Voltage and current regulator
API

Liam Girdwood

Irg@slimlogic.co.uk

Mark Brown
Wolfson Microelectronics

broonie@opensource.wolfsonmicro.com

Voltage and current regulator API
by Liam Girdwood and Mark Brown

Copyright © 2007-2008 Wolfson Microelectronics
Copyright © 2008 Liam Girdwood

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

1. Introduction . N |
) B € 5 (oYY 1 o OSSR 1
GLOSSATY .ttt ettt et e st e et e st e et e e sbeeennteesaseeenee 1

2. Consumer driver interface 3
2.1. Enabling and disabling...........c.ccccoviiiiiiiiiiiiniiiicceeeeee e 3

2.2, CONFAGUIALION ..eouviiiiiieeiieeeiteeeieeeeteeeiee et e etee et e ebeeestseesnbeeesaseesnsaeenaseens 3

2.3, CallbACKSuviieeiiiiee et e e e e e e e etraeeens 3

3. Regulator driver interface 5
4. Machine interface. . . “ . . J
O N 1 10] o) TSRS 7

4.2, CONSITAINLSvveieeeiiiieeeeiireeeeeiteeeeeaeeeesereeeessseeesssseeeessseeessssseeessssseesenssseens 7

5. API reference 9
struct regulator_bulk_data...........coooouviiiiiiiiiiii e 9
SEIUCE TEZUIALOT_SEALE ...eevevieeeiieeiiieeiiee ettt ettt s e st e e e e sabeeeaes 10
struct regulation_CONSIIAINTScevverveerieerienieeie e 11
struct regulator_consumer_SUPPLYccoceeerieiriiiiniieiiieerieeeeesee e 13
struct regulator_INIt_datacc.eeeeeiiieeiiiiiee e 14
SETUCE TEZUIALOT_OPS .uvveeniiieeiieeriiieeiteesite et e et e stee st e e sabeesbeeesebeeeaeeesaseeenanes 15
SEIUCE TEZUIALOT_AESC ..veniiieeiiiieiiie ettt 18
TEZUIALOT_ZEL ...eiiiiiiiiiiie ettt s 19
1e@UIALOT_ZEL_EXCIUSIVE .eeivuiiiieieiiiieeeiiee ettt e e 20
TEEULALOT_PUL ...eiiiiiieeiee et et et e st e e st e etaeesebeeenes 21
TEZUIALOT_ENADIE......oiiiiiiiiii it 22
regUlAtOr_diSAbIE......coouiiiiiiiii e 23
regulator_force_diSable..........oiiviiiiiiiiiiiiie e 24
regulator_iS_enabledcccooiieiiiiiiiiie e 25
1egUlator_COUNE_VOILAZESoovuiieiiiiiiiie ettt 26
regulator_liSt_VOItAZE.....cccuuiiiiiiiiiiiiie e 27
TEZUIALOT_SEt_VOILAZE .. .veeeeniiiieeeiiiie ettt ettt e e e e 28
1eZUIALOT_ZEt_VOILAZE....eiiiiieiiieeiie ettt s 29
regulator_set_current_IImit.........c.coorveeriiiiiiieeniieeiee et 30
regulator_get_current_ Itccooiieiiiiiiiiieiieeieeeeeee e 31
regulator_SEt_MOAE.......cooiiiiiiiiiiiiiieeetee et 32
1e@UIAtOT_ZEt_MNOAE ...eeiieiiiieiie e e 33
regulator_set_optimum_mOdeceeoeirriieriiiiniieeiieeriee e 34
regulator_reg@iSter_NOLHICT........cooiuiiiiiiiiiii e 35
regulator_unregiSter_NOtIET.......c.eeiiiiiiiiiiiieeiiieee e 36
1e@UIAtOr_DUIK G ..coiiiiiiiiiiiii e 37
regulator_bulk_enable............cooviiiiiiiii e 38
regulator_bulk_disable..........ccooiiiiiiiiiiii e 39

i

v

1e@UIAtOT_DUIK_fTE€ ...c.eiiiiiiieiiece e 40

regulator_notifier_call_chaincccooiiiiiiiiiiiiiieeee e 41
regulator_mode_tO_STAtUSccecuiiiiiieriiiiiniee ettt 42
TEEULALOT_TEEISTET ...eeiueieeiiiieeiiee ettt ettt e s e s e 43
TEEULALOT_UNTEZISIET ...uvveeeiiieeiiieeiieeeieeeieeeeteeeee et e et e e sreesaeeesbeeenaeesnseeenes 44
regulator_SUSPENd_PIEPATEccceeeruvieriiieeniieeiieeeiteeeieeesieesieeesbeesiaeesree e 44
regulator_has_full _CONStraints...........ccovueeieeiienieniienieeeceee e 45
rdeV_get_drvdata.........c.cooiuiiiiiiiiiiiee e 46
regulator_get_drvdataccueeiiiiiieieiiee e 47
regulator_set_drvdata.........cooeeeiiiiiiie e 48
TAEV_ZEE_IA .eeiiniiiiiiie ettt st e 49

Chapter 1. Introduction

This framework is designed to provide a standard kernel interface to control voltage
and current regulators.

The intention is to allow systems to dynamically control regulator power output in
order to save power and prolong battery life. This applies to both voltage regulators
(where voltage output is controllable) and current sinks (where current limit is
controllable).

Note that additional (and currently more complete) documentation is available in
the Linux kernel source under Documentation/power/regulator.

1.1. Glossary

The regulator API uses a number of terms which may not be familiar:

Glossary

Regulator

Electronic device that supplies power to other devices. Most regulators can
enable and disable their output and some can also control their output voltage
or current.

Consumer

Electronic device which consumes power provided by a regulator. These may
either be static, requiring only a fixed supply, or dynamic, requiring active
management of the regulator at runtime.

Power Domain

The electronic circuit supplied by a given regulator, including the regulator and
all consumer devices. The configuration of the regulator is shared between all
the components in the circuit.

Power Management Integrated Circuit

An IC which contains numerous regulators and often also other subsystems. In
an embedded system the primary PMIC is often equivalent to a combination of
the PSU and southbridge in a desktop system.

Chapter 2. Consumer driver interface

This offers a similar API to the kernel clock framework. Consumer drivers use get
and put operations to acquire and release regulators. Functions are provided to
enable and disable the reguator and to get and set the runtime parameters of the
regulator.

When requesting regulators consumers use symbolic names for their supplies, such
as "Vcc", which are mapped into actual regulator devices by the machine interface.

A stub version of this API is provided when the regulator framework is not in use in
order to minimise the need to use ifdefs.

2.1. Enabling and disabling

The regulator API provides reference counted enabling and disabling of regulators.
Consumer devices use the requlator_enable and regulator_disable
functions to enable and disable regulators. Calls to the two functions must be
balanced.

Note that since multiple consumers may be using a regulator and machine
constraints may not allow the regulator to be disabled there is no guarantee that
calling regulator_disable will actually cause the supply provided by the
regulator to be disabled. Consumer drivers should assume that the regulator may be
enabled at all times.

2.2. Configuration

Some consumer devices may need to be able to dynamically configure their
supplies. For example, MMC drivers may need to select the correct operating
voltage for their cards. This may be done while the regulator is enabled or disabled.

The regulator_set_voltage and regulator_set_current_limit
functions provide the primary interface for this. Both take ranges of voltages and
currents, supporting drivers that do not require a specific value (eg, CPU frequency
scaling normally permits the CPU to use a wider range of supply voltages at lower
frequencies but does not require that the supply voltage be lowered). Where an
exact value is required both minimum and maximum values should be identical.

Chapter 2. Consumer driver interface

2.3. Callbacks

Callbacks may also be registered for events such as regulation failures.

Chapter 3. Regulator driver interface

Drivers for regulator chips register the regulators with the regulator core, providing
operations structures to the core. A notifier interface allows error conditions to be
reported to the core.

Registration should be triggered by explicit setup done by the platform, supplying a
struct regulator_init_data for the regulator containing constraint and supply
information.

Chapter 3. Regulator driver interface

Chapter 4. Machine interface

This interface provides a way to define how regulators are connected to consumers
on a given system and what the valid operating parameters are for the system.

4.1. Supplies

Regulator supplies are specified using struct regulator_consumer_supply. This is
done at driver registration time as part of the machine constraints.

4.2. Constraints

As well as definining the connections the machine interface also provides
constraints definining the operations that clients are allowed to perform and the
parameters that may be set. This is required since generally regulator devices will
offer more flexibility than it is safe to use on a given system, for example supporting
higher supply voltages than the consumers are rated for.

This is done at driver registration time by providing a struct regulation_constraints.

The constraints may also specify an initial configuration for the regulator in the
constraints, which is particularly useful for use with static consumers.

Chapter 4. Machine interface

Chapter 5. API reference

Due to limitations of the kernel documentation framework and the existing layout of
the source code the entire regulator API is documented here.

struct regulator_bulk data

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulator_bulk_data — Data used for bulk regulator operations.

Synopsis

struct regulator_bulk_data {
const char x supply;
struct regulator x consumer;

}i

Members

supply
The name of the supply. Initialised by the user before using the bulk regulator
APIs.

consumer

The regulator consumer for the supply. This will be managed by the bulk API.

Description

The regulator APIs provide a series of regulator_bulk_ API calls as a
convenience to consumers which require multiple supplies. This structure is used to
manage data for these calls.

Chapter 5. API reference

struct regulator_state

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulator_state — regulator state during low power system states

Synopsis

struct regulator_state {
int uv;
unsigned int mode;
int enabled;
int disabled;

}i

Members

uVv

Operating voltage during suspend.

mode

Operating mode during suspend.

enabled
Enabled during suspend.

disabled
Disabled during suspend.

10

Description

Chapter 5. API reference

This describes a regulators state during a system wide low power state. One of
enabled or disabled must be set for the configuration to be applied.

struct regulation_constraints

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulation_constraints — regulator operating constraints.

Synopsis

struct regulation_constraints {

}i

char * name;

int
int
int
int

min_uV;
max_uV;
min_uA;
max_uh;

unsigned int wvalid_modes_mask;

unsigned int valid_ops_mask;

int

input_uV;

struct regulator_state state_disk;

struct regulator_state state_mem;

struct regulator_state state_standby;

suspend_state_t initial_state;

unsigned int initial_mode;

unsigned always_on:1;

unsigned boot_on:1;

unsigned apply_uV:1;

11

Chapter 5. API reference

12

Members

name

Descriptive name for the constraints, used for display purposes.

min_uV

Smallest voltage consumers may set.

max_uV

Largest voltage consumers may set.
min_uA

Smallest consumers consumers may set.

max_uA

Largest current consumers may set.

valid_modes_mask

Mask of modes which may be configured by consumers.

valid_ops_mask
Operations which may be performed by consumers.
input_uV
Input voltage for regulator when supplied by another regulator.

state_disk

State for regulator when system is suspended in disk mode.

state_mem

State for regulator when system is suspended in mem mode.

state_standby

State for regulator when system is suspended in standby mode.

initial_state
Suspend state to set by default.
initial_mode

Mode to set at startup.

Chapter 5. API reference
always_on

Set if the regulator should never be disabled.

boot_on

Set if the regulator is enabled when the system is initially started. If the
regulator is not enabled by the hardware or bootloader then it will be enabled
when the constraints are applied.

apply_uV

Apply the voltage constraint when initialising.

Description

This struct describes regulator and board/machine specific constraints.

struct regulator_consumer_supply

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulator_consumer_supply — supply -> device mapping

Synopsis

struct regulator_consumer_supply {
struct device * dev;
const char % dev_name;
const char x supply;

}i

13

Chapter 5. API reference
Members

dev

Device structure for the consumer.

dev_name

Result of dev_name for the consumer.

supply
Name for the supply.

Description

This maps a supply name to a device. Only one of dev or dev_name can be
specified. Use of dev_name allows support for buses which make struct device
available late such as I2C and is the preferred form.

struct regulator_init_data

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulator_init_data — regulator platform initialisation data.

Synopsis

struct regulator_init_data {
struct device x supply_regulator_dev;
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply x consumer_supplies;
int (% regulator_init) (void *driver_data);
void x driver_data;

14

Chapter 5. API reference

}i

Members

supply_regulator_dev

Parent regulator (if any).

constraints

Constraints. These must be specified for the regulator to be usable.

num_consumer_supplies

Number of consumer device supplies.

consumer_supplies

Consumer device supply configuration.

regulator_init

Callback invoked when the regulator has been registered.

driver_data

Data passed to regulator_init.

Description

Initialisation constraints, our supply and consumers supplies.

struct regulator_ops

LINUX

15

Chapter 5. API reference
Kernel Hackers ManualJuly 2010

Name

struct regulator_ops — regulator operations.

Synopsis
struct regulator_ops {
int (% list_voltage) (struct regulator_dev x, unsigned selector);
int (% set_voltage) (struct regulator_dev *, int min_uV, int max_uV);
int (x get_voltage) (struct regulator_dev x);
int (% set_current_limit) (struct regulator_dev *,int min_uA, int max_ui
int (% get_current_limit) (struct regulator_dev x);
int (% enable) (struct regulator_dev x);
int (% disable) (struct regulator_dev *);
int (% is_enabled) (struct regulator_dev x);
int (% set_mode) (struct regulator_dev %, unsigned int mode);
unsigned int (x get_mode) (struct regulator_dev x);
int (% enable_time) (struct regulator_dev x);
int (% get_status) (struct regulator_dev x);
unsigned int (* get_optimum _mode) (struct regulator_dev x, int input_uV,
int (% set_suspend_voltage) (struct regulator_dev %, int uV);
int (% set_suspend_enable) (struct regulator_dev x);
int (% set_suspend_disable) (struct regulator_dev x);
int (* set_suspend_mode) (struct regulator_dev %, unsigned int mode);
}i
Members

list_voltage

Return one of the supported voltages, in microvolts; zero if the selector
indicates a voltage that is unusable on this system; or negative errno. Selectors
range from zero to one less than regulator_desc.n_voltages. Voltages may be
reported in any order.

set_voltage

Set the voltage for the regulator within the range specified. The driver should
select the voltage closest to min_uV.

16

Chapter 5. API reference
get_voltage

Return the currently configured voltage for the regulator.

set_current_limit

Configure a limit for a current-limited regulator.

get_current_limit

Get the configured limit for a current-limited regulator.

enable

Configure the regulator as enabled.

disable

Configure the regulator as disabled.

is_enabled

Return 1 if the regulator is enabled, O if not. May also return negative errno.

set_mode

Set the configured operating mode for the regulator.

get_mode

Get the configured operating mode for the regulator.

enable_time
Time taken for the regulator voltage output voltage to stabalise after being
enabled, in microseconds.

get_status
Return actual (not as-configured) status of regulator, as a
REGULATOR_STATUS value (or negative errno)

get_optimum_mode
Get the most efficient operating mode for the regulator when running with the
specified parameters.

set_suspend_voltage

Set the voltage for the regulator when the system is suspended.

set_suspend_enable

Mark the regulator as enabled when the system is suspended.

17

Chapter 5. API reference
set_suspend_disable

Mark the regulator as disabled when the system is suspended.

set_suspend_mode

Set the operating mode for the regulator when the system is suspended.

Description

This struct describes regulator operations which can be implemented by regulator
chip drivers.

struct regulator_desc

LINUX
Kernel Hackers ManualJuly 2010

Name

struct regulator_desc — Regulator descriptor

Synopsis

struct regulator_desc {
const char * name;
int id;
unsigned n_voltages;
struct regulator_ops * ops;
int irg;
enum regulator_type type;
struct module *x owner;

}i

18

Chapter 5. API reference
Members

name

Identifying name for the regulator.
id
Numerical identifier for the regulator.

n_voltages

Number of selectors available for ops.1ist_voltage.

ops

Regulator operations table.

irq

Interrupt number for the regulator.

type

Indicates if the regulator is a voltage or current regulator.

owner

Module providing the regulator, used for refcounting.

Description

Each regulator registered with the core is described with a structure of this type.

regulator_get

LINUX

Kernel Hackers ManualJuly 2010

Name

regulator_get — lookup and obtain a reference to a regulator.

19

Chapter 5. API reference

Synopsis

struct regulator x regulator_get (struct device x dev, const
char * 1id);

Arguments

dev

b

device for regulator “consumer’

id

Supply name or regulator ID.

Description

Returns a struct regulator corresponding to the regulator producer, or IS_ERR
condition containing errno.

Use of supply names configured via requlator_set_device_supply is strongly
encouraged. It is recommended that the supply name used should match the name
used for the supply and/or the relevant device pins in the datasheet.

regulator_get_exclusive

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_get_exclusive — obtain exclusive access to a regulator.

20

Chapter 5. API reference

Synopsis

struct regulator x regulator_ get_exclusive (struct device «*
dev, const char * id);

Arguments

dev
device for regulator “consumer”
id

Supply name or regulator ID.

Description

Returns a struct regulator corresponding to the regulator producer, or IS_ERR
condition containing errno. Other consumers will be unable to obtain this reference
is held and the use count for the regulator will be initialised to reflect the current
state of the regulator.

This is intended for use by consumers which cannot tolerate shared use of the
regulator such as those which need to force the regulator off for correct operation of
the hardware they are controlling.

Use of supply names configured via requlator_set_device_supply is strongly
encouraged. It is recommended that the supply name used should match the name
used for the supply and/or the relevant device pins in the datasheet.

regulator_put

LINUX

21

Chapter 5. API reference
Kernel Hackers ManualJuly 2010

Name

regulator_put — "free" the regulator source

Synopsis

void regulator_put (struct regulator * regulator);

Arguments

regulator

regulator source

Note

drivers must ensure that all regulator_enable calls made on this regulator source are
balanced by regulator_disable calls prior to calling this function.

regulator_enable

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_enable — enable regulator output

22

Chapter 5. API reference

Synopsis

int regulator_enable (struct regulator x regulator);

Arguments

regulator

regulator source

Description

Request that the regulator be enabled with the regulator output at the predefined
voltage or current value. Calls to regulator_enable must be balanced with calls
to regulator_disable.

NOTE

the output value can be set by other drivers, boot loader or may be hardwired in the
regulator.

regulator_disable

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_disable — disable regulator output

23

Chapter 5. API reference

Synopsis

int regulator_disable (struct regulator * regulator);

Arguments

regulator

regulator source

Description

Disable the regulator output voltage or current. Calls to regulator_enable must
be balanced with calls to regulator_disable.

NOTE

this will only disable the regulator output if no other consumer devices have it
enabled, the regulator device supports disabling and machine constraints permit this
operation.

regulator_force_disable

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_force_disable — force disable regulator output

24

Chapter 5. API reference

Synopsis

int regulator_force_disable (struct regulator * regulator);

Arguments

regulator

regulator source

Description

Forcibly disable the regulator output voltage or current.

NOTE

this *will* disable the regulator output even if other consumer devices have it
enabled. This should be used for situations when device damage will likely occur if
the regulator is not disabled (e.g. over temp).

regulator _is_enabled

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_is_enabled — is the regulator output enabled

25

Chapter 5. API reference

Synopsis

int regulator_is_enabled (struct regulator x regulator);

Arguments

regulator

regulator source

Description

Returns positive if the regulator driver backing the source/client has requested that
the device be enabled, zero if it hasn’t, else a negative errno code.

Note that the device backing this regulator handle can have multiple users, so it
might be enabled even if requlator_enable was never called for this particular
source.

regulator_count_voltages

LINUX

Kernel Hackers ManualJuly 2010

26

Name

regulator_count_voltages —count regulator_list_voltage
selectors

Synopsis

int regulator_count_voltages (struct regulator * regulator);

Chapter 5. API reference

Arguments

regulator

regulator source

Description

Returns number of selectors, or negative errno. Selectors are numbered starting at
zero, and typically correspond to bitfields in hardware registers.

regulator_list_voltage

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_list_voltage — enumerate supported voltages

Synopsis

int regulator_list_voltage (struct regulator * regulator,
unsigned selector);

Arguments

regulator

regulator source

27

Chapter 5. API reference

selector

identify voltage to list

Context

can sleep

Description

Returns a voltage that can be passed to regulator_set_voltage(), zero if this
selector code can’t be used on this sytem, or a negative errno.

regulator_set_voltage

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_set_voltage — set regulator output voltage

Synopsis

int regulator_set_voltage (struct regulator x regulator, int
min uV, int max_uV);

Arguments

regulator

regulator source

28

Chapter 5. API reference
min_uV

Minimum required voltage in uV

max_uV

Maximum acceptable voltage in uV

Description

Sets a voltage regulator to the desired output voltage. This can be set during any
regulator state. [OW, regulator can be disabled or enabled.

If the regulator is enabled then the voltage will change to the new value
immediately otherwise if the regulator is disabled the regulator will output at the
new voltage when enabled.

NOTE

If the regulator is shared between several devices then the lowest request voltage
that meets the system constraints will be used. Regulator system constraints must be
set for this regulator before calling this function otherwise this call will fail.

regulator_get_voltage

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_get_voltage — get regulator output voltage
Synopsis

int regulator_get_voltage (struct regulator x regulator);

29

Chapter 5. API reference

Arguments

regulator

regulator source

Description

This returns the current regulator voltage in uV.

NOTE

If the regulator is disabled it will return the voltage value. This function should not
be used to determine regulator state.

regulator_set_current_limit

LINUX

Kernel Hackers ManualJuly 2010

30

Name

regulator_set_current_limit — set regulator output current limit

Synopsis

int regulator_set_current_limit (struct regulator * regulator,

int min_uA, int max ulA);

Chapter 5. API reference
Arguments

regulator

regulator source

min_ uA

Minimuum supported current in uA

max_uA

Maximum supported current in uA

Description

Sets current sink to the desired output current. This can be set during any regulator
state. IOW, regulator can be disabled or enabled.

If the regulator is enabled then the current will change to the new value immediately
otherwise if the regulator is disabled the regulator will output at the new current
when enabled.

NOTE

Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.

regulator_get current_limit

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_get_current_limit — getregulator output current

31

Chapter 5. API reference

Synopsis

int regulator_get_current_limit (struct regulator =
regulator);

Arguments

regulator

regulator source

Description

This returns the current supplied by the specified current sink in uA.

NOTE

If the regulator is disabled it will return the current value. This function should not
be used to determine regulator state.

regulator_set_mode

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_set_mode — set regulator operating mode

32

Chapter 5. API reference

Synopsis

int regulator_set_mode (struct regulator * regulator, unsigned
int mode) ;

Arguments

regulator

regulator source

mode

operating mode - one of the REGULATOR_MODE constants

Description

Set regulator operating mode to increase regulator efficiency or improve regulation
performance.

NOTE

Regulator system constraints must be set for this regulator before calling this
function otherwise this call will fail.

regulator_get _mode

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_get_mode — get regulator operating mode

33

Chapter 5. API reference

Synopsis

unsigned int regulator_get_mode (struct regulator =
regulator);

Arguments

regulator

regulator source

Description

Get the current regulator operating mode.

regulator_set_optimum_mode

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_set_optimum_mode — set regulator optimum operating mode
Synopsis

int regulator_set_optimum mode (struct regulator * regulator,
int uA _load);

34

Chapter 5. API reference
Arguments

regulator

regulator source

uA_ load

load current

Description

Notifies the regulator core of a new device load. This is then used by DRMS (if
enabled by constraints) to set the most efficient regulator operating mode for the
new regulator loading.

Consumer devices notify their supply regulator of the maximum power they will
require (can be taken from device datasheet in the power consumption tables) when
they change operational status and hence power state. Examples of operational state
changes that can affect power

consumption are

o Device is opened / closed. o Device 1/0 is about to begin or has just finished. o
Device is idling in between work.

This information is also exported via sysfs to userspace.

DRMS will sum the total requested load on the regulator and change to the most
efficient operating mode if platform constraints allow.

Returns the new regulator mode or error.

regulator_register_notifier

LINUX

35

Chapter 5. API reference
Kernel Hackers ManualJuly 2010

Name

regulator_register_ notifier — register regulator event notifier

Synopsis

int regulator_register notifier (struct regulator x regulator,
struct notifier_block * nb);

Arguments

regulator

regulator source

nb

notifier block

Description

Register notifier block to receive regulator events.

regulator_unregister_notifier

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_unregister_notifier — unregister regulator event notifier

36

Chapter 5. API reference

Synopsis

int regulator_unregister_notifier (struct regulator =
regulator, struct notifier_block * nb);

Arguments

regulator

regulator source

nb

notifier block

Description

Unregister regulator event notifier block.

regulator bulk get

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_bulk_get — get multiple regulator consumers
Synopsis

int regulator_bulk_get (struct device x dev, int
num_consumers, struct regulator_bulk_data x consumers);

37

Chapter 5. API reference

Arguments

dev

Device to supply

num_consumers

Number of consumers to register

consumers

Configuration of consumers; clients are stored here.

Description

return 0 on success, an errno on failure.

This helper function allows drivers to get several regulator consumers in one
operation. If any of the regulators cannot be acquired then any regulators that were
allocated will be freed before returning to the caller.

regulator_bulk_enable

LINUX

Kernel Hackers ManualJuly 2010

38

Name

regulator_bulk_enable — enable multiple regulator consumers

Synopsis

int regulator_bulk_enable (int num_consumers, struct
regulator_bulk_data x consumers);

Chapter 5. API reference

Arguments

num _consumers

Number of consumers

consumers

Consumer data; clients are stored here. return 0 on success, an errno on
failure

Description

This convenience API allows consumers to enable multiple regulator clients in a
single API call. If any consumers cannot be enabled then any others that were
enabled will be disabled again prior to return.

regulator_bulk_disable

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_bulk_disable — disable multiple regulator consumers

Synopsis

int regulator_bulk_disable (int num_consumers, struct
regulator_bulk_data * consumers);

39

Chapter 5. API reference

Arguments

num_consumers

Number of consumers

consumers

Consumer data; clients are stored here. return 0 on success, an errno on
failure

Description

This convenience API allows consumers to disable multiple regulator clients in a
single API call. If any consumers cannot be enabled then any others that were
disabled will be disabled again prior to return.

regulator _bulk_ free

LINUX

Kernel Hackers ManualJuly 2010

40

Name

regulator_bulk_free — free multiple regulator consumers

Synopsis

void regulator_bulk free (int num consumers, struct
regulator_bulk_data * consumers);

Chapter 5. API reference

Arguments

num_consumers

Number of consumers

consumers

Consumer data; clients are stored here.

Description

This convenience API allows consumers to free multiple regulator clients in a single
API call.

regulator_notifier_call_chain

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_notifier_call_chain — call regulator event notifier

Synopsis

int regulator_notifier_ call_chain (struct regulator_dev *
rdev, unsigned long event, void x data);

Arguments

rdev

regulator source

41

Chapter 5. API reference
event

notifier block

data

callback-specific data.

Description

Called by regulator drivers to notify clients a regulator event has occurred. We also
notify regulator clients downstream. Note lock must be held by caller.

regulator_ mode to status

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_mode_to_status — convert a regulator mode into a status

Synopsis

int regulator_mode_to_status (unsigned int mode);

Arguments

mode

Mode to convert

42

Chapter 5. API reference
Description

Convert a regulator mode into a status.

regulator_register

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_register — register regulator
Synopsis

struct regulator_dev x regulator_register (struct
regulator_desc x regulator_desc, struct device x dev, struct
regulator_init_data = init_data, void x driver_data);

Arguments

regulator_desc

regulator to register

dev

struct device for the regulator

init_data

platform provided init data, passed through by driver

driver_data

private regulator data

43

Chapter 5. API reference
Description

Called by regulator drivers to register a regulator. Returns O on success.

regulator_unregister

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_unregister — unregister regulator

Synopsis

void regulator_unregister (struct regulator_dev * rdev);

Arguments

rdev

regulator to unregister

Description

Called by regulator drivers to unregister a regulator.

44

Chapter 5. API reference

regulator_suspend_prepare

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_suspend_prepare — prepare regulators for system wide
suspend

Synopsis

int regulator_suspend_ prepare (suspend_state_t state);

Arguments

state

system suspend state

Description

Configure each regulator with it’s suspend operating parameters for state. This will
usually be called by machine suspend code prior to supending.

regulator_has_ full constraints

LINUX

45

Chapter 5. API reference
Kernel Hackers ManualJuly 2010

Name

regulator_has_full_constraints — the system has fully specified
constraints

Synopsis

void regulator_has_full constraints (void);

Arguments

void

no arguments

Description

Calling this function will cause the regulator API to disable all regulators which
have a zero use count and don’t have an always_on constraint in a late_initcall.

The intention is that this will become the default behaviour in a future kernel release
so users are encouraged to use this facility now.

rdev_get_drvdata

LINUX
Kernel Hackers ManualJuly 2010

Name

rdev_get_drvdata — get rdev regulator driver data

46

Chapter 5. API reference

Synopsis

void » rdev_get_drvdata (struct regulator_dev x rdev);

Arguments

rdev

regulator

Description

Get rdev regulator driver private data. This call can be used in the regulator driver
context.

regulator_get drvdata

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_get_drvdata — get regulator driver data

Synopsis

void x regulator_ get_drvdata (struct regulator * regulator);

47

Chapter 5. API reference
Arguments

regulator

regulator

Description

Get regulator driver private data. This call can be used in the consumer driver
context when non API regulator specific functions need to be called.

regulator_set_drvdata

LINUX
Kernel Hackers ManualJuly 2010

Name

regulator_set_drvdata — set regulator driver data

Synopsis

void regulator_set_drvdata (struct regulator » regulator, void
* data) ;

Arguments

regulator

regulator

data

data

48

Chapter 5. API reference

rdev_get_id

LINUX
Kernel Hackers ManualJuly 2010

Name

rdev_get_id — get regulator ID

Synopsis

int rdev_get_id (struct regulator_dev x rdev);

Arguments

rdev

regulator

49

Chapter 5. API reference

50

	Voltage and current regulator API
	Table of Contents
	Chapter 1. Introduction
	1.1. Glossary

	Glossary
	Regulator
	Consumer
	Power Domain
	Power Management Integrated Circuit

	Chapter 2. Consumer driver interface
	2.1. Enabling and disabling
	2.2. Configuration
	2.3. Callbacks

	Chapter 3. Regulator driver interface
	Chapter 4. Machine interface
	4.1. Supplies
	4.2. Constraints

	Chapter 5. API reference
	struct regulatorbulkdata
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulatorstate
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulationconstraints
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulatorconsumersupply
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulatorinitdata
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulatorops
	LINUX
	Name
	Synopsis
	Members
	Description

	struct regulatordesc
	LINUX
	Name
	Synopsis
	Members
	Description

	regulatorget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorgetexclusive
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorput
	LINUX
	Name
	Synopsis
	Arguments
	Note

	regulatorenable
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatordisable
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorforcedisable
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorisenabled
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorcountvoltages
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorlistvoltage
	LINUX
	Name
	Synopsis
	Arguments
	Context
	Description

	regulatorsetvoltage
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorgetvoltage
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorsetcurrentlimit
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorgetcurrentlimit
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorsetmode
	LINUX
	Name
	Synopsis
	Arguments
	Description
	NOTE

	regulatorgetmode
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorsetoptimummode
	LINUX
	Name
	Synopsis
	Arguments
	Description
	consumption are

	regulatorregisternotifier
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorunregisternotifier
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorbulkget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorbulkenable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorbulkdisable
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorbulkfree
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatornotifiercallchain
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatormodetostatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorregister
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorunregister
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorsuspendprepare
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorhasfullconstraints
	LINUX
	Name
	Synopsis
	Arguments
	Description

	rdevgetdrvdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorgetdrvdata
	LINUX
	Name
	Synopsis
	Arguments
	Description

	regulatorsetdrvdata
	LINUX
	Name
	Synopsis
	Arguments

	rdevgetid
	LINUX
	Name
	Synopsis
	Arguments

