 void *context,
 uint32_t ssFlags,
 SSCS_KEYCHAIN_ID_T *keyChainID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SS_UTF8_T *key,
 uint32_t keyLen,
 uint8_t *val,
 uint32_t *valLen,
 SSCS_PASSWORD_T *epPassword,
 uint32_t *bytesRequired,
 SSCS_EXT_T *ext
);

Parameters
context

Points to the SecretStore cache by calling miCASAOpenSecretStoreCache.

ssFlags
(IN) Set to 0 for this release.

keyChainID
(IN) Points to the KeyChain ID structure defined by SSCS_KEYCHAIN_ID_T. For this
release, set to the SS_UTF8_T SSCS_SESSION_KEY_CHAIN_ID defined in the header file
micasa.h.

sharedSecretID
(IN) Points to a structure of the secret ID for which the key is stored. This ID allows multiple
applications to find and store a shared credential, such as Novell_Collaboration.

key
(IN) Points to the name of the key to read. This key name must be in UTF-8 format and must be
NULL terminated.

keyLen
(IN) Specifies the length of the key defined above, including the NULL terminator.

val
(IN/OUT) Char pointer to a buffer for which the value of a key is copied.

valLen
(IN/OUT) Pointer to the length of the buffer passed to receive the value for the key.
Functions 59

60 Novell Com

novdocx (en) 6 April 2007
epPassword
Reserved for future use.

bytesRequired
Specifies the size of the buffer required to receive the value. If the buffer passed in is too small,
an error is returned (see Appendix A, “CASA Error Codes,” on page 77).

ext
Reserved for future use.

Return Values
If successful, returns the value of the key requested. If the key is not found or the buffer is too small,
returns an appropriate error. For error code information, see the micasa_mgmd.h header file or
see Appendix A, “CASA Error Codes,” on page 77.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
miCASAReadKey
Allows an application to read a key or a secret containing character data.

Syntax
int32_t miCASAReadKey
(
 void *context
 uint32_t ssFlags,
 SSCS_KEYCHAIN_ID_T *keyChainID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SS_UTF8_T *key,
 uint32_t keyLen,
 uint8_t *val,
 uint32_t *valLen,
 SSCS_PASSWORD_T *epPassword,
 uint32_t *bytesRequired,
 SSCS_EXT_T *ext
);

Parameters
context

Points to the SecretStore cache by calling miCASAOpenSecretStoreCache.

ssFlags
(IN) Set to 0 for this release.

keyChainID
(IN) Points to the KeyChain ID structure defined by SSCS_KEYCHAIN_ID_T. For this
release, set to SS_UTF8_T SSCS_SESSION_KEY_CHAIN_ID defined in the header file
micasa.h.

sharedSecretID
(IN) Points to a structure of the secret ID for which the key is stored. This ID allows multiple
applications to find and store a shared credential, such as Novell_Collaboration.

key
(IN) Points to the name of the key to read. This key name must be in UTF-8 format and NULL
terminated.

keyLen
(IN) Specifies the length of the key defined above, including the NULL terminator.

val
(IN/OUT) Char pointer to a buffer for which the value of a key is copied.

valLen
(IN/OUT) Pointer to the length of the buffer passed to receive the value for the key.
Functions 61

62 Novell Com

novdocx (en) 6 April 2007
epPassword
Reserved for future use.

bytesRequired
Specifies the size of the buffer required to receive the value. If the buffer passed in is too small,
an error is returned (see Appendix A, “CASA Error Codes,” on page 77).

ext
Reserved for future use.

Return Values
If successful, returns the value of the key requested. If the key is not found or the buffer is too small,
returns an appropriate error. For error code information, see the micasa_mgmd.h header file or
see Appendix A, “CASA Error Codes,” on page 77.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
miCASARemoveCredential
Allows an application to remove a credential.

Syntax
int miCASARemoveCredential
(
 uint32_t ssFlags,
 SSCS_SECRET_ID_T *appSecretID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SSCS_EXT_T *ext
);

Parameters
ssFlags

(IN) Set to 0 for this release.

appSecretID
(IN) Points to a unique string that represents the name of the credential that should be removed,
such as Novell.GroupWise or Novell.iFolder.

sharedSecretID
(IN) Ignored for this release.

ext
Reserved for future use.

Return Values
If successful, returns 0. Otherwise, returns a non-zero error code (see Appendix A, “CASA Error
Codes,” on page 77).
Functions 63

64 Novell Com

novdocx (en) 6 April 2007
miCASARemoveKey
Allows an application to remove a key from a secret stored in the cache.

Syntax
int32_t miCASARemoveKey
(
 void *context,
 uint32_t ssFlags,
 SSCS_KEYCHAIN_ID_T *keyChainID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SS_UTF8_T *key,
 uint32_t keyLen,
 SSCS_PASSWORD_T *epPassword,
 SSCS_EXT_T *ext
);

Parameters
context

Points to the SecretStore cache by calling miCASAOpenSecretStoreCache (page 58).

ssFlags
(IN) Set to 0 for this release.

keyChainID
(IN) Points to the KeyChain ID structure defined by SSCS_KEYCHAIN_ID_T. For this
release, set to SS_UTF8_T SSCS_SESSION_KEY_CHAIN_ID defined in the header file
micasa.h.

sharedSecretID
(IN) Points to a structure of the Secret-ID or name.

key
(IN) Points to the name of the key to read. This key name must be in UTF-8 format and must be
NULL terminated.

keyLen
(IN) Specifies the length of the key defined above, including the NULL terminator.

epPassword
Reserved for future use.

ext
Reserved for future use.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
Return Values
If successful, set a credential and returns 0, or returns an error code (see Appendix A, “CASA Error
Codes,” on page 77).
Functions 65

66 Novell Com

novdocx (en) 6 April 2007
miCASASetCredential
Allows an application to set a credential.

Syntax
int miCASASetCredential
(
 uint32_t ssFlags,
 SSCS_SECRET_ID_T *appSecretID,
 SSCS_SECRET_ID_T *sharedSecretID,
 int32_t *credentialType,
 void *credential,
 SSCS_EXT_T *ext
);

Parameters
ssFlags

(IN) Specifies to persist the credentials across reboots of the application. Set to 0.

appSecretID
(IN) Points to a structure of a unique string that represents the name of the service that is
requesting the credentials, such as Novell.GroupWise or Novell.iFolder.

sharedSecretID
(IN) Optional. Points to a structure of the shared name of the back-end authentication realm
that relates a group of services. This ID allows multiple applications to find and store a shared
credential, such as Novell_Collaboration. You can set this parameter to NULL.

credentialType
(IN) Points to the type of credential that is being used.

credential
(IN) Points to the credential structure.

ext
Reserved for future use.

Return Values
If successful, set a credential and returns 0, or returns an error code (see Appendix A, “CASA Error
Codes,” on page 77).

Remarks
NSSCSSetCredential sets the requested credential by using the following steps:

1. Sets the credential for the sharedSecretID, if one is supplied.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
2. Sets the credential for the appSecretID, if the sharedSecretID is not supplied or if setting the
sharedSecretID fails.
Functions 67

68 Novell Com

novdocx (en) 6 April 2007
miCASAWriteBinaryKey
Allows an application to write a binary key.

Syntax
int32_t miCASAWriteBinaryKey
(
 void *context,
 uint32_t ssFlags,
 SSCS_KEYCHAIN_ID_T *keyChainID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SS_UTF8_T *key,
 uint32_t keyLen,
 uint8_t *val,
 uint32_t *valLen,
 SSCS_PASSWORD_T *epPassword,
 SSCS_EXT_T *ext
);

Parameters
context

Points to the SecretStore cache by calling miCASAOpenSecretStoreCache (page 58).

ssFlags
(IN) Set to 0 for this release.

keyChainID
(IN) Points to the KeyChain ID structure defined by SSCS_KEYCHAIN_ID_T. For this
release, set to SS_UTF8_T SSCS_SESSION_KEY_CHAIN_ID defined in the header file
micasa.h.

sharedSecretID
(IN) Points to a structure containing the Secret ID.

key
(IN) Points to the buffer containing the key name, which must be in UTF-8 format and must be
NULL terminated.

keyLen
The length of the key, including the NULL terminator.

val
Points to the buffer containing the binary data being saved in the cache.

valLen
Points to the length of the buffer.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
epPassword
Reserved.

ext
Reserved.

Return Values
Sets the value for the given key and returns 0 if successful, or returns an error code (see
Appendix A, “CASA Error Codes,” on page 77).
Functions 69

70 Novell Com

novdocx (en) 6 April 2007
miCASAWriteKey
Allows an application to write a key.

Syntax
int32_t miCASAWriteKey
(
 void *context,
 uint32_t ssFlags,
 SSCS_KEYCHAIN_ID_T *keyChainID,
 SSCS_SECRET_ID_T *sharedSecretID,
 SS_UTF8_T *key,
 uint32_t keyLen,
 uint8_t *val,
 uint32_t valLen,
 SSCS_PASSWORD_T *epPassword,
 SSCS_EXT_T *ext
);

Parameters
context

Points to the SecretStore cache by calling miCASAOpenSecretStoreCache.

ssFlags
(IN) Set to 0 for this release.

keyChainID
(IN) Points to the KeyChain ID structure defined by SSCS_KEYCHAIN_ID_T. For this
release, set to SS_UTF8_T SSCS_SESSION_KEY_CHAIN_ID defined in the header file
micasa.h.

sharedSecretID
(IN) Points to a structure containing the Secret ID.

key
(IN) Points to the buffer containing the Key name, which must be in UTF-8 format and must be
NULL terminated.

keyLen
The length of the key, including the NULL terminator.

val
Points to the buffer containing the binary data being saved in the cache.

valLen
Points to the length of the buffer.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
epPassword
Reserved.

ext
Reserved.

Return Values
Sets the value for the given key and returns 0 if successful, or returns an error code (see
Appendix A, “CASA Error Codes,” on page 77).
Functions 71

72 Novell Com

novdocx (en) 6 April 2007
mon Authentication Services Adapter (CASA)

6
novdocx (en) 6 April 2007
6Structures

CASA uses the following structures:

“SSCS_BASIC_CREDENTIAL” on page 74
“SSCS_SECRET_ID_T” on page 75
Structures 73

74 Novell Com

novdocx (en) 6 April 2007
SSCS_BASIC_CREDENTIAL
Contains credential information.

Syntax
typedef struct sscs_basic_credential
{
 uint32_t unFlags;
 uint32_t unLen;
 SS_UTF8_T username;
 uint32_t pwordLen;
 SS_UTF8_T password;
} SSCS_BASIC_CREDENTIAL;

Fields
unFlags

Specifies the supported flags (see the header file). Currently, 0 is the only support flag.

unLen
Specifies the length of the structure.

username
Specifies the user name, with a maximum length of NSSCS_MAX_USERID_LEN.

pwordLen
Specifies the length of the password.

password
Specifies the password, with a maximum length of NSSCS_MAX_PWORD_LEN.
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
SSCS_SECRET_ID_T
Provides the credential information.

Syntax
typedef struct sscs_secret_id
{
 uint32_t len;
 SS_UTF8_T id;
} SSCS_SECRET_ID_T;

Fields
len

Specifies the length of the secretID.

id
UTF-8 string representing either the secret or the credential.
Structures 75

76 Novell Com

novdocx (en) 6 April 2007
mon Authentication Services Adapter (CASA)

A
novdocx (en) 6 April 2007
ACASA Error Codes

Dec
Value

Hexadecimal
Value Name Error Text

0 0x00000000 NSSCS_SUCCESS The requested function completed
successfully.

-800 0xFFFFFCE0 NSSCS_E_OBJECT_NOT_FOUND Can't find the target object DN in
eDirectory. (Resolve name failed.)

-801 0xFFFFFCDF NSSCS_E_NICI_FAILURE The NICI encryption operations
have failed.

-802 0xFFFFFCDE NSSCS_E_INVALID_SECRET_ID The secret ID is not in the user
SecretStore.

-803 0xFFFFFCDD NSSCS_E_SYSTEM_FAILURE Some internal operating system
services have not been available.

-804 0xFFFFFCDC NSSCS_E_ACCESS_DENIED Access to the target SecretStore
has been denied.

-805 0xFFFFFCDB NSSCS_E_NDS_INTERNAL_FAILURE Some internal eDirectory services
are not available.

-806 0xFFFFFCDA NSSCS_E_SECRET_UNINITIALIZED A secret has not been initialized
with a write.

-807 0xFFFFFCD9 NSSCS_E_BUFFER_LEN The size of the buffer is not in a
nominal range between minimum
and maximum values.

-808 0xFFFFFCD7 NSSCS_E_CORRUPTED_STORE Versions of the client and server
components are not compatible.

-809 0xFFFFFCD7 NSSCS_E_CORRUPTED_STORE SecretStore data on the server has
been corrupted.

-810 0xFFFFFCD6 NSSCS_E_SECRET_ID_EXISTS The secret ID already exists in the
SecretStore.

-811 0xFFFFFCD5 NSSCS_E_NDS_PWORD_CHANGED The user’s eDirectory password
has been changed by the
administrator.

-812 0xFFFFFCD4 NSSCS_E_INVALID_TARGET_OBJECT The target eDirectory user object is
not found.

-813 0xFFFFFCD3 NSSCS_E_STORE_NOT_FOUND The target eDirectory user object
does not have a SecretStore.

-814 0xFFFFFCD2 NSSCS_E_SERVICE_NOT_FOUND The SecretStore is not on the
Network.

-815 0xFFFFFCD1 NSSCS_E_SECRET_ID_TOO_LONG The length of the secret ID buffer
exceeds the limit.
CASA Error Codes 77

78 Novell Com

novdocx (en) 6 April 2007
-816 0xFFFFFCD0 NSSCS_E_ENUM_BUFF_TOO_SHORT The length of the enumeration
buffer too short.

-817 0xFFFFFCCF NSSCS_E_NOT_AUTHENTICATED The user is not authenticated.

-818 0xFFFFFCCE NSSCS_E_NOT_SUPPORTED The operation is not supported.

-819 0xFFFFFCCD NSSCS_E_NDS_PWORD_INVALID The eDirectory password entered
is not valid.

-820 0xFFFFFCCC NSSCS_E_NICI_OUTOF_SYNC The session keys of the client and
server NICI are out of sync.

-821 0xFFFFFCCB NSSCS_E_SERVICE_NOT_SUPPORTED The requested service is not yet
supported.

-822 0xFFFFFCCA NSSCS_E_TOKEN_NOT_SUPPORTED The eDirectory authentication type
is not supported.

-823 0xFFFFFCC9 NSSCS_E_UNICODE_OP_FAILURE The Unicode text conversion
operation failed.

-824 0xFFFFFCC8 NSSCS_E_TRANSPORT_FAILURE The server connection is lost.

-825 0xFFFFFCC7 NSSCS_E_CRYPTO_OP_FAILURE The cryptographic operation failed.

-826 0xFFFFFCC6 NSSCS_E_SERVER_CONN_FAILURE Opening a connection to the server
failed.

-827 0xFFFFFCC5 NSSCS_E_CONN_ACCESS_FAILURE Access to a server connection
failed.

-828 0xFFFFFCC4 NSSCS_E_ENUM_BUFF_TOO_LONG The size of the enumeration buffer
exceeds the limit.

-829 0xFFFFFCC3 NSSCS_E_SECRET_BUFF_TOO_LONG The size of the secret buffer
exceeds the limit.

-830 0xFFFFFCC2 NSSCS_E_SECRET_ID_TOO_SHORT The length of the Secret ID should
be greater than zero.

-831 0xFFFFFCC1 NSSCS_E_CORRUPTED_PACKET_DATA The protocol data was corrupted
on the wire.

-832 0xFFFFFCC0 NSSCS_E_EP_ACCESS_DENIED The EP password validation failed,
so access to the secret was
denied.

-833 0xFFFFFCBF NSSCS_E_SCHEMA_NOT_EXTENDED The schema is not extended to
support SecreStore on the target
tree.

-834 0xFFFFFCBE NSSCS_E_ATTR_NOT_FOUND One of the optional service
attributes is not instantiated.

-835 0xFFFFFCBD NSSCS_E_MIGRATION_NEEDED The server has been upgraded, so
the user SecretStore should be
updated.

Dec
Value

Hexadecimal
Value Name Error Text
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
-836 0xFFFFFCBC NSSCS_E_MP_PWORD_INVALID The master password could not be
verified to read or unlock the
secrets.

-837 0xFFFFFCBB NSSCS_E_MP_PWORD_NOT_SET The master password has not
been set on the SecretStore.

-838 0xFFFFFCBA NSSCS_E_MP_PWORD_NOT_ALLOWED The ability to use a master
password has been disabled.

-839 NSSCS_E_WRONG_REPLICA_TYPE There’s no writable replica of
eDirectory.

-840 0xFFFFFCB9 NSSCS_E_ATTR_VAL_NOT_FOUND
0xFFFFFCB8

The target attribute is not
instantiated in eDirectory.

-841 0xFFFFFCB7 NSSCS_E_INVALID_PARAM The API parameter is not
initialized.

-842 0xFFFFFCB6 NSSCS_E_NEED_SECURE_CHANNEL The connection to the SecretStore
needs to be over SSL.

-843 0xFFFFFCB5 NSSCS_E_CONFIG_NOT_SUPPORTED No server to support the given
override configuration is found.

-844 0xFFFFFCB4 NSSCS_E_STORE_NOT_LOCKED The attempt to unlock SecretStore
failed because the store is not
locked.

-845 0xFFFFFCB3 NSSCS_E_TIME_OUT_OF_SYNC The eDirectory replica on the
server that holds SecretStore is out
of sync with the replica ring.

-846 0xFFFFFCB2 NSSCS_E_VERSION_MISMATCH The versions of the client DLLs
don't match.

-847 0xFFFFFCB1 NSSCS_E_SECRET_BUFF_TOO_SHORT The buffer supplied for the secret
is too short (minimum
NSSCS_MIN_IDLIST_BUF_LEN).

-848 0xFFFFFCB0 NSSCS_E_SH_SECRET_FAILURE The shared secret’s processing
and operations failed.

-849 0xFFFFFCAF NSSCS_E_PARSER_FAILURE The shared secret’s parser
operations failed.

-850 0xFFFFFCAE NSSCS_E_UTF8_OP_FAILURE The Utf8 string operations failed.

-851 0xFFFFFCAD NSSCS_E_CTX_LESS_CN_NOT_UNIQUE The contextless name for LDAP
bind does not resolve to a unique
DN.

-852 0xFFFFFCAC NSSCS_E_UNSUPPORTED_BIND_CRED The login credential for advanced
bind is not supported.

-853 0xFFFFFCAB NSSCS_E_CERTIFICATE_NOT_FOUND The LDAP root certificate required
for bind operations was not found.

-855 0xFFFFFCA9 NSSCS_E_WRONG_SH_SEC_TYPE The shared secret tag is
unrecognized or unknown.

Dec
Value

Hexadecimal
Value Name Error Text
CASA Error Codes 79

80 Novell Com

novdocx (en) 6 April 2007
-888 0xFFFFFC88 NSSCS_E_NOT_IMPLEMENTED The feature is not implemented
yet.

-899 0xFFFFFC7D NSSCS_E_BETA_EXPIRED The product's beta life has expired.
Purchase an official release copy.

Dec
Value

Hexadecimal
Value Name Error Text
mon Authentication Services Adapter (CASA)

B
novdocx (en) 6 April 2007
BCASA Security Guidelines

All CASA users should review the Security Best Practices Guide before reading this document.

This section contains an overview of the security guidelines that developers, administrators, and
users should consider when developing, deploying, and using CASA:

Section B.1, “CASA Security Administration,” on page 81
Section B.2, “CASA User Security,” on page 82
Section B.3, “Security Considerations for CASA Developers,” on page 83

B.1 CASA Security Administration
The CASA Credential Store (miCASA), a subcomponent of the CASA application appended to the
operating system, securely stores user credentials.

CASA is designed to decrypt and load persistent secrets into memory only after the user has
supplied the desktop password or the master password to authenticate and start the service. At least
one of these passwords is required to decrypt the persistent files before the secrets are cached in
memory for the logged-in user. Once set, the master password is used to recover persistent secrets
stored by CASA when the desktop password has changed or is forgotten by the user.

Because all user credential management is performed through programming interfaces by the
CASAManager utility, the miCASA service typically does not require any specific administrator
input.

However, if a user’s credentials become corrupted or, in a worst-case scenario, a user forgets both
the desktop and master passwords the system administrator can use the following procedure to reset
CASA:

1 Locate the user's hidden .miCASA* credential files.

These files are located either in the user’s home directory or, if the user's home directory is
encrypted, CASA by default uses /home/.casa/userid. If the user has chosen to store
these files on a mobile device, such as a USB drive, the administator must contact the user to
have those files deleted from that device.

2 Delete all .miCASA* files.
This causes the CASA service to restart with new files, which prompts the user to set a new
master password.

IMPORTANT: All existing user secrets will be lost and recovery from backup is not possible.

3 Users must create a new master password.

For more detailed information, see Section 4.4, “Resetting the CASA Master Password,” on
page 51. For more information about setting up or managing CASA, Chapter 4, “CASA Manager
Administration,” on page 25.
CASA Security Guidelines 81

82 Novell Com

novdocx (en) 6 April 2007
B.2 CASA User Security
This section provides some of the practices that should be considered to increase user security when
deploying and using CASA. All users should read the Security Best Practices Guide before using
CASA:

Store credentials securely: If the security policies of your user environment allow, consider
changing the default location of the CASA persistent files (where user’s secrets are stored) to a
removable device, such as a USB drive. This is done using CASAManager
(CASAManager.exe.) Then, to ensure that the CASA service finds the files it needs, plug in
the USB drive before logging in. This practice ensures that persistent files and user secrets are
not left on the workstation.
Always use secure passwords: Password should always contain eight or more characters,
including uppercase and lowercase letters, numbers, special characters, etc.) For more
information, refer to the Security Best Practices Guide.
Link secrets carefully: Although CASA allows you to conveniently link secrets, this is not
necessarily a best security practice.
Linking secrets essentially enables you to use the same password for multiple services.
However, if one application is compromised, then all of the applications using that password
are compromised and the security of every application sharing a linked password is reduced to
the lowest common denominator that is the weakest security in the application chain.
This means an attacker needs to target only the application with the weakest security to break it
and obtain access to all of the other applications using the same credential. After the attacker
succeeds accessing one application, all of the applications in the chain are compromised.
Lock the CASA store when an enabled computer is unattended: For more information,
refer to the Security Best Practices Guide.
Log out of the desktop session when the session is over or when leaving the machine for an
extended time. For more information, refer to Security Best Practices Guide.
Back up secrets often and encrypt them in the process: Always secure copies of the
persistent files in a safe place.
Enhance Firefox browser protection: In Firefox, set the master password for additional
protection when using the Firefox tab in CASAManager to manage secrets in the Firefox store.
Disable Remember Passwords in Firefox To prevent storing secrets in multiple locations
when using the Firefox plug-in for CASA, disable the Firefox Remember Passwords feature
and clear the current passwords stored in the Firefox cache. For security, passwords should be
in one secure location.
Use Pluggable Authentication Modules (PAM) to capture login credentials on Linux:
Configuring CASA in YaST causes services such as ssh, gdm (Gnome Display Manager), kdm
(KDE Display Manager), and login authentication to insert CASA into their authentication
stacks. As a result, credentials are captured and stored in CASA when using these services.
Create different passwords for the Gnome Keyring and the Desktop: For user
convenience, the Gnome Keyring automatically stores its master password in CASA upon
login to a Gnome session, and uses this password upon subsequent logins to unlock itself
without requiring user interaction.
If the Gnome Keyring master password is not been set before CASA is enabled, the Gnome
Keyring will use the desktop password as its master password. To enhance security, it is
mon Authentication Services Adapter (CASA)

novdocx (en) 6 April 2007
recommended that the user set the Gnome Keyring master password to something other than
the desktop password before enabling CASA.
Do not install the CASA SDK until reading Section B.3, “Security Considerations for
CASA Developers,” on page 83.

B.3 Security Considerations for CASA
Developers
The CASA SDK should be installed only if necessary when developing and installing new CASA
applications. In addition to demonstrating and testing new applications, the CASA SDK sample
code binaries allow developers to review the secrets stored in the user’s persistent store without the
necessary security safeguards required in a production environment (such as requiring users to enter
the master password to view the values of the secrets in clear text within CASAManager).

Under development conditions, the master password is used only under certain conditions:

During authentication at the beginning of the session

or

When the CASAManager is accessed initially during the process of decrypting the data stored in the
files and loading it into memory for the duration of the session.

After this stage, CASAManager controls access by requiring a pseudo authentication to allow
access. However, the demonstration code in the SDK still functions without safeguards after the
initial authentication.
CASA Security Guidelines 83

84 Novell Com

novdocx (en) 6 April 2007
mon Authentication Services Adapter (CASA)

Revision History

C
novdocx (en) 6 April 2007

85

CRevision History

This section outlines all the changes that have been made to the Common Authentication Service
Adapter (CASA) documentation (in reverse chronological order).

September 28, 2007 Refreshed documentation for delivery of Novell Open Enterprise Server 2.

May 15, 2007 Updated CASA documentation and deliverables from version 1.6 to 1.7.

Added Appendix B, “CASA Security Guidelines,” on page 81.

Update CASA Help files to coincide with version 1.7.

October 11, 2006 Documented the following miCASA functions:

miCASAOpenSecretStoreCache (page 58)

miCASAReadBinaryKey (page 59)

miCASAReadKey (page 61)

miCASARemoveKey (page 64)

miCASAWriteBinaryKey (page 68)

miCASAWriteKey (page 70)

May 22, 2006 Updated CASA documentation and deliverables from version 1.5 to 1.6.

November 18, 2005 Updated CASA documentation and deliverables from version 1.0 to 1.5.

Documented new CASA Manager functionality in Chapter 4, “CASA Manager
Administration,” on page 25.

October 5, 2005 Transitioned to revised Novell® documentation standards.

June 15, 2005 Revised documentation to coincide with Version 1.0 software updates.

June 3, 2005 Posted as beta documentation.

	Novell Common Authentication Services Adapter (CASA)
	About This Guide
	1 Getting Started
	1.1 Credentials
	1.2 Sharing Credentials

	2 CASA on Linux
	2.1 Linux Components
	2.1.1 CASA Identity Development Kit
	2.1.2 miCASA
	2.1.3 Login Credential Capture Module
	2.1.4 CASA Linux Packages
	2.1.5 Linux Directories and Files

	2.2 Using CASA with Linux
	2.2.1 Linux Command Line Installation
	2.2.2 Starting, Stopping, and Restarting CASA on Linux
	2.2.3 Starting CASA Manager
	2.2.4 Linux Uninstallation
	2.2.5 Linux YaST Installation
	2.2.6 Accessing CASA Manager: Linux
	2.2.7 Avoiding Conflicting Service Realms

	3 CASA on Windows
	3.1 Windows Components
	3.1.1 Windows Directories and Files

	3.2 Using CASA with Windows
	3.2.1 Installing CASA on Windows
	3.2.2 Starting CASA on Windows
	3.2.3 Accessing CASA Manager
	3.2.4 Uninstalling CASA on Windows

	4 CASA Manager Administration
	4.1 CASA Manager GUI Components
	4.1.1 Credential Store Tab
	4.1.2 Secret-ID Window
	4.1.3 Native Information Window

	4.2 Editing CASA Manager Options
	4.2.1 Assigning Single Sign-on Preferences
	4.2.2 Setting Persistent Storage
	4.2.3 Changing Your Master Password
	4.2.4 Setting CASA Preferences
	4.2.5 Creating Secret Policies

	4.3 CASA Manager Functionality
	4.3.1 Creating Secrets
	4.3.2 Refreshing Credential Stores
	4.3.3 Locking and Unlocking Secrets
	4.3.4 Destroying Secrets
	4.3.5 Exporting User Secrets
	4.3.6 Importing User Secrets
	4.3.7 Viewing Secret Values
	4.3.8 Linking Secrets
	4.3.9 Copying Secrets
	4.3.10 Finding and Replacing Secrets
	4.3.11 Editing Secrets
	4.3.12 Deleting Secrets

	4.4 Resetting the CASA Master Password

	5 Functions
	miCASAGetCredentialAllows an application to get a credential.
	miCASAOpenSecretStoreCacheAllows an application to open a SecretStore cache.
	miCASAReadBinaryKeyAllows an application to read a key for a secret that contains binary data.
	miCASAReadKeyAllows an application to read a key or a secret containing character data.
	miCASARemoveCredentialAllows an application to remove a credential.
	miCASARemoveKeyAllows an application to remove a key from a secret stored in the cache.
	miCASASetCredentialAllows an application to set a credential.
	miCASAWriteBinaryKeyAllows an application to write a binary key.
	miCASAWriteKeyAllows an application to write a key.

	6 Structures
	SSCS_BASIC_CREDENTIALContains credential information.
	SSCS_SECRET_ID_TProvides the credential information.

	A CASA Error Codes
	B CASA Security Guidelines
	B.1 CASA Security Administration
	B.2 CASA User Security
	B.3 Security Considerations for CASA Developers

	C Revision History

