The mac80211 subsystem for
kernel developers

Johannes Berg

johannes@sipsolutions.net

The mac80211 subsystem for kernel developers
by Johannes Berg

Copyright © 2007-2009 Johannes Berg

mac80211 is the Linux stack for 802.11 hardware that implements only partial functionality
in hard- or firmware. This document defines the interface between mac80211 and low-level
hardware drivers.

If you’re reading this document and not the header file itself, it will be incomplete because not
all documentation has been converted yet.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation; if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

Table of Contents

I. The basic mac80211 driver interface. \4
1. Basic hardware handling............cccceeriiieiiieniiieieee e 1
Struct 1€€€802 1T _NW ..oiieiiiieiiiie e e 1
enum 1eee80211_hw_flags......ccooeieiiiiiiiiieeeeeeee e 3
SET_IEEESO211_DEV....ooiiiiieeeee e 6
SET_IEEE80211_PERM_ADDR........cccotiiiiiieieeee e 7
SIIUCE 1EEEE02T 1 _OPS.ciiiuiiieiiieiiieeiee ettt 8
166680211 _allOC W it 13
1680211 _re@iSter Wcoiiiiiiiiiiiiiiieeeee e 14
ieee80211_get_tX_led_Name.........cccceeeriieeiuieeniieeiieeriee e eeiee e 15
ieee80211_get_rxX_1ed_Nameccocceeerieeriiieeniieniie e 16
ieee80211_get_assoc_led_Name........cccccueevvueeiiiieniieinieenieeeeeeeeeeee 17
ieee80211_get_radio_led_Nnameccccevveeriiiiniiiinieiniiceeceeceee 18
1€e€80211_unregister_NwWcoooiiiiiiiiiiiiiiieeeee e 19
1€EE8021 T _TTEE W i e et 19

2. PHY CONfIGUIAtION ...couuiiiiiiiiiiiieiiieiiieeete ettt 21
STIUCE 1€EE802TT _CONT .o 21
enum ieee80211_conf_flags........cooeviviiiiiiiiiiiiiieee e 23

3. VIrtual INterfacesScceeuviiieeiiiieeeiiee ettt e et e aree e 25
Struct 1€€€802 11 _Vif...eiiiiiiiieiiie e 25

4. Receive and tranSmit PrOCESSINE ... ccvvveeerureeriureenreerieeenieesiteesreessieeesveesans 27
4.1. what should be hereccccvviiiiiiiiie e 27

4.2, Frame fOrmat............coooiiiiiiiiiie e 27

4.3. Packet ali@NMENtoeeuiiiniieiiieiiee ettt 27

4.4. Calling into mac80211 from Interrupts........ccceevververceerneeneennennnen. 28

4.5. functions/defiNitioNS.ccccuvviieieieeicciriee et e e e 28
SUCE 1€€E8021 1 X StALUS ..eeeeitiereeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeneenss 28

enum mMac80211_rX_flagscccevueeriiiiniiiiiieeeeeeecee e 30

struct 1€ee8021 1 _tX_INTO.....ciiiiiiiiiiiieiee e 32

TEEEBOZ2 L L I ittt et e e e e e e e aas 33

1€€€8021 1 _rX_irgSafe...ccccveeieiieeiieeieeeiieeee e 34

18680211 _tX_SLATUS ...vvveeeeeiiieeeciieeeceiiee e et e e e e e e e eraeeeesaraeeeeeeeeas 35
1eee80211_tx_status_irgSafe........ccoovueeriiiinieiniiiiinieeniieeieeeieeee 36

1€EE802 1T _ItS_OT ..eeruiiiiiiiiiieeeiieee ettt 37
1€€€80211 IS dUTALION c.evveeeeeeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeeeennans 38
1€€80211_CtStoSelf_Zet.....covviiriiiiiiieeiieeieeeeeeee e 39
1eee80211_ctstoself durationeeeeeeeeeeiiiieiiiiiiiiiiiieeeeeeeeeeeeennans 40
ieee80211_generic_frame_duration.........c..cceeceeevieeniiennieeniieennne. 41

1€€8021 1_WaKE_qUEUELcoevuvieeerieeiiieeiie ettt 43

1€€€802 1 1 _StOP_qUEUCveeiuiiieeiieeiiieeiee ettt 43
1€€80211_WaKE_QUEUES....ccuveiriiieiiiieniieeiiee et 44

iii

1€€€8021 1 _StOP_QUEUES ...vevenerieeeiieeiieeeiieeitee e esireesaeeeseaeeseneeenenes
5. Frame filtering.......c.covviiiiiiiiiiecieeee et
enum ieee80211_filter_flagsccovveeriiiiiiiiiiiiieeee

II. Advanced driver interface........

6. Hardware crypto acCelerationc.ceecuveerveeriieenieeniieeeieesieeesreesnee e
eNUM SEt_KEY_CIM..c..eiiiiiiiiiiieiiie ettt
struct ieee80211_key_confoooiiiiiiiiiiiiie e
enum 1€ee80211_Key_alg.....cccoviiiiiiiiiiiiiiiceeeee e
enum ieee80211_Key_flagsccccuveviieriieeiieeieee e

7. POWETSAVE SUPPOTL ..eeeeruiviieiriiieeeniiieeeriieeeeeiteeeesiireeessareeeesneaeessnbeeesnnseeeens

8. Beacon fIlter SUPPOTT.......coviriiiriiiriirieeeee et
1€€E8021 1 _DEACON_LOSS. . eeeeeeeeeeeeee e es

9. Multiple queues and QOS SUPPOTL.......eeeuirerveeriiieenieeeiieerieeeireesreeeseeeenes
struct ieee80211_tX_qUeUE_Params..........ceeeveeeriueeenueeriieeenneesseeenueennns

10. Access point MOAE SUPPOTTcouveeurierieerieriieieenieereereesieeseeereesreeseeesanees
1eee80211_get_buffered_becoovuiiiiiiiniiiiiiiiiieeceee
1€€€8021 1 _DEACON_ZOL...c.uvieeiieeiiieeiieeeiee ettt ettt eee e eaeeeeaee s

11. Supporting multiple virtual interfacesc.ccceevveeeviieiniieniieeieeeee e,

12. Hardware scan offloadcoooveeeeiiiiieciiic e
1eee80211_scan_completedcoocueeriieiriiiiiiiiiniieeieeeteeee e

II1. Rate control interface...

13, dUMMY ChAPLET......eeiiiieiiie ettt et
IV. Internals...

14. Key handlingccc.oooiiiiiiiiiieieee ettt
14.1. Key handling basiCsceevvreriieeeriieniieeiieeciee et
14.2. MORE TBDccoiiiiiiiiiiiiiccceccceee e

15. RECEIVE PrOCESSINE....eeuveeurieiieriieeirtenieenteete et esieesreereesieeseeesreereesaeesanees

16. TranSmIt PrOCESSINEeeeuvreerureeaiteenieeeiiteeetee ettt e sreeesieeesneeesareesbeeesaneeeane
17. Station info handling...........ccceeeiiieriiiieiiieeeeeeee e
17.1. Programming information............cueereueerrieeniieeenieeniieeniee e e
STIUCT STA_TNT0 ettt e e e e e e e e e e e eeaas

enum ieee80211_sta_info_flags.......cccoovieiiiiiniiiniiiiniiiiicciee,

17.2. STA information lifetime rulescccoeeveerieeeriieeniieeriee e

18, SYNCRIONISALION.eciuiiiiiiieiiieeiie ettt sbee e

v

l. The basic mac80211 driver
interface

Table of Contents

1. Basic hardware handling . . 1
2. PHY configuration 21
3. Virtual interfaces.. 25
4. Receive and transmit processing 27
5. Frame filtering...... 47

You should read and understand the information contained within this part of the
book while implementing a driver. In some chapters, advanced usage is noted, that
may be skipped at first.

This part of the book only covers station and monitor mode functionality, additional
information required to implement the other modes is covered in the second part of
the book.

Chapter 1. Basic hardware handling

TBD

This chapter shall contain information on getting a hw struct allocated and
registered with mac80211.

Since it is required to allocate rates/modes before registering a hw struct, this
chapter shall also contain information on setting up the rate/mode structs.

Additionally, some discussion about the callbacks and the general programming
model should be in here, including the definition of ieee80211_ops which will be
referred to a lot.

Finally, a discussion of hardware capabilities should be done with references to
other parts of the book.

struct ieee80211_hw

LINUX
Kernel Hackers ManualJuly 2010

Name

struct ieee80211_hw — hardware information and state

Synopsis

struct ieee80211_hw {
struct ieee80211_conf conf;
struct wiphy * wiphy;
const char % rate_control_algorithm;
void * priv;
u32 flags;
unsigned int extra_tx_headroom;
int channel_change_time;
int vif_data_size;
int sta_data_size;
ul6 queues;
ul6 max_listen_interval;
s8 max_signal;
u8 max_rates;
u8 max_rate_tries;

Chapter 1. Basic hardware handling
}i

Members

conf

struct ieee80211_conf, device configuration, don’t use.

wiphy
This points to the struct wiphy allocated for this 802.11 PHY. You must fill in
the perm_addr and dev members of this structure using
SET_IEEE80211 DEV and SET_IEEE80211_PERM ADDR. Additionally, all
supported bands (with channels, bitrates) are registered here.
rate_control_algorithm
rate control algorithm for this hardware. If unset (NULL), the default
algorithm will be used. Must be set before calling ieee80211_register_hw.
priv
pointer to private area that was allocated for driver use along with this
structure.
flags

hardware flags, see enum ieee80211_hw_flags.

extra_tx_headroom

headroom to reserve in each transmit skb for use by the driver (e.g. for transmit
headers.)

channel_change_time

time (in microseconds) it takes to change channels.

vif _data_size

size (in bytes) of the drv_priv data area within struct ieee80211_vif.

sta_data_size

size (in bytes) of the drv_priv data area within struct ieee80211_sta.

Chapter 1. Basic hardware handling

queues

number of available hardware transmit queues for data packets. WMM/QoS
requires at least four, these queues need to have configurable access
parameters.

max_listen_interval

max listen interval in units of beacon interval that HW supports

max_signal

Maximum value for signal (rssi) in RX information, used only when
IEEE80211_HW_SIGNAI_UNSPEC or IEEES80211_HW_SIGNAI_DB

max_rates

maximum number of alternate rate retry stages

max_rate_tries

maximum number of tries for each stage

Description

This structure contains the configuration and hardware information for an 802.11
PHY.

enum ieee80211_hw flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_hw_flags — hardware flags

Synopsis

enum ieee80211_hw_flags {

Chapter 1. Basic hardware handling

IEEES80211_HW_HAS_RATE_CONTROL,
IEEES80211_HW_RX_INCLUDES_FCS,
IEEES80211_HW_HOST_BROADCAST_PS_BUFFERING,
IEEES80211_HW_2GHZ_SHORT_SLOT_INCAPARBLE,
IEEES80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE,
IEEES80211_HW_SIGNAL_UNSPEC,
IEEES80211_HW_SIGNAL_DBM,
IEEES80211_HW_NOISE_DBM,
IEEES80211_HW_SPECTRUM_MGMT,
IEEES80211_HW_AMPDU_AGGREGATION,
IEEES80211_HW_SUPPORTS_PS,
IEEES80211_HW_PS_NULLFUNC_STACK,
IEEES80211_HW_SUPPORTS_DYNAMIC_PS,
IEEES80211_HW_MFP_CAPABLE,
IEEES80211_HW_BEACON_FILTER,
IEEES80211_HW_SUPPORTS_STATIC_SMPS,
IEEES80211_HW_SUPPORTS_DYNAMIC_SMPS,
IEEES80211_HW_SUPPORTS_UAPSD,
IEEES80211_HW_REPORTS_TX_ACK_STATUS

}i

Constants

IEEE80211_HW_HAS_RATE_CONTROL

The hardware or firmware includes rate control, and cannot be controlled by
the stack. As such, no rate control algorithm should be instantiated, and the TX
rate reported to userspace will be taken from the TX status instead of the rate
control algorithm. Note that this requires that the driver implement a number
of callbacks so it has the correct information, it needs to have the
set_rts_threshold callback and must look at the BSS config
use_cts_prot for G/N protection, use_short_slot for slot timing in 2.4
GHz and use_short_preamble for preambles for CCK frames.

IEEE80211_HW_RX_INCLUDES_FCS

Indicates that received frames passed to the stack include the FCS at the end.

IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING

Some wireless LAN chipsets buffer broadcast/multicast frames for power
saving stations in the hardware/firmware and others rely on the host system for
such buffering. This option is used to configure the IEEE 802.11 upper layer to
buffer broadcast and multicast frames when there are power saving stations so
that the driver can fetch them with ieee80211_get_buffered_bc.

Chapter 1. Basic hardware handling
IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE

Hardware is not capable of short slot operation on the 2.4 GHz band.

IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE

Hardware is not capable of receiving frames with short preamble on the 2.4
GHz band.

IEEE80211_HW_SIGNAL_UNSPEC

Hardware can provide signal values but we don’t know its units. We expect
values between 0 and max_signal. If possible please provide dB or dBm
instead.

IEEE80211_HW_SIGNAL_DBM

Hardware gives signal values in dBm, decibel difference from one milliwatt.
This is the preferred method since it is standardized between different devices.
max_signal does not need to be set.

IEEE80211_HW_NOISE_DBM

Hardware can provide noise (radio interference) values in units dBm, decibel
difference from one milliwatt.

IEEE80211_HW_SPECTRUM_MGMT

Hardware supports spectrum management defined in 802.11h Measurement,
Channel Switch, Quieting, TPC

IEEE80211_HW_AMPDU_AGGREGATION
Hardware supports 11n A-MPDU aggregation.

IEEE80211_HW_SUPPORTS_PS

Hardware has power save support (i.e. can go to sleep).

IEEE80211_HW_PS_NULLFUNC_STACK

Hardware requires nullfunc frame handling in stack, implies stack support for
dynamic PS.

IEEE80211_HW_SUPPORTS_DYNAMIC_PS

Hardware has support for dynamic PS.

IEEE80211_HW_MFP_CAPABLE

Hardware supports management frame protection (MFP, IEEE 802.11w).

Chapter 1. Basic hardware handling
IEEE80211_HW_BEACON_FILTER

Hardware supports dropping of irrelevant beacon frames to avoid waking up
cpu.

IEEE80211_HW_SUPPORTS_STATIC_SMPS

Hardware supports static spatial multiplexing powersave, ie. can turn off all
but one chain even on HT connections that should be using more chains.

[EEE80211_HW_SUPPORTS_DYNAMIC_SMPS

Hardware supports dynamic spatial multiplexing powersave, ie. can turn off all
but one chain and then wake the rest up as required after, for example, rts/cts
handshake.

IEEE80211_HW_SUPPORTS_UAPSD

Hardware supports Unscheduled Automatic Power Save Delivery (U-APSD)
in managed mode. The mode is configured with conf_tx operation.

IEEE80211_HW_REPORTS_TX_ACK_STATUS

Hardware can provide ack status reports of Tx frames to the stack.

Description

These flags are used to indicate hardware capabilities to the stack. Generally, flags
here should have their meaning done in a way that the simplest hardware doesn’t
need setting any particular flags. There are some exceptions to this rule, however, so
you are advised to review these flags carefully.

SET_IEEE80211_DEV

LINUX
Kernel Hackers ManualJuly 2010

Name

SET IEEE80211_ DEV — set device for 802.11 hardware

Chapter 1. Basic hardware handling

Synopsis

void SET_IEEE80211 DEV (struct ieee80211_hw x hw, struct

device * dev);

Arguments

hw

the struct ieee80211_hw to set the device for

dev

the struct device of this 802.11 device

SET_IEEE80211_PERM_ADDR

LINUX
Kernel Hackers ManualJuly 2010

Name

SET_IEEE80211_PERM_ADDR — set the permanent MAC address for 802.11
hardware

Synopsis

void SET_IEEE80211 PERM ADDR (struct ieee80211_hw * hw, u8 =
addr) ;

Chapter 1. Basic hardware handling
Arguments

hw

the struct ieee80211_hw to set the MAC address for

addr

the address to set

struct ieee80211_ops

LINUX
Kernel Hackers ManualJuly 2010

Name

struct ieee80211_ops — callbacks from mac80211 to the driver

Synopsis

struct i1eee80211_ops {
int (* tx) (struct ieee80211_hw xhw, struct sk_buff =*skb);
int (% start) (struct ieee80211_hw =*hw);
volid (% stop) (struct ieee80211_hw x*hw);
int (* add_interface) (struct ieee80211_hw *hw,struct ieee80211_vif =vi:
void (* remove_interface) (struct ieee80211_hw xhw,struct ieee80211_vif
int (% config) (struct ieee80211_hw xhw, u32 changed);
void (% bss_info_changed) (struct ieee80211_hw *hw,struct ieee80211_vif
u64 (» prepare_multicast) (struct ieee80211_hw xhw,int mc_count, struct
void (% configure_filter) (struct ieee80211_hw xhw,unsigned int changed.
int (* set_tim) (struct ieee80211_hw *hw, struct i1ieee80211_sta =*sta,boo.
int (% set_key) (struct ieee80211_hw xhw, enum set_key_cmd cmd, struct i
void (% update_tkip_key) (struct ieee80211_hw xhw,struct ieee80211_vif
int (* hw_scan) (struct i1ieee80211_hw xhw,struct cfg80211_scan_request =
void (* sw_scan_start) (struct ieee80211_hw xhw);
void (* sw_scan_complete) (struct ieee80211_hw xhw);
int (x get_stats) (struct ieee80211_hw xhw,struct ieee80211_low_level_sf
void (% get_tkip_seq) (struct ieee80211_hw xhw, u8 hw_key_ idx,u32 xiv32
int (% set_rts_threshold) (struct ieee80211_hw *hw, u32 value);

Chapter 1. Basic hardware handling

int (* sta_add) (struct ieee80211_hw *hw, struct ieee80211_vif *vif, str
int (* sta_remove) (struct ieee80211_hw xhw, struct ieee80211_vif *vif,:
void (% sta_notify) (struct ieee80211_hw xhw, struct ieee80211_vif =xvif,
int (% conf_tx) (struct ieee80211_hw xhw, ul6 queue,const struct ieee8O:

u6d4d (» get_tsf) (struct ieee80211_hw xhw);
void (* set_tsf) (struct ieee80211_hw xhw, u64d4 tsf);

void (* reset_tsf) (struct ieee80211_hw xhw);

int (* tx_last_beacon) (struct ieee80211_hw xhw);

int (*x ampdu_action) (struct ieee80211_hw xhw,struct ieee80211_vif xvif
void (% rfkill_poll) (struct ieee80211_hw xhw);

void (% set_coverage_class) (struct ieee80211_hw xhw, u8 coverage_class

#ifdef CONFIG_NL80211_TESTMODE

int (* testmode_cmd) (struct ieee80211_hw xhw, void =xdata, int len);
#endif

void (% flush) (struct ieee80211_hw *hw, bool drop);

}i

Members

tx

Handler that 802.11 module calls for each transmitted frame. skb contains the
buffer starting from the IEEE 802.11 header. The low-level driver should send
the frame out based on configuration in the TX control data. This handler
should, preferably, never fail and stop queues appropriately, more importantly,
however, it must never fail for A-MPDU-queues. This function should return
NETDEV_TX_OK except in very limited cases. Must be implemented and
atomic.

start

Called before the first netdevice attached to the hardware is enabled. This
should turn on the hardware and must turn on frame reception (for possibly
enabled monitor interfaces.) Returns negative error codes, these may be seen in
userspace, or zero. When the device is started it should not have a MAC
address to avoid acknowledging frames before a non-monitor device is added.
Must be implemented and can sleep.

stop

Called after last netdevice attached to the hardware is disabled. This should
turn off the hardware (at least it must turn off frame reception.) May be called
right after add_interface if that rejects an interface. If you added any work onto
the mac80211 workqueue you should ensure to cancel it on this callback. Must
be implemented and can sleep.

Chapter 1. Basic hardware handling

10

add_interface

Called when a netdevice attached to the hardware is enabled. Because it is not
called for monitor mode devices, start and stop must be implemented. The
driver should perform any initialization it needs before the device can be
enabled. The initial configuration for the interface is given in the conf
parameter. The callback may refuse to add an interface by returning a negative
error code (which will be seen in userspace.) Must be implemented and can
sleep.

remove_interface

Notifies a driver that an interface is going down. The stop callback is called
after this if it is the last interface and no monitor interfaces are present. When
all interfaces are removed, the MAC address in the hardware must be cleared
so the device no longer acknowledges packets, the mac_addr member of the
conf structure is, however, set to the MAC address of the device going away.
Hence, this callback must be implemented. It can sleep.

config

Handler for configuration requests. IEEE 802.11 code calls this function to
change hardware configuration, e.g., channel. This function should never fail
but returns a negative error code if it does. The callback can sleep.

bss_info_changed

Handler for configuration requests related to BSS parameters that may vary
during BSS’s lifespan, and may affect low level driver (e.g. assoc/disassoc
status, erp parameters). This function should not be used if no BSS has been
set, unless for association indication. The changed parameter indicates which
of the bss parameters has changed when a call is made. The callback can sleep.

prepare_multicast

Prepare for multicast filter configuration. This callback is optional, and its
return value is passed to configure_filter. This callback must be atomic.

configure_filter

Configure the device’s RX filter. See the section “Frame filtering” for more
information. This callback must be implemented and can sleep.

set_tim

Set TIM bit. mac80211 calls this function when a TIM bit must be set or
cleared for a given STA. Must be atomic.

Chapter 1. Basic hardware handling
set_key

See the section “Hardware crypto acceleration” This callback is only called
between add_interface and remove_interface calls, i.e. while the given virtual
interface is enabled. Returns a negative error code if the key can’t be added.
The callback can sleep.

update_tkip_key

See the section “Hardware crypto acceleration” This callback will be called in
the context of Rx. Called for drivers which set
IEEE80211_KEY_FLAG_TKIP_REQ_RX_PI1_KEY. The callback must be
atomic.

hw_scan

Ask the hardware to service the scan request, no need to start the scan state
machine in stack. The scan must honour the channel configuration done by the
regulatory agent in the wiphy’s registered bands. The hardware (or the driver)
needs to make sure that power save is disabled. The req ie/ie_len members are
rewritten by mac80211 to contain the entire IEs after the SSID, so that drivers
need not look at these at all but just send them after the SSID -- mac80211
includes the (extended) supported rates and HT information (where
applicable). When the scan finishes, ieee80211_scan_completed must be
called; note that it also must be called when the scan cannot finish due to any
error unless this callback returned a negative error code. The callback can
sleep.

Sw_scan_start
Notifier function that is called just before a software scan is started. Can be
NULL, if the driver doesn’t need this notification. The callback can sleep.
sw_scan_complete
Notifier function that is called just after a software scan finished. Can be
NULL, if the driver doesn’t need this notification. The callback can sleep.
get_stats
Return low-level statistics. Returns zero if statistics are available. The callback
can sleep.
get_tkip_seq

If your device implements TKIP encryption in hardware this callback should
be provided to read the TKIP transmit IVs (both IV32 and IV 16) for the given
key from hardware. The callback must be atomic.

11

Chapter 1. Basic hardware handling

12

set_rts_threshold

Configuration of RTS threshold (if device needs it) The callback can sleep.

sta_add
Notifies low level driver about addition of an associated station, AP,
IBSS/WDS/mesh peer etc. This callback can sleep.

sta_remove
Notifies low level driver about removal of an associated station, AP,
IBSS/WDS/mesh peer etc. This callback can sleep.

sta_notify
Notifies low level driver about power state transition of an associated station,
AP, IBSS/WDS/mesh peer etc. Must be atomic.

conf_tx

Configure TX queue parameters (EDCF (aifs, cw_min, cw_max), bursting) for
a hardware TX queue. Returns a negative error code on failure. The callback
can sleep.

get_tsf

Get the current TSF timer value from firmware/hardware. Currently, this is
only used for IBSS mode BSSID merging and debugging. Is not a required
function. The callback can sleep.

set_tsf

Set the TSF timer to the specified value in the firmware/hardware. Currently,
this is only used for IBSS mode debugging. Is not a required function. The
callback can sleep.

reset_tsf

Reset the TSF timer and allow firmware/hardware to synchronize with other
STAs in the IBSS. This is only used in IBSS mode. This function is optional if
the firmware/hardware takes full care of TSF synchronization. The callback
can sleep.

tx_last_beacon

Determine whether the last IBSS beacon was sent by us. This is needed only
for IBSS mode and the result of this function is used to determine whether to
reply to Probe Requests. Returns non-zero if this device sent the last beacon.
The callback can sleep.

Chapter 1. Basic hardware handling
ampdu_action

Perform a certain A-MPDU action The RA/TID combination determines the
destination and TID we want the ampdu action to be performed for. The action
is defined through ieee80211_ampdu_mlme_action. Starting sequence number
(ssn) is the first frame we expect to perform the action on. Notice that
TX/RX_STOP can pass NULL for this parameter. Returns a negative error
code on failure. The callback must be atomic.

rfkill_poll

Poll rfkill hardware state. If you need this, you also need to set
wiphy->rfkill_poll to t rue before registration, and need to call
wiphy_rfkill set_hw_state in the callback. The callback can sleep.

set_coverage_class

Set slot time for given coverage class as specified in IEEE 802.11-2007 section
17.3.8.6 and modify ACK timeout accordingly. This callback is not required
and may sleep.

testmode_cmd

Implement a cfg80211 test mode command. The callback can sleep.

flush

Flush all pending frames from the hardware queue, making sure that the
hardware queues are empty. If the parameter drop is set to true, pending
frames may be dropped. The callback can sleep.

Description

This structure contains various callbacks that the driver may handle or, in some
cases, must handle, for example to configure the hardware to a new channel or to
transmit a frame.

ieee80211_alloc_hw

LINUX

13

Chapter 1. Basic hardware handling
Kernel Hackers ManualJuly 2010

Name

ieee80211 alloc_hw — Allocate a new hardware device

Synopsis

struct 1eee80211 hw x ieee8021l1l alloc _hw (size_ t
priv_data len, const struct ieee80211_ops * ops);

Arguments

priv_data_len

length of private data

ops

callbacks for this device

Description

This must be called once for each hardware device. The returned pointer must be
used to refer to this device when calling other functions. mac80211 allocates a
private data area for the driver pointed to by priv in struct ieee80211_hw, the size
of this area is given as priv_data_len.

ieee80211_register _hw

LINUX

14

Chapter 1. Basic hardware handling
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_register_hw — Register hardware device

Synopsis

int ieee80211_register_ hw (struct ieee80211_hw * hw);

Arguments

hw

the device to register as returned by ieee80211_alloc_hw

Description

You must call this function before any other functions in mac80211. Note that
before a hardware can be registered, you need to fill the contained wiphy’s
information.

ieee80211_get tx led name

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_get_tx_led_name — get name of TX LED

15

Chapter 1. Basic hardware handling

Synopsis

char » ieee80211_get_tx_ led name (struct ieee80211_hw * hw);

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a transmit LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

ieee80211_get rx _led name

LINUX

Kernel Hackers ManualJuly 2010

16

Name

ieeeB80211_get_rx_led_name — get name of RX LED

Synopsis

char * ieee80211_get_rx_led name (struct ieee80211_hw x hw);

Chapter 1. Basic hardware handling
Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a receive LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the
name (or NULL if not configured for LEDs) of the trigger so you can automatically
link the LED device.

ieee80211_get assoc led name

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_get_assoc_led_name — get name of association LED

Synopsis

char ~ ieee80211_get_assoc_led name (struct ieee80211_hw *
hw) ;

Arguments

hw

the hardware to get the LED trigger name for

17

Chapter 1. Basic hardware handling

Description

mac80211 creates a association LED trigger for each wireless hardware that can be
used to drive LEDs if your driver registers a LED device. This function returns the

name (or NULL if not configured for LEDs) of the trigger so you can automatically

link the LED device.

ieee80211_get radio_led name

LINUX

Kernel Hackers ManualJuly 2010

18

Name

ieeeB80211_get_radio_led_name — get name of radio LED

Synopsis

char » ieee80211_get_radio_led name (struct ieee80211_hw =
hw) ;

Arguments

hw

the hardware to get the LED trigger name for

Description

mac80211 creates a radio change LED trigger for each wireless hardware that can
be used to drive LEDs if your driver registers a LED device. This function returns

Chapter 1. Basic hardware handling

the name (or NULL if not configured for LEDs) of the trigger so you can
automatically link the LED device.

ieee80211_unregister _hw

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_unregister_hw — Unregister a hardware device

Synopsis

void ieee80211_unregister_hw (struct ieee80211_hw x hw);

Arguments

hw

the hardware to unregister

Description

This function instructs mac80211 to free allocated resources and unregister
netdevices from the networking subsystem.

19

Chapter 1. Basic hardware handling

ieee80211_free hw

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_free_hw — free hardware descriptor

Synopsis

volid ieee80211l free hw (struct ieee80211 _hw * hw);

Arguments

hw

the hardware to free

Description

This function frees everything that was allocated, including the private data for the
driver. You must call ieee80211_unregister_hw before calling this function.

20

Chapter 2. PHY configuration

TBD

This chapter should describe PHY handling including start/stop callbacks and the
various structures used.

struct ieee80211_conf

LINUX
Kernel Hackers ManualJuly 2010

Name

struct ieee80211_conf — configuration of the device

Synopsis

struct ieee80211_conf {
u32 flags;
int power_level;
int dynamic_ps_timeout;
int max_sleep_period;
ul6 listen_interval;
u8 ps_dtim_period;
u8 long_frame_max_tx_count;
u8 short_frame_max_ tx_ count;
struct ieee80211_channel x channel;
enum nl80211_channel_type channel_type;
enum ieee80211_smps_mode smps_mode;

}i
Members

flags

configuration flags defined above

21

Chapter 2. PHY configuration

22

power_level

requested transmit power (in dBm)

dynamic_ps_timeout
The dynamic powersave timeout (in ms), see the powersave documentation
below. This variable is valid only when the CONF_PS flag is set.
max_sleep_period

the maximum number of beacon intervals to sleep for before checking the
beacon for a TIM bit (managed mode only); this value will be only achievable
between DTIM frames, the hardware needs to check for the multicast traffic bit
in DTIM beacons. This variable is valid only when the CONF_PS flag is set.

listen_interval

listen interval in units of beacon interval

ps_dtim_period
The DTIM period of the AP we’re connected to, for use in power saving.
Power saving will not be enabled until a beacon has been received and the
DTIM period is known.

long_frame_max_tx_count

Maximum number of transmissions for a “long” frame (a frame not RTS
protected), called “dotl1LongRetryLimit” in 802.11, but actually means the
number of transmissions not the number of retries

short_frame_max_tx_count

Maximum number of transmissions for a “short” frame, called
“dotl1ShortRetryLimit” in 802.11, but actually means the number of
transmissions not the number of retries

channel

the channel to tune to

channel_type
the channel (HT) type

smps_mode

spatial multiplexing powersave mode; note that IEEE80211_SMPS_STATIC is
used when the device is not configured for an HT channel

Chapter 2. PHY configuration
Description

This struct indicates how the driver shall configure the hardware.

enum ieee80211_conf flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_conf_flags — configuration flags

Synopsis

enum ieee80211_conf_flags {
IEEE80211_CONF_MONITOR,
IEEE80211_CONF_PS,
IEEE80211_ CONF_IDLE

}i

Constants

IEEE80211_CONF_MONITOR

there’s a monitor interface present -- use this to determine for example whether
to calculate timestamps for packets or not, do not use instead of filter flags!

IEEE80211_CONF_PS

Enable 802.11 power save mode (managed mode only). This is the power save
mode defined by IEEE 802.11-2007 section 11.2, meaning that the hardware
still wakes up for beacons, is able to transmit frames and receive the possible
acknowledgment frames. Not to be confused with hardware specific
wakeup/sleep states, driver is responsible for that. See the section ‘“Powersave
support” for more.

23

Chapter 2. PHY configuration
IEEE80211_CONF_IDLE

The device is running, but idle; if the flag is set the driver should be prepared
to handle configuration requests but may turn the device off as much as
possible. Typically, this flag will be set when an interface is set UP but not
associated or scanning, but it can also be unset in that case when monitor
interfaces are active.

Description

Flags to define PHY configuration options

24

Chapter 3. Virtual interfaces

TBD

This chapter should describe virtual interface basics that are relevant to the driver
(VLANs, MGMT etc are not.) It should explain the use of the
add_iface/remove_iface callbacks as well as the interface configuration callbacks.

Things related to AP mode should be discussed there.

Things related to supporting multiple interfaces should be in the appropriate
chapter, a BIG FAT note should be here about this though and the recommendation
to allow only a single interface in STA mode at first!

struct ieee80211_vif

LINUX
Kernel Hackers ManualJuly 2010

Name

struct ieee80211_vif — per-interface data

Synopsis

struct ieee80211_vif {
enum nl80211_iftype type;
struct ieee80211_bss_conf bss_conf;
u8 addr [ETH_ALEN];
u8 drv_priv[0] __ _attribute_ ((__aligned__ (sizeof (void =*))));

}i
Members

type

type of this virtual interface

25

Chapter 3. Virtual interfaces
bss_conf

BSS configuration for this interface, either our own or the BSS we’re
associated to

addr[ETH_ALEN]

address of this interface

drv_priv[0O] __attribute__((__aligned__(sizeof(void *))))

data area for driver use, will always be aligned to sizeof(void *).

Description

Data in this structure is continually present for driver use during the life of a virtual
interface.

26

Chapter 4. Receive and transmit
processing

4.1. what should be here

TBD

This should describe the receive and transmit paths in mac80211/the drivers as well
as transmit status handling.

4.2. Frame format

As a general rule, when frames are passed between mac80211 and the driver, they
start with the IEEE 802.11 header and include the same octets that are sent over the
air except for the FCS which should be calculated by the hardware.

There are, however, various exceptions to this rule for advanced features:

The first exception is for hardware encryption and decryption offload where the
IV/ICV may or may not be generated in hardware.

Secondly, when the hardware handles fragmentation, the frame handed to the driver
from mac80211 is the MSDU, not the MPDU.

Finally, for received frames, the driver is able to indicate that it has filled a radiotap
header and put that in front of the frame; if it does not do so then mac80211 may
add this under certain circumstances.

4.3. Packet alignment

Drivers always need to pass packets that are aligned to two-byte boundaries to the
stack.

Additionally, should, if possible, align the payload data in a way that guarantees
that the contained IP header is aligned to a four-byte boundary. In the case of
regular frames, this simply means aligning the payload to a four-byte boundary
(because either the IP header is directly contained, or IV/RFC1042 headers that
have a length divisible by four are in front of it). If the payload data is not properly
aligned and the architecture doesn’t support efficient unaligned operations,
mac80211 will align the data.

27

Chapter 4. Receive and transmit processing

With A-MSDU frames, however, the payload data address must yield two modulo
four because there are 14-byte 802.3 headers within the A-MSDU frames that push
the IP header further back to a multiple of four again. Thankfully, the specs were
sane enough this time around to require padding each A-MSDU subframe to a
length that is a multiple of four.

Padding like Atheros hardware adds which is inbetween the 802.11 header and the
payload is not supported, the driver is required to move the 802.11 header to be
directly in front of the payload in that case.

4.4. Calling into mac80211 from interrupts

Only ieee80211_tx_status_irgsafe and ieee80211_rx_irgsafe can be
called in hardware interrupt context. The low-level driver must not call any other
functions in hardware interrupt context. If there is a need for such call, the low-level
driver should first ACK the interrupt and perform the IEEE 802.11 code call after
this, e.g. from a scheduled workqueue or even tasklet function.

NOTE: If the driver opts to use the _irgsafe functions, it may not also use the
non-IRQ-safe functions!

4.5. functions/definitions

struct ieee80211_rx_status

LINUX
Kernel Hackers ManualJuly 2010

Name

struct i1eee80211 rx_status — receive status

Synopsis
struct ieee80211_rx_status {

u64 mactime;
enum ieee80211_band band;

28

Chapter 4. Receive and transmit processing

int freq;
int signal;
int noise;
int antenna;
int rate_idx;
int flag;

}i

Members

mactime

value in microseconds of the 64-bit Time Synchronization Function (TSF)
timer when the first data symbol (MPDU) arrived at the hardware.

band

the active band when this frame was received

freq

frequency the radio was tuned to when receiving this frame, in MHz

signal

signal strength when receiving this frame, either in dBm, in dB or unspecified
depending on the hardware capabilities flags TEEES0211_HW_SIGNAIL_*

noise

noise when receiving this frame, in dBm.

antenna

antenna used

rate_idx

index of data rate into band’s supported rates or MCS index if HT rates are use
(RX_FLAG_HT)

flag

RX_FLAG_*

Description

29

Chapter 4. Receive and transmit processing

The low-level driver should provide this information (the subset supported by
hardware) to the 802.11 code with each received frame, in the skb’s control buffer
(cb).

enum mac80211_rx_flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum mac80211_rx_flags — receive flags

Synopsis

enum mac80211_rx_flags {
RX_FLAG_MMIC_ERROR,
RX_FLAG_DECRYPTED,
RX_FLAG_MMIC_STRIPPED,
RX_FLAG_IV_STRIPPED,
RX_FLAG_FAILED_FCS_CRC,
RX_FLAG_FAILED PLCP_CRC,
RX_FLAG_TSFT,
RX_FLAG_SHORTPRE,
RX_FLAG_HT,
RX_FLAG_40MHZ,
RX_FLAG_SHORT_GI,
RX_FLAG_INTERNAL_CMTR

bi

Constants
RX _FLAG_MMIC_ERROR

Michael MIC error was reported on this frame. Use together with
RX_FLAG_MMIC_STRIPPED.

30

Chapter 4. Receive and transmit processing
RX_FLAG_DECRYPTED

This frame was decrypted in hardware.

RX_FLAG_MMIC_STRIPPED

the Michael MIC is stripped off this frame, verification has been done by the
hardware.

RX_FLAG_IV_STRIPPED

The IV/ICV are stripped from this frame. If this flag is set, the stack cannot do
any replay detection hence the driver or hardware will have to do that.

RX_FLAG_FAILED_FCS_CRC
Set this flag if the FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC
Set this flag if the PCLP check failed on the frame.

RX_FLAG_TSFT

The timestamp passed in the RX status (mact ime field) is valid. This is useful
in monitor mode and necessary for beacon frames to enable IBSS merging.

RX_FLAG_SHORTPRE

Short preamble was used for this frame

RX FLAG_HT
HT MCS was used and rate_idx is MCS index

RX_FLAG_40MHZ
HT40 (40 MHz) was used

RX_FLAG_SHORT_GI

Short guard interval was used

RX_FLAG_INTERNAL_CMTR

set internally after frame was reported on cooked monitor to avoid
double-reporting it for multiple virtual interfaces

Description

These flags are used with the £1ag member of struct ieee80211_rx_status.

31

Chapter 4. Receive and transmit processing

struct ieee80211_tx_info

LINUX

Kernel Hackers ManualJuly 2010

32

Name

struct i1eee80211 tx_info — skb transmit information

Synopsis

struct ieee80211_tx_info {
u32 flags;
u8 band;
u8 antenna_sel_tx;
u8 padl2];
union {unnamed_union};

}i

Members

flags
transmit info flags, defined above

band

the band to transmit on (use for checking for races)

antenna_sel tx

antenna to use, 0 for automatic diversity

pad[2]
padding, ignore

{unnamed_union}

anonymous

Chapter 4. Receive and transmit processing

Description

This structure is placed in skb->cb for three uses: (1) mac80211 TX control -
mac80211 tells the driver what to do (2) driver internal use (if applicable) (3) TX
status information - driver tells mac80211 what happened

The TX control’s sta pointer is only valid during the ->tx call, it may be NULL.

ieee80211_rx

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_ rx — receive frame

Synopsis

volid ieee80211 rx (struct i1eee80211_hw = hw, struct sk_buff =
skb) ;

Arguments

hw

the hardware this frame came in on

Skb

the buffer to receive, owned by mac80211 after this call

Description

33

Chapter 4. Receive and transmit processing

Use this function to hand received frames to mac80211. The receive buffer in skb
must start with an IEEE 802.11 header.

This function may not be called in IRQ context. Calls to this function for a single
hardware must be synchronized against each other. Calls to this function,
ieee80211_rx_ni and ieee80211_rx_irgsafe may not be mixed for a single
hardware.

In process context use instead ieee80211_rx_ni.

ieee80211_rx_irgsafe

LINUX

Kernel Hackers ManualJuly 2010

34

Name

ieee80211_rx_irgsafe — receive frame

Synopsis

void ieee80211_rx_irgsafe (struct ieee80211_hw » hw, struct
sk_buff * skb);

Arguments

hw

the hardware this frame came in on

Skb

the buffer to receive, owned by mac80211 after this call

Chapter 4. Receive and transmit processing

Description

Like ieee80211_rx but can be called in IRQ context (internally defers to a
tasklet.)

Calls to this function, ieee80211_rx or ieee80211_rx_ni may not be mixed for
a single hardware.

ieee80211_tx_status

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211 tx_status — transmit status callback

Synopsis

void ieee80211 tx_status (struct ieee80211 _hw * hw, struct
sk_buff * skb);

Arguments

hw

the hardware the frame was transmitted by

Skb

the frame that was transmitted, owned by mac80211 after this call

Description

35

Chapter 4. Receive and transmit processing

Call this function for all transmitted frames after they have been transmitted. It is
permissible to not call this function for multicast frames but this can affect statistics.

This function may not be called in IRQ context. Calls to this function for a single
hardware must be synchronized against each other. Calls to this function and
ieee80211_tx_status_irgsafe may not be mixed for a single hardware.

ieee80211_tx_status irqsafe

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_tx_status_irgsafe — IRQ-safe transmit status callback
Synopsis

void ieee80211_tx_status_irgsafe (struct ieee80211_hw x hw,
struct sk_buff x skb);

Arguments

hw

the hardware the frame was transmitted by

Skb

the frame that was transmitted, owned by mac80211 after this call

Description

36

Chapter 4. Receive and transmit processing

Like ieee80211_tx_status but can be called in IRQ context (internally defers to
a tasklet.)

Calls to this function and ieee80211_tx_status may not be mixed for a single
hardware.

ieee80211_ris_get

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_rts_get — RTS frame generation function

Synopsis

void ieee80211_rts_get (struct ieee80211_hw * hw, struct
ieee80211_vif x vif, const void *x frame, size_t frame_len,
const struct ieee80211_tx_info * frame txctl, struct
ieee80211_rts *x rts);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif
struct ieee80211_vif pointer from the add_interface callback.

frame

pointer to the frame that is going to be protected by the RTS.

37

Chapter 4. Receive and transmit processing

frame_ len

the frame length (in octets).

frame txctl

struct ieee80211_tx_info of the frame.

rts

The buffer where to store the RTS frame.

Description

If the RTS frames are generated by the host system (i.e., not in hardware/firmware),
the low-level driver uses this function to receive the next RTS frame from the
802.11 code. The low-level is responsible for calling this function before and RTS
frame is needed.

ieee80211_rts duration

LINUX

Kernel Hackers ManualJuly 2010

38

Name

ieee80211 rts_duration — Get the duration field for an RTS frame

Synopsis

__lelo ieee80211_rts_duration (struct ieee80211_hw * hw,
struct ieee80211_vif = vif, size_t frame_len, const struct
ieee80211_tx_info * frame txctl);

Chapter 4. Receive and transmit processing

Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif
struct ieee80211_vif pointer from the add_interface callback.

frame len

the length of the frame that is going to be protected by the RTS.

frame_ txctl

struct ieee80211_tx_info of the frame.

Description

If the RTS is generated in firmware, but the host system must provide the duration
field, the low-level driver uses this function to receive the duration field value in
little-endian byteorder.

ieee80211_ctstoself get

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_ctstoself_get — CTS-to-self frame generation function

Synopsis

void ieee80211_ctstoself get (struct ieee80211_hw * hw, struct
ieee80211_vif * vif, const void * frame, size_t frame len,

39

Chapter 4. Receive and transmit processing

const struct ieee80211_tx info * frame txctl, struct
ieee80211_cts * cts);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif
struct ieee80211_vif pointer from the add_interface callback.

frame

pointer to the frame that is going to be protected by the CTS-to-self.

frame_ len

the frame length (in octets).

frame txctl

struct ieee80211_tx_info of the frame.

cts

The buffer where to store the CTS-to-self frame.

Description

If the CTS-to-self frames are generated by the host system (i.e., not in
hardware/firmware), the low-level driver uses this function to receive the next
CTS-to-self frame from the 802.11 code. The low-level is responsible for calling
this function before and CTS-to-self frame is needed.

ieee80211_ctstoself duration

LINUX

40

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJuly 2010

Name

ieee80211 ctstoself duration — Get the duration field for a
CTS-to-self frame

Synopsis

__lelo ieee80211_ctstoself duration (struct ieee80211_hw * hw,
struct ieee80211_vif x vif, size_t frame len, const struct
ieee80211_tx_info » frame_txctl);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif
struct ieee80211_vif pointer from the add_interface callback.

frame_ len

the length of the frame that is going to be protected by the CTS-to-self.

frame txctl

struct ieee80211_tx_info of the frame.

Description

If the CTS-to-self is generated in firmware, but the host system must provide the
duration field, the low-level driver uses this function to receive the duration field
value in little-endian byteorder.

41

Chapter 4. Receive and transmit processing

ieee80211_generic_frame_duration

LINUX

Kernel Hackers ManualJuly 2010

42

Name

ieee80211_generic_frame_duration — Calculate the duration field for a
frame

Synopsis

__lel6 ieee80211_generic_frame_duration (struct ieee80211_hw =«
hw, struct ieee80211_vif * vif, size_t frame_len, struct
ieee80211_rate * rate);

Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif
struct ieee80211_vif pointer from the add_interface callback.

frame len

the length of the frame.

rate

the rate at which the frame is going to be transmitted.

Description

Calculate the duration field of some generic frame, given its length and transmission
rate (in 100kbps).

Chapter 4. Receive and transmit processing

ieee80211_wake queue

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_wake_queue — wake specific queue

Synopsis

void ieee80211_wake_queue (struct ieee80211_hw x hw, int
queue) ;

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description

Drivers should use this function instead of netif_wake_queue.

43

Chapter 4. Receive and transmit processing

ieee80211_stop_queue

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_stop_queue — stop specific queue

Synopsis

void ieee80211_stop_queue (struct ieee80211_hw x hw, int
queue) ;

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

queue

queue number (counted from zero).

Description

Drivers should use this function instead of netif_stop_queue.

ieee80211_wake queues

LINUX

44

Chapter 4. Receive and transmit processing

Kernel Hackers ManualJuly 2010

Name

ieeeB80211_wake_queues — wake all queues

Synopsis

void ieee80211_wake_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

Description

Drivers should use this function instead of netif_wake_queue.

ieee80211_stop queues

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_stop_queues — stop all queues

45

Chapter 4. Receive and transmit processing

Synopsis

void ieee80211_stop_queues (struct ieee80211_hw * hw);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

Description

Drivers should use this function instead of netif_stop_queue.

46

Chapter 5. Frame filtering

mac80211 requires to see many management frames for proper operation, and users
may want to see many more frames when in monitor mode. However, for best CPU
usage and power consumption, having as few frames as possible percolate through
the stack is desirable. Hence, the hardware should filter as much as possible.

To achieve this, mac80211 uses filter flags (see below) to tell the driver’s
configure_filter function which frames should be passed to mac80211 and
which should be filtered out.

Before configure_filter is invoked, the prepare_multicast callback is
invoked with the parameters mc_count and mc_11 st for the combined multicast
address list of all virtual interfaces. It’s use is optional, and it returns a u64 that is
passed to configure_filter. Additionally, configure_filter has the
arguments changed_flags telling which flags were changed and total flags
with the new flag states.

If your device has no multicast address filters your driver will need to check both
the F1F_ALLMULTI flag and the mc_count parameter to see whether multicast
frames should be accepted or dropped.

All unsupported flags in total_flags must be cleared. Hardware does not support
a flag if it is incapable of _passing_ the frame to the stack. Otherwise the driver
must ignore the flag, but not clear it. You must _only_ clear the flag (announce no
support for the flag to mac80211) if you are not able to pass the packet type to the
stack (so the hardware always filters it). So for example, you should clear
FIF_CONTROL, if your hardware always filters control frames. If your hardware
always passes control frames to the kernel and is incapable of filtering them, you do
not clear the FTF_conTROL flag. This rule applies to all other FIF flags as well.

enum ieee80211_filter flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_filter flags — hardware filter flags

47

Chapter 5. Frame filtering

48

Synopsis

enum ieee80211_filter_flags {
FIF_PROMISC_IN_BSS,
FIF_ALLMULTI,
FIF_FCSFAIL,
FIF_PLCPFAIL,
FIF_BCN_PRBRESP_PROMISC,
FIF_CONTROL,
FIF_OTHER_BSS,
FIF_PSPOLL

bi

Constants

FIF_PROMISC_IN_BSS
promiscuous mode within your BSS, think of the BSS as your network
segment and then this corresponds to the regular ethernet device promiscuous
mode.
FIF_ALLMULTI
pass all multicast frames, this is used if requested by the user or if the
hardware is not capable of filtering by multicast address.
FIF_FCSFAIL
pass frames with failed FCS (but you need to set the
RX_FLAG_FAILED_FCS_CRC for them)
FIF_PLCPFAIL
pass frames with failed PLCP CRC (but you need to set the
RX_FLAG_FAILED_PLCP_CRC for them
FIF_BCN_PRBRESP_PROMISC

This flag is set during scanning to indicate to the hardware that it should not
filter beacons or probe responses by BSSID. Filtering them can greatly reduce
the amount of processing mac80211 needs to do and the amount of CPU
wakeups, so you should honour this flag if possible.

FIF_CONTROL

pass control frames (except for PS Poll), if PROMISC_IN_BSS is not set then
only those addressed to this station.

Chapter 5. Frame filtering
FIF_OTHER_BSS

pass frames destined to other BSSes

FIF_PSPOLL

pass PS Poll frames, if PROMISC_IN_BSS is not set then only those
addressed to this station.

Frame filtering

These flags determine what the filter in hardware should be programmed to let
through and what should not be passed to the stack. It is always safe to pass more
frames than requested, but this has negative impact on power consumption.

49

Chapter 5. Frame filtering

50

Il. Advanced driver interface

Table of Contents

6. Hardware crypto acceleration ..

7. Powersave support
8. Beacon filter support

9. Multiple queues and QoS support.....

10. Access point mode support......

11. Supporting multiple virtual interfaces

12. Hardware scan offload..

53
59
61
63
65
69
71

Information contained within this part of the book is of interest only for advanced

interaction of mac80211 with drivers to exploit more hardware capabilities and
improve performance.

Chapter 6. Hardware crypto
acceleration

mac80211 is capable of taking advantage of many hardware acceleration designs
for encryption and decryption operations.

The set_key callback in the struct ieee80211_ops for a given device is called to
enable hardware acceleration of encryption and decryption. The callback takes a
sta parameter that will be NULL for default keys or keys used for transmission
only, or point to the station information for the peer for individual keys. Multiple
transmission keys with the same key index may be used when VLANS are
configured for an access point.

When transmitting, the TX control data will use the hw_key_idx selected by the
driver by modifying the struct ieee80211_key_conf pointed to by the key parameter
to the set_key function.

The set_key call for the SET_KEY command should return O if the key is now in
use, -EOPNOTSUPP or -ENOSPC if it couldn’t be added; if you return O then
hw_key_idx must be assigned to the hardware key index, you are free to use the full
u8 range.

When the cmd is DISABLE_KEY then it must succeed.

Note that it is permissible to not decrypt a frame even if a key for it has been
uploaded to hardware, the stack will not make any decision based on whether a key
has been uploaded or not but rather based on the receive flags.

The struct ieee80211_key_conf structure pointed to by the key parameter is
guaranteed to be valid until another call to set_key removes it, but it can only be
used as a cookie to differentiate keys.

In TKIP some HW need to be provided a phase 1 key, for RX decryption
acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key handler.
The update_tkip_key call updates the driver with the new phase 1 key. This
happens everytime the iv16 wraps around (every 65536 packets). The set_key call
will happen only once for each key (unless the AP did rekeying), it will not include
a valid phase 1 key. The valid phase 1 key is provided by update_tkip_key only. The
trigger that makes mac80211 call this handler is software decryption with wrap
around of iv16.

53

Chapter 6. Hardware crypto acceleration

enum set_key cmd

LINUX
Kernel Hackers ManualJuly 2010

Name

enum set_key_cmd — key command

Synopsis

enum set_key_cmd {
SET_KEY,
DISABLE_KEY

}s
Constants

SET_KEY

a key is set

DISABLE_KEY
a key must be disabled

Description

Used with the set_key callback in struct ieee80211_ops, this indicates whether a
key is being removed or added.

struct ieee80211_key conf

LINUX

54

Chapter 6. Hardware crypto acceleration

Kernel Hackers ManualJuly 2010

Name

struct ieee80211_key_conf — key information

Synopsis

struct i1ieee80211_key_conf {
enum ieee80211_key_alg alg;
u8 icv_len;
u8 iv_len;
u8 hw_key_idx;
u8 flags;
s8 keyidx;
u8 keylen;
u8 key[0];
}i

Members

alg
The key algorithm.

icv_len

The ICV length for this key type

iv_len

The IV length for this key type

hw_key_idx

To be set by the driver, this is the key index the driver wants to be given when a
frame is transmitted and needs to be encrypted in hardware.

flags
key flags, see enum ieee80211_key_flags.

keyidx
the key index (0-3)

55

Chapter 6. Hardware crypto acceleration
keylen

key material length

key[0]
key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)

Description

This key information is given by mac80211 to the driver by the set_key callback
in struct ieee80211_ops.

data block

- Temporal Encryption Key (128 bits) - Temporal Authenticator Tx MIC Key (64
bits) - Temporal Authenticator Rx MIC Key (64 bits)

enum ieee80211_key_alg

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_key_alg— key algorithm

Synopsis

enum ieee80211_key_alg {
ALG_WEP,
ALG_TKIP,
ALG_CCMP,
ALG_AES_CMAC
}i

56

Chapter 6. Hardware crypto acceleration

Constants

ALG_WEP
WEP40 or WEP104

ALG_TKIP
TKIP

ALG_CCMP
CCMP (AES)

ALG_AES_CMAC
AES-128-CMAC

enum ieee80211_key flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_key_flags — key flags

Synopsis

enum ieee80211_key_flags {
IEEE80211_KEY_FLAG_WMM_STA,
IEEE80211_KEY FLAG_GENERATE_IV,
IEEES80211 KEY FLAG_GENERATE_MMIC,
IEEE80211_KEY_FLAG_PAIRWISE,
IEEE80211_KEY_FLAG_SW_MGMT

}i

57

Chapter 6. Hardware crypto acceleration

Constants

IEEE80211_KEY_FLAG_WMM_STA
Set by mac80211, this flag indicates that the STA this key will be used with
could be using QoS.

IEEE80211_KEY_FLAG_GENERATE_IV
This flag should be set by the driver to indicate that it requires IV generation
for this particular key.

IEEE80211_KEY_FLAG_GENERATE_MMIC
This flag should be set by the driver for a TKIP key if it requires Michael MIC
generation in software.

IEEE80211_KEY_FLAG_PAIRWISE
Set by mac80211, this flag indicates that the key is pairwise rather then a
shared key.

IEEE80211_KEY_FLAG_SW_MGMT

This flag should be set by the driver for a CCMP key if it requires CCMP
encryption of management frames (MFP) to be done in software.

Description

These flags are used for communication about keys between the driver and
mac80211, with the £1ags parameter of struct ieee80211_key_conf.

58

Chapter 7. Powersave support

mac80211 has support for various powersave implementations.

First, it can support hardware that handles all powersaving by itself, such hardware
should simply set the IEEE80211_HW_SUPPORTS_PS hardware flag. In that case, it
will be told about the desired powersave mode with the IEEE80211_CONF_PS flag
depending on the association status. The hardware must take care of sending
nullfunc frames when necessary, i.e. when entering and leaving powersave mode.
The hardware is required to look at the AID in beacons and signal to the AP that it
woke up when it finds traffic directed to it.

IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused with hardware
wakeup and sleep states. Driver is responsible for waking up the hardware before
issueing commands to the hardware and putting it back to sleep at approriate times.

When PS is enabled, hardware needs to wakeup for beacons and receive the
buffered multicast/broadcast frames after the beacon. Also it must be possible to
send frames and receive the acknowledment frame.

Other hardware designs cannot send nullfunc frames by themselves and also need
software support for parsing the TIM bitmap. This is also supported by mac80211
by combining the TEEES0211_HW_SUPPORTS_PS and
IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
required to pass up beacons. The hardware is still required to handle waking up for
multicast traffic; if it cannot the driver must handle that as best as it can, mac80211
is too slow to do that.

Dynamic powersave is an extension to normal powersave in which the hardware
stays awake for a user-specified period of time after sending a frame so that reply
frames need not be buffered and therefore delayed to the next wakeup. It’s
compromise of getting good enough latency when there’s data traffic and still
saving significantly power in idle periods.

Dynamic powersave is supported by simply mac80211 enabling and disabling PS
based on traffic. Driver needs to only set IEEE80211_HW_SUPPORTS_PS flag and
mac80211 will handle everything automatically. Additionally, hardware having
support for the dynamic PS feature may set the
IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
dynamic PS mode itself. The driver needs to look at the dynamic_ps_timeout
hardware configuration value and use it that value whenever TEEE80211_CONF_PS
is set. In this case mac80211 will disable dynamic PS feature in stack and will just
keep IEEE80211_CONF_PS enabled whenever user has enabled powersave.

Driver informs U-APSD client support by enabling

59

Chapter 7. Powersave support

60

IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
uapsd paramater in conf_tx operation. Hardware needs to send the QoS Nullfunc
frames and stay awake until the service period has ended. To utilize U-APSD,
dynamic powersave is disabled for voip AC and all frames from that AC are
transmitted with powersave enabled.

Note: U-APSD client mode is not yet supported with
IEEE80211_HW_PS_NULLFUNC_STACK.

Chapter 8. Beacon filter support

Some hardware have beacon filter support to reduce host cpu wakeups which will
reduce system power consumption. It usuallly works so that the firmware creates a
checksum of the beacon but omits all constantly changing elements (TSF, TIM etc).
Whenever the checksum changes the beacon is forwarded to the host, otherwise it
will be just dropped. That way the host will only receive beacons where some
relevant information (for example ERP protection or WMM settings) have changed.

Beacon filter support is advertised with the TEEE80211_HW_BEACON_FILTER
hardware capability. The driver needs to enable beacon filter support whenever
power save is enabled, that is IEEE80211_CONF_PS is set. When power save is
enabled, the stack will not check for beacon loss and the driver needs to notify
about loss of beacons with ieee80211_beacon_loss.

The time (or number of beacons missed) until the firmware notifies the driver of a
beacon loss event (which in turn causes the driver to call
ieee80211_beacon_loss) should be configurable and will be controlled by
mac80211 and the roaming algorithm in the future.

Since there may be constantly changing information elements that nothing in the
software stack cares about, we will, in the future, have mac80211 tell the driver
which information elements are interesting in the sense that we want to see changes
in them. This will include - a list of information element IDs - a list of OUIs for the
vendor information element

Ideally, the hardware would filter out any beacons without changes in the requested
elements, but if it cannot support that it may, at the expense of some efficiency, filter
out only a subset. For example, if the device doesn’t support checking for OUIs it
should pass up all changes in all vendor information elements.

Note that change, for the sake of simplification, also includes information elements
appearing or disappearing from the beacon.

Some hardware supports an “ignore list” instead, just make sure nothing that was
requested is on the ignore list, and include commonly changing information element
IDs in the ignore list, for example 11 (BSS load) and the various vendor-assigned
IEs with unknown contents (128, 129, 133-136, 149, 150, 155, 156, 173, 176, 178,
179, 219); for forward compatibility it could also include some currently unused
IDs.

In addition to these capabilities, hardware should support notifying the host of
changes in the beacon RSSI. This is relevant to implement roaming when no traffic
is flowing (when traffic is flowing we see the RSSI of the received data packets).
This can consist in notifying the host when the RSSI changes significantly or when
it drops below or rises above configurable thresholds. In the future these thresholds

61

Chapter 8. Beacon filter support

will also be configured by mac80211 (which gets them from userspace) to
implement them as the roaming algorithm requires.

If the hardware cannot implement this, the driver should ask it to periodically pass
beacon frames to the host so that software can do the signal strength threshold
checking.

ieee80211_beacon_loss

LINUX

Kernel Hackers ManualJuly 2010

62

Name

ieee80211_beacon_loss — inform hardware does not receive beacons

Synopsis

volid ieee80211l beacon_loss (struct ieee80211 _vif x vif);

Arguments

vif

struct ieee80211_vif pointer from the add_interface callback.

Description

When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING
and IEEE80211_CONEF_PS is set, the driver needs to inform whenever the
hardware is not receiving beacons with this function.

Chapter 9. Multiple queues and QoS
support

TBD

struct ieee80211_tx_queue_params

LINUX
Kernel Hackers ManualJuly 2010

Name

struct i1eee80211_tx_gueue_params — transmit queue configuration

Synopsis

struct i1eee80211_tx_qgueue_params {
ul6é txop;
ul6é cw_min;
ul6 cw_max;
u8 aifs;
bool uapsd;
bi

Members

txop

maximum burst time in units of 32 usecs, 0 meaning disabled

CW_min

minimum contention window [a value of the form 2*n-1 in the range 1..32767]

CW_max

maximum contention window [like cw_min]

63

Chapter 9. Multiple queues and QoS support
aifs

arbitration interframe space [0..255]

uapsd
is U-APSD mode enabled for the queue

Description

The information provided in this structure is required for QoS transmit queue
configuration. Cf. IEEE 802.11 7.3.2.29.

64

Chapter 10. Access point mode
support

TBD
Some parts of the if_conf should be discussed here instead

Insert notes about VLAN interfaces with hw crypto here or in the hw crypto chapter.

ieee80211_get buffered bc

LINUX
Kernel Hackers ManualJuly 2010

Name

ieeeB80211_get_buffered_lbc — accessing buffered broadcast and multicast
frames

Synopsis

struct sk_buff * ieee80211_get_buffered bc (struct
ieee80211_hw * hw, struct ieee80211_vif x vif);

Arguments

hw

pointer as obtained from ieee80211_alloc_hw.

vif

struct ieee80211_vif pointer from the add_interface callback.

65

Chapter 10. Access point mode support

Description

Function for accessing buffered broadcast and multicast frames. If
hardware/firmware does not implement buffering of broadcast/multicast frames
when power saving is used, 802.11 code buffers them in the host memory. The
low-level driver uses this function to fetch next buffered frame. In most cases, this is
used when generating beacon frame. This function returns a pointer to the next
buffered skb or NULL if no more buffered frames are available.

Note

buffered frames are returned only after DTIM beacon frame was generated with
ieee80211_beacon_get and the low-level driver must thus call
iecee80211_beacon_get first. ieee80211_get_buffered_bc returns NULL if
the previous generated beacon was not DTIM, so the low-level driver does not need
to check for DTIM beacons separately and should be able to use common code for
all beacons.

ieee80211_beacon_get

LINUX

Kernel Hackers ManualJuly 2010

66

Name

ieeeB80211_beacon_get — beacon generation function

Synopsis

struct sk_buff » ieee80211_beacon_get (struct ieee80211_hw =
hw, struct ieee80211_vif % vif);

Chapter 10. Access point mode support
Arguments

hw

pointer obtained from ieee80211_alloc_hw.
vif

struct ieee80211_vif pointer from the add_interface callback.

Description

See ieee80211_beacon_get_tim.

67

Chapter 10. Access point mode support

68

Chapter 11. Supporting multiple
virtual interfaces

TBD
Note: WDS with identical MAC address should almost always be OK

Insert notes about having multiple virtual interfaces with different MAC addresses
here, note which configurations are supported by mac80211, add notes about
supporting hw crypto with it.

69

Chapter 11. Supporting multiple virtual interfaces

70

Chapter 12. Hardware scan offload

TBD

ieee80211_scan_completed

LINUX
Kernel Hackers ManualJuly 2010

Name

ieee80211_scan_completed — completed hardware scan

Synopsis

void ieee80211_scan_completed (struct ieee80211_hw » hw, bool
aborted) ;

Arguments

hw

the hardware that finished the scan

aborted

set to true if scan was aborted

Description

When hardware scan offload is used (i.e. the hw_scan callback is assigned) this
function needs to be called by the driver to notify mac80211 that the scan finished.

71

Chapter 12. Hardware scan offload

72

lll. Rate control interface

Table of Contents

13. dummy chapter ..

TBD

This part of the book describes the rate control algorithm interface and how it
relates to mac80211 and drivers.

75

Chapter 13. dummy chapter

TBD

75

Chapter 13. dummy chapter

76

IV. Internals

Table of Contents

14. Key handling

15. Receive processing

16. Transmit processing......

17. Station info handling.....

18. Synchronisation..

TBD

This part of the book describes mac80211 internals.

79
81
83
85
95

Chapter 14. Key handling

14.1. Key handling basics

Key handling in mac80211 is done based on per-interface (sub_if_data) keys and
per-station keys. Since each station belongs to an interface, each station key also
belongs to that interface.

Hardware acceleration is done on a best-effort basis, for each key that is eligible the
hardware is asked to enable that key but if it cannot do that they key is simply kept
for software encryption. There is currently no way of knowing this except by
looking into debugfs.

All key operations are protected internally so you can call them at any time.

Within mac80211, key references are, just as STA structure references, protected by
RCU. Note, however, that some things are unprotected, namely the key->sta
dereferences within the hardware acceleration functions. This means that
sta_info_destroy must flush the key todo list.

All the direct key list manipulation functions must not sleep because they can
operate on STA info structs that are protected by RCU.

14.2. MORE TBD

TBD

79

Chapter 14. Key handling

80

Chapter 15. Receive processing

TBD

81

Chapter 15. Receive processing

82

Chapter 16. Transmit processing

TBD

83

Chapter 16. Transmit processing

84

Chapter 17. Station info handling

17.1. Programming information

struct sta_info

LINUX
Kernel Hackers ManualJuly 2010

Name

struct sta_info — STA information

Synopsis

struct sta_info {
struct list_head list;
struct sta_info * hnext;
struct ieee80211_local * local;
struct ieee80211_sub_if data * sdata;
struct i1ieee80211_key = key;
struct rate_control_ref x rate_ctrl;
void x rate_ctrl_priv;
spinlock_t lock;
spinlock_t flaglock;
struct work_struct drv_unblock_wk;
ul6 listen_interval;
bool dead;
bool uploaded;
u32 flags;
struct sk_buff head ps_tx_buf;
struct sk_buff_head tx_filtered;
unsigned long rx_packets;
unsigned long rx_bytes;
unsigned long wep_weak_iv_count;
unsigned long last_rx;
unsigned long num_duplicates;
unsigned long rx_fragments;
unsigned long rx_dropped;

Chapter 17. Station info handling

int last_signal;
int last_noise;
_ lel6 last_seq ctrl[NUM_RX_DATA_QUEUES];
unsigned long tx_filtered_count;
unsigned long tx_retry_ failed;
unsigned long tx_retry_count;
unsigned int fail_avg;
unsigned long tx_packets;
unsigned long tx_bytes;
unsigned long tx_fragments;
struct ieeeB80211_tx rate last_tx_rate;
ul6é tid_seq[IEEE80211_QOS_CTL_TID_MASK +
struct sta_ampdu_mlme ampdu_mlme;
u8 timer_to_tid[STA_TID_NUM];
#ifdef CONFIG_MAC80211_MESH
__lel6 11id;
_ lel6 plid;
__lel6 reason;
u8 plink_retries;
bool ignore_plink_timer;
bool plink_timer_was_running;
enum plink_state plink_state;
u32 plink_timeout;
struct timer_list plink_timer;
#endif
#ifdef CONFIG_MAC80211_DEBUGFS
struct sta_info_debugfsdentries debugfs;
#endif
struct ieeeB80211_sta sta;

}i

Members
list
global linked list entry

hnext

hash table linked list pointer

local

pointer to the global information

86

Chapter 17. Station info handling
sdata

virtual interface this station belongs to

key

peer key negotiated with this station, if any

rate_ctrl

rate control algorithm reference

rate_ctrl_priv

rate control private per-STA pointer

lock

used for locking all fields that require locking, see comments in the header file.

flaglock

spinlock for flags accesses

drv_unblock_ wk

used for driver PS unblocking

listen_interval

listen interval of this station, when we’re acting as AP

dead

set to true when sta is unlinked

uploaded

set to true when sta is uploaded to the driver
flags

STA flags, see enum ieee80211_sta_info_flags

ps_tx_buf

buffer of frames to transmit to this station when it leaves power saving state

tx_filtered

buffer of frames we already tried to transmit but were filtered by hardware due
to STA having entered power saving state

87

Chapter 17. Station info handling

88

rx_packets

Number of MSDU s received from this STA

rx_bytes

Number of bytes received from this STA

wep_weak_iv_count

number of weak WEP IVs received from this station

last_rx

time (in jiffies) when last frame was received from this STA

num_duplicates

number of duplicate frames received from this STA

rx_fragments

number of received MPDUs

rx_dropped
number of dropped MPDUs from this STA

last_signal

signal of last received frame from this STA

last_noise

noise of last received frame from this STA

last_seq_ctrl[NUM_RX_DATA_QUEUES]

last received seq/frag number from this STA (per RX queue)

tx_filtered_count

number of frames the hardware filtered for this STA

tx_retry_failed

number of frames that failed retry

tx_retry_count

total number of retries for frames to this STA

fail_avg

moving percentage of failed MSDUs

Chapter 17. Station info handling

tx_packets
number of RX/TX MSDUs

tx_bytes

number of bytes transmitted to this STA

tx_fragments

number of transmitted MPDUs

last_tx_rate

rate used for last transmit, to report to userspace as “the” transmit rate

tid_seq[IEEE80211_QOS_CTL_TID_MASK + 1]

per-TID sequence numbers for sending to this STA

ampdu_mlme

A-MPDU state machine state

timer_to_tid[STA_TID_NUM]

identity mapping to ID timers

1lid

Local link ID
plid

Peer link ID

reason

Cancel reason on PLINK_ HOLDING state

plink_retries

Retries in establishment

ignore_plink_timer

ignore the peer-link timer (used internally)

plink_timer_was_running

used by suspend/resume to restore timers

plink_state

peer link state

89

Chapter 17. Station info handling
plink_timeout

timeout of peer link

plink_timer

peer link watch timer

debugfs

debug filesystem info

sta

station information we share with the driver

Description

This structure collects information about a station that mac80211 is communicating
with.

enum ieee80211_sta info_flags

LINUX
Kernel Hackers ManualJuly 2010

Name

enum ieee80211_sta_info_flags — Stations flags

Synopsis

enum i1ieee80211_sta_info_flags {
WLAN_STA_AUTH,
WLAN_STA_ASSOC,
WLAN_STA_PS_STA,
WLAN_STA_AUTHORIZED,
WLAN_STA_SHORT_PREAMBLE,
WLAN_STA_ASSOC_AP,
WLAN_STA_WME,

90

Chapter 17. Station info handling

WLAN_STA_WDS,
WLAN_STA_CLEAR_PS_FILT,
WLAN_STA_MFP,
WLAN_STA_SUSPEND,
WLAN_STA_PS_DRIVER,
WLAN_STA_PSPOLL,
WLAN_STA_DISASSOC

bi

Constants

WLAN_STA_AUTH

Station is authenticated.

WLAN_STA_ASSOC

Station is associated.

WLAN_STA_PS_STA

Station is in power-save mode

WLAN_STA_AUTHORIZED

Station is authorized to send/receive traffic. This bit is always checked so
needs to be enabled for all stations when virtual port control is not in use.

WLAN_STA_SHORT_PREAMBLE

Station is capable of receiving short-preamble frames.

WLAN_STA_ASSOC_AP

We’re associated to that station, it is an AP.

WLAN_STA_WME
Station is a QoS-STA.

WLAN_STA_WDS

Station is one of our WDS peers.

WLAN_STA_CLEAR_PS_FILT

Clear PS filter in hardware (using the
IEEE80211_TX_CTL_CLEAR_PS_FILT control flag) when the next frame to
this station is transmitted.

91

Chapter 17. Station info handling

WLAN_STA_MFP

Management frame protection is used with this STA.

WLAN_STA_SUSPEND

Set/cleared during a suspend/resume cycle. Used to deny ADDBA requests
(both TX and RX).

WLAN_STA_PS_DRIVER

driver requires keeping this station in power-save mode logically to flush
frames that might still be in the queues

WLAN_STA_PSPOLL

Station sent PS-poll while driver was keeping station in power-save mode,
reply when the driver unblocks.

WLAN_STA_DISASSOC

Disassociation in progress. This is used to reject TX BA session requests when
disassociation is in progress.

Description

These flags are used with struct sta_info’s f1ags member.

17.2. STA information lifetime rules

92

STA info structures (struct sta_info) are managed in a hash table for faster lookup
and a list for iteration. They are managed using RCU, i.e. access to the list and hash
table is protected by RCU.

Upon allocating a STA info structure with sta_info_alloc, the caller owns that
structure. It must then insert it into the hash table using either sta_info_insert
or sta_info_insert_rcu; only in the latter case (which acquires an rcu read
section but must not be called from within one) will the pointer still be valid after
the call. Note that the caller may not do much with the STA info before inserting it,
in particular, it may not start any mesh peer link management or add encryption
keys.

Chapter 17. Station info handling

When the insertion fails (sta_info_insert) returns non-zero), the structure will
have been freed by sta_info_insert!

Station entries are added by mac80211 when you establish a link with a peer. This
means different things for the different type of interfaces we support. For a regular
station this mean we add the AP sta when we receive an assocation response from
the AP. For IBSS this occurs when get to know about a peer on the same IBSS. For
WDS we add the sta for the peer imediately upon device open. When using AP
mode we add stations for each respective station upon request from userspace
through nl80211.

In order to remove a STA info structure, various sta_info_destroy_*() calls are
available.

There is no concept of ownership on a STA entry, each structure is owned by the
global hash table/list until it is removed. All users of the structure need to be RCU
protected so that the structure won’t be freed before they are done using it.

93

Chapter 17. Station info handling

94

Chapter 18. Synchronisation

TBD
Locking, lots of RCU

95

Chapter 18. Synchronisation

96

	The mac80211 subsystem for kernel developers
	Table of Contents
	I. The basic mac80211 driver interface
	Table of Contents
	Chapter 1. Basic hardware handling
	struct ieee80211hw
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211hwflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	SETIEEE80211DEV
	LINUX
	Name
	Synopsis
	Arguments

	SETIEEE80211PERMADDR
	LINUX
	Name
	Synopsis
	Arguments

	struct ieee80211ops
	LINUX
	Name
	Synopsis
	Members
	Description

	ieee80211allochw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211registerhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211gettxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getrxledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getassocledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211getradioledname
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211unregisterhw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211freehw
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 2. PHY configuration
	struct ieee80211conf
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211confflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 3. Virtual interfaces
	struct ieee80211vif
	LINUX
	Name
	Synopsis
	Members
	Description

	Chapter 4. Receive and transmit processing
	4.1. what should be here
	4.2. Frame format
	4.3. Packet alignment
	4.4. Calling into mac80211 from interrupts
	4.5. functions/definitions
	struct ieee80211rxstatus
	LINUX
	Name
	Synopsis
	Members
	Description

	enum mac80211rxflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	struct ieee80211txinfo
	LINUX
	Name
	Synopsis
	Members
	Description

	ieee80211rx
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rxirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatus
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211txstatusirqsafe
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211rtsduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211ctstoselfduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211genericframeduration
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211wakequeue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211stopqueue
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211wakequeues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	ieee80211stopqueues
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 5. Frame filtering
	enum ieee80211filterflags
	LINUX
	Name
	Synopsis
	Constants
	Frame filtering

	II. Advanced driver interface
	Table of Contents
	Chapter 6. Hardware crypto acceleration
	enum setkeycmd
	LINUX
	Name
	Synopsis
	Constants
	Description

	struct ieee80211keyconf
	LINUX
	Name
	Synopsis
	Members
	Description
	data block

	enum ieee80211keyalg
	LINUX
	Name
	Synopsis
	Constants

	enum ieee80211keyflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	Chapter 7. Powersave support
	Chapter 8. Beacon filter support
	ieee80211beaconloss
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 9. Multiple queues and QoS support
	struct ieee80211txqueueparams
	LINUX
	Name
	Synopsis
	Members
	Description

	Chapter 10. Access point mode support
	ieee80211getbufferedbc
	LINUX
	Name
	Synopsis
	Arguments
	Description
	Note

	ieee80211beaconget
	LINUX
	Name
	Synopsis
	Arguments
	Description

	Chapter 11. Supporting multiple virtual interfaces
	Chapter 12. Hardware scan offload
	ieee80211scancompleted
	LINUX
	Name
	Synopsis
	Arguments
	Description

	III. Rate control interface
	Table of Contents
	Chapter 13. dummy chapter
	IV. Internals
	Table of Contents
	Chapter 14. Key handling
	14.1. Key handling basics
	14.2. MORE TBD

	Chapter 15. Receive processing
	Chapter 16. Transmit processing
	Chapter 17. Station info handling
	17.1. Programming information
	struct stainfo
	LINUX
	Name
	Synopsis
	Members
	Description

	enum ieee80211stainfoflags
	LINUX
	Name
	Synopsis
	Constants
	Description

	17.2. STA information lifetime rules

	Chapter 18. Synchronisation

