The utrace User Debugging
Infrastructure

The utrace User Debugging Infrastructure

Table of Contents

1. utrace concepts..... 1
1.1, INtrOdUCHIONcciiiiiiieiiee ettt e e av e e e e aaeeaeas 1
1.2. Events and Callbacksceeieuiiiiiiiiiie ittt 1
1.3, StoppINg SALELY ...eeeeiiiiieiieeeeee e 2

1.3.1. Writing well-behaved callbacks..........ccccceeviiiiniiiniiiiniiiciieee 2
1.3.2. USING UTRACE_STOP uutteeureesieeeireenreeennreesseesssseesseeessessssnessssesnnns 3
1.4, Tear-dOWN RACESccuviiiiiiiiee et e e et e e 3
1.4.1. Primacy Of STGKILL ...cocterierierreenieeniieereeieesieeereereesieesenesneenneenes 3
1.4.2. Final callbacksccooiciiiiiiiiiiiiiiiee e 4
1.4.3. Engine and task POINtETSccceoveeriiieiiiieeiieenieeeieeeeieeeieeesvee e 4
1.4.4. Serialization of DEATH and REAPccceevveeerieeniieeniieeeieeeneeesieeenene 5
1.4.5. Interlock with final callbacks.........cccceeeieiiiiiiiiiiiiiciiieeeee e, 5
1.4.6. USING UL raCE_DATTIET ciiiiiiiiiiieeniiee ettt e 6

2. utrace core API9
ENUM ULrace_TeSUME_ACTIOMN.......uuieeerireeeeiiieeeeireeeeesteeeeeseteeeeesareeeeessseeeessseeeens 9
ULTACE_TESUIME_ACHION ..eeiivvveeieieeeeeeeeeeitieteieeeeeeeeeeererasaneaeeesesesesssssnnnneesesesees 10
enumM Urace_Signal_aCtION........ccueeruiiiiieeriiieiiieeeite ettt 11
ULrace_SIZNAL_ACHION ...eiiiiiieiiieeiieeeiie ettt et ee e e e ebee et e e sbeeeaaeeenbeeenes 12
enum Utrace_SYSCall_aCtiONcc.eevviiiiniieiiieeiceciee e 13
Utrace_SYSCAll_ACTION ...ccuviiiiiiiiiiiiiie et 14
SEIUCE ULTACE_EINZINE ...eeeneveeeniieeiteeeiteeeiieeeitee st e et e st e e sabeesbeeesabeesbeeesabeesaees 15
ULTACE_ENZINE_ZEL c.vvieiiieiiieeiieeeiiieeeteeeiteeesteeeteeesabeeeseeessseessseesnseessseesseeenns 16
ULTACE_ENZINE_PUL...iiiiiieiiieeriiieeiteeniteesiteesteesieeesaseesteeesnseesbeeesseesssseesseesnns 17
SLIUCE ULrACE_ENZINE_OPS.ccuueieurieureeriierieeteenieenteesteesieesireereesneesseesreesneesaeesanens 18
STIUCE ULTACE EXAININET «..neeeeeeee e et e e et e e e et e e e e eeaeeeeeennaeeeeneneeeeeneneeeeenenans 22
ULrace_CONLIOL_PId ..ooeeiieiiiieiiie et 23
ULrace_Set_eVENTS_PId ...ooviuiiiiiieeiiieeiiie ettt s 24
ULraCe_DAITICT_PId ..ccouvieiiiiiiiiiiiiie ettt sttt et 25
ULEACE_ALEACKH TASK .eeeee it e e es 26
ULrace_attaCh_Pidcccoeiiiiiiiiiieeee e s 28
ULTACE SEE EVEIIES ..eeevvueeeeiiuneeeettaeeeetaenseettaaeseeesanessetsanessessanesssssnnessssssnesees 29
ULTACE_CONITOL .uuiiiiieiiiie ettt ettt e e e e e e e e e e eetaeeeesbeeeesnaseaeens 31
UELACE _DATTIET ..ttt et e e e e ettt e e e e e eeetetaaa s eeeseeesasaaans 34
ULFACE_PIEPATE_EXAIMIINE ...vvvveeeenerreeeeurreeeaereeeeanesreeessseeeesnseeessssseeesssnseessssseees 35
ULFACE_FINISH EXAININE wevvveeeeeeeeeeeeeeeeeeeeee ettt e e e e e e e eeteeaareeaeeseeeeeeraennans 36

3. Machine State 39
3.1, SEIUCT USET_TEZSEL wnvvieniiieiiieeiie et ettt ettt ettt s e e 39

USET_TeZSet_aCtIVE_fN..uiiiiiiieiiieiiie et 39
USET_TeZSet_GEt_ N .eiiiiiiiiiiiiie e 40
USET_TeESEL_SEL_fN.eiiiiiiiiiiiiiiieee e 41

i

user_regset_WritebacCk_fNcoccuevviiiiniiieieccee e 43

SETUCT USET_TEZSEL .eeeuvveeeuiieeritieeiieeeieeesiteesteeeniteesbeeesaseesneeesnseesseeesnseennns 44
SEIUCT USET_TEZSEL_VIEW ...eeeuiiieeiiiieiiieeiieeeitteeiteesibeeesiteesbeeesaseesbreesiaeeeans 46
tASK_USEI_TEESEL_VIEW ..eouviiiiiiiiiiieiiiieeiiee ettt s 47
COPY_TEZSEL_LO_USET ..vveeeiiiieerrireeeeniteeeeniiteeeenitteeesnnreeeesasaeessaseeessnnseeenns 48
COPY_TEZSEL_TTOM_USETeeeeuiiieiiieeiieeeieeesiee ettt et e esbee e 49
3.2.System Call INFOrMAtioN.iiieiiiiiiiiiiieeeeeeeiiiirrreeeeeeeesetrreeeeeeeeennns 50
task_current_syscall...........coooiiiiiiiiiiiiiii e 51
3.3.System Call TIaCIiNg weeieiiieiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenans 52
SYSCALL_EE_NIT ettt et 52
SYSCALL_TOIIDACK.coiiiiiiiiiiii e 53
SYSCAIL_GET_ETTOT ..ttt 54
syscall_get_return_ValUe...........ceoevueeeiriiieriniiee et 55
syscall_set_return_valueceevueieriiiniiiiiniieeie e 56
Syscall_get_argUmENLScooueerueeeiieeniieeiee ettt siee e 57
SYSCAll_SEt_arGUIMENLS.eeevutiieiiieiiiieiieeeite ettt 59
4. Kernel Internals 61
4.1. Core Calls IN ..coeeeiiiiiiciiee et e 61
tracehook_expect_breakpoints...........coceeveerieniiniiinicnicnieiececeeeen 61
tracehook _report_sysScall_entryccoceeriieeiieiniiennieenieeneeeeeeeee 62
tracehook_report_sySCall_eXitcoevvuuieiiriiieeiniiieeeiiee e 63
trACEN00K_ UNSATE EXEC cevvvnnneeeeeeeeeeeeeeeeee ettt e e e e e e e eeee e ss 64
tracehOOK_tracer_taskcceeeeiviieeeiiiie e 65
traChOOK_TEPOIT_EXEC .eeuureiriiiiiiiieiiie ettt 66
traCehOOK_TEPOTT_EXIE ..ueveiruiiiieiiiiiee ettt e e e 67
tracehOOK_prepare_ClOMeocueeevieerieeriiieeriee et 67
tracehook_finish_Clonecoooviiiiiiiiiiiicccee e 68
tracehOOK_1re€port_ClONE.........c.eeiviiiiiiiiiiiieniieeiee et 69
tracehook_report_clone_complete.........ccoocveeeeviiiiiiiniiieeiiieeeieee e, 71
tracehook_report_vfork_done..........cccoevveeriiiiniiiniiiieeeen 72
tracehook_prepare_release_taskcocceevvieenieiniiiinieenieenieeeeeeeen 73
tracehook _finish_ release task ..ooou.veeeeeeeeeeeeeee e 74
tracehook_signal_handlerccoooiiiiiniiiiiiiiee 75
tracehook_consider_ignored_signalcccoevveeniiiennieeniieeieeeeeeen 76
tracehook_consider_fatal_signal...........cccoovviiniiiniiiiniiiiiccecieeee 77
tracehook_force_sigpending..........ccccceceeevienieniieeiieenienieeeeeieeeeeee e 78
tracehook_get_S1gnalcooouiiiiiiiiiiiiiiie e 79
trac€hOOK_NOLIEY_JCtl...oovouiieiiiieiieeiieee e 80
tracehook_finiSh_jJCtl........c.coiiiiiiiiiiiiieee e 81
tracehook_notify_death...........ccoccueiiiiiiiiiiiiii 82
tracehook_report_death...........ccooueiiiiiiiiiiii 83
SEt_NOITY_TESUMEveeeiiiieeiieeiieeeiee ettt e e e saee e 84

tracehOOK_NOtIfY_TESUME........eevruiiiriiiiiieeiie et 85

4.2, ArChiteCture CallsS OULceeeeeiieieeeeee et eeeeeeeeeeeeeennns 86

42,1, <aSM/PETACE > weiiiiiiiieiieeeee et eeeere e e e ee e eeeenaans 86
arch_has_Single StePccccerviriieriiriiieiiecrceeeeeeee e 86
arch_has_bIOCK_STEPcccueieriiiiiiiiiiiiieeeeeeeeee e 87
user_enable_SINZIE_SIEPccovieveuieiriieeiieeiee e 88
user_enable_bIOCK_StePccvvieriiiiiiiiiiieiieeceeee e 89
user_disable_sSingle_Step........ccoccveeriiiiiiiiiiiiiieeee e 90

4.2.2. <aSM/SYSCALL . N>ttt e e e e 90

4.2.3. <1inux/tracehook . N> ittt 90

Vi

Chapter 1. utrace concepts

1.1. Introduction

utrace is infrastructure code for tracing and controlling user threads. This is the
foundation for writing tracing engines, which can be loadable kernel modules.

The basic actors in utrace are the thread and the tracing engine. A tracing engine is
some body of code that calls into the <1inux/utrace.h> interfaces, represented
by a struct utrace_engine_ops. (Usually it’s a kernel module, though the legacy
ptrace support is a tracing engine that is not in a kernel module.) The interface
operates on individual threads (struct task_struct). If an engine wants to treat several
threads as a group, that is up to its higher-level code.

Tracing begins by attaching an engine to a thread, using utrace_attach_task or
utrace_attach_pid. If successful, it returns a pointer that is the handle used in
all other calls.

1.2. Events and Callbacks

An attached engine does nothing by default. An engine makes something happen by
requesting callbacks via utrace_set_events and poking the thread with
utrace_control. The synchronization issues related to these two calls are
discussed further below in Section 1.4.

Events are specified using the macro UTRACE_EVENT (type) . Each event type is
associated with a callback in struct utrace_engine_ops. A tracing engine can leave
unused callbacks NULL. The only callbacks required are those used by the event
flags it sets.

Many engines can be attached to each thread. When a thread has an event, each
engine gets a callback if it has set the event flag for that event type. For most events,
engines are called in the order they attached. Engines that attach after the event has
occurred do not get callbacks for that event. This includes any new engines just
attached by an existing engine’s callback function. Once the sequence of callbacks
for that one event has completed, such new engines are then eligible in the next
sequence that starts when there is another event.

Event reporting callbacks have details particular to the event type, but are all called
in similar environments and have the same constraints. Callbacks are made from
safe points, where no locks are held, no special resources are pinned (usually), and
the user-mode state of the thread is accessible. So, callback code has a pretty free

Chapter 1. utrace concepts

hand. But to be a good citizen, callback code should never block for long periods. It
1s fine to block in kmalloc and the like, but never wait for i/o or for user mode to
do something. If you need the thread to wait, use UTRACE_STOP and return from the
callback quickly. When your i/o finishes or whatever, you can use
utrace_control to resume the thread.

The UTRACE_EVENT (SYSCALL_ENTRY) event is a special case. While other events
happen in the kernel when it will return to user mode soon, this event happens when
entering the kernel before it will proceed with the work requested from user mode.
Because of this difference, the report_syscall_entry callback is special in two
ways. For this event, engines are called in reverse of the normal order (this includes
the report_quiesce call that precedes a report_syscall_entry call). This
preserves the semantics that the last engine to attach is called "closest to user
mode"--the engine that is first to see a thread’s user state when it enters the kernel is
also the last to see that state when the thread returns to user mode. For the same
reason, if these callbacks use UTRACE_STOP (see the next section), the thread stops
immediately after callbacks rather than only when it’s ready to return to user mode;
when allowed to resume, it will actually attempt the system call indicated by the
register values at that time.

1.3. Stopping Safely

1.3.1. Writing well-behaved callbacks

Well-behaved callbacks are important to maintain two essential properties of the
interface. The first of these is that unrelated tracing engines should not interfere
with each other. If your engine’s event callback does not return quickly, then
another engine won’t get the event notification in a timely manner. The second
important property is that tracing should be as noninvasive as possible to the normal
operation of the system overall and of the traced thread in particular. That is,
attached tracing engines should not perturb a thread’s behavior, except to the extent
that changing its user-visible state is explicitly what you want to do. (Obviously
some perturbation is unavoidable, primarily timing changes, ranging from small
delays due to the overhead of tracing, to arbitrary pauses in user code execution
when a user stops a thread with a debugger for examination.) Even when you
explicitly want the perturbation of making the traced thread block, just blocking
directly in your callback has more unwanted effects. For example, the CLONE event
callbacks are called when the new child thread has been created but not yet started
running; the child can never be scheduled until the CLONE tracing callbacks return.
(This allows engines tracing the parent to attach to the child.) If a CLONE event
callback blocks the parent thread, it also prevents the child thread from running

Chapter 1. utrace concepts

(even to process a SIGKILL). If what you want is to make both the parent and child
block, then use utrace_attach_task on the child and then use UTRACE_STOP on
both threads. A more crucial problem with blocking in callbacks is that it can
prevent SIGKILL from working. A thread that is blocking due to UTRACE_STOP
will still wake up and die immediately when sent a STGKILL, as all threads should.
Relying on the utrace infrastructure rather than on private synchronization calls in
event callbacks is an important way to help keep tracing robustly noninvasive.

1.3.2. Using UTRACE_STOP

To control another thread and access its state, it must be stopped with
UTRACE_STOP. This means that it is stopped and won’t start running again while we
access it. When a thread is not already stopped, utrace_control returns
-EINPROGRESS and an engine must wait for an event callback when the thread is
ready to stop. The thread may be running on another CPU or may be blocked. When
it is ready to be examined, it will make callbacks to engines that set the
UTRACE_EVENT (QUIESCE) event bit. To wake up an interruptible wait, use
UTRACE_INTERRUPT.

As long as some engine has used UTRACE_STOP and not called utrace_control
to resume the thread, then the thread will remain stopped. STGKILL will wake it up,
but it will not run user code. When the stop is cleared with utrace_control or a
callback return value, the thread starts running again. (See also Section 1.4.)

1.4. Tear-down Races

1.4.1. Primacy of SIGKILL

Ordinarily synchronization issues for tracing engines are kept fairly straightforward
by using UTRACE_STOP. You ask a thread to stop, and then once it makes the
report_quiesce callback it cannot do anything else that would result in another
callback, until you let it with a ut race_control call. This simple arrangement
avoids complex and error-prone code in each one of a tracing engine’s event
callbacks to keep them serialized with the engine’s other operations done on that
thread from another thread of control. However, giving tracing engines complete
power to keep a traced thread stuck in place runs afoul of a more important kind of
simplicity that the kernel overall guarantees: nothing can prevent or delay SIGKILL
from making a thread die and release its resources. To preserve this important
property of SIGKILL, it as a special case can break UTRACE_STOP like nothing else

Chapter 1. utrace concepts

normally can. This includes both explicit STGKILL signals and the implicit
SIGKILL sent to each other thread in the same thread group by a thread doing an
exec, or processing a fatal signal, or making an exit_group system call. A tracing
engine can prevent a thread from beginning the exit or exec or dying by signal (other
than STGKILL) if it is attached to that thread, but once the operation begins, no
tracing engine can prevent or delay all other threads in the same thread group dying.

1.4.2. Final callbacks

The report_reap callback is always the final event in the life cycle of a traced
thread. Tracing engines can use this as the trigger to clean up their own data
structures. The report_death callback is always the penultimate event a tracing
engine might see; it’s seen unless the thread was already in the midst of dying when
the engine attached. Many tracing engines will have no interest in when a parent
reaps a dead process, and nothing they want to do with a zombie thread once it dies;
for them, the report_death callback is the natural place to clean up data
structures and detach. To facilitate writing such engines robustly, given the
asynchrony of STGKILL, and without error-prone manual implementation of
synchronization schemes, the utrace infrastructure provides some special guarantees
about the report_death and report_reap callbacks. It still takes some care to
be sure your tracing engine is robust to tear-down races, but these rules make it
reasonably straightforward and concise to handle a lot of corner cases correctly.

1.4.3. Engine and task pointers

The first sort of guarantee concerns the core data structures themselves. struct
utrace_engine is a reference-counted data structure. While you hold a reference, an
engine pointer will always stay valid so that you can safely pass it to any utrace call.
Each call to utrace_attach_task or utrace_attach_pid returns an engine
pointer with a reference belonging to the caller. You own that reference until you
drop it using utrace_engine_put. There is an implicit reference on the engine
while it is attached. So if you drop your only reference, and then use
utrace_attach_task without UTRACE_ATTACH_CREATE to look up that same
engine, you will get the same pointer with a new reference to replace the one you
dropped, just like calling utrace_engine_get. When an engine has been
detached, either explicitly with UTRACE_DETACH or implicitly after report_reap,
then any references you hold are all that keep the old engine pointer alive.

There is nothing a kernel module can do to keep a struct task_struct alive outside of
rcu_read_lock. When the task dies and is reaped by its parent (or itself), that

structure can be freed so that any dangling pointers you have stored become invalid.
utrace will not prevent this, but it can help you detect it safely. By definition, a task

Chapter 1. utrace concepts

that has been reaped has had all its engines detached. All utrace calls can be safely
called on a detached engine if the caller holds a reference on that engine pointer,
even if the task pointer passed in the call is invalid. All calls return ~-ESRCH for a
detached engine, which tells you that the task pointer you passed could be invalid
now. Since utrace_control and utrace_set_events do not block, you can
call those inside a rcu_read_1lock section and be sure after they don’t return
-ESRCH that the task pointer is still valid until rcu_read_unlock. The
infrastructure never holds task references of its own. Though neither
rcu_read_lock nor any other lock is held while making a callback, it’s always
guaranteed that the struct task_struct and the struct utrace_engine passed as
arguments remain valid until the callback function returns.

The common means for safely holding task pointers that is available to kernel
modules is to use struct pid, which permits put_pid from kernel modules. When
using that, the calls utrace_attach_pid, utrace_control_pid,
utrace_set_events_pid, and utrace_barrier_pid are available.

1.4.4. Serialization of bEATH and REAP

The second guarantee is the serialization of DEATH and REAP event callbacks for a
given thread. The actual reaping by the parent (release_task call) can occur
simultaneously while the thread is still doing the final steps of dying, including the
report_death callback. If a tracing engine has requested both DEATH and REAP
event reports, it’s guaranteed that the report_reap callback will not be made until
after the report_death callback has returned. If the report_death callback
itself detaches from the thread, then the report_reap callback will never be made.
Thus it is safe for a report_death callback to clean up data structures and detach.

1.4.5. Interlock with final callbacks

The final sort of guarantee is that a tracing engine will know for sure whether or not
the report_death and/or report_reap callbacks will be made for a certain
thread. These tear-down races are disambiguated by the error return values of
utrace_set_events and utrace_control. Normally utrace_control called
with UTRACE_DETACH returns zero, and this means that no more callbacks will be
made. If the thread is in the midst of dying, it returns ~-EALREADY to indicate that
the report_death callback may already be in progress; when you get this error,
you know that any cleanup your report_death callback does is about to happen
or has just happened--note that if the report_death callback does not detach, the
engine remains attached until the thread gets reaped. If the thread is in the midst of
being reaped, ut race_control returns ~ESRCH to indicate that the report_reap
callback may already be in progress; this means the engine is implicitly detached

Chapter 1. utrace concepts

when the callback completes. This makes it possible for a tracing engine that has
decided asynchronously to detach from a thread to safely clean up its data
structures, knowing that no report_death or report_reap callback will try to
do the same. utrace_detach returns ~-ESRCH when the struct utrace_engine has
already been detached, but is still a valid pointer because of its reference count. A
tracing engine can use this to safely synchronize its own independent multiple
threads of control with each other and with its event callbacks that detach.

In the same vein, utrace_set_events normally returns zero; if the target thread
was stopped before the call, then after a successful call, no event callbacks not
requested in the new flags will be made. It fails with ~-EALREADY if you try to clear
UTRACE_EVENT (DEATH) when the report_death callback may already have
begun, if you try to clear UTRACE_EVENT (REAP) when the report_reap callback
may already have begun, or if you try to newly set UTRACE_EVENT (DEATH) or
UTRACE_EVENT (QUIESCE) when the target is already dead or dying. Like
utrace_control, it returns ~-ESRCH when the thread has already been detached
(including forcible detach on reaping). This lets the tracing engine know for sure
which event callbacks it will or won’t see after ut race_set_events has returned.
By checking for errors, it can know whether to clean up its data structures
immediately or to let its callbacks do the work.

1.4.6. Using utrace_barrier

When a thread is safely stopped, calling ut race_control with UTRACE_DETACH
or calling utrace_set_events to disable some events ensures synchronously that
your engine won’t get any more of the callbacks that have been disabled (none at all
when detaching). But these can also be used while the thread is not stopped, when it
might be simultaneously making a callback to your engine. For this situation, these
calls return ~-EINPROGRESS when it’s possible a callback is in progress. If you are
not prepared to have your old callbacks still run, then you can synchronize to be
sure all the old callbacks are finished, using utrace_barrier. This is necessary if
the kernel module containing your callback code is going to be unloaded.

After using UTRACE_DETACH once, further calls to utrace_control with the
same engine pointer will return ~-ESRCH. In contrast, after getting —-EINPROGRESS
from utrace_set_events, you can call utrace_set_events again later and if
it returns zero then know the old callbacks have finished.

Unlike all other calls, utrace_barrier (and utrace_barrier_pid) will accept
any engine pointer you hold a reference on, even if UTRACE_DETACH has already
been used. After any utrace_control or utrace_set_events call (these do not
block), you can call ut race_barrier to block until callbacks have finished. This
returns ~-ESRCH only if the engine is completely detached (finished all callbacks).
Otherwise it waits until the thread is definitely not in the midst of a callback to this

Chapter 1. utrace concepts

engine and then returns zero, but can return ~-ERESTARTSYS if its wait is
interrupted.

Chapter 1. utrace concepts

Chapter 2. utrace core API

The utrace API is declared in <1inux/utrace.h>.

enum utrace _resume_action

LINUX
Kernel Hackers ManualJuly 2010

Name

enum utrace_resume_action — engine’s choice of action for a traced task

Synopsis

enum utrace_resume_action {
UTRACE_STOP,
UTRACE_INTERRUPT,
UTRACE_REPORT,
UTRACE_SINGLESTEP,
UTRACE_BLOCKSTEP,
UTRACE_RESUME,
UTRACE_DETACH

}i

Constants

UTRACE_STOP

Stay quiescent after callbacks.

UTRACE_INTERRUPT

Make report_signal() callback soon.

UTRACE_REPORT

Make some callback soon.

Chapter 2. utrace core API

UTRACE_SINGLESTEP

Resume in user mode for one instruction.

UTRACE_BLOCKSTEP

Resume in user mode until next branch.

UTRACE_RESUME

Resume normally in user mode.

UTRACE_DETACH

Detach my engine (implies UTRACE_RESUME).

Description

See utrace_control for detailed descriptions of each action. This is encoded in
the action argument and the return value for every callback with a u32 return
value.

The order of these is important. When there is more than one engine, each supplies
its choice and the smallest value prevails.

utrace_resume_action

LINUX

Kernel Hackers ManualJuly 2010

10

Name

utrace_resume_action — enum utrace_resume_action from callback action

Synopsis

enum utrace_resume_action utrace_resume_action (u32 action);

Chapter 2. utrace core API
Arguments

action

u32 callback action argument or return value

Description

This extracts the enum utrace_resume_action from action, which is the action
argument to a struct utrace_engine_ops callback or the return value from one.

enum utrace_signal_action

LINUX
Kernel Hackers ManualJuly 2010

Name

enum utrace_signal_action — disposition of signal

Synopsis

enum utrace_signal_action {
UTRACE_SIGNAL_DELIVER,
UTRACE_SIGNAL_IGN,
UTRACE_SIGNAL_TERM,
UTRACE_SIGNAL_CORE,
UTRACE_SIGNAL_STOP,
UTRACE_SIGNAL_TSTP,
UTRACE_SIGNAL_REPORT,
UTRACE_SIGNAL_HANDLER

}i

11

Chapter 2. utrace core API

12

Constants

UTRACE_SIGNAL_DELIVER

Deliver according to sigaction.

UTRACE_SIGNAL_IGN

Ignore the signal.

UTRACE_SIGNAL_TERM

Terminate the process.

UTRACE_SIGNAL_CORE

Terminate with core dump.

UTRACE_SIGNAL_STOP

Deliver as absolute stop.

UTRACE_SIGNAL_TSTP

Deliver as job control stop.

UTRACE_SIGNAL_REPORT

Reporting before pending signals.

UTRACE_SIGNAL_HANDLER

Reporting after signal handler setup.

Description

This is encoded in the act ion argument and the return value for a
report_signal() callback. It says what will happen to the signal described by the
siginfo_t parameter to the callback.

The UTRACE_SIGNAL_REPORT value is used in an action argument when a
tracing report is being made before dequeuing any pending signal. If this is
immediately after a signal handler has been set up, then
UTRACE_SIGNAL_HANDLER is used instead. A report_signal callback that uses
UTRACE_SIGNAL_DELIVERIUTRACE_SINGLESTEP will ensure it sees a
UTRACE_SIGNAL_HANDLER report.

Chapter 2. utrace core API

utrace_signal_action

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_signal_action — enum utrace_signal_action from callback action

Synopsis

enum utrace_signal_action utrace_signal_action (u32 action);

Arguments

action

report_signal callback action argument or return value

Description

This extracts the enum utrace_signal_action from action, which is the action
argument to a report_signal callback or the return value from one.

enum utrace_syscall_action

LINUX

13

Chapter 2. utrace core API
Kernel Hackers ManualJuly 2010

Name

enum utrace_syscall_action — disposition of system call attempt

Synopsis
enum utrace_syscall_action {
UTRACE_SYSCALI_RUN,

UTRACE_SYSCALL_ABORT
}i

Constants

UTRACE_SYSCALL_RUN

Run the system call.

UTRACE_SYSCALL_ABORT

Don’t run the system call.

Description

This is encoded in the action argument and the return value for a
report_syscall_entry callback.

utrace_syscall _action

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_syscall_action — enum utrace_syscall_action from callback action

14

Chapter 2. utrace core API

Synopsis

enum utrace_syscall_action utrace_syscall_action (u32 action);

Arguments

action

report_syscall_ entry callback action or return value

Description

This extracts the enum utrace_syscall_action from action, which is the action
argument to a report_syscall_entry callback or the return value from one.

struct utrace_engine

LINUX
Kernel Hackers ManualJuly 2010

Name

struct utrace_engine — per-engine structure

Synopsis

struct utrace_engine {
const struct utrace_engine_ops * ops;
void * data;
unsigned long flags;

}i

15

Chapter 2. utrace core API

Members

ops

struct utrace_engine_ops pointer passed to utrace_attach_task

data

engine-private void * passed to utrace_attach_task

flags

event mask set by utrace_set_events plus internal flag bits

Description

The task itself never has to worry about engines detaching while it’s doing event
callbacks. These structures are removed from the task’s active list only when it’s
stopped, or by the task itself.

utrace_engine_get and utrace_engine_put maintain a reference count.
When it drops to zero, the structure is freed. One reference is held implicitly while
the engine is attached to its task.

utrace_engine get

LINUX

Kernel Hackers ManualJuly 2010

16

Name

utrace_engine_get — acquire a reference on a struct utrace_engine

Synopsis

void utrace_engine_get (struct utrace_engine x engine);

Chapter 2. utrace core API
Arguments

engine

struct utrace_engine pointer

Description

You must hold a reference on engine, and you get another.

utrace_engine_ put

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_engine_put — release a reference on a struct utrace_engine

Synopsis

void utrace_engine_put (struct utrace_engine x engine);

Arguments

engine

struct utrace_engine pointer

17

Chapter 2. utrace core API
Description

You must hold a reference on engine, and you lose that reference. If it was the last
one, engine becomes an invalid pointer.

struct utrace_engine_ops

LINUX
Kernel Hackers ManualJuly 2010

Name

struct utrace_engine_ops — tracing engine callbacks

Synopsis

struct utrace_engine_ops {

u32 (x» report_quiesce) (enum utrace_resume_action action,struct utrace_:
u32 (x» report_signal) (u32 action,struct utrace_engine xengine,struct t:
u32 (» report_clone) (enum utrace_resume_action action, struct utrace_enc
u32 (x report_jctl) (enum utrace_resume_action action,struct utrace_eng:
u32 (x report_exec) (enum utrace_resume_action action, struct utrace_eng:
u32 (x report_syscall_entry) (u32 action,struct utrace_engine xengine, st
u32 (x report_syscall_exit) (enum utrace_resume_action action, struct ut:
u32 (x» report_exit) (enum utrace_resume_action action, struct utrace_eng:
u32 (x» report_death) (struct utrace_engine *engine, struct task_struct =i
void (* report_reap) (struct utrace_engine xengine, struct task_struct xf
void (* release) (void =data);

bi

Members

report_quiesce

Requested by UTRACE_EVENT(QUIESCE). This does not indicate any event,
but just that task (the current thread) is in a safe place for examination. This
call is made before each specific event callback, except for report_reap. The

18

Chapter 2. utrace core API

event argument gives the UTRACE_EVENT(which) value for the event
occurring. This callback might be made for events engine has not requested,
if some other engine is tracing the event; calling utrace_set_events call
here can request the immediate callback for this occurrence of event. event
is zero when there is no other event, task is now ready to check for signals
and return to user mode, and some engine has used UTRACE_REPORT oOr
UTRACE_INTERRUPT to request this callback. For this case, if
report_signalis not NULL, the report_qguiesce callback may be replaced
with a report_signal callback passing UTRACE_SIGNAL_REPORT in its
action argument, whenever task is entering the signal-check path anyway.

report_signal

Requested by UTRACE_EVENT(SIGNAL_*) or UTRACE_EVENT(QUIESCE). Use
utrace_signal_action and utrace_resume_action on action. The
signal action is UTRACE_SIGNAL_REPORT when some engine has used
UTRACE_REPORT or UTRACE_INTERRUPT; the callback can choose to stop or
to deliver an artificial signal, before pending signals. It’s
UTRACE_SIGNAL_HANDLER instead when signal handler setup just finished
(after a previous UTRACE_SIGNAL_DELIVER return); this serves in lieu of any
UTRACE_SIGNAL_REPORT callback requested by UTRACE_REPORT Or
UTRACE_INTERRUPT, and is also implicitly requested by
UTRACE_SINGLESTEP or UTRACE_BLOCKSTEP into the signal delivery. The
other signal actions indicate a signal about to be delivered; the previous
engine’s return value sets the signal action seen by the the following engine’s
callback. The info data can be changed at will, including info->si_signo.
The settings in return_ka determines what UTRACE_SIGNAL_DELIVER
does. orig_ka is what was in force before other tracing engines intervened,
and it’s NULL when this report began as UTRACE_SIGNAL_REPORT Or
UTRACE_SIGNAL_HANDLER. For a report without a new signal, info is left
uninitialized and must be set completely by an engine that chooses to deliver a
signal; if there was a previous report_signal callback ending in
UTRACE_STOP and it was just resumed using UTRACE_REPORT oOr
UTRACE_INTERRUPT, then info is left unchanged from the previous callback.
In this way, the original signal can be left in info while returning
UTRACE_STOPIUTRACE_SIGNAL_IGN and then found again when resuming
task with UTRACE_INTERRUPT. The UTRACE_SIGNAL_HOLD flag bit can be
OR’d into the return value, and might be in action if the previous engine
returned it. This flag asks that the signal in info be pushed back on task’s
queue so that it will be seen again after whatever action is taken now.

report_clone

Requested by UTRACE_EVENT(CLONE). Event reported for parent, before the
new task child mightrun. clone_flags gives the flags used in the clone

19

Chapter 2. utrace core API

20

system call, or equivalent flags for a fork or vfork system call. This function
can use utrace_attach_task on child. It’s guaranteed that asynchronous
utrace_attach_task calls will be ordered after any calls in report_clone
callbacks for the parent. Thus when using UTRACE_ATTACH_EXCLUSIVE in
the asynchronous calls, you can be sure that the parent’s report_clone
callback has already attached to chi1d or chosen not to. Passing
UTRACE_STOP to utrace_control on child here keeps the child stopped
before it ever runs in user mode, UTRACE_REPORT or UTRACE_INTERRUPT
ensures a callback from chi1d before it starts in user mode.

report_jctl

Requested by UTRACE_EVENT(JCTL). Job control event; type is
CLD_STOPPED or CLD_CONTINUED, indicating whether we are stopping or
resuming now. If not i fy is nonzero, task is the last thread to stop and so
will send SIGCHLD to its parent after this callback; noti fy reflects what the
parent’s SIGCHLD has in si_code, which can sometimes be CLD_STOPPED
even when type is CLD_CONTINUED.

report_exec

Requested by UTRACE_EVENT(EXEC). An execve system call has succeeded
and the new program is about to start running. The initial user register state is
handy to be tweaked directly in regs. fmt and bprm gives the details of this
exec.

report_syscall_entry

Requested by UTRACE_EVENT(SYSCALL_ENTRY). Thread has entered the
kernel to request a system call. The user register state is handy to be tweaked
directly in regs. The action argument contains an enum
utrace_syscall_action, use utrace_syscall_action to extract it. The return
value overrides the last engine’s action for the system call. If the final action is
UTRACE_SYSCALL_ABORT, no system call is made. The details of the system
call being attempted can be fetched here with syscall_get_nr and
syscall_get_arguments. The parameter registers can be changed with

syscall_set_arguments.

report_syscall_exit

Requested by UTRACE_EVENT(SYSCALL_EXIT). Thread is about to leave the
kernel after a system call request. The user register state is handy to be tweaked
directly in regs. The results of the system call attempt can be examined here
using syscall_get_error and syscall_get_return_value. Itis safe
here to call syscall_set_return_value or syscall_rollback.

Chapter 2. utrace core API
report_exit

Requested by UTRACE_EVENT(EXIT). Thread is exiting and cannot be
prevented from doing so, but all its state is still live. The code value will be the
wait result seen by the parent, and can be changed by this engine or others. The
orig_code value is the real status, not changed by any tracing engine.
Returning UTRACE_STOP here keeps task stopped before it cleans up its state
and dies, so it can be examined by other processes. When task is allowed to
run, it will die and get to the report_death callback.

report_death

Requested by UTRACE_EVENT(DEATH). Thread is really dead now. It might be
reaped by its parent at any time, or self-reap immediately. Though the actual
reaping may happen in parallel, a report_reap callback will always be
ordered after a report_death callback.

report_reap

Requested by UTRACE_EVENT(REAP). Called when someone reaps the dead
task (parent, init, or self). This means the parent called wait, or else this was a
detached thread or a process whose parent ignores SIGCHLD. No more
callbacks are made after this one. The engine is always detached. There is
nothing more a tracing engine can do about this thread. After this callback, the
engine pointer will become invalid. The task pointer may become invalid if
get_task_struct hasn’t been used to keep it alive. An engine should always
request this callback if it stores the engine pointer or stores any pointer in
engine->data, so it can clean up its data structures. Unlike other callbacks,
this can be called from the parent’s context rather than from the traced thread
itself--it must not delay the parent by blocking.

release

If not NULL, this is called after the last utrace_engine_put call for a struct
utrace_engine, which could be implicit after a UTRACE_DETACH return from
another callback. Its argument is the engine’s data member.

Description

Each report_*() callback corresponds to an UTRACE_EVENT(*) bit.
utrace_set_events calls on engine choose which callbacks will be made to
engine from task.

Most callbacks take an action argument, giving the resume action chosen by other
tracing engines. All callbacks take an engine argument, and a task argument,

21

Chapter 2. utrace core API

which is always equal to current. For some calls, act i on also includes bits
specific to that event and ut race_resume_action is used to extract the resume
action. This shows what would happen if engine wasn’t there, or will if the
callback’s return value uses UTRACE_RESUME. This always starts as
UTRACE_RESUME when no other tracing is being done on this task.

All return values contain enum utrace_resume_action bits. For some calls, other bits
specific to that kind of event are added to the resume action bits with OR. These are
the same bits used in the action argument. The resume action returned by a
callback does not override previous engines’ choices, it only says what engine
wants done. What task actually does is the action that’s most constrained among
the choices made by all attached engines. See utrace_control for more
information on the actions.

When UTRACE_STOP is used in report_syscall_entry, then task stops before
attempting the system call. In other cases, the resume action does not take effect
until task is ready to check for signals and return to user mode. If there are more
callbacks to be made, the last round of calls determines the final action. A
report_quiesce callback with event zero, or a report_signal callback, will
always be the last one made before task resumes. Only UTRACE_STOP is
“sticky”--1f engine returned UTRACE_STOP then task stays stopped unless
engine returns different from a following callback.

The report_death and report_reap callbacks do not take action arguments,
and only UTRACE_DETACH is meaningful in the return value from a report_death
callback. None of the resume actions applies to a dead thread.

All report_*() hooks are called with no locks held, in a generally safe
environment when we will be returning to user mode soon (or just entered the
kernel). It is fine to block for memory allocation and the like, but all hooks are
asynchronous and must not block on external events! If you want the thread to
block, use UTRACE_STOP in your hook’s return value; then later wake it up with

utrace_control.

struct utrace_examiner

22

LINUX

Chapter 2. utrace core API

Kernel Hackers ManualJuly 2010

Name

struct utrace_examiner — private state for using

utrace_prepare_examine

Synopsis

struct utrace_examiner {

}i

Members

None

Description

The members of struct utrace_examiner are private to the implementation. This data
type holds the state from a call to utrace_prepare_examine to be used by a call

to utrace_finish_ examine.

utrace_control_pid

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_control_pid— control a thread being traced by a tracing engine

23

Chapter 2. utrace core API

Synopsis

__must_check int utrace_control_pid (struct pid x pid, struct
utrace_engine * engine, enum utrace_resume_action action);

Arguments
pid
thread to affect

engine

attached engine to affect

action

enum utrace_resume_action for thread to do

Description

This is the same as utrace_control, but takes a struct pid pointer rather than a
struct task_struct pointer. The caller must hold a ref on pid, but does not need to

worry about the task staying valid. If it’s been reaped so that pid points nowhere,
then this call returns -ESRCH.

utrace_set_events pid

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_set_events_pid — choose which event reports a tracing engine gets

24

Chapter 2. utrace core API

Synopsis

__must_check int utrace_set_events_pid (struct pid * pid,
struct utrace_engine * engine, unsigned long eventmask);

Arguments
pid
thread to affect

engine

attached engine to affect

eventmask

new event mask

Description

This is the same as utrace_set_events, but takes a struct pid pointer rather than
a struct task_struct pointer. The caller must hold a ref on pid, but does not need to
worry about the task staying valid. If it’s been reaped so that pid points nowhere,
then this call returns -ESRCH.

utrace_barrier_pid

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_barrier_pid — synchronize with simultaneous tracing callbacks

25

Chapter 2. utrace core API

Synopsis

__must_check int utrace_barrier pid (struct pid x pid, struct
utrace_engine * engine);

Arguments
pid
thread to affect

engine

engine to affect (can be detached)

Description

This is the same as utrace_barrier, but takes a struct pid pointer rather than a
struct task_struct pointer. The caller must hold a ref on pid, but does not need to

worry about the task staying valid. If it’s been reaped so that pid points nowhere,
then this call returns -ESRCH.

utrace_attach_task

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_attach_task — attach new engine, or look up an attached engine

26

Chapter 2. utrace core API

Synopsis

struct utrace_engine * utrace_attach task (struct task_struct
* target, int flags, const struct utrace_engine_ops * ops,
void = data);

Arguments

target

thread to attach to

flags

flag bits combined with OR, see below

ops

callback table for new engine

data

engine private data pointer

Description

The caller must ensure that the target thread does not get freed, i.e. hold a ref or
be its parent. It is always safe to call this on current, or on the child pointer in a
report_clone callback. For most other cases, it’s easier to use
utrace_attach_pid instead.

UTRACE_ATTACH_CREATE

Create a new engine. If UTRACE_ATTACH_CREATE is not specified, you only look
up an existing engine already attached to the thread.

UTRACE_ATTACH_EXCLUSIVE

Attempting to attach a second (matching) engine fails with -EEXIST.

27

Chapter 2. utrace core API
UTRACE_ATTACH_MATCH_OPS

Only consider engines matching ops.

UTRACE_ATTACH_MATCH_DATA

Only consider engines matching data.

Calls with neither UTRACE_ATTACH_MATCH_OPS nor
UTRACE_ATTACH_MATCH_DATA match the first among any engines attached to
target. That means that UTRACE_ATTACH_EXCLUSIVE in such a call fails with
-EEXIST if there are any engines on target at all.

utrace_attach_pid

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_attach_pid — attach new engine, or look up an attached engine

Synopsis

struct utrace_engine x utrace_attach_pid (struct pid * pid,
int flags, const struct utrace_engine_ops x ops, void x data);

Arguments

pid

struct pid pointer representing thread to attach to

28

Chapter 2. utrace core API

flags

flag bits combined with OR, see utrace_attach_task

ops

callback table for new engine

data

engine private data pointer

Description

This is the same as utrace_attach_task, but takes a struct pid pointer rather
than a struct task_struct pointer. The caller must hold a ref on pid, but does not
need to worry about the task staying valid. If it’s been reaped so that pid points
nowhere, then this call returns -ESRCH.

utrace_set_events

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_set_events — choose which event reports a tracing engine gets

Synopsis

int utrace_set_events (struct task_struct » target, struct
utrace_engine * engine, unsigned long events);

29

Chapter 2. utrace core API

30

Arguments

target

thread to affect

engine

attached engine to affect

events

new event mask

Description

This changes the set of events for which engine wants callbacks made.

This fails with -EALREADY and does nothing if you try to clear
UTRACE_EVENT(DEATH) when the report_death callback may already have
begun, if you try to clear UTRACE_EVENT(REAP) when the report_reap callback
may already have begun, or if you try to newly set UTRACE_EVENT(DEATH) or
UTRACE_EVENT(QUIESCE) when target is already dead or dying.

This can fail with -ESRCH when target has already been detached, including
forcible detach on reaping.

If target was stopped before the call, then after a successful call, no event
callbacks not requested in events will be made; if UTRACE_EVENT(QUIESCE) is
included in events, then a report_quiesce callback will be made when target
resumes.

If target was not stopped and event s excludes some bits that were set before,
this can return -EINPROGRESS to indicate that target may have been making

some callback to engine. When this returns zero, you can be sure that no event
callbacks you’ve disabled in events can be made. If events only sets new bits
that were not set before on engine, then -EINPROGRESS will never be returned.

To synchronize after an -EINPROGRESS return, see utrace_barrier.

When target is current, -EINPROGRESS is not returned. But note that a
newly-created engine will not receive any callbacks related to an event notification
already in progress. This call enables events callbacks to be made as soon as
engine becomes eligible for any callbacks, see utrace_attach_task.

These rules provide for coherent synchronization based on UTRACE_STOP, even
when STGKILL is breaking its normal simple rules.

Chapter 2. utrace core API

utrace control

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_control — control a thread being traced by a tracing engine

Synopsis

int utrace_control (struct task_struct = target, struct
utrace_engine * engine, enum utrace_resume_action action);

Arguments

target

thread to affect

engine

attached engine to affect

action

enum utrace_resume_action for thread to do

Description

This is how a tracing engine asks a traced thread to do something. This call is
controlled by the action argument, which has the same meaning as the enum
utrace_resume_action value returned by event reporting callbacks.

31

Chapter 2. utrace core API

32

If target is already dead (target->exit_state nonzero), all actions except
UTRACE_DETACH fail with -ESRCH.

The following sections describe each option for the action argument.

UTRACE_DETACH

After this, the engine data structure is no longer accessible, and the thread might
be reaped. The thread will start running again if it was stopped and no longer has
any attached engines that want it stopped.

If the report_ reap callback may already have begun, this fails with -ESRCH. If the
report_death callback may already have begun, this fails with -EALREADY.

If target is not already stopped, then a callback to this engine might be in progress
or about to start on another CPU. If so, then this returns -EINPROGRESS; the detach
happens as soon as the pending callback is finished. To synchronize after an
-EINPROGRESS return, see utrace_barrier.

If target is properly stopped before utrace_control is called, then after
successful return it’s guaranteed that no more callbacks to the engine->ops vector
will be made.

The only exception is SIGKILL (and exec or group-exit by another thread in the
group), which can cause asynchronous report_death and/or report_reap
callbacks even when UTRACE_STOP was used. (In that event, this fails with -ESRCH
or -EALREADY, see above.)

UTRACE_STOP

This asks that target stop running. This returns O only if target is already
stopped, either for tracing or for job control. Then target will remain stopped
until another utrace_control call is made on engine; target can be woken
only by SIGKILL (or equivalent, such as exec or termination by another thread in
the same thread group).

This returns -EINPROGRESS if target is not already stopped. Then the effect is
like UTRACE_REPORT. A report_quiesce or report_signal callback will be
made soon. Your callback can then return UTRACE_STOP to keep target stopped.

This does not interrupt system calls in progress, including ones that sleep for a long
time. For that, use UTRACE_INTERRUPT. To interrupt system calls and then keep
target stopped, your report_signal callback can return UTRACE_STOP.

Chapter 2. utrace core API

UTRACE_RESUME

Just let target continue running normally, reversing the effect of a previous
UTRACE_STOP. If another engine is keeping target stopped, then it remains
stopped until all engines let it resume. If target was not stopped, this has no effect.

UTRACE_REPORT

This is like UTRACE_RESUME, but also ensures that there will be a
report_quiesce Or report_signal callback made soon. If target had been
stopped, then there will be a callback before it resumes running normally. If another
engine is keeping target stopped, then there might be no callbacks until all
engines let it resume.

Since this is meaningless unless report_quiesce callbacks will be made, it
returns -EINVAL if engine lacks UTRACE_EVENT(QUIESCE).

UTRACE_INTERRUPT

This is like UTRACE_REPORT, but ensures that target will make a
report_signal callback before it resumes or delivers signals. If target was in a
system call or about to enter one, work in progress will be interrupted as if by
S1GSTOP. If another engine is keeping target stopped, then there might be no
callbacks until all engines let it resume.

This gives engine an opportunity to introduce a forced signal disposition via its
report_signal callback.

UTRACE_SINGLESTEP

It’s invalid to use this unless arch_has_single_step returned true. This is like
UTRACE_RESUME, but resumes for one user instruction only. It’s invalid to use this
in utrace_control unless target had been stopped by engine previously.

Note that passing UTRACE_SINGLESTEP or UTRACE_BLOCKSTEP to
utrace_control or returning it from an event callback alone does not necessarily
ensure that stepping will be enabled. If there are more callbacks made to any engine
before returning to user mode, then the resume action is chosen only by the last set
of callbacks. To be sure, enable UTRACE_EVENT(QUIESCE) and look for the
report_quiesce callback with a zero event mask, or the report_signal
callback with UTRACE_SIGNAL_REPORT.

33

Chapter 2. utrace core API

Since this is not robust unless report_quiesce callbacks will be made, it returns
-EINVAL if engine lacks UTRACE_EVENT(QUIESCE).

UTRACE_BLOCKSTEP

It’s invalid to use this unless arch_has_block_step returned true. This is like
UTRACE_SINGLESTEP, but resumes for one whole basic block of user instructions.

Since this is not robust unless report_quiesce callbacks will be made, it returns
-EINVAL if engine lacks UTRACE_EVENT(QUIESCE).

UTRACE_BLOCKSTEP devolves to UTRACE_SINGLESTEP when another tracing
engine is using UTRACE_SINGLESTEP at the same time.

utrace barrier

LINUX

Kernel Hackers ManualJuly 2010

34

Name

utrace_barrier — synchronize with simultaneous tracing callbacks

Synopsis

int utrace_barrier (struct task_struct * target, struct

utrace_engine * engine);

Arguments

target

thread to affect

Chapter 2. utrace core API
engine

engine to affect (can be detached)

Description

This blocks while target might be in the midst of making a callback to engine. It
can be interrupted by signals and will return -ERESTARTSYS. A return value of zero
means no callback from target to engine was in progress. Any effect of its return
value (such as UTRACE_STOP) has already been applied to engine.

It’s not necessary to keep the target pointer alive for this call. It’s only necessary
to hold a ref on engine. This will return safely even if target has been reaped and
has no task refs.

A successful return from utrace_barrier guarantees its ordering with respect to
utrace_set_events and utrace_control calls. If target was not properly
stopped, event callbacks just disabled might still be in progress; utrace_barrier
waits until there is no chance an unwanted callback can be in progress.

utrace_prepare_examine

LINUX
Kernel Hackers ManualJuly 2010

Name

utrace_prepare_examine — prepare to examine thread state

Synopsis

int utrace_prepare_examine (struct task_struct * target,
struct utrace_engine x engine, struct utrace_examiner * exam);

35

Chapter 2. utrace core API

Arguments

target

thread of interest, a struct task_struct pointer

engine

engine pointer returned by utrace_attach_task

exam

temporary state, a struct utrace_examiner pointer

Description

This call prepares to safely examine the thread target using struct user_regset
calls, or direct access to thread-synchronous fields.

When target is current, this call is superfluous. When target is another thread, it
must held stopped via UTRACE_STOP by engine.

This call may block the caller until target stays stopped, so it must be called only

after the caller is sure target is about to unschedule. This means a zero return from
autrace_control call on engine giving UTRACE_STOP, Or a report_quiesce
or report_signal callback to engine that used UTRACE_STOP in its return value.

Returns -ESRCH if target is dead or -EINVAL if UTRACE_STOP was not used. If
target has started running again despite UTRACE_STOP (for SIGKILL or a
spurious wakeup), this call returns -EAGAIN.

When this call returns zero, it’s safe to use struct user_regset calls and
task_user_regset_view on target and to examine some of its fields directly.
When the examination is complete, a utrace_finish_examine call must follow
to check whether it was completed safely.

utrace_finish_examine

36

LINUX

Chapter 2. utrace core API
Kernel Hackers ManualJuly 2010

Name

utrace_finish_examine — complete an examination of thread state

Synopsis

int utrace_finish examine (struct task_struct x target, struct
utrace_engine x engine, struct utrace_examiner x exam);

Arguments

target

thread of interest, a struct task_struct pointer

engine

engine pointer returned by utrace_attach_task

exam

pointer passed to utrace_prepare_examine call

Description

This call completes an examination on the thread target begun by a paired
utrace_prepare_examine call with the same arguments that returned success
(zero).

When target is current, this call is superfluous. When target is another thread,
this returns zero if target has remained unscheduled since the paired
utrace_prepare_examine call returned zero.

When this returns an error, any examination done since the paired
utrace_prepare_examine call is unreliable and the data extracted should be
discarded. The error is -EINVAL if engine is not keeping target stopped, or
-EAGAIN if target woke up unexpectedly.

37

Chapter 2. utrace core API

38

Chapter 3. Machine State

The task_current_syscall function can be used on any valid struct task_struct
at any time, and does not even require that utrace_attach_task was used at all.

The other ways to access the registers and other machine-dependent state of a task
can only be used on a task that is at a known safe point. The safe points are all the
places where utrace_set_events can request callbacks (except for the DEATH
and REAP events). So at any event callback, it is safe to examine current.

One task can examine another only after a callback in the target task that returns
UTRACE_STOP so that task will not return to user mode after the safe point. This
guarantees that the task will not resume until the same engine uses
utrace_control, unless the task dies suddenly. To examine safely, one must use a
pair of calls to utrace_prepare_examine and utrace_finish_examine
surrounding the calls to struct user_regset functions or direct examination of task
data structures. ut race_prepare_examine returns an error if the task is not
properly stopped and not dead. After a successful examination, the paired
utrace_finish_examine call returns an error if the task ever woke up during the
examination. If so, any data gathered may be scrambled and should be discarded.
This means there was a spurious wake-up (which should not happen), or a sudden
death.

3.1. struct user_regset

The struct user_regset API is declared in <linux/regset.h>.

user_regset_active_fn

LINUX
Kernel Hackers ManualJuly 2010

Name

user_regset_active_fn — type of active function in struct user_regset

39

Chapter 3. Machine State

Synopsis

typedef int user_regset_active_£fn (struct task_struct =
target, const struct user_regset x regset);

Arguments

target

thread being examined

regset

regset being examined

Description

Return -ENODEV if not available on the hardware found. Return 0 if no interesting
state in this thread. Return >0 number of size units of interesting state. Any get
call fetching state beyond that number will see the default initialization state for this
data, so a caller that knows what the default state is need not copy it all out. This call
is optional; the pointer is NULL if there is no inexpensive check to yield a value < n.

user_regset _get fn

LINUX
Kernel Hackers ManualJuly 2010

Name

user_regset_get_fn — type of get function in struct user_regset

40

Chapter 3. Machine State

Synopsis

typedef int user_regset_get_fn (struct task_struct » target,

const struct user_regset x regset, unsigned int pos,

int count, void * kbuf, void __user * ubuf);

Arguments

target

thread being examined

regset

regset being examined

pos

offset into the regset data to access, in bytes

count

amount of data to copy, in bytes

kbuf

if not NULL, a kernel-space pointer to copy into

ubuf

if kbuf is NULL, a user-space pointer to copy into

Description

unsigned

Fetch register values. Return 0 on success; -EI0 or -ENODEV are usual failure
returns. The pos and count values are in bytes, but must be properly aligned. If
kbuf is non-null, that buffer is used and ubuf is ignored. If kbuf is NULL, then
ubuf gives a userland pointer to access directly, and an -EFAULT return value is

possible.

41

Chapter 3. Machine State

user_regset set fn

LINUX
Kernel Hackers ManualJuly 2010

Name

user_regset_set_fn — type of set function in struct user_regset
Synopsis

typedef int user_regset_set_fn (struct task_struct x target,
const struct user_regset x regset, unsigned int pos, unsigned
int count, const void = kbuf, const void __ _user = ubuf);

Arguments

target

thread being examined

regset

regset being examined

pos

offset into the regset data to access, in bytes

count

amount of data to copy, in bytes

kbuf

if not NULL, a kernel-space pointer to copy from

ubuf

if kbuf is NULL, a user-space pointer to copy from

42

Chapter 3. Machine State

Description

Store register values. Return 0 on success; -EIO or -ENODEV are usual failure
returns. The pos and count values are in bytes, but must be properly aligned. If
kbuf is non-null, that buffer is used and ubuf is ignored. If kbuf is NULL, then
ubuf gives a userland pointer to access directly, and an -EFAULT return value is
possible.

user_regset writeback fn

LINUX
Kernel Hackers ManualJuly 2010

Name

user_regset_writeback_fn — type of writeback function in struct
user_regset

Synopsis

typedef int user_regset_writeback_fn (struct task_struct =
target, const struct user_regset x regset, int immediate);

Arguments

target

thread being examined

regset

regset being examined

immediate

zero if writeback at completion of next context switch is OK

43

Chapter 3. Machine State

Description

This call is optional; usually the pointer is NULL. When provided, there is some user
memory associated with this regset’s hardware, such as memory backing cached
register data on register window machines; the regset’s data controls what user
memory is used (e.g. via the stack pointer value).

Write register data back to user memory. If the immediate flag is nonzero, it must
be written to the user memory so uaccess or access_process_vm can see it when
this call returns; if zero, then it must be written back by the time the task completes
a context switch (as synchronized with wait_task_inactive). Return 0 on
success or if there was nothing to do, -EFAULT for a memory problem (bad stack
pointer or whatever), or -E10 for a hardware problem.

struct user_regset

LINUX

Kernel Hackers ManualJuly 2010

44

Name

struct user_regset — accessible thread CPU state

Synopsis

struct user_regset {
user_regset_get_fn * get;
user_regset_set_fn * set;
user_regset_active_fn * active;
user_regset_writeback_fn * writeback;
unsigned int nj;
unsigned int size;
unsigned int align;
unsigned int bias;
unsigned int core_note_type;

}i

Members

get

Function to fetch values.

set

Function to store values.

active

Function to report if regset is active, or NULL.

writeback

Function to write data back to user memory, or NULL.

Number of slots (registers).

size

Size in bytes of a slot (register).

align

Required alignment, in bytes.

bias

Bias from natural indexing.

core_note_type

ELF note n_ type value used in core dumps.

Description

Chapter 3. Machine State

This data structure describes a machine resource we call a register set. This is part
of the state of an individual thread, not necessarily actual CPU registers per se. A
register set consists of a number of similar slots, given by n. Each slotis size
bytes, and aligned to align bytes (which is at least size).

These functions must be called only on the current thread or on a thread that is in
TASK_STOPPED or TASK_TRACED state, that we are guaranteed will not be woken
up and return to user mode, and that we have called wait_task_inactive on.
(The target thread always might wake up for SIGKILL while these functions are
working, in which case that thread’s user_regset state might be scrambled.)

45

Chapter 3. Machine State

The pos argument must be aligned according to align;the count argument must
be a multiple of size. These functions are not responsible for checking for invalid
arguments.

When there is a natural value to use as an index, bias gives the difference between
the natural index and the slot index for the register set. For example, x86 GDT
segment descriptors form a regset; the segment selector produces a natural index,
but only a subset of that index space is available as a regset (the TLS slots);
subtracting bias from a segment selector index value computes the regset slot.

If nonzero, core_note_type gives the n_type field (NT_* value) of the core file
note in which this regset’s data appears. NT_PRSTATUS is a special case in that the
regset data starts at offsetof(struct elf_prstatus, pr_reg) into the note data; that is
part of the per-machine ELF formats userland knows about. In other cases, the core
file note contains exactly the whole regset (n * size) and nothing else. The core file
note is normally omitted when there is an act i ve function and it returns zero.

struct user_regset_view

LINUX

Kernel Hackers ManualJuly 2010

46

Name

struct user_regset_view — available regsets

Synopsis

struct user_regset_view {
const char * name;
const struct user_regset * regsets;
unsigned int n;
u32 e_flags;
ul6 e_machine;
u8 ei_osabi;

}i

Chapter 3. Machine State
Members

name

Identifier, e.g. UTS_MACHINE string.

regsets

Array of n regsets available in this view.

Number of elements in regsets.

e_flags

ELF header e_ f1ags value written in core dumps.

e€_machine

ELF header e_machine EM_* value written in core dumps.

ei_osabi

ELF header e_ident[EI_0SABI] value written in core dumps.

Description

A regset view is a collection of regsets (struct user_regset, above). This describes all
the state of a thread that can be seen from a given architecture/ABI environment.
More than one view might refer to the same struct user_regset, or more than one
regset might refer to the same machine-specific state in the thread. For example, a
32-bit thread’s state could be examined from the 32-bit view or from the 64-bit
view. Either method reaches the same thread register state, doing appropriate
widening or truncation.

task user regset view

LINUX

47

Chapter 3. Machine State
Kernel Hackers ManualJuly 2010

Name

task_user_regset_view — Return the process’s native regset view.

Synopsis

const struct user_regset_view *» task_user_regset_view (struct
task_struct » tsk);

Arguments

tsk

a thread of the process in question

Description

Return the struct user_regset_view that is native for the given process. For example,
what it would access when it called pt race. Throughout the life of the process, this
only changes at exec.

copy_regset to_user

LINUX
Kernel Hackers ManualJuly 2010

Name

copy_regset_to_user — fetch a thread’s user_regset data into user memory

48

Chapter 3. Machine State

Synopsis

int copy_regset_to_user (struct task_struct * target, const
struct user_regset_view * view, unsigned int setno, unsigned
int offset, unsigned int size, void __ user x data);

Arguments

target

thread to be examined

view

struct user_regset_view describing user thread machine state

setno

index in view->regsets

offset

offset into the regset data, in bytes

size

amount of data to copy, in bytes

data

user-mode pointer to copy into

copy _regset from_user

LINUX

49

Chapter 3. Machine State

Kernel Hackers ManualJuly 2010

50

Name

copy_regset_from_user — store into thread’s user_regset data from user
memory

Synopsis

int copy_regset_from user (struct task_struct x target, const
struct user_regset_view * view, unsigned int setno, unsigned
int offset, unsigned int size, const void __ user x data);

Arguments

target
thread to be examined
view
struct user_regset_view describing user thread machine state

setno

index in view->regsets

offset

offset into the regset data, in bytes
size

amount of data to copy, in bytes

data

user-mode pointer to copy from

Chapter 3. Machine State
3.2. System Call Information

This function is declared in <linux/ptrace.h>.

task_current_syscall

LINUX
Kernel Hackers ManualJuly 2010

Name

task_current_syscall — Discover what a blocked task is doing.

Synopsis

int task_current_syscall (struct task_struct x target, long *
callno, unsigned long args/[6], unsigned int maxargs, unsigned
long * sp, unsigned long * pcC);

Arguments

target

thread to examine

callno

filled with system call number or -1

args[6]

filled with maxargs system call arguments

maxargs

number of elements in args to fill

sp

filled with user stack pointer

51

Chapter 3. Machine State

pc
filled with user PC

Description

If target is blocked in a system call, returns zero with *callno set to the the
call’s number and args filled in with its arguments. Registers not used for system
call arguments may not be available and it is not kosher to use struct user_regset
calls while the system call is still in progress. Note we may get this result if target
has finished its system call but not yet returned to user mode, such as when it’s
stopped for signal handling or syscall exit tracing.

If target is blocked in the kernel during a fault or exception, returns zero with
*callno setto -1 and does not fill in args. If so, it’s now safe to examine target
using struct user_regset get calls as long as we’re sure target won’t return to user
mode.

Returns -EAGAIN if target does not remain blocked.

Returns -EINVAL if maxargs is too large (maximum is six).

3.3. System Call Tracing

The arch API for system call information is declared in <asm/syscall.h>. Each
of these calls can be used only at system call entry tracing, or can be used only at
system call exit and the subsequent safe points before returning to user mode. At
system call entry tracing means either during a report_syscall_entry callback,
or any time after that callback has returned UTRACE_STOP.

syscall get nr

LINUX

Kernel Hackers ManualJuly 2010

Name

syscall_get_nr — find what system call a task is executing

52

Chapter 3. Machine State

Synopsis

int syscall_get_nr (struct task_struct =* task, struct pt_regs
* regs);

Arguments

task

task of interest, must be blocked

regs

task_pt_regs of task

Description

If task is executing a system call or is at system call tracing about to attempt one,
returns the system call number. If task is not executing a system call, i.e. it’s
blocked inside the kernel for a fault or signal, returns -1.

Note this returns int even on 64-bit machines. Only 32 bits of system call number
can be meaningful. If the actual arch value is 64 bits, this truncates to 32 bits so
Oxffffffff means -1.

It’s only valid to call this when task is known to be blocked.

syscall_rollback

LINUX
Kernel Hackers ManualJuly 2010

Name

syscall_rollback — roll back registers after an aborted system call

53

Chapter 3. Machine State

Synopsis

void syscall_rollback (struct task_struct * task, struct
pt_regs x regs);

Arguments

task

task of interest, must be in system call exit tracing

regs

task_pt_regs of task

Description

It’s only valid to call this when task is stopped for system call exit tracing (due to
TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT), after
tracehook_report_syscall_entry returned nonzero to prevent the system
call from taking place.

This rolls back the register state in regs so it’s as if the system call instruction was
a no-op. The registers containing the system call number and arguments are as they
were before the system call instruction. This may not be the same as what the
register state looked like at system call entry tracing.

syscall _get error

LINUX
Kernel Hackers ManualJuly 2010

Name

syscall_get_error — check result of traced system call

54

Chapter 3. Machine State

Synopsis

long syscall_get_error (struct task_struct x task, struct
pt_regs * regs);

Arguments

task

task of interest, must be blocked

regs

task_pt_regs of task

Description
Returns 0 if the system call succeeded, or -ERRORCODE if it failed.

It’s only valid to call this when task is stopped for tracing on exit from a system
call, due to TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT.

syscall_get_return_value

LINUX
Kernel Hackers ManualJuly 2010

Name

syscall_get_return_value — get the return value of a traced system call

55

Chapter 3. Machine State

Synopsis

long syscall_get_return_value (struct task_struct = task,
struct pt_regs * regs);

Arguments

task

task of interest, must be blocked

regs

task_pt_regs of task

Description

Returns the return value of the successful system call. This value is meaningless if
syscall_get_error returned nonzero.

It’s only valid to call this when task is stopped for tracing on exit from a system
call, due to TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT.

syscall _set return_value

LINUX
Kernel Hackers ManualJuly 2010

Name

syscall_set_return_value — change the return value of a traced system
call

56

Chapter 3. Machine State

Synopsis

void syscall_set_return_value (struct task_struct * task,
struct pt_regs x regs, int error, long val);

Arguments

task

task of interest, must be blocked

regs

task_pt_regs of task

error

negative error code, or zero to indicate success

val

user return value if error is zero

Description

This changes the results of the system call that user mode will see. If error is zero,
the user sees a successful system call with a return value of val. If erroris
nonzero, it’s a negated errno code; the user sees a failed system call with this errno
code.

It’s only valid to call this when task is stopped for tracing on exit from a system
call, due to TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT.

syscall_get_arguments

LINUX

57

Chapter 3. Machine State
Kernel Hackers ManualJuly 2010

Name

syscall_get_arguments — extract system call parameter values

Synopsis

void syscall_get_arguments (struct task_struct x task, struct
pt_regs * regs, unsigned int i, unsigned int n, unsigned long
* args) ;

Arguments

task

task of interest, must be blocked

regs

task_pt_regs of task
argument index [0,5]

number of arguments; n+i must be [1,6].

args

array filled with argument values

Description

Fetches n arguments to the system call starting with the i’th argument (from 0
through 5). Argument 1 is stored in args[0], and so on. An arch inline version is
probably optimal when 1 and n are constants.

58

Chapter 3. Machine State

It’s only valid to call this when task is stopped for tracing on entry to a system call,
due to TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT. It’s invalid to call this with
i 4 n> 6; we only support system calls taking up to 6 arguments.

syscall_set_arguments

LINUX
Kernel Hackers ManualJuly 2010

Name

syscall_set_arguments — change system call parameter value

Synopsis

void syscall_set_arguments (struct task_struct x task, struct
pt_regs x regs, unsigned int i, unsigned int n, const unsigned
long * args);

Arguments

task

task of interest, must be in system call entry tracing
regs
task_pt_regs of task

argument index [0,5]

number of arguments; n+1 must be [1,6].

59

Chapter 3. Machine State
args

array of argument values to store

Description
Changes n arguments to the system call starting with the i’th argument. Argument
i gets value args[0], and so on. An arch inline version is probably optimal when i

and n are constants.

It’s only valid to call this when task is stopped for tracing on entry to a system call,
due to TIF_SYSCALL_TRACE or TIF_SYSCALL_AUDIT. It’s invalid to call this with

i+ n>6; we only support system calls taking up to 6 arguments.

60

Chapter 4. Kernel Internals

This chapter covers the interface to the tracing infrastructure from the core of the
kernel and the architecture-specific code. This is for maintainers of the kernel and
arch code, and not relevant to using the tracing facilities described in preceding
chapters.

4.1. Core Calls In

These calls are declared in <1inux/tracehook.h>. The core kernel calls these
functions at various important places.

tracehook_expect_breakpoints

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_expect_breakpoints — guess if task memory might be
touched

Synopsis

Arguments

task

current task, making a new mapping

int tracehook_expect_breakpoints (struct task_struct * task);

61

Chapter 4. Kernel Internals

Description

Return nonzero if task is expected to want breakpoint insertion in its memory at
some point. A zero return is no guarantee it won’t be done, but this is a hint that it’s
known to be likely.

May be called with task->mm->mmap_sem held for writing.

tracehook_report_syscall_entry

LINUX

Kernel Hackers ManualJuly 2010

62

Name

tracehook_report_syscall_entry — task is about to attempt a system
call

Synopsis

__must_check int tracehook_report_syscall_entry (struct
pt_regs x regs);

Arguments

regs

user register state of current task

Description

This will be called if TIF_SYSCALL_TRACE has been set, when the current task has
just entered the kernel for a system call. Full user register state is available here.

Chapter 4. Kernel Internals

Changing the values in regs can affect the system call number and arguments to be
tried. It is safe to block here, preventing the system call from beginning.

Returns zero normally, or nonzero if the calling arch code should abort the system
call. That must prevent normal entry so no system call is made. If task ever returns
to user mode after this, its register state is unspecified, but should be something
harmless like an ENOSYS error return. It should preserve enough information so that
syscall_rollback can work (see asm-generic/syscall.h).

Called without locks, just after entering kernel mode.

tracehook report_syscall_exit

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_report_syscall_exit — task has just finished a system call

Synopsis

void tracehook_report_syscall_exit (struct pt_regs x regs, int
step) ;

Arguments

regs

user register state of current task

step

nonzero if simulating single-step or block-step

63

Chapter 4. Kernel Internals

Description

This will be called if TIF_SYSCALL_TRACE has been set, when the current task has
just finished an attempted system call. Full user register state is available here. It is
safe to block here, preventing signals from being processed.

If step is nonzero, this report is also in lieu of the normal trap that would follow
the system call instruction because user_enable_block_step or
user_enable_single_step was used. In this case, TIF_SYSCALL_TRACE might
not be set.

Called without locks, just before checking for pending signals.

tracehook unsafe exec

LINUX

Kernel Hackers ManualJuly 2010

64

Name

tracehook_unsafe_exec — check for exec declared unsafe due to tracing

Synopsis

int tracehook unsafe exec (struct task_struct * task);

Arguments

task

current task doing exec

Chapter 4. Kernel Internals

Description

Return LsM_UNSAFE_* bits applied to an exec because of tracing.

task->cred_guard_mutex is held by the caller through the do_execve.

tracehook tracer task

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_tracer_task — return the task that is tracing the given task

Synopsis

struct task_struct x tracehook tracer task (struct task_struct
* tsk);

Arguments

tsk

task to consider

Description
Returns NULL if noone is tracing task, or the struct task_struct pointer to its tracer.

Must called under rcu_read_lock. The pointer returned might be kept live only
by RCU. During exec, this may be called with task_1lock held on task, still held
from when t racehook_unsafe_exec was called.

65

Chapter 4. Kernel Internals

tracehook_report_exec

LINUX

Kernel Hackers ManualJuly 2010

66

Name

tracehook_report_exec — a successful exec was completed

Synopsis

void tracehook_report_exec (struct linux_binfmt * fmt, struct
linux_binprm » bprm, struct pt_regs x regs);

Arguments

fmt

struct linux_binfmt that performed the exec

bprm

struct linux_binprm containing exec details

regs

user-mode register state

Description

An exec just completed, we are shortly going to return to user mode. The freshly
initialized register state can be seen and changed in regs. The name, file and other
pointers in bprm are still on hand to be inspected, but will be freed as soon as this
returns.

Chapter 4. Kernel Internals

Called with no locks, but with some kernel resources held live and a reference on
fmt->module.

tracehook_report_exit

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_report_exit — task has begun to exit

Synopsis

void tracehook_report_exit (long x exit_code);

Arguments

exit _code

pointer to value destined for current->exit_code

Description

exit_code points to the value passed to do_exit, which tracing might change
here. This is almost the first thing in do_exit, before freeing any resources or
setting the PF_EXITING flag.

Called with no locks held.

67

Chapter 4. Kernel Internals

tracehook_prepare clone

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_prepare_clone — prepare for new child to be cloned

Synopsis

int tracehook_prepare_clone (unsigned clone_ flags);

Arguments

clone_flags

CLONE_* flags from clone/fork/vfork system call

Description

This is called before a new user task is to be cloned. Its return value will be passed

to tracehook_finish_clone.

Called with no locks held.

tracehook finish_clone

LINUX

68

Chapter 4. Kernel Internals
Kernel Hackers ManualJuly 2010

Name

tracehook_finish_clone — new child created and being attached

Synopsis

void tracehook_finish clone (struct task_struct *= child,
unsigned long clone_flags, int trace);

Arguments

child

new child task

clone_flags

CLONE_* flags from clone/fork/vfork system call

trace

return value from tracehook_prepare_clone

Description

This is called immediately after adding chi1d to its parent’s children list. The
trace value is that returned by t racehook_prepare_clone

Called with current’s siglock and write_lock_irq(tasklist_lock) held.

tracehook report clone

LINUX

69

Chapter 4. Kernel Internals

Kernel Hackers ManualJuly 2010

70

Name

tracehook_report_clone — in parent, new child is about to start running

Synopsis

void tracehook_report_clone (struct pt_regs * regs, unsigned
long clone flags, pid_t pid, struct task_struct % child);

Arguments

regs

parent’s user register state

clone_flags
flags from parent’s system call
pid
new child’s PID in the parent’s namespace

child

new child task

Description

Called after a child is set up, but before it has been started running. This is not a
good place to block, because the child has not started yet. Suspend the child here if
desired, and then block in t racehook_report_clone_complete. This must
prevent the child from self-reaping if tracehook_report_clone_complete
uses the child pointer; otherwise it might have died and been released by the time
tracehook_report_clone_complete is called.

Called with no locks held, but the child cannot run until this returns.

Chapter 4. Kernel Internals

tracehook_report _clone_complete

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_report_clone_complete — new child is running
Synopsis

void tracehook_report_clone_complete (int trace, struct
pt_regs % regs, unsigned long clone_flags, pid_t pid, struct
task_struct * child);

Arguments

trace

return value from t racehook_prepare_clone

regs

parent’s user register state

clone_flags

flags from parent’s system call
pid
new child’s PID in the parent’s namespace

child

child task, already running

71

Chapter 4. Kernel Internals

Description

This is called just after the child has started running. This is just before the
clone/fork syscall returns, or blocks for vfork child completion if clone flags
has the CLONE_VFORK bit set. The child pointer may be invalid if a self-reaping
child died and t racehook_report_clone took no action to prevent it from
self-reaping.

Called with no locks held.

tracehook report_vfork done

LINUX

Kernel Hackers ManualJuly 2010

72

Name

tracehook_report_vfork_done — vfork parent’s child has exited or exec’d

Synopsis

void tracehook_report_vfork_done (struct task_struct x child,
pid_t pid);

Arguments
child
child task, already running

pid

new child’s PID in the parent’s namespace

Chapter 4. Kernel Internals

Description

Called after a CLONE_VFORK parent has waited for the child to complete. The
clone/vfork system call will return immediately after this. The chi1d pointer may
be invalid if a self-reaping child died and t racehook_report_clone took no
action to prevent it from self-reaping.

Called with no locks held.

tracehook_prepare_release task

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_prepare_release_task — task is being reaped, clean up

tracing

Synopsis

void tracehook_prepare_release_task (struct task_struct =
task) ;

Arguments

task

task in EXIT_DEAD state

73

Chapter 4. Kernel Internals
Description

This is called in release_task just before task gets finally reaped and freed.
This would be the ideal place to remove and clean up any tracing-related state for
task.

Called with no locks held.

tracehook finish_release task

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_finish_release_task — final tracing clean-up

Synopsis

volid tracehook_finish release_task (struct task_struct =
task) ;

Arguments

task

task in EXIT_ DEAD state

Description

This is called in release_task when task is being in the middle of being reaped.
After this, there must be no tracing entanglements.

Called with write_lock_irq(tasklist_lock) held.

74

Chapter 4. Kernel Internals

tracehook_signal_handler

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_signal_handler — signal handler setup is complete

Synopsis

void tracehook_signal_handler (int sig, siginfo_t * info,
const struct k_sigaction x ka, struct pt_regs % regs, int
stepping) ;

Arguments
sig
number of signal being delivered

info

siginfo_t of signal being delivered

ka

sigaction setting that chose the handler

regs

user register state

stepping

nonzero if debugger single-step or block-step in use

75

Chapter 4. Kernel Internals

Description

Called by the arch code after a signal handler has been set up. Register and stack
state reflects the user handler about to run. Signal mask changes have already been
made.

Called without locks, shortly before returning to user mode (or handling more
signals).

tracehook consider _ignored_signal

LINUX

Kernel Hackers ManualJuly 2010

76

Name

tracehook_consider_ignored_signal — suppress short-circuit of
ignored signal

Synopsis

int tracehook_consider_ignored_signal (struct task_struct =
task, int sig);

Arguments
task
task receiving the signal

sig

signal number being sent

Chapter 4. Kernel Internals
Description

Return zero iff tracing doesn’t care to examine this ignored signal, so it can
short-circuit normal delivery and never even get queued.

Called with task->sighand->siglock held.

tracehook consider fatal signal

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_consider_fatal_signal — suppress special handling of fatal
signal

Synopsis

int tracehook_consider_fatal_signal (struct task_struct =
task, int sig);

Arguments

task

task receiving the signal
sig

signal number being sent

77

Chapter 4. Kernel Internals
Description

Return nonzero to prevent special handling of this termination signal. Normally
handler for signal is SIG_DFL. It can be SIG_IGN if sig isignored, in which case
force_sigis about to reset it to SIG_DFL. When this returns zero, this signal
might cause a quick termination that does not give the debugger a chance to
intercept the signal.

Called with or without task->sighand->siglock held.

tracehook_force_sigpending

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_force_sigpending — let tracing force signal_pending(current)
on

Synopsis

int tracehook_force_sigpending (void);

Arguments

void

no arguments

Description

78

Chapter 4. Kernel Internals

Called when recomputing our signal_pending flag. Return nonzero to force the
signal_pending flag on, so that t racehook_get_signal will be called before
the next return to user mode.

Called with current->sighand->siglock held.

tracehook get signal

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_get_signal — deliver synthetic signal to traced task
Synopsis

int tracehook_get_signal (struct task_struct % task, struct
pt_regs x regs, siginfo_t % info, struct k_sigaction *
return_ka);

Arguments

task

current

regs

task_pt_regs(current)

info

details of synthetic signal

79

Chapter 4. Kernel Internals

return_ka

sigaction for synthetic signal

Description

Return zero to check for a real pending signal normally. Return -1 after releasing
the siglock to repeat the check. Return a signal number to induce an artifical signal
delivery, setting *info and *return_ka to specify its details and behavior.

The return_ka->sa_handler value controls the disposition of the signal, no matter
the signal number. For STG_DF1, the return value is a representative signal to
indicate the behavior (e.g. SIGTERM for death, STGQUIT for core dump, SIGSTOP
for job control stop, SIGTSTP for stop unless in an orphaned pgrp), but the signal
number reported will be info->si_signo instead.

Called with task->sighand->siglock held, before dequeuing pending signals.

tracehook notify_jctl

LINUX

Kernel Hackers ManualJuly 2010

80

Name

tracehook_notify_jctl — report about job control stop/continue
Synopsis

int tracehook_notify_ jectl (int notify, int why);

Chapter 4. Kernel Internals

Arguments

notify

zero, CLD_STOPPED or CLD_CONTINUED

why

CLD_STOPPED or CLD_CONTINUED

Description

This is called when we might call do_notify_parent_cldstop.

notify is zero if we would not ordinarily send a STGCHLD, or is the CLD_STOPPED
or CLD_CONTINUED .si_code for SIGCHLD.

why 18 CLD_STOPPED when about to stop for job control; we are already in
TASK_STOPPED state, about to call schedule. It might also be that we have just
exited (check PF_EXITING), but need to report that a group-wide stop is complete.

why 1S CLD_CONTINUED when waking up after job control stop and ready to make a
delayed not i fy report.

Return the cLD_* value for SIGCHLD, or zero to generate no signal.

Called with the siglock held.

tracehook finish_jctl

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_finish_jctl — report about return from job control stop

81

Chapter 4. Kernel Internals

Synopsis

void tracehook_finish_jctl (void);

Arguments

void

no arguments

Description

This is called by do_signal_stop after wakeup.

tracehook_notify_death

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_notify_ death — task is dead, ready to notify parent
Synopsis

int tracehook_notify death (struct task_struct * task, void xx
death_cookie, int group_dead);

82

Chapter 4. Kernel Internals

Arguments

task

current task now exiting

death _cookie

VahwtOpa%tOtracehook_report_death

group_dead

nonzero if this was the last thread in the group to die

Description

A return value >= 0 means call do_notify_parent with that signal number.
Negative return value can be DEATH_REAP to self-reap right now, or
DEATH_DELAYED_GROUP_LEADER to a zombie without notifying our parent. Note
that a return value of O means a do_notify_parent call that sends no signal, but
still wakes up a parent blocked in wait*().

Called with write_lock_irq(tasklist_lock) held.

tracehook report death

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_report_death — task is dead and ready to be reaped

Synopsis

void tracehook_report_death (struct task_struct x task, int
signal, void * death cookie, int group_dead);

83

Chapter 4. Kernel Internals

Arguments

task

current task now exiting

signal

return value from tracheook_notify_death

death _cookie

value passed back from tracehook_notify_death

group_dead

nonzero if this was the last thread in the group to die

Description

Thread has just become a zombie or is about to self-reap. If positive, signal is the
signal number just sent to the parent (usually SIGCHLD). If signal is
DEATH_REAP, this thread will self-reap. If signal is
DEATH_DELAYED_GROUP_LEADER, this is a delayed_group_leader zombie.
The death_cookie was passed back by t racehook_notify_death.

If normal reaping is not inhibited, task->exit_state might be changing in parallel.

Called without locks.

set_notify_resume

LINUX

Kernel Hackers ManualJuly 2010

84

Name

set_notify_resume — cause tracehook_notify_resume to be called

Chapter 4. Kernel Internals

Synopsis

void set_notify resume (struct task_struct * task);

Arguments

task

task that will call tracehook_notify_resume

Description

Calling this arranges that task will call tracehook_notify_resume before
returning to user mode. If it’s already running in user mode, it will enter the kernel
and call tracehook_notify_resume soon. If it’s blocked, it will not be woken.

tracehook notify resume

LINUX
Kernel Hackers ManualJuly 2010

Name

tracehook_notify_ resume — report when about to return to user mode

Synopsis

void tracehook notify resume (struct pt_regs * regs);

85

Chapter 4. Kernel Internals
Arguments

regs

user-mode registers of current task

Description

This is called when TIF_NOTIFY_ RESUME has been set. Now we are about to return
to user mode, and the user state in regs can be inspected or adjusted. The caller in
arch code has cleared TIF_NOTIFY_ RESUME before the call. If the flag gets set
again asynchronously, this will be called again before we return to user mode.

Called without locks. However, on some machines this may be called with
interrupts disabled.

4.2. Architecture Calls Out

An arch that has done all these things sets CONFIG_HAVE_ARCH_TRACEHOOK. This
is required to enable the utrace code.

4.2.1. <asm/ptrace.h>

An arch defines these in <asm/ptrace.h> if it supports hardware single-step or
block-step features.

arch_has_single step

LINUX
Kernel Hackers ManualJuly 2010

Name

arch_has_single_step — does this CPU support user-mode single-step?

86

Chapter 4. Kernel Internals

Synopsis

arch_has_single_step (void);

Arguments

None

Description

If this is defined, then there must be function declarations or inlines for
user_enable_single_step and user_disable_single_step.
arch_has_single_step should evaluate to nonzero iff the machine supports
instruction single-step for user mode. It can be a constant or it can test a CPU
feature bit.

arch_has_block_step

LINUX
Kernel Hackers ManualJuly 2010

Name

arch_has_block_step — does this CPU support user-mode block-step?

Synopsis

arch_has_block_step (void);

87

Chapter 4. Kernel Internals
Arguments

None

Description

If this is defined, then there must be a function declaration or inline for
user_enable_block_step, and arch_has_single_step must be defined too.
arch_has_block_step should evaluate to nonzero iff the machine supports
step-until-branch for user mode. It can be a constant or it can test a CPU feature bit.

user_enable single step

LINUX
Kernel Hackers ManualJuly 2010

Name

user_enable_single_step — single-step in user-mode task

Synopsis

void user_enable_single_step (struct task_struct * task);

Arguments

task

either current or a task stopped in TASK_TRACED

88

Chapter 4. Kernel Internals
Description

This can only be called when arch_has_single_step has returned nonzero. Set
task so that when it returns to user mode, it will trap after the next single
instruction executes. If arch_has_block_step is defined, this must clear the
effects of user_enable_block_step too.

user_enable block step

LINUX
Kernel Hackers ManualJuly 2010

Name

user_enable_block_step — step until branch in user-mode task

Synopsis

voilid user_enable_block_step (struct task_struct * task);

Arguments

task

either current or a task stopped in TASK_TRACED

Description

This can only be called when arch_has_block_step has returned nonzero, and
will never be called when single-instruction stepping is being used. Set task so that
when it returns to user mode, it will trap after the next branch or trap taken.

89

Chapter 4. Kernel Internals

user_disable_single_step

LINUX

Kernel Hackers ManualJuly 2010

90

Name

user_disable_single_step — cancel user-mode single-step

Synopsis

void user_disable_single_step (struct task_struct x task);

Arguments

task

either current or a task stopped in TASK_TRACED

Description

Clear task of the effects of user_enable_single_step and
user_enable_block_step. This can be called whether or not either of those was
ever called on task, and even if arch_has_single_step returned zero.

4.2.2. <asm/syscall.h>

An arch provides <asm/syscall.h> that defines these as inlines, or declares them
as exported functions. These interfaces are described in Section 3.3.

Chapter 4. Kernel Internals
4.2.3. <linux/tracehook.h>

An arch must define TIF_NOTIFY RESUME and TIF_SYSCALL_TRACE in its
<asm/thread_info.h>. The arch code must call the following functions, all
declared in <1inux/tracehook.h> and described in Section 4.1:

e tracehook_notify_ resume
* tracehook_report_syscall_entry
e tracehook_report_syscall_exit

* tracehook_signal_handler

91

Chapter 4. Kernel Internals

92

	The utrace User Debugging Infrastructure
	Table of Contents
	Chapter 1. utrace concepts
	1.1. Introduction
	1.2. Events and Callbacks
	1.3. Stopping Safely
	1.3.1. Writing wellbehaved callbacks
	1.3.2. Using UTRACESTOP

	1.4. Teardown Races
	1.4.1. Primacy of SIGKILL
	1.4.2. Final callbacks
	1.4.3. Engine and task pointers
	1.4.4. Serialization of DEATH and REAP
	1.4.5. Interlock with final callbacks
	1.4.6. Using utracebarrier

	Chapter 2. utrace core API
	enum utraceresumeaction
	LINUX
	Name
	Synopsis
	Constants
	Description

	utraceresumeaction
	LINUX
	Name
	Synopsis
	Arguments
	Description

	enum utracesignalaction
	LINUX
	Name
	Synopsis
	Constants
	Description

	utracesignalaction
	LINUX
	Name
	Synopsis
	Arguments
	Description

	enum utracesyscallaction
	LINUX
	Name
	Synopsis
	Constants
	Description

	utracesyscallaction
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct utraceengine
	LINUX
	Name
	Synopsis
	Members
	Description

	utraceengineget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utraceengineput
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct utraceengineops
	LINUX
	Name
	Synopsis
	Members
	Description

	struct utraceexaminer
	LINUX
	Name
	Synopsis
	Members
	Description

	utracecontrolpid
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utraceseteventspid
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utracebarrierpid
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utraceattachtask
	LINUX
	Name
	Synopsis
	Arguments
	Description
	UTRACEATTACHCREATE
	UTRACEATTACHEXCLUSIVE
	UTRACEATTACHMATCHOPS
	UTRACEATTACHMATCHDATA

	utraceattachpid
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utracesetevents
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utracecontrol
	LINUX
	Name
	Synopsis
	Arguments
	Description
	UTRACEDETACH
	UTRACESTOP
	UTRACERESUME
	UTRACEREPORT
	UTRACEINTERRUPT
	UTRACESINGLESTEP
	UTRACEBLOCKSTEP

	utracebarrier
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utraceprepareexamine
	LINUX
	Name
	Synopsis
	Arguments
	Description

	utracefinishexamine
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 3. Machine State
	3.1. struct userregset
	userregsetactivefn
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userregsetgetfn
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userregsetsetfn
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userregsetwritebackfn
	LINUX
	Name
	Synopsis
	Arguments
	Description

	struct userregset
	LINUX
	Name
	Synopsis
	Members
	Description

	struct userregsetview
	LINUX
	Name
	Synopsis
	Members
	Description

	taskuserregsetview
	LINUX
	Name
	Synopsis
	Arguments
	Description

	copyregsettouser
	LINUX
	Name
	Synopsis
	Arguments

	copyregsetfromuser
	LINUX
	Name
	Synopsis
	Arguments

	3.2. System Call Information
	taskcurrentsyscall
	LINUX
	Name
	Synopsis
	Arguments
	Description

	3.3. System Call Tracing
	syscallgetnr
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallrollback
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallgeterror
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallgetreturnvalue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallsetreturnvalue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallgetarguments
	LINUX
	Name
	Synopsis
	Arguments
	Description

	syscallsetarguments
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 4. Kernel Internals
	4.1. Core Calls In
	tracehookexpectbreakpoints
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportsyscallentry
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportsyscallexit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookunsafeexec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehooktracertask
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportexec
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportexit
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookprepareclone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookfinishclone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportclone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportclonecomplete
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportvforkdone
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookpreparereleasetask
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookfinishreleasetask
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehooksignalhandler
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookconsiderignoredsignal
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookconsiderfatalsignal
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookforcesigpending
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookgetsignal
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehooknotifyjctl
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookfinishjctl
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehooknotifydeath
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehookreportdeath
	LINUX
	Name
	Synopsis
	Arguments
	Description

	setnotifyresume
	LINUX
	Name
	Synopsis
	Arguments
	Description

	tracehooknotifyresume
	LINUX
	Name
	Synopsis
	Arguments
	Description

	4.2. Architecture Calls Out
	4.2.1. asm/ptrace.h

	archhassinglestep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	archhasblockstep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userenablesinglestep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userenableblockstep
	LINUX
	Name
	Synopsis
	Arguments
	Description

	userdisablesinglestep
	LINUX
	Name
	Synopsis
	Arguments
	Description
	4.2.2. asm/syscall.h
	4.2.3. linux/tracehook.h

