
The Python/C API
Release 3.1

Guido van Rossum
Fred L. Drake, Jr., editor

June 26, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Include Files . 3
1.2 Objects, Types and Reference Counts . 4
1.3 Exceptions . 7
1.4 Embedding Python . 9
1.5 Debugging Builds . 9

2 The Very High Level Layer 11

3 Reference Counting 15

4 Exception Handling 17
4.1 Exception Objects . 21
4.2 Standard Exceptions . 22

5 Utilities 23
5.1 Operating System Utilities . 23
5.2 System Functions . 23
5.3 Process Control . 24
5.4 Importing Modules . 24
5.5 Data marshalling support . 27
5.6 Parsing arguments and building values . 28
5.7 String conversion and formatting . 34
5.8 Reflection . 36

6 Abstract Objects Layer 39
6.1 Object Protocol . 39
6.2 Number Protocol . 43
6.3 Sequence Protocol . 46
6.4 Mapping Protocol . 47
6.5 Iterator Protocol . 48
6.6 Buffer Protocol . 49

7 Concrete Objects Layer 51
7.1 Fundamental Objects . 51
7.2 Numeric Objects . 52
7.3 Sequence Objects . 56
7.4 Mapping Objects . 75
7.5 Other Objects . 78

i

8 Initialization, Finalization, and Threads 93
8.1 Thread State and the Global Interpreter Lock . 96
8.2 Asynchronous Notifications . 100
8.3 Profiling and Tracing . 101
8.4 Advanced Debugger Support . 102

9 Memory Management 105
9.1 Overview . 105
9.2 Memory Interface . 106
9.3 Examples . 106

10 Object Implementation Support 109
10.1 Allocating Objects on the Heap . 109
10.2 Common Object Structures . 110
10.3 Type Objects . 113
10.4 Number Object Structures . 126
10.5 Mapping Object Structures . 127
10.6 Sequence Object Structures . 127
10.7 Buffer Object Structures . 128
10.8 Supporting Cyclic Garbage Collection . 128

A Glossary 131

B About these documents 137
B.1 Contributors to the Python Documentation . 137

C History and License 139
C.1 History of the software . 139
C.2 Terms and conditions for accessing or otherwise using Python . 140
C.3 Licenses and Acknowledgements for Incorporated Software . 143

D Copyright 151

Index 153

ii

The Python/C API, Release 3.1

Release 3.1

Date June 26, 2009

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to Extending and Embedding the Python Interpreter (in Extending and Embedding Python),
which describes the general principles of extension writing but does not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,
<limits.h>, and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix
and exec_prefix are defined by the corresponding parameters to Python’s configure script and version is
sys.version[:3]. On Windows, the headers are installed in prefix/include, where prefix is the instal-
lation directory specified to the installer.

3

The Python/C API, Release 3.1

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to be extern "C", so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type is
a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of type PyObject, only pointer variables of type PyObject* can be declared. The
sole exception are the type objects; since these must never be deallocated, they are typically static PyTypeObject
objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in The standard type
hierarchy (in The Python Language Reference)). For each of the well-known types there is a macro to check whether
an object is of that type; for instance, PyList_Check(a) is true if (and only if) the object pointed to by a is a
Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object,
or a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes
zero, the object is deallocated. If it contains references to other objects, their reference count is decremented. Those
other objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on.
(There’s an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF to increment
an object’s reference count by one, and Py_DECREF to decrement it by one. The Py_DECREF macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The
type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object if
this is a compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python

4 Chapter 1. Introduction

The Python/C API, Release 3.1

code which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF, so
almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility to call Py_DECREF when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py_DECREF or Py_XDECREF when it’s no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said
to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs
to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer. Few functions steal
references; the two notable exceptions are PyList_SetItem and PyTuple_SetItem, which steal a reference to
the item (but not to the tuple or list into which the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the code to create
the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment; a better way to
code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Here, PyLong_FromLong returns a new reference which is immediately stolen by PyTuple_SetItem. When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple_SetItem is the only way to set tuple items; PySequence_SetItem and
PyObject_SetItem refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New and PyList_SetItem.

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue, that can create most common objects from C values, directed by a format string. For
example, the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem and friends with items whose references you are only bor-
rowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 3.1

reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyLong_FromLong(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0)

return -1;
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem and PySequence_GetItem, always return a new reference (the caller becomes the owner
of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem, you don’t own the reference — but if you obtain the same item
from the same list using PySequence_GetItem (which happens to take exactly the same arguments), you do own
a reference to the returned object. Here is an example of how you could write a function that computes the sum of the
items in a list of integers; once using PyList_GetItem, and once using PySequence_GetItem.

long
sum_list(PyObject *list)
{

int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
total += PyLong_AsLong(item);

}
return total;

}

6 Chapter 1. Introduction

The Python/C API, Release 3.1

long
sum_sequence(PyObject *sequence)
{

int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item))

total += PyLong_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

}

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback. For C programmers, however, error checking
always has to be explicit. All functions in the Python/C API can raise exceptions, unless an explicit claim is made
otherwise in a function’s documentation. In general, when a function encounters an error, it sets an exception, discards
any object references that it owns, and returns an error indicator — usually NULL or -1. A few functions return
a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred. Exception state
is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application). A thread
can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred can be used to
check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString is the most common
(though not the most general) function to set the exception state, and PyErr_Clear clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info(); how-
ever, they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info() and
friends. Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python
code is to call the function sys.exc_info(), which returns the per-thread exception state for Python code. Also,
the semantics of both ways to access the exception state have changed so that a function which catches an excep-
tion will save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents

1.3. Exceptions 7

The Python/C API, Release 3.1

common bugs in exception handling code caused by an innocent-looking function overwriting the exception being
handled; it also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in
the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error. A simple example of detecting
exceptions and passing them on is shown in the sum_sequence example above. It so happens that that example
doesn’t need to clean up any owned references when it detects an error. The following example function shows some
error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:

8 Chapter 1. Introduction

The Python/C API, Release 3.1

/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches and PyErr_Clear to handle specific exceptions, and the use of Py_XDECREF
to dispose of owned references that may be NULL (note the ’X’ in the name; Py_DECREF would crash when con-
fronted with a NULL reference). It is important that the variables used to hold owned references are initialized to
NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to success after
the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized. The basic initialization function is Py_Initialize.
This initializes the table of loaded modules, and creates the fundamental modules builtins, __main__, sys, and
exceptions. It also initializes the module search path (sys.path). Py_Initialize does not set the “script
argument list” (sys.argv). If this variable is needed by Python code that will be executed later, it must be set
explicitly with a call to PySys_SetArgv(argc, argv) subsequent to the call to Py_Initialize.

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize
calculates the module search path based upon its best guess for the location of the standard Python interpreter ex-
ecutable, assuming that the Python library is found in a fixed location relative to the Python interpreter executable.
In particular, it looks for a directory named lib/pythonX.Y relative to the parent directory where the executable
named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
are in /usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when
no executable file named python is found along PATH.) The user can override this behavior by setting the
environment variable PYTHONHOME, or insert additional directories in front of the standard path by setting
PYTHONPATH. The embedding application can steer the search by calling Py_SetProgramName(file) be-
fore calling Py_Initialize. Note that PYTHONHOME still overrides this and PYTHONPATH is still in-
serted in front of the standard path. An application that requires total control has to provide its own implementa-
tion of Py_GetPath, Py_GetPrefix, Py_GetExecPrefix, and Py_GetProgramFullPath (all defined
in Modules/getpath.c). Sometimes, it is desirable to “uninitialize” Python. For instance, the application may
want to start over (make another call to Py_Initialize) or the application is simply done with its use of Python
and wants to free memory allocated by Python. This can be accomplished by calling Py_Finalize. The func-
tion Py_IsInitialized returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_Finalize does not free all memory allocated by the Python
interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

1.4. Embedding Python 9

The Python/C API, Release 3.1

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of
this section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by “a debug build”
of Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:

• Extra checks are added to the object allocator.

• Extra checks are added to the parser and compiler.

• Downcasts from wide types to narrow types are checked for loss of information.

• A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
a test_c_api() method.

• Sanity checks of the input arguments are added to frame creation.

• The storage for ints is initialized with a known invalid pattern to catch reference to uninitialized digits.

• Low-level tracing and extra exception checking are added to the runtime virtual machine.

• Extra checks are added to the memory arena implementation.

• Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER

TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main(int argc, wchar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C program’s main function
(converted to wchar_t according to the user’s locale). It is important to note that the argument list may be
modified (but the contents of the strings pointed to by the argument list are not). The return value will be the
integer passed to the sys.exit() function, 1 if the interpreter exits due to an exception, or 2 if the parameter
list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemError is raised, this function will not return 1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop, otherwise return the result of PyRun_SimpleFile. If
filename is NULL, this function uses "???" as the filename.

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there

11

The Python/C API, Release 3.1

was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemError is raised, this function will not return -1, but exit the
process, as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags below, leaving closeit set to 0.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags, but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. If filename is NULL, "???" is used instead. The user will be prompted using sys.ps1 and
sys.ps2. Returns 0 when the input was executed successfully, -1 if there was an exception, or an error
code from the errcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is not included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. If filename
is NULL, "???" is used instead. The user will be prompted using sys.ps1 and sys.ps2. Returns 0 at EOF.

struct _node* PyParser_SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename(const char *str, const char *file-
name, int start, int flags)

Parse Python source code from str using the start token start according to the flags argument. The result can
be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags below, leaving flags set to 0

struct _node* PyParser_SimpleParseFileFlags(FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename, but the Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyRun_StringFlags below, leaving flags set to NULL.

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 3.1

PyObject* PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-
erFlags *flags)

Return value: New reference.
Execute Python source code from str in the context specified by the dictionaries globals and locals with the
compiler flags specified by flags. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyRun_FileExFlags below, leaving closeit set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit)

Return value: New reference.
This is a simplified interface to PyRun_FileExFlags below, leaving flags set to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference.
This is a simplified interface to PyRun_FileExFlags below, leaving closeit set to 0.

PyObject* PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)

Return value: New reference.
Similar to PyRun_StringFlags, but the Python source code is read from fp instead of an in-memory string.
filename should be the name of the file. If closeit is true, the file is closed before PyRun_FileExFlags
returns.

PyObject* Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference.
This is a simplified interface to Py_CompileStringFlags below, leaving flags set to NULL.

PyObject* Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompilerFlags
*flags)

Return value: New reference.
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code
cannot be parsed or compiled.

PyObject* PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference.
This is a simplified interface to PyEval_EvalCodeEx, with just the code object, and the dictionaries of
global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)

Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of
cells.

PyObject* PyEval_EvalFrame(PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compatibility.

PyObject* PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The

13

The Python/C API, Release 3.1

additional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for the throw() methods of generator objects.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString.

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString. This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString. This is
the symbol used for the interactive interpreter loop.

PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In
this case, from __future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
due to from __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER

THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREF(PyObject *o)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF.

void Py_XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF. If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a __del__() method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state before Py_DECREF is invoked. For example, code to
delete an object from a list should copy a reference to the deleted object in a temporary variable, update the
list data structure, and then call Py_DECREF for the temporary variable.

void Py_XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF, and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF, except that the argument is also set to NULL. The warning
for Py_DECREF does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection.

The following functions are for runtime dynamic embedding of Python: Py_IncRef(PyObject *o),
Py_DecRef(PyObject *o). They are simply exported function versions of Py_XINCREF and Py_XDECREF,
respectively.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc,
_Py_ForgetReference, _Py_NewReference, as well as the global variable _Py_RefTotal.

15

The Python/C API, Release 3.1

16 Chapter 3. Reference Counting

CHAPTER

FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, usually NULL if they are supposed to
return a pointer, or -1 if they return an integer (exception: the PyArg_* functions return 1 for success and 0 for
failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should not continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the result of sys.exc_info(). API functions
exist to interact with the error indicator in various ways. There is a separate error indicator for each thread.

void PyErr_PrintEx(int set_sys_last_vars)
Print a standard traceback to sys.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, respec-
tively.

void PyErr_Print()
Alias for PyErr_PrintEx(1).

PyObject* PyErr_Occurred()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the exception type (the first argument to the last call to one
of the PyErr_Set* functions or to PyErr_Restore). If not set, return NULL. You do not own a reference
to the return value, so you do not need to Py_DECREF it.

Note: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples)

17

The Python/C API, Release 3.1

are searched for a match.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t
use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_Fetch to save the current exception state.

void PyErr_SetString(PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString but lets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL.
This function sets the error indicator and returns NULL. exception should be a Python exception (class, not an
instance). format should be a string, containing format codes, similar to printf. The width.precision
before a format code is parsed, but the width part is ignored.

18 Chapter 4. Exception Handling

The Python/C API, Release 3.1

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent to printf("%d").
%u un-

signed
int

Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%ld").
%lu un-

signed
long

Exactly equivalent to printf("%lu").

%zd Py_ssize_tExactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except that

it is guaranteed to start with the literal 0x regardless of what the platform’s printf
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()
Return value: Always NULL.
This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it returns NULL so an object allocation
function can write return PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL.
This is a convenience function to raise an exception when a C library function has returned an error and set the C
variable errno. It constructs a tuple object whose first item is the integer errno value and whose second item
is the corresponding error message (gotten from strerror), and then calls PyErr_SetObject(type,
object). On Unix, when the errno value is EINTR, indicating an interrupted system call, this calls
PyErr_CheckSignals, and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can write return PyErr_SetFromErrno(type);
when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromErrno, with the additional behavior that if filename is not NULL, it is passed to
the constructor of type as a third parameter. In the case of exceptions such as IOError and OSError, this is
used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL.
This is a convenience function to raise WindowsError. If called with ierr of 0, the error code returned by a
call to GetLastError is used instead. It calls the Win32 function FormatMessage to retrieve the Windows
description of error code given by ierr or GetLastError, then it constructs a tuple object whose first item

19

The Python/C API, Release 3.1

is the ierr value and whose second item is the corresponding error message (gotten from FormatMessage),
and then calls PyErr_SetObject(PyExc_WindowsError, object). This function always returns
NULL. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErr, with an additional parameter specifying the exception type to be
raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErr, with the additional behavior that if filename is not NULL, it is
passed to the constructor of WindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, char *filename)
Return value: Always NULL.
Similar to PyErr_SetFromWindowsErrWithFilename, with an additional parameter specifying the ex-
ception type to be raised. Availability: Windows.

void PyErr_BadInternalCall()
This is a shorthand for PyErr_SetString(PyExc_SystemError, message), where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr_WarnEx(PyObject *category, char *message, int stacklevel)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message
argument is a message string. stacklevel is a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack frame. A stacklevel of 1 is the function calling
PyErr_WarnEx, 2 is the function above that, and so forth.

This function normally prints a warning message to sys.stderr; however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports the warnings module to do the heavy lifting). The return value is 0 if no exception is raised, or -1
if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF owned references and return an error value).

Warning categories must be subclasses of Warning; the default warning category is RuntimeWarning.
The standard Python warning categories are available as global variables whose names are PyExc_
followed by the Python exception name. These have the type PyObject*; they are all class ob-
jects. Their names are PyExc_Warning, PyExc_UserWarning, PyExc_UnicodeWarning,
PyExc_DeprecationWarning, PyExc_SyntaxWarning, PyExc_RuntimeWarning, and
PyExc_FutureWarning. PyExc_Warning is a subclass of PyExc_Exception; the other warn-
ing categories are subclasses of PyExc_Warning.

For information about warning control, see the documentation for the warnings module and the -W option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit(), see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns -1; otherwise the function

20 Chapter 4. Exception Handling

The Python/C API, Release 3.1

returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt()
This function simulates the effect of a SIGINT signal arriving — the next time PyErr_CheckSignals is

called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd(int fd)
This utility function specifies a file descriptor to which a ’\0’ byte will be written whenever a signal is received.
It returns the previous such file descriptor. The value -1 disables the feature; this is the initial state. This is
equivalent to signal.set_wakeup_fd() in Python, but without any error checking. fd should be a valid
file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference.
This utility function creates and returns a new exception object. The name argument must be the name of the
new exception, a C string of the form module.class. The base and dict arguments are normally NULL. This
creates a class object derived from Exception (accessible in C as PyExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

void PyErr_WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__() method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. The repr of obj will be printed in the warning message.

4.1 Exception Objects

PyObject* PyException_GetTraceback(PyObject *ex)
Return the traceback associated with the exception as a new reference, as accessible from Python through
__traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback(PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject* PyException_GetContext(PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the excep-
tion as a new reference, as accessible from Python through __context__. If there is no context associated,
this returns NULL.

void PyException_SetContext(PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause(PyObject *ex)
Return the cause (another exception instance set by raise ... from ...) associated with the exception
as a new reference, as accessible from Python through __cause__. If there is no cause associated, this returns
NULL.

void PyException_SetCause(PyObject *ex, PyObject *ctx)
Set the cause associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

4.1. Exception Objects 21

The Python/C API, Release 3.1

4.2 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the
variables:

C Name Python Name Notes
PyExc_BaseException BaseException (1)
PyExc_Exception Exception (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_EOFError EOFError
PyExc_EnvironmentError EnvironmentError (1)
PyExc_FloatingPointError FloatingPointError
PyExc_IOError IOError
PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TypeError TypeError
PyExc_ValueError ValueError
PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

Notes:

1. This is a base class for other standard exceptions.

2. This is the same as weakref.ReferenceError.

3. Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

22 Chapter 4. Exception Handling

CHAPTER

FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings ’<stdin>’ or
’???’.

void PyOS_AfterFork()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction or signal.
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction or signal. Do not call those functions directly! PyOS_sighandler_t is a typedef alias for
void (*)(int).

5.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.

PyObject * PySys_GetObject(char *name)
Return value: Borrowed reference.
Return the object name from the sys module or NULL if it does not exist, without setting an exception.

23

The Python/C API, Release 3.1

FILE * PySys_GetFile(char *name, FILE *def)
Return the FILE* associated with the object name in the sys module, or def if name is not in the module or is
not associated with a FILE*.

int PySys_SetObject(char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns
0 on success, -1 on error.

void PySys_ResetWarnOptions(void)
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption(wchar_t *s)
Append s to sys.warnoptions.

void PySys_SetPath(wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
As above, but write to sys.stderr or stderr instead.

5.3 Process Control

void Py_FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library function abort is called
which will attempt to produce a core file.

void Py_Exit(int status)
Exit the current process. This calls Py_Finalize and then calls the standard C library function
exit(status).

int Py_AtExit(void (*func) ())
Register a cleanup function to be called by Py_Finalize. The cleanup function will be called with no

arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful, Py_AtExit returns 0; on failure, it returns -1. The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be called by func.

5.4 Importing Modules

PyObject* PyImport_ImportModule(const char *name)
Return value: New reference.

24 Chapter 5. Utilities

The Python/C API, Release 3.1

This is a simplified interface to PyImport_ImportModuleEx below, leaving the globals and locals argu-
ments set to NULL and level set to 0. When the name argument contains a dot (when it specifies a submodule
of a package), the fromlist argument is set to the list [’*’] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect when name in fact specifies a subpackage instead of a submodule: the submodules specified in the
package’s __all__ variable are loaded.) Return a new reference to the imported module, or NULL with an
exception set on failure. A failing import of a module doesn’t leave the module in sys.modules.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
This version of PyImport_ImportModule does not block. It’s intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import lock.
The function PyImport_ImportModuleNoBlock never blocks. It first tries to fetch the module from
sys.modules and falls back to PyImport_ImportModule unless the lock is held, in which case the function
will raise an ImportError.

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference.
Import a module. This is best described by referring to the built-in Python function __import__(), as the

standard __import__() function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with PyImport_ImportModule.

PyObject* PyImport_ImportModuleLevel(char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Import a module. This is best described by referring to the built-in Python function __import__(), as the
standard __import__() function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__(), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

PyObject* PyImport_Import(PyObject *name)
Return value: New reference.
This is a higher-level interface that calls the current “import hook function” (with an explicit level of 0, meaning
absolute import). It invokes the __import__() function from the __builtins__ of the current globals.
This means that the import is done using whatever import hooks are installed in the current environment.

PyObject* PyImport_ReloadModule(PyObject *m)
Return value: New reference.
Reload a module. Return a new reference to the reloaded module, or NULL with an exception set on failure (the
module still exists in this case).

PyObject* PyImport_AddModule(const char *name)
Return value: Borrowed reference.
Return the module object corresponding to a module name. The name argument may be of the form
package.module. First check the modules dictionary if there’s one there, and if not, create a new one
and insert it in the modules dictionary. Return NULL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use PyImport_ImportModule or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport_ExecCodeModule(char *name, PyObject *co)
Return value: New reference.

Given a module name (possibly of the form package.module) and a code object read from a Python
bytecode file or obtained from the built-in function compile(), load the module. Return a new reference to

5.4. Importing Modules 25

The Python/C API, Release 3.1

the module object, or NULL with an exception set if an error occurred. name is removed from sys.modules
in error cases, even if name was already in sys.modules on entry to PyImport_ExecCodeModule.
Leaving incompletely initialized modules in sys.modules is dangerous, as imports of such modules have no
way to know that the module object is an unknown (and probably damaged with respect to the module author’s
intents) state.

This function will reload the module if it was already imported. See PyImport_ReloadModule for the
intended way to reload a module.

If name points to a dotted name of the form package.module, any package structures not already created
will still not be created.

long PyImport_GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. .pyc and .pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict()
Return value: Borrowed reference.
Return the dictionary used for the module administration (a.k.a. sys.modules). Note that this is a per-
interpreter variable.

PyObject* PyImport_GetImporter(PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook is
found that can handle the path item. Return None if no hook could; this tells our caller it should fall back to the
builtin import mechanism. Cache the result in sys.path_importer_cache. Return a new reference to the
importer object.

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)
For internal use only.

int PyImport_ImportFrozenModule(char *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and -1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule. (Note the misnomer — this function would reload the module if it was already
imported.)

_frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members

26 Chapter 5. Utilities

The Python/C API, Release 3.1

are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, PyObject* (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab, returning -1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first at-
tempted import. This should be called before Py_Initialize.

_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array
of these structures in conjunction with PyImport_ExtendInittab to provide additional built-in modules.
The structure is defined in Include/import.h as:

struct _inittab {
char *name;
PyObject* (*initfunc)(void);

};

int PyImport_ExtendInittab(struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called before Py_Initialize.

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile(long value, FILE *file, int version)
Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native long type. version indicates the file format.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference.
Return a string object containing the marshalled representation of value. version indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s no
error. What’s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile(FILE *file)
Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

5.5. Data marshalling support 27

The Python/C API, Release 3.1

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

PyObject* PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE* opened for reading. On error, sets the appropriate
exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference.
Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile, this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data
in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that
you won’t be reading anything else from the file. On error, sets the appropriate exception (EOFError or
TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString(char *string, Py_ssize_t len)
Return value: New reference.
Return a Python object from the data stream in a character buffer containing len bytes pointed to by string. On
error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in Extending and Embedding the Python Interpreter (in Extending and Embedding Python).

The first three of these functions described, PyArg_ParseTuple, PyArg_ParseTupleAndKeywords, and
PyArg_Parse, all use format strings which are used to tell the function about the expected arguments. The format
strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded NUL bytes; if it does, a TypeError exception is raised. Unicode objects are converted to C strings
using the default encoding. If this conversion fails, a UnicodeError is raised.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEAN before including Python.h. If the macro is defined, length is a Py_ssize_t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] This is similar to s, but the code fills a
Py_buffer structure provided by the caller. In this case the Python string may contain embedded null bytes.
Unicode objects pass back a pointer to the default encoded string version of the object if such a conversion
is possible. The underlying buffer is locked, so that the caller can subsequently use the buffer even inside a
Py_BEGIN_ALLOW_THREADS block. The caller is responsible for calling PyBuffer_Release with the
structure after it has processed the data.

s# (string, Unicode or any read buffer compatible object) [const char *, int or Py_ssize_t] This variant on s
stores into two C variables, the first one a pointer to a character string, the second one its length. In this case

28 Chapter 5. Utilities

The Python/C API, Release 3.1

the Python string may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded
string version of the object if such a conversion is possible. All other read-buffer compatible objects pass back
a reference to the raw internal data representation. Since this format doesn’t allow writable buffer compatible
objects like byte arrays, s* is to be preferred.

The type of the length argument (int or Py_ssize_t) is controlled by defining the macro
PY_SSIZE_T_CLEAN before including Python.h. If the macro was defined, length is a Py_ssize_t
rather than an int. This behavior will change in a future Python version to only support Py_ssize_t and drop
int support. It is best to always define PY_SSIZE_T_CLEAN.

y (bytes object) [const char *] This variant on s converts a Python bytes or bytearray object to a C pointer to a
character string. The bytes object must not contain embedded NUL bytes; if it does, a TypeError exception
is raised.

y* (bytes object) [Py_buffer *] This is to s* as y is to s.

y# (bytes object) [const char *, int] This variant on s# stores into two C variables, the first one a pointer to a char-
acter string, the second one its length. This only accepts bytes objects, no byte arrays.

z (string or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is
set to NULL.

z* (string or None or any buffer compatible object) [Py_buffer*] This is to s* as z is to s.

z# (string or None or any read buffer compatible object) [const char *, int] This is to s# as z is to s.

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As with s, there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored into the Py_UNICODE pointer variable whose address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a
Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer
pointer as pointer to a Py_UNICODE array.

Z (Unicode or None) [Py_UNICODE *] Like s, but the Python object may also be None, in which case the C
pointer is set to NULL.

Z# (Unicode or None) [Py_UNICODE *, int] This is to u# as Z is to u.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant on s is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg_ParseTuple will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free to
free the allocated buffer after use.

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] Same
as es except that 8-bit string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant on s# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the es format, this variant allows input data which contains NUL characters.

5.6. Parsing arguments and building values 29

The Python/C API, Release 3.1

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as es# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char.

h (integer) [short int] Convert a Python integer to a C short int.

H (integer) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow check-
ing.

i (integer) [int] Convert a Python integer to a plain C int.

I (integer) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

l (integer) [long int] Convert a Python integer to a C long int.

k (integer) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.

L (integer) [PY_LONG_LONG] Convert a Python integer to a C long long. This format is only available on
platforms that support long long (or _int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer to a C unsigned long long without
overflow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).

n (integer) [Py_ssize_t] Convert a Python integer to a C Py_ssize_t.

c (string of length 1) [char] Convert a Python character, represented as a byte string of length 1, to a C char.

C (string of length 1) [int] Convert a Python character, represented as a unicode string of length 1, to a C int.

f (float) [float] Convert a Python floating point number to a C float.

d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

30 Chapter 5. Utilities

The Python/C API, Release 3.1

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void *. The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call. Changed in
version 3.1: Py_CLEANUP_SUPPORTED was added.

S (string) [PyStringObject *] Like O but requires that the Python object is a string object. Raises TypeError if
the object is not a string object. The C variable may also be declared as PyObject*.

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyObject*.

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only
buffer interface. The char* variable is set to point to the first byte of the buffer, and the int is set to the
length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised for all others.

w (read-write character buffer) [char *] Similar to s, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by other means, or use w# instead. Only single-
segment buffer objects are accepted; TypeError is raised for all others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is to w what s* is to s.

w# (read-write character buffer) [char *, int] Like s#, but accepts any object which implements the read-write
buffer interface. The char * variable is set to point to the first byte of the buffer, and the int is set to the
length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised for all others.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for
sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done — the most significant bits are silently truncated when the receiving field is too small to
receive the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple does not touch the contents of the corresponding C variable(s).

5.6. Parsing arguments and building values 31

The Python/C API, Release 3.1

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Identical to PyArg_ParseTuple, except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[],
...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)

Identical to PyArg_ParseTupleAndKeywords, except that it accepts a va_list rather than a variable num-
ber of arguments.

int PyArg_Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGS parameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declared as METH_VARARGS in function
or method tables. The tuple containing the actual parameters should be passed as args; it must actually be
a tuple. The length of the tuple must be at least min and no more than max; min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointer to a PyObject*
variable; these will be filled in with the values from args; they will contain borrowed references. The variables
which correspond to optional parameters not given by args will not be filled in; these should be initialized by
the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;

32 Chapter 5. Utilities

The Python/C API, Release 3.1

PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple in this example is entirely equivalent to this call to PyArg_ParseTuple:

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

PyObject* Py_BuildValue(const char *format, ...)
Return value: New reference.
Create a new value based on a format string similar to those accepted by the PyArg_Parse* family of func-
tions and a sequence of values. Returns the value or NULL in the case of an error; an exception will be raised if
NULL is returned.

Py_BuildValue does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects created
by Py_BuildValue. In other words, if your code invokes malloc and passes the allocated memory to
Py_BuildValue, your code is responsible for calling free for that memory once Py_BuildValue re-
turns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer is NULL, None
is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is NULL,
the length is ignored and None is returned.

y (bytes) [char *] This converts a C string to a Python bytes() object. If the C string pointer is NULL, None
is returned.

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (string or None) [char *] Same as s.

z# (string or None) [char *, int] Same as s#.

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length
to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is
returned.

U (string) [char *] Convert a null-terminated C string to a Python unicode object. If the C string pointer is
NULL, None is used.

5.6. Parsing arguments and building values 33

The Python/C API, Release 3.1

U# (string) [char *, int] Convert a C string and its length to a Python unicode object. If the C string pointer is
NULL, the length is ignored and None is returned.

i (integer) [int] Convert a plain C int to a Python integer object.

b (integer) [char] Convert a plain C char to a Python integer object.

h (integer) [short int] Convert a plain C short int to a Python integer object.

l (integer) [long int] Convert a C long int to a Python integer object.

B (integer) [unsigned char] Convert a C unsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a C unsigned short int to a Python integer object.

I (integer) [unsigned int] Convert a C unsigned int to a Python integer object.

k (integer) [unsigned long] Convert a C unsigned long to a Python integer object.

L (long) [PY_LONG_LONG] Convert a C long long to a Python integer object. Only available on plat-
forms that support long long.

K (long) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python integer object.
Only available on platforms that support unsigned long long.

n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer.

c (string of length 1) [char] Convert a C int representing a byte to a Python byte string of length 1.

C (string of length 1) [int] Convert a C int representing a character to Python unicode string of length 1.

d (float) [double] Convert a C double to a Python floating point number.

f (float) [float] Same as d.

D (complex) [Py_complex *] Convert a C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. Therefore, Py_BuildValue will return
NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The func-
tion is called with anything (which should be compatible with void *) as its argument and should return
a “new” Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dictionary) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue(const char *format, va_list vargs)
Identical to Py_BuildValue, except that it accepts a va_list rather than a variable number of arguments.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

34 Chapter 5. Utilities

The Python/C API, Release 3.1

int PyOS_snprintf(char *str, size_t size, const char *format, ...)
Output not more than size bytes to str according to the format string format and the extra arguments. See the
Unix man page snprintf(2).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Output not more than size bytes to str according to the format string format and the variable argument list va.
Unix man page vsnprintf(2).

PyOS_snprintf and PyOS_vsnprintf wrap the Standard C library functions snprintf and vsnprintf.
Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions do not.

The wrappers ensure that str*[*size-1] is always ’\0’ upon return. They never write more than size bytes (including
the trailing ’\0’) into str. Both functions require that str != NULL, size > 0 and format != NULL.

If the platform doesn’t have vsnprintf and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size, the output conversion was successful and rv characters were written to str (exclud-
ing the trailing ’\0’ byte at str*[*rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str*[*size-1] is ’\0’ in this case.

• When rv < 0, “something bad happened.” str*[*size-1] is ’\0’ in this case too, but the rest of str is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ascii_strtod(const char *nptr, char **endptr)
Convert a string to a double. This function behaves like the Standard C function strtod does in the C locale.
It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod should typically be used for reading configuration files or other non-user input that
should be locale independent.

See the Unix man page strtod(2) for details. Deprecated since version 3.1: Use
PyOS_string_to_double instead.

double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)
Convert a string s to a double, raising a Python exception on failure. The set of accepted strings corresponds
to the set of strings accepted by Python’s float() constructor, except that s must not have leading or trailing
whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1.0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return -1.0. In both cases, set *endptr to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1.0. New in version 3.1.

char* PyOS_ascii_formatd(char *buffer, size_t buf_len, const char *format, double d)
Convert a double to a string using the ’.’ as the decimal separator. format is a printf-style format string
specifying the number format. Allowed conversion characters are ’e’, ’E’, ’f’, ’F’, ’g’ and ’G’.

5.7. String conversion and formatting 35

The Python/C API, Release 3.1

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. Deprecated
since version 3.1: Use PyOS_double_to_string instead.

char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
Convert a double val to a string using supplied format_code, precision, and flags.

format_code must be one of ’e’, ’E’, ’f’, ’F’, ’g’, ’G’ or ’r’. For ’r’, the supplied precision must be
0 and is ignored. The ’r’ format code specifies the standard repr() format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

•Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

•Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

•Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf ’#’ specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free. New in version 3.1.

double PyOS_ascii_atof(const char *nptr)
Convert a string to a double in a locale-independent way.

See the Unix man page atof(2) for details. Deprecated since version 3.1: Use PyOS_string_to_double
instead.

char* PyOS_stricmp(char *s1, char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp except that it ignores
the case.

char* PyOS_strnicmp(char *s1, char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp except that it ignores
the case.

5.8 Reflection

PyObject* PyEval_GetBuiltins()
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no frame
is currently executing.

PyObject* PyEval_GetLocals()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution frame, or NULL if no frame is currently
executing.

PyObject* PyEval_GetGlobals()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution frame, or NULL if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame()
Return value: Borrowed reference.
Return the current thread state’s frame, which is NULL if no frame is currently executing.

36 Chapter 5. Utilities

The Python/C API, Release 3.1

int PyEval_GetRestricted()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName(PyObject *func)
Return the name of func if it is a function, class or instance object, else the name of funcs type.

const char* PyEval_GetFuncDesc(PyObject *func)
Return a description string, depending on the type of func. Return values include “()” for functions and methods,
” constructor”, ” instance”, and ” object”. Concatenated with the result of PyEval_GetFuncName, the result
will be a description of func.

5.8. Reflection 37

The Python/C API, Release 3.1

38 Chapter 5. Utilities

CHAPTER

SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New, but whose items have not been set to some non-NULL value yet.

6.1 Object Protocol

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead of
the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference.
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure.
This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference.
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or NULL on failure.
This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for
a descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict__
(if present). As outlined in Implementing Descriptors (in The Python Language Reference), data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError
is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure. This is the
equivalent of the Python statement o.attr_name = v.

39

The Python/C API, Release 3.1

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure. This is the
equivalent of the Python statement o.attr_name = v.

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter function that is meant to be put into a type object’s tp_setattro slot. It looks for
a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over setting
the attribute in the instance dictionary. Otherwise, the attribute is set in the object’s __dict__ (if present).
Otherwise, an AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference.
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. This is the equiv-
alent of the Python expression o1 op o2, where op is the operator corresponding to opid. Returns the value
of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on
error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op
is the operator corresponding to opid.

PyObject* PyObject_Repr(PyObject *o)
Return value: New reference.

Compute a string representation of object o. Returns the string representation on success, NULL on failure.
This is the equivalent of the Python expression repr(o). Called by the repr() built-in function.

PyObject* PyObject_ASCII(PyObject *o)
As PyObject_Repr, compute a string representation of object o, but escape the non-ASCII characters in

the string returned by PyObject_Repr with \x, \u or \U escapes. This generates a string similar to that
returned by PyObject_Repr in Python 2. Called by the ascii() built-in function.

PyObject* PyObject_Str(PyObject *o)
Return value: New reference.

Compute a string representation of object o. Returns the string representation on success, NULL on failure.
This is the equivalent of the Python expression str(o). Called by the str() built-in function and, therefore,
by the print() function.

PyObject* PyObject_Bytes(PyObject *o)
Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is

equivalent to the Python expression bytes(o).

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an
exception. If cls is a type object rather than a class object, PyObject_IsInstance returns 1 if inst is of
type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one
of the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor
a class object, nor a tuple, inst must have a __class__ attribute — the class relationship of the value of that
attribute with cls will be used to determine the result of this function.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions

40 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.1

to the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A
either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testing if B is a subclass of A, if A is B, PyObject_IsSubclass returns true.
If A and B are different objects, B‘s __bases__ attribute is searched in a depth-first fashion for A — the presence of
the __bases__ attribute is considered sufficient for this determination.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an
error, returns -1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at
least one of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or
tuple), this function uses the generic algorithm described above.

int PyCallable_Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call(PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference.
Call a callable Python object callable_object, with arguments given by the tuple args, and named arguments
given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must not be NULL, use
an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL on failure. This
is the equivalent of the Python expression callable_object(*args, **kw).

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)
Return value: New reference.
Call a callable Python object callable_object, with arguments given by the tuple args. If no arguments are
needed, then args may be NULL. Returns the result of the call on success, or NULL on failure. This is the
equivalent of the Python expression callable_object(*args).

PyObject* PyObject_CallFunction(PyObject *callable, char *format, ...)
Return value: New reference.
Call a callable Python object callable, with a variable number of C arguments. The C arguments are de-
scribed using a Py_BuildValue style format string. The format may be NULL, indicating that no ar-
guments are provided. Returns the result of the call on success, or NULL on failure. This is the equiv-
alent of the Python expression callable(*args). Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs is a faster alternative.

PyObject* PyObject_CallMethod(PyObject *o, char *method, char *format, ...)
Return value: New reference.
Call the method named method of object o with a variable number of C arguments. The C arguments are
described by a Py_BuildValue format string that should produce a tuple. The format may be NULL, indi-
cating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is
the equivalent of the Python expression o.method(args). Note that if you only pass PyObject * args,
PyObject_CallMethodObjArgs is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference.
Call a callable Python object callable, with a variable number of PyObject* arguments. The arguments are
provided as a variable number of parameters followed by NULL. Returns the result of the call on success, or
NULL on failure.

PyObject* PyObject_CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference.
Calls a method of the object o, where the name of the method is given as a Python string object in name. It is
called with a variable number of PyObject* arguments. The arguments are provided as a variable number of
parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

long PyObject_Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python

6.1. Object Protocol 41

The Python/C API, Release 3.1

expression hash(o).

long PyObject_HashNotImplemented(PyObject *o)
Set a TypeError indicating that type(o) is not hashable and return -1. This function receives special
treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression
not not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression
not o. On failure, return -1.

PyObject* PyObject_Type(PyObject *o)
Return value: New reference.

When o is non-NULL, returns a type object corresponding to the object type of object o. On failure, raises
SystemError and returns NULL. This is equivalent to the Python expression type(o). This function incre-
ments the reference count of the return value. There’s really no reason to use this function instead of the common
expression o->ob_type, which returns a pointer of type PyTypeObject*, except when the incremented
reference count is needed.

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Length(PyObject *o)
Py_ssize_t PyObject_Size(PyObject *o)

Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of the Python
expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Returns -1 on failure. This is the equivalent of the Python statement o[key]
= v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python statement del
o[key].

PyObject* PyObject_Dir(PyObject *o)
Return value: New reference.
This is equivalent to the Python expression dir(o), returning a (possibly empty) list of strings appropriate for
the object argument, or NULL if there was an error. If the argument is NULL, this is like the Python dir(),
returning the names of the current locals; in this case, if no execution frame is active then NULL is returned but
PyErr_Occurred will return false.

PyObject* PyObject_GetIter(PyObject *o)
Return value: New reference.
This is equivalent to the Python expression iter(o). It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. Raises TypeError and returns NULL if the object cannot be
iterated.

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.1

6.2 Number Protocol

int PyNumber_Check(PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of adding o1 and o2, or NULL on failure. This is the equivalent of the Python expression o1
+ o2.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtracting o2 from o1, or NULL on failure. This is the equivalent of the Python expression
o1 - o2.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplying o1 and o2, or NULL on failure. This is the equivalent of the Python expression
o1 * o2.

PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the floor of o1 divided by o2, or NULL on failure. This is equivalent to the “classic” division of integers.

PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value of o1 divided by o2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividing o1 by o2, or NULL on failure. This is the equivalent of the Python expression
o1 % o2.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference.
See the built-in function divmod(). Returns NULL on failure. This is the equivalent of the Python expression
divmod(o1, o2).

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.

See the built-in function pow(). Returns NULL on failure. This is the equivalent of the Python expression
pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored, pass Py_None in its place (passing NULL
for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)
Return value: New reference.
Returns the negation of o on success, or NULL on failure. This is the equivalent of the Python expression -o.

PyObject* PyNumber_Positive(PyObject *o)
Return value: New reference.
Returns o on success, or NULL on failure. This is the equivalent of the Python expression +o.

PyObject* PyNumber_Absolute(PyObject *o)
Return value: New reference.
Returns the absolute value of o, or NULL on failure. This is the equivalent of the Python expression abs(o).

PyObject* PyNumber_Invert(PyObject *o)
Return value: New reference.

6.2. Number Protocol 43

The Python/C API, Release 3.1

Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent of the Python expression
~o.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the equivalent of the Python
expression o1 << o2.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is the equivalent of the Python
expression o1 >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” of o1 and o2 on success and NULL on failure. This is the equivalent of the Python
expression o1 & o2.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. This is the equivalent of the
Python expression o1 ^ o2.

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. This is the equivalent of the Python
expression o1 | o2.

PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of adding o1 and o2, or NULL on failure. The operation is done in-place when o1 supports it.
This is the equivalent of the Python statement o1 += o2.

PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of subtracting o2 from o1, or NULL on failure. The operation is done in-place when o1
supports it. This is the equivalent of the Python statement o1 -= o2.

PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of multiplying o1 and o2, or NULL on failure. The operation is done in-place when o1
supports it. This is the equivalent of the Python statement o1 *= o2.

PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the mathematical floor of dividing o1 by o2, or NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python statement o1 //= o2.

PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference.
Return a reasonable approximation for the mathematical value of o1 divided by o2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
The operation is done in-place when o1 supports it.

PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the remainder of dividing o1 by o2, or NULL on failure. The operation is done in-place when o1
supports it. This is the equivalent of the Python statement o1 %= o2.

44 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.1

PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference.
See the built-in function pow(). Returns NULL on failure. The operation is done in-place when o1 supports

it. This is the equivalent of the Python statement o1 **= o2 when o3 is Py_None, or an in-place variant
of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None in its place (passing NULL for o3
would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of left shifting o1 by o2 on success, or NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python statement o1 <<= o2.

PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the result of right shifting o1 by o2 on success, or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement o1 >>= o2.

PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise and” of o1 and o2 on success and NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on failure. The operation is done in-place
when o1 supports it. This is the equivalent of the Python statement o1 ^= o2.

PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference.
Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. The operation is done in-place when o1
supports it. This is the equivalent of the Python statement o1 |= o2.

PyObject* PyNumber_Int(PyObject *o)
Return value: New reference.
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent of the Python
expression int(o).

Note: This function is defined in the transitional intobject.h header file. It will be removed completely in
Python 3.1. Use the PyNumber_Long function instead.

PyObject* PyNumber_Long(PyObject *o)
Return value: New reference.
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent of the Python

expression int(o).

PyObject* PyNumber_Float(PyObject *o)
Return value: New reference.
Returns the o converted to a float object on success, or NULL on failure. This is the equivalent of the Python

expression float(o).

PyObject* PyNumber_Index(PyObject *o)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase(PyObject *n, int base)
Returns the integer n converted to base as a string with a base marker of ’0b’, ’0o’, or ’0x’ if applicable.
When base is not 2, 8, 10, or 16, the format is ’x#num’ where x is the base. If n is not an int object, it is
converted with PyNumber_Index first.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If o can be converted to a Python

6.2. Number Protocol 45

The Python/C API, Release 3.1

int but the attempt to convert to a Py_ssize_t value would raise an OverflowError, then the exc argument is
the type of exception that will be raised (usually IndexError or OverflowError). If exc is NULL, then the
exception is cleared and the value is clipped to PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX
for a positive integer.

int PyIndex_Check(PyObject *o)
Returns True if o is an index integer (has the nb_index slot of the tp_as_number structure filled in).

6.3 Sequence Protocol

int PySequence_Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Returns the number of objects in sequence o on success, and -1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expression len(o).

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation of o1 and o2 on success, and NULL on failure. This is the equivalent of the Python
expression o1 + o2.

PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference.
Return the result of repeating sequence object o count times, or NULL on failure. This is the equivalent of the
Python expression o * count.

PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference.
Return the concatenation of o1 and o2 on success, and NULL on failure. The operation is done in-place when
o1 supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference.
Return the result of repeating sequence object o count times, or NULL on failure. The operation is done in-place
when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference.
Return the ith element of o, or NULL on failure. This is the equivalent of the Python expression o[i].

PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference.
Return the slice of sequence object o between i1 and i2, or NULL on failure. This is the equivalent of the Python
expression o[i1:i2].

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Assign object v to the ith element of o. Returns -1 on failure. This is the equivalent of the Python statement
o[i] = v. This function does not steal a reference to v.

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the Python statement del
o[i].

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2. This is the equivalent of the Python
statement o[i1:i2] = v.

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.1

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the equivalent of the Python
statement del o[i1:i2].

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o[key] ==
value. On failure, return -1. This is equivalent to the Python expression o.count(value).

int PySequence_Contains(PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On error, return
-1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Return the first index i for which o[i] == value. On error, return -1. This is equivalent to the Python
expression o.index(value).

PyObject* PySequence_List(PyObject *o)
Return value: New reference.
Return a list object with the same contents as the arbitrary sequence o. The returned list is guaranteed to be new.

PyObject* PySequence_Tuple(PyObject *o)
Return value: New reference.
Return a tuple object with the same contents as the arbitrary sequence o or NULL on failure. If o is a tuple,

a new reference will be returned, otherwise a tuple will be constructed with the appropriate contents. This is
equivalent to the Python expression tuple(o).

PyObject* PySequence_Fast(PyObject *o, const char *m)
Return value: New reference.
Returns the sequence o as a tuple, unless it is already a tuple or list, in which case o is returned. Use
PySequence_Fast_GET_ITEM to access the members of the result. Returns NULL on failure. If the object
is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference.
Return the ith element of o, assuming that o was returned by PySequence_Fast, o is not NULL, and that i is
within bounds.

PyObject** PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast and o
is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference.
Return the ith element of o or NULL on failure. Macro form of PySequence_GetItem but without checking
that PySequence_Check(o) is true and without adjustment for negative indices.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast and that o is not NULL. The
size can also be gotten by calling PySequence_Size on o, but PySequence_Fast_GET_SIZE is faster
because it can assume o is a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

6.4. Mapping Protocol 47

The Python/C API, Release 3.1

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and -1 on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression len(o).

int PyMapping_DelItemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKeyString(PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python
expression key in o. This function always succeeds.

int PyMapping_HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python expression
key in o. This function always succeeds.

PyObject* PyMapping_Keys(PyObject *o)
Return value: New reference.
On success, return a list of the keys in object o. On failure, return NULL. This is equivalent to the Python
expression o.keys().

PyObject* PyMapping_Values(PyObject *o)
Return value: New reference.
On success, return a list of the values in object o. On failure, return NULL. This is equivalent to the Python
expression o.values().

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference.
On success, return a list of the items in object o, where each item is a tuple containing a key-value pair. On
failure, return NULL. This is equivalent to the Python expression o.items().

PyObject* PyMapping_GetItemString(PyObject *o, char *key)
Return value: New reference.
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of the Python
expression o[key].

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python
statement o[key] = v.

6.5 Iterator Protocol

There are only a couple of functions specifically for working with iterators.

int PyIter_Check(PyObject *o)
Return true if the object o supports the iterator protocol.

PyObject* PyIter_Next(PyObject *o)
Return value: New reference.
Return the next value from the iteration o. If the object is an iterator, this retrieves the next value from the
iteration, and returns NULL with no exception set if there are no remaining items. If the object is not an iterator,
TypeError is raised, or if there is an error in retrieving the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

48 Chapter 6. Abstract Objects Layer

The Python/C API, Release 3.1

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next(iterator)) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location usable as character-based input. The obj argument must
support the single-segment character buffer interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a read-only memory location containing arbitrary data. The obj argument must support
the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns -1 and sets a TypeError on error.

6.6. Buffer Protocol 49

The Python/C API, Release 3.1

50 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check. The chapter is
structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in
can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as type and types.TypeType in the Python
layer.

int PyType_Check(PyObject *o)
Return true if the object o is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact(PyObject *o)
Return true if the object o is a type object, but not a subtype of the standard type object. Return false in all other
cases.

unsigned int PyType_ClearCache(void)
Clear the internal lookup cache. Return the current version tag.

void PyType_Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature(PyObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyObject *o)

51

The Python/C API, Release 3.1

Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference.
XXX: Document.

PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference.
XXX: Document.

int PyType_Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.

7.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check function for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py_RETURN_NONE
Properly handle returning Py_None from within a C function (that is, increment the reference count of None
and return it.)

7.2 Numeric Objects

7.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

PyLongObject
This subtype of PyObject represents a Python integer object.

PyTypeObject PyLong_Type
This instance of PyTypeObject represents the Python integer type. This is the same object as int.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.

PyObject* PyLong_FromLong(long v)
Return value: New reference.
Return a new PyLongObject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

52 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

PyObject* PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference.
Return a new PyLongObject object from a C unsigned long, or NULL on failure.

PyObject* PyLong_FromSsize_t(Py_ssize_t v)
Return a new PyLongObject object from a C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t(size_t v)
Return a new PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong(PY_LONG_LONG v)
Return value: New reference.
Return a new PyLongObject object from a C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG v)
Return value: New reference.
Return a new PyLongObject object from a C unsigned long long, or NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference.
Return a new PyLongObject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString(char *str, char **pend, int base)
Return value: New reference.
Return a new PyLongObject based on the string value in str, which is interpreted according to the radix in
base. If pend is non-NULL, *pend will point to the first character in str which follows the representation of the
number. If base is 0, the radix will be determined based on the leading characters of str: if str starts with ’0x’
or ’0X’, radix 16 will be used; if str starts with ’0o’ or ’0O’, radix 8 will be used; if str starts with ’0b’
or ’0B’, radix 2 will be used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and 36,
inclusive. Leading spaces are ignored. If there are no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference.
Convert a sequence of Unicode digits to a Python integer value. The Unicode string is first encoded to a byte
string using PyUnicode_EncodeDecimal and then converted using PyLong_FromString.

PyObject* PyLong_FromVoidPtr(void *p)
Return value: New reference.
Create a Python integer from the pointer p. The pointer value can be retrieved from the resulting value using
PyLong_AsVoidPtr.

long PyLong_AsLong(PyObject *pylong)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, raise an
OverflowError, and return -1. Convert non-long objects automatically to long first, and return -1 if that
raises exceptions.

long PyLong_AsLongAndOverflow(PyObject *pylong, int* overflow)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, return -1 and
set *overflow to 1 (for overflow) or -1 (for underflow). If an exception is set because of type errors, also return
-1.

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Return a C Py_ssize_t representation of the contents of pylong. If pylong is greater than

PY_SSIZE_T_MAX, an OverflowError is raised and -1 will be returned.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of the contents of pylong. If pylong is greater than ULONG_MAX,
an OverflowError is raised.

size_t PyLong_AsSize_t(PyObject *pylong)
Return a size_t representation of the contents of pylong. If pylong is greater than the maximum value for a

7.2. Numeric Objects 53

The Python/C API, Release 3.1

size_t, an OverflowError is raised.

PY_LONG_LONG PyLong_AsLongLong(PyObject *pylong)
Return a C long long from a Python integer. If pylong cannot be represented as a long long, an
OverflowError is raised and -1 is returned.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long from a Python integer. If pylong cannot be represented as an unsigned
long long, an OverflowError is raised and (unsigned long long)-1 is returned. Changed in
version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *io)
Return a C unsigned long from a Python integer, without checking for overflow.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask(PyObject *io)
Return a C unsigned long long from a Python integer, without checking for overflow.

double PyLong_AsDouble(PyObject *pylong)
Return a C double representation of the contents of pylong. If pylong cannot be approximately represented as
a double, an OverflowError exception is raised and -1.0 will be returned.

void* PyLong_AsVoidPtr(PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.

int PyBool_Check(PyObject *o)
Return true if o is of type PyBool_Type.

PyObject* Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py_RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py_RETURN_TRUE
Return Py_True from a function, properly incrementing its reference count.

PyObject* PyBool_FromLong(long v)
Return value: New reference.
Return a new reference to Py_True or Py_False depending on the truth value of v.

7.2.3 Floating Point Objects

PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type

54 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

This instance of PyTypeObject represents the Python floating point type. This is the same object as float
and types.FloatType.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject.

PyObject* PyFloat_FromString(PyObject *str)
Return value: New reference.
Create a PyFloatObject object based on the string value in str, or NULL on failure.

PyObject* PyFloat_FromDouble(double v)
Return value: New reference.
Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat. If pyfloat is not a Python floating point object but
has a __float__() method, this method will first be called to convert pyfloat into a float.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject* PyFloat_GetInfo(void)
Return a structseq instance which contains information about the precision, minimum and maximum values of
a float. It’s a thin wrapper around the header file float.h.

double PyFloat_GetMax(void)
Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin(void)
Return the minimum normalized positive float DBL_MIN as C double.

int PyFloat_ClearFreeList(void)
Clear the float free list. Return the number of items that could not be freed.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

7.2. Numeric Objects 55

The Python/C API, Release 3.1

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_neg(Py_complex complex)
Return the negation of the complex number complex, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as
complex and types.ComplexType.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject.

PyObject* PyComplex_FromCComplex(Py_complex v)
Return value: New reference.
Create a new Python complex number object from a C Py_complex value.

PyObject* PyComplex_FromDoubles(double real, double imag)
Return value: New reference.
Return a new PyComplexObject object from real and imag.

double PyComplex_RealAsDouble(PyObject *op)
Return the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)
Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op.

If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

56 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

7.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are called with a non-bytes parameter.

PyBytesObject
This subtype of PyObject represents a Python bytes object.

PyTypeObject PyBytes_Type
This instance of PyTypeObject represents the Python bytes type; it is the same object as bytes in the
Python layer. .

int PyBytes_Check(PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type.

int PyBytes_CheckExact(PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type.

PyObject* PyBytes_FromString(const char *v)
Return a new bytes object with a copy of the string v as value on success, and NULL on failure. The parameter
v must not be NULL; it will not be checked.

PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)
Return a new bytes object with a copy of the string v as value and length len on success, and NULL on failure.
If v is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat(const char *format, ...)
Take a C printf-style format string and a variable number of arguments, calculate the size of the resulting
Python bytes object and return a bytes object with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format characters in the format string. The following format
characters are allowed:

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent to printf("%d").
%u un-

signed
int

Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%ld").
%lu un-

signed
long

Exactly equivalent to printf("%lu").

%zd Py_ssize_tExactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except that

it is guaranteed to start with the literal 0x regardless of what the platform’s printf
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

PyObject* PyBytes_FromFormatV(const char *format, va_list vargs)
Identical to PyBytes_FromFormat() except that it takes exactly two arguments.

PyObject* PyBytes_FromObject(PyObject *o)

7.3. Sequence Objects 57

The Python/C API, Release 3.1

Return the bytes representation of object o that implements the buffer protocol.

Py_ssize_t PyBytes_Size(PyObject *o)
Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE(PyObject *o)
Macro form of PyBytes_Size but without error checking.

char* PyBytes_AsString(PyObject *o)
Return a NUL-terminated representation of the contents of o. The pointer refers to the internal buffer
of o, not a copy. The data must not be modified in any way, unless the string was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If o is not a string object at
all, PyBytes_AsString returns NULL and raises TypeError.

char* PyBytes_AS_STRING(PyObject *string)
Macro form of PyBytes_AsString but without error checking.

int PyBytes_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Return a NUL-terminated representation of the contents of the object obj through the output variables buffer and
length.

If length is NULL, the resulting buffer may not contain NUL characters; if it does, the function returns -1 and
a TypeError is raised.

The buffer refers to an internal string buffer of obj, not a copy. The data must not be modified in any way,
unless the string was just created using PyBytes_FromStringAndSize(NULL, size). It must not
be deallocated. If string is not a string object at all, PyBytes_AsStringAndSize returns -1 and raises
TypeError.

void PyBytes_Concat(PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own
the new reference. The reference to the old value of bytes will be stolen. If the new string cannot be created,
the old reference to bytes will still be discarded and the value of *bytes will be set to NULL; the appropriate
exception will be set.

void PyBytes_ConcatAndDel(PyObject **bytes, PyObject *newpart)
Create a new string object in *bytes containing the contents of newpart appended to bytes. This version decre-
ments the reference count of newpart.

int _PyBytes_Resize(PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object at *bytes
is deallocated, *bytes is set to NULL, a memory exception is set, and -1 is returned.

7.3.2 Byte Array Objects

PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray
in the Python layer.

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact(PyObject *o)

58 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type.

PyObject* PyByteArray_FromObject(PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)
Macro version of PyByteArray_Size that doesn’t do pointer checking.

char* PyByteArray_AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer.

char* PyByteArray_AS_STRING(PyObject *bytearray)
Macro version of PyByteArray_AsString that doesn’t check pointers.

PyObject* PyByteArray_Concat(PyObject *a, PyObject *b)
Concat bytearrays a and b and return a new bytearray with the result.

PyObject* PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Resize the internal buffer of bytearray to len.

7.3.3 Unicode Objects and Codecs

Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode ordinals.
Python’s default builds use a 16-bit type for Py_UNICODE and store Unicode values internally as UCS2. It is
also possible to build a UCS4 version of Python (most recent Linux distributions come with UCS4 builds of
Python). These builds then use a 32-bit type for Py_UNICODE and store Unicode data internally as UCS4.
On platforms where wchar_t is available and compatible with the chosen Python Unicode build variant,
Py_UNICODE is a typedef alias for wchar_t to enhance native platform compatibility. On all other plat-
forms, Py_UNICODE is a typedef alias for either unsigned short (UCS2) or unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions
or interfaces.

PyUnicodeObject
This subtype of PyObject represents a Python Unicode object.

PyTypeObject PyUnicode_Type
This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check(PyObject *o)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact(PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the object. o has to be a PyUnicodeObject (not checked).

7.3. Sequence Objects 59

The Python/C API, Release 3.1

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).

Py_UNICODE* PyUnicode_AS_UNICODE(PyObject *o)
Return a pointer to the internal Py_UNICODE buffer of the object. o has to be a PyUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA(PyObject *o)
Return a pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode_ClearFreeList(void)
Clear the free list. Return the total number of freed items.

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE(Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or
sys.stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)
Return the character ch converted to lower case.

Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)
Return the character ch converted to upper case.

Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)
Return the character ch converted to title case.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

int Py_UNICODE_TODECIMAL(Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro
does not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference.
Create a Unicode Object from the Py_UNICODE buffer u of the given size. u may be NULL which causes the
contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the
new object. If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the
resulting Unicode object is only allowed when u is NULL.

PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
Create a Unicode Object from the char buffer u. The bytes will be interpreted as being UTF-8 encoded. u may
also be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data.
The buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object.
Therefore, modification of the resulting Unicode object is only allowed when u is NULL.

PyObject * PyUnicode_FromString(const char *u)
Create a Unicode object from an UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat(const char *format, ...)
Take a C printf-style format string and a variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into it. The variable arguments must be C
types and must correspond exactly to the format characters in the format string. The following format characters
are allowed:

7.3. Sequence Objects 61

The Python/C API, Release 3.1

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent to printf("%d").
%u unsigned

int
Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%ld").
%lu unsigned

long
Exactly equivalent to printf("%lu").

%zd Py_ssize_t Exactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except

that it is guaranteed to start with the literal 0x regardless of what the platform’s
printf yields.

%A PyOb-
ject*

The result of calling ascii().

%U PyOb-
ject*

A unicode object.

%V PyOb-
ject*,
char *

A unicode object (which may be NULL) and a null-terminated C character array as a
second parameter (which will be used, if the first parameter is NULL).

%S PyOb-
ject*

The result of calling PyObject_Str().

%R PyOb-
ject*

The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

PyObject* PyUnicode_FromFormatV(const char *format, va_list vargs)
Identical to PyUnicode_FromFormat() except that it takes exactly two arguments.

Py_UNICODE* PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer, NULL if unicode is not a
Unicode object.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Return the length of the Unicode object.

PyObject* PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference.
Coerce an encoded object obj to an Unicode object and return a reference with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see the next section
for details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject(PyObject *obj)
Return value: New reference.
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict") which is used throughout
the interpreter whenever coercion to Unicode is needed.

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s own Py_UNICODE type is identical to the system’s
wchar_t.

PyObject* PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)
Return value: New reference.
Create a Unicode object from the wchar_t buffer w of the given size. Passing -1 as the size indicates that the
function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar(PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing 0-termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t string may or may not be 0-terminated. It is the
responsibility of the caller to make sure that the wchar_t string is 0-terminated in case this is required by the
application.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have the
same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file sys-
tem calls should use PyUnicode_FSConverter for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: On some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

These are the generic codec APIs:

PyObject* PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the encoded string s. encoding and errors have the same
meaning as the parameters of the same name in the unicode() builtin function. The codec to be used is
looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char
*errors)

Return value: New reference.
Encode the Py_UNICODE buffer of the given size and return a Python bytes object. encoding and errors have
the same meaning as the parameters of the same name in the Unicode encode() method. The codec to be
used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference.
Encode a Unicode object and return the result as Python bytes object. encoding and errors have the same
meaning as the parameters of the same name in the Unicode encode() method. The codec to be used is
looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.

7.3. Sequence Objects 63

The Python/C API, Release 3.1

Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return NULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference.
If consumed is NULL, behave like PyUnicode_DecodeUTF8. If consumed is not NULL, trailing incomplete
UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode the Py_UNICODE buffer of the given size using UTF-8 and return a Python bytes object. Return NULL
if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using UTF-8 and return the result as Python bytes object. Error handling is “strict”.
Return NULL if an exception was raised by the codec.

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decode length bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors
(if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian

*byteorder == 0: native order

*byteorder == 1: big endian

and then switches if the first four bytes of the input data are a byte order mark (BOM) and the specified byte
order is native order. This BOM is not copied into the resulting Unicode string. After completion, *byteorder is
set to the current byte order at the end of input data.

In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.

If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

If consumed is NULL, behave like PyUnicode_DecodeUTF32. If consumed is not NULL,
PyUnicode_DecodeUTF32Stateful will not treat trailing incomplete UTF-32 byte sequences (such as a
number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes that
have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF32(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. If byteorder is not 0,
output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single codepoint.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF32String(PyObject *unicode)
Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference.
Decode length bytes from a UTF-16 encoded buffer string and return the corresponding Unicode object. errors
(if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian

*byteorder == 0: native order

*byteorder == 1: big endian

and then switches if the first two bytes of the input data are a byte order mark (BOM) and the specified byte
order is native order. This BOM is not copied into the resulting Unicode string. After completion, *byteorder is
set to the current byte order at the end of input data.

If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

Return value: New reference.
If consumed is NULL, behave like PyUnicode_DecodeUTF16. If consumed is not NULL,
PyUnicode_DecodeUTF16Stateful will not treat trailing incomplete UTF-16 byte sequences (such as
an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the number of
bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF16(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return value: New reference.
Return a Python bytes object holding the UTF-16 encoded value of the Unicode data in s. If byteorder is not 0,
output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it
is not defined, each Py_UNICODE values is interpreted as an UCS-2 character.

Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference.
Return a Python byte string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. Return NULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APIs:

7.3. Sequence Objects 65

The Python/C API, Release 3.1

PyObject* PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string s. Return NULL if an
exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference.
Encode the Py_UNICODE buffer of the given size using Unicode-Escape and return a Python string object.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling is
“strict”. Return NULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded string s. Return NULL if
an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size, const char
*errors)

Return value: New reference.
Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape and return a Python string object.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error han-
dling is “strict”. Return NULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return NULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodeLatin1(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode the Py_UNICODE buffer of the given size using Latin-1 and return a Python bytes object. Return NULL
if an exception was raised by the codec.

PyObject* PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using Latin-1 and return the result as Python bytes object. Error handling is “strict”.
Return NULL if an exception was raised by the codec.

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return NULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodeASCII(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode the Py_UNICODE buffer of the given size using ASCII and return a Python bytes object. Return NULL

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using ASCII and return the result as Python bytes object. Error handling is “strict”.
Return NULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then inter-
preted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then inter-
preted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which
map characters to different code points.

PyObject* PyUnicode_DecodeCharmap(const char *s, Py_ssize_t size, PyObject *mapping, const char *er-
rors)

Return value: New reference.
Create a Unicode object by decoding size bytes of the encoded string s using the given mapping object. Return
NULL if an exception was raised by the codec. If mapping is NULL latin-1 decoding will be done. Else it can
be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values greater that the
length of the string and U+FFFE “characters” are treated as “undefined mapping”.

PyObject* PyUnicode_EncodeCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,
const char *errors)

Return value: New reference.
Encode the Py_UNICODE buffer of the given size using the given mapping object and return a Python string
object. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference.
Encode a Unicode object using the given mapping object and return the result as Python string object. Error
handling is “strict”. Return NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *table,
const char *errors)

Return value: New reference.
Translate a Py_UNICODE buffer of the given length by applying a character mapping table to it and return the
resulting Unicode object. Return NULL when an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)
Return value: New reference.

7.3. Sequence Objects 67

The Python/C API, Release 3.1

Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return NULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful(const char *s, int size, const char *errors, int *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS. If consumed is not NULL,
PyUnicode_DecodeMBCSStateful will not decode trailing lead byte and the number of bytes that
have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeMBCS(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference.
Encode the Py_UNICODE buffer of the given size using MBCS and return a Python bytes object. Return NULL
if an exception was raised by the codec.

PyObject* PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference.
Encode a Unicode object using MBCS and return the result as Python bytes object. Error handling is “strict”.
Return NULL if an exception was raised by the codec.

For decoding file names and other environment strings, Py_FileSystemEncoding should be used as the encod-
ing, and "surrogateescape" should be used as the error handler. For encoding file names during argument
parsing, the O& converter should be used, passsing PyUnicode_FSConverter as the conversion function:

int PyUnicode_FSConverter(PyObject* obj, void* result)
Convert obj into result, using the file system encoding, and the surrogateescape error handler. result must
be a PyObject*, yielding a bytes or bytearray object which must be released if it is no longer used. New in
version 3.1.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat(PyObject *left, PyObject *right)
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference.
Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done at all whitespace substrings.
Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If negative, no limit is set.
Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

PyObject* PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

int PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return value: New reference.
Return 1 if substr matches str*[*start:end] at the given tail end (direction == -1 means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
tion)

Return the first position of substr in str*[*start:end] using the given direction (direction == 1 means to do a
forward search, direction == -1 a backward search). The return value is the index of the first match; a value of
-1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error
occurred.

PyObject* PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference.
Replace at most maxcount occurrences of substr in str with replstr and return the resulting Unicode object.
maxcount == -1 means replace all occurrences.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_CompareWithASCIIString(PyObject *uni, char *string)
Compare a unicode object, uni, with string and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

•NULL in case an exception was raised

•Py_True or Py_False for successful comparisons

•Py_NotImplemented in case the type combination is unknown

Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the
arguments to Unicode fails with a UnicodeDecodeError.

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format(PyObject *format, PyObject *args)
Return value: New reference.
Return a new string object from format and args; this is analogous to format % args. The args argument
must be a tuple.

int PyUnicode_Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a
Python unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it
(decrementing the reference count of the old string object and incrementing the reference count of the interned
string object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification:
even though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you
own the object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString(const char *v)
A combination of PyUnicode_FromString and PyUnicode_InternInPlace, returning either a new

7.3. Sequence Objects 69

The Python/C API, Release 3.1

unicode string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

7.3.4 Buffer Objects

Python objects implemented in C can export a “buffer interface.” These functions can be used by an object to expose
its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to access the object data
directly, without needing to copy it first.

Two examples of objects that support the buffer interface are bytes and arrays. The bytes object exposes the character
contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should be noted that
array elements may be multi-byte values.

An example user of the buffer interface is the file object’s write() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg_ParseTuple that operate against an object’s buffer interface, returning data from the target object. More
information on the buffer interface is provided in the section Buffer Object Structures, under the description for
PyBufferProcs.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is
possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a
C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

Py_buffer

void buf
A pointer to the start of the memory for the object.

Py_ssize_t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char format
A NULL terminated string in struct module style syntax giving the contents of the elements available
through the buffer. If this is NULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. If it is 0, strides and
suboffsets must be NULL.

Py_ssize_t shape
An array of Py_ssize_ts the length of ndim giving the shape of the memory as a multi-dimensional
array. Note that ((*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be equal
to len.

Py_ssize_t strides
An array of Py_ssize_ts the length of ndim giving the number of bytes to skip to get to a new element
in each dimension.

Py_ssize_t suboffsets
An array of Py_ssize_ts the length of ndim. If these suboffset numbers are greater than or equal to
0, then the value stored along the indicated dimension is a pointer and the suboffset value dictates how
many bytes to add to the pointer after de-referencing. A suboffset value that it negative indicates that no
de-referencing should occur (striding in a contiguous memory block).
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional
index when there are both non-NULL strides and suboffsets:

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {
char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

Py_ssize_t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically un-
necessary as it can be obtained using PyBuffer_SizeFromFormat, however an exporter may know
this information without parsing the format string and it is necessary to know the itemsize for proper
interpretation of striding. Therefore, storing it is more convenient and faster.

void internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0.

int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
Export obj into a Py_buffer, view. These arguments must never be NULL. The flags argument is a bit field
indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the exporter
is allowed to return. The buffer interface allows for complicated memory sharing possibilities, but some caller
may not be able to handle all the complexibity but may want to see if the exporter will let them take a simpler
view to its memory.

Some exporters may not be able to share memory in every possible way and may need to raise errors to signal
to some consumers that something is just not possible. These errors should be a BufferError unless there is
another error that is actually causing the problem. The exporter can use flags information to simplify how much
of the Py_buffer structure is filled in with non-default values and/or raise an error if the object can’t support
a simpler view of its memory.

0 is returned on success and -1 on error.

The following table gives possible values to the flags arguments.

7.3. Sequence Objects 71

The Python/C API, Release 3.1

Flag Description
PyBUF_SIMPLE This is the default flag state. The returned buffer may or may not have

writable memory. The format of the data will be assumed to be unsigned
bytes. This is a “stand-alone” flag constant. It never needs to be ‘|’d to the
others. The exporter will raise an error if it cannot provide such a
contiguous buffer of bytes.

PyBUF_WRITABLE The returned buffer must be writable. If it is not writable, then raise an
error.

PyBUF_STRIDES This implies PyBUF_ND. The returned buffer must provide strides
information (i.e. the strides cannot be NULL). This would be used when
the consumer can handle strided, discontiguous arrays. Handling strides
automatically assumes you can handle shape. The exporter can raise an
error if a strided representation of the data is not possible (i.e. without the
suboffsets).

PyBUF_ND The returned buffer must provide shape information. The memory will be
assumed C-style contiguous (last dimension varies the fastest). The
exporter may raise an error if it cannot provide this kind of contiguous
buffer. If this is not given then shape will be NULL.

PyBUF_C_CONTIGUOUS
PyBUF_F_CONTIGUOUS
PyBUF_ANY_CONTIGUOUS

These flags indicate that the contiguity returned buffer must be
respectively, C-contiguous (last dimension varies the fastest), Fortran
contiguous (first dimension varies the fastest) or either one. All of these
flags imply PyBUF_STRIDES and guarantee that the strides buffer info
structure will be filled in correctly.

PyBUF_INDIRECT This flag indicates the returned buffer must have suboffsets information
(which can be NULL if no suboffsets are needed). This can be used when
the consumer can handle indirect array referencing implied by these
suboffsets. This implies PyBUF_STRIDES.

PyBUF_FORMAT The returned buffer must have true format information if this flag is
provided. This would be used when the consumer is going to be checking
for what ‘kind’ of data is actually stored. An exporter should always be
able to provide this information if requested. If format is not explicitly
requested then the format must be returned as NULL (which means ’B’,
or unsigned bytes)

PyBUF_STRIDED This is equivalent to (PyBUF_STRIDES | PyBUF_WRITABLE).
PyBUF_STRIDED_RO This is equivalent to (PyBUF_STRIDES).
PyBUF_RECORDS This is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_RECORDS_RO This is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT).
PyBUF_FULL This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_FULL_RO This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT).
PyBUF_CONTIG This is equivalent to (PyBUF_ND | PyBUF_WRITABLE).
PyBUF_CONTIG_RO This is equivalent to (PyBUF_ND).

void PyBuffer_Release(PyObject *obj, Py_buffer *view)
Release the buffer view over obj. This should be called when the buffer is no longer being used as it may free
memory from it.

Py_ssize_t PyBuffer_SizeFromFormat(const char *)
Return the implied ~Py_buffer.itemsize from the struct-stype ~Py_buffer.format.

int PyObject_CopyToObject(PyObject *obj, void *buf, Py_ssize_t len, char fortran)
Copy len bytes of data pointed to by the contiguous chunk of memory pointed to by buf into the buffer exported
by obj. The buffer must of course be writable. Return 0 on success and return -1 and raise an error on failure.
If the object does not have a writable buffer, then an error is raised. If fortran is ’F’, then if the object is
multi-dimensional, then the data will be copied into the array in Fortran-style (first dimension varies the fastest).

72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

If fortran is ’C’, then the data will be copied into the array in C-style (last dimension varies the fastest). If
fortran is ’A’, then it does not matter and the copy will be made in whatever way is more efficient.

int PyBuffer_IsContiguous(Py_buffer *view, char fortran)
Return 1 if the memory defined by the view is C-style (fortran is ’C’) or Fortran-style (fortran is ’F’) contigu-
ous or either one (fortran is ’A’). Return 0 otherwise.

void PyBuffer_FillContiguousStrides(int ndim, Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t
itemsize, char fortran)

Fill the strides array with byte-strides of a contiguous (C-style if fortran is ’C’ or Fortran-style if fortran is
’F’ array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo(Py_buffer *view, void *buf, Py_ssize_t len, int readonly, int infoflags)
Fill in a buffer-info structure, view, correctly for an exporter that can only share a contiguous chunk of memory
of “unsigned bytes” of the given length. Return 0 on success and -1 (with raising an error) on error.

MemoryView objects

A memoryview object is an extended buffer object that could replace the buffer object (but doesn’t have to as that could
be kept as a simple 1-d memoryview object). It, unlike Py_buffer, is a Python object (exposed as memoryview
in builtins), so it can be used with Python code.

PyObject* PyMemoryView_FromObject(PyObject *obj)
Return a memoryview object from an object that defines the buffer interface.

7.3.5 Tuple Objects

PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple and
types.TupleType in the Python layer..

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type.

int PyTuple_CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type.

PyObject* PyTuple_New(Py_ssize_t len)
Return value: New reference.
Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference.
Return a new tuple object of size n, or NULL on failure. The tuple values are initialized to the
subsequent n C arguments pointing to Python objects. PyTuple_Pack(2, a, b) is equivalent to
Py_BuildValue("(OO)", a, b).

Py_ssize_t PyTuple_Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference.
Return the object at position pos in the tuple pointed to by p. If pos is out of bounds, return NULL and sets an

7.3. Sequence Objects 73

The Python/C API, Release 3.1

IndexError exception.

PyObject* PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference.
Like PyTuple_GetItem, but does no checking of its arguments.

PyObject* PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference.
Take a slice of the tuple pointed to by p from low to high and return it as a new tuple.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success.

Note: This function “steals” a reference to o.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem, but does no error checking, and should only be used to fill in brand new tuples.

Note: This function “steals” a reference to o.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of this
as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and
raises MemoryError or SystemError.

int PyTuple_ClearFreeList(void)
Clear the free list. Return the total number of freed items.

7.3.6 List Objects

PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type
This instance of PyTypeObject represents the Python list type. This is the same object as list and
types.ListType in the Python layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type.

PyObject* PyList_New(Py_ssize_t len)
Return value: New reference.
Return a new list of length len on success, or NULL on failure.

Note: If length is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use
abstract API functions such as PySequence_SetItem or expose the object to Python code before setting all
items to a real object with PyList_SetItem.

Py_ssize_t PyList_Size(PyObject *list)
Return the length of the list object in list; this is equivalent to len(list) on a list object.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Macro form of PyList_Size without error checking.

PyObject* PyList_GetItem(PyObject *list, Py_ssize_t index)

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return value: Borrowed reference.
Return the object at position pos in the list pointed to by p. The position must be positive, indexing from the end
of the list is not supported. If pos is out of bounds, return NULL and set an IndexError exception.

PyObject* PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference.
Macro form of PyList_GetItem without error checking.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Set the item at index index in list to item. Return 0 on success or -1 on failure.

Note: This function “steals” a reference to item and discards a reference to an item already in the list at the
affected position.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem without error checking. This is normally only used to fill in new lists where
there is no previous content.

Note: This macro “steals” a reference to item, and, unlike PyList_SetItem, does not discard a reference
to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Insert the item item into list list in front of index index. Return 0 if successful; return -1 and set an exception if
unsuccessful. Analogous to list.insert(index, item).

int PyList_Append(PyObject *list, PyObject *item)
Append the object item at the end of list list. Return 0 if successful; return -1 and set an exception if unsuc-
cessful. Analogous to list.append(item).

PyObject* PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference.
Return a list of the objects in list containing the objects between low and high. Return NULL and set an exception
if unsuccessful. Analogous to list[low:high]. Negative indices, as when slicing from Python, are not
supported.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, -1 on failure. Negative indices, as when slicing from Python, are not supported.

int PyList_Sort(PyObject *list)
Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to list.sort().

int PyList_Reverse(PyObject *list)
Reverse the items of list in place. Return 0 on success, -1 on failure. This is the equivalent of
list.reverse().

PyObject* PyList_AsTuple(PyObject *list)
Return value: New reference.
Return a new tuple object containing the contents of list; equivalent to tuple(list).

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type

7.4. Mapping Objects 75

The Python/C API, Release 3.1

This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python programs
as dict and types.DictType.

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type.

PyObject* PyDict_New()
Return value: New reference.
Return a new empty dictionary, or NULL on failure.

PyObject* PyDictProxy_New(PyObject *dict)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a proxy
to prevent modification of the dictionary for non-dynamic class types.

void PyDict_Clear(PyObject *p)
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains(PyObject *p, PyObject *key)
Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise return 0. On error,
return -1. This is equivalent to the Python expression key in p.

PyObject* PyDict_Copy(PyObject *p)
Return value: New reference.
Return a new dictionary that contains the same key-value pairs as p.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Insert value into the dictionary p with a key of key. key must be hashable; if it isn’t, TypeError will be raised.
Return 0 on success or -1 on failure.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyUnicode_FromString(key). Return 0 on success or -1 on failure.

int PyDict_DelItem(PyObject *p, PyObject *key)
Remove the entry in dictionary p with key key. key must be hashable; if it isn’t, TypeError is raised. Return
0 on success or -1 on failure.

int PyDict_DelItemString(PyObject *p, char *key)
Remove the entry in dictionary p which has a key specified by the string key. Return 0 on success or -1 on
failure.

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference.
Return the object from dictionary p which has a key key. Return NULL if the key key is not present, but without
setting an exception.

PyObject* PyDict_GetItemWithError(PyObject *p, PyObject *key)
Variant of PyDict_GetItem that does not suppress exceptions. Return NULL with an exception set if an
exception occurred. Return NULL without an exception set if the key wasn’t present.

PyObject* PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference.
This is the same as PyDict_GetItem, but key is specified as a char*, rather than a PyObject*.

PyObject* PyDict_Items(PyObject *p)
Return value: New reference.
Return a PyListObject containing all the items from the dictionary, as in the dictionary method
dict.items().

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

PyObject* PyDict_Keys(PyObject *p)
Return value: New reference.
Return a PyListObject containing all the keys from the dictionary, as in the dictionary method
dict.keys().

PyObject* PyDict_Values(PyObject *p)
Return value: New reference.
Return a PyListObject containing all the values from the dictionary p, as in the dictionary method
dict.values().

Py_ssize_t PyDict_Size(PyObject *p)
Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized
to 0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either point
to PyObject* variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {

return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary, or any object
supporting PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs in a will

7.4. Mapping Objects 77

The Python/C API, Release 3.1

be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching key in
a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update(PyObject *a, PyObject *b)
This is the same as PyDict_Merge(a, b, 1) in C, or a.update(b) in Python. Return 0 on success or
-1 if an exception was raised.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins if override is true,
else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python (except for the
return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

7.5 Other Objects

7.5.1 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod,
PyObject_RichCompareBool, PyObject_Hash, PyObject_Repr, PyObject_IsTrue,
PyObject_Print, and PyObject_GetIter) or the abstract number protocol (including
PyNumber_And, PyNumber_Subtract, PyNumber_Or, PyNumber_Xor, PyNumber_InPlaceAnd,
PyNumber_InPlaceSubtract, PyNumber_InPlaceOr, and PyNumber_InPlaceXor).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields
of this structure should be considered public and are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check(PyObject *p)
Return true if p is a set object or an instance of a subtype.

int PyFrozenSet_Check(PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.

int PyAnySet_Check(PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact(PyObject *p)

78 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return true if p is a frozenset object but not an instance of a subtype.

PyObject* PySet_New(PyObject *iterable)
Return value: New reference.
Return a new set containing objects returned by the iterable. The iterable may be NULL to create a new empty
set. Return the new set on success or NULL on failure. Raise TypeError if iterable is not actually iterable.
The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New(PyObject *iterable)
Return value: New reference.
Return a new frozenset containing objects returned by the iterable. The iterable may be NULL to create a
new empty frozenset. Return the new set on success or NULL on failure. Raise TypeError if iterable is not
actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size(PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a

PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Add key to a set instance. Also works with frozenset instances (like PyTuple_SetItem it can be used
to fill-in the values of brand new frozensets before they are exposed to other code). Return 0 on success or -1
on failure. Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow.
Raise a SystemError if set is an not an instance of set or its subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard(PyObject *set, PyObject *key)
Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is an not an instance of set or its subtype.

PyObject* PySet_Pop(PyObject *set)
Return value: New reference.
Return a new reference to an arbitrary object in the set, and removes the object from the set. Return NULL on
failure. Raise KeyError if the set is empty. Raise a SystemError if set is an not an instance of set or its
subtype.

int PySet_Clear(PyObject *set)
Empty an existing set of all elements.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject

7.5. Other Objects 79

The Python/C API, Release 3.1

The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference.
Return a new function object associated with the code object code. globals must be a dictionary with the global
variables accessible to the function.

The function’s docstring, name and __module__ are retrieved from the code object, the argument defaults and
closure are set to NULL.

PyObject* PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference.
Return the code object associated with the function object op.

PyObject* PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference.
Return the globals dictionary associated with the function object op.

PyObject* PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference.
Return the __module__ attribute of the function object op. This is normally a string containing the module
name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference.
Return the argument default values of the function object op. This can be a tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns -1 on failure.

PyObject* PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference.
Return the closure associated with the function object op. This can be NULL or a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns -1 on failure.

PyObject * PyFunction_GetAnnotations(PyObject *op)
Return the annotations of the function object op. This can be a mutable dictionary or NULL.

int PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns -1 on failure.

7.5.3 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object.
It replaces the former call PyMethod_New(func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python

80 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

programs.

int PyInstanceMethod_Check(PyObject *o)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must not
be NULL.

PyObject* PyInstanceMethod_New(PyObject *func)
Return a new instance method object, with func being any callable object func is is the function that will be
called when the instance method is called.

PyObject* PyInstanceMethod_Function(PyObject *im)
Return the function object associated with the instance method im.

PyObject* PyInstanceMethod_GET_FUNCTION(PyObject *im)
Macro version of PyInstanceMethod_Function which avoids error checking.

7.5.4 Method Objects

Methods are bound function objects. Methods are always bound to an instance of an user-defined class. Unbound
methods (methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New(PyObject *func, PyObject *self)
Return value: New reference.
Return a new method object, with func being any callable object and self the instance the method should be
bound. func is is the function that will be called when the method is called. self must not be NULL.

PyObject* PyMethod_Function(PyObject *meth)
Return value: Borrowed reference.
Return the function object associated with the method meth.

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference.
Macro version of PyMethod_Function which avoids error checking.

PyObject* PyMethod_Self(PyObject *meth)
Return value: Borrowed reference.
Return the instance associated with the method meth.

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference.
Macro version of PyMethod_Self which avoids error checking.

int PyMethod_ClearFreeList(void)
Clear the free list. Return the total number of freed items.

7.5.5 File Objects

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library. This is an
implementation detail and may change in future releases of Python. The PyFile_ APIs are a wrapper over the io
module.

PyFile_FromFd(int fd, char *name, char *mode, int buffering, char *encoding, char *newline, int closefd)

7.5. Other Objects 81

The Python/C API, Release 3.1

Create a new PyFileObject from the file descriptor of an already opened file fd. The arguments name,
encoding and newline can be NULL to use the defaults; buffering can be -1 to use the default. Return NULL on
failure.

Warning: Take care when you are mixing streams and descriptors! For more information, see the GNU C
Library docs.

int PyObject_AsFileDescriptor(PyObject *p)
Return the file descriptor associated with p as an int. If the object is an integer, its value is returned. If not, the
object’s fileno() method is called if it exists; the method must return an integer, which is returned as the file
descriptor value. Sets an exception and returns -1 on failure.

PyObject* PyFile_GetLine(PyObject *p, int n)
Return value: New reference.
Equivalent to p.readline([n]), this function reads one line from the object p. p may be a file object or

any object with a readline() method. If n is 0, exactly one line is read, regardless of the length of the line.
If n is greater than 0, no more than n bytes will be read from the file; a partial line can be returned. In both
cases, an empty string is returned if the end of the file is reached immediately. If n is less than 0, however, one
line is read regardless of length, but EOFError is raised if the end of the file is reached immediately.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW; if given, the str() of
the object is written instead of the repr(). Return 0 on success or -1 on failure; the appropriate exception
will be set.

int PyFile_WriteString(const char *s, PyObject *p)
Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception will be set.

7.5.6 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.

PyObject* PyModule_New(const char *name)
Return value: New reference.

Return a new module object with the __name__ attribute set to name. Only the module’s __doc__ and
__name__ attributes are filled in; the caller is responsible for providing a __file__ attribute.

PyObject* PyModule_GetDict(PyObject *module)
Return value: Borrowed reference.
Return the dictionary object that implements module‘s namespace; this object is the same as the __dict__

attribute of the module object. This function never fails. It is recommended extensions use other PyModule_*
and PyObject_* functions rather than directly manipulate a module’s __dict__.

char* PyModule_GetName(PyObject *module)
Return module‘s __name__ value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

char* PyModule_GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module‘s __file__ attribute. If this is not

82 Chapter 7. Concrete Objects Layer

http://www.gnu.org/software/libc/manual/html_node/Stream_002fDescriptor-Precautions.html#Stream_002fDescriptor-Precautions
http://www.gnu.org/software/libc/manual/html_node/Stream_002fDescriptor-Precautions.html#Stream_002fDescriptor-Precautions

The Python/C API, Release 3.1

defined, or if it is not a string, raise SystemError and return NULL.

void* PyModule_GetState(PyObject *module)
Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or
NULL. See PyModuleDef.m_size.

PyModuleDef* PyModule_GetDef(PyObject *module)
Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module
wasn’t created with PyModule_Create.

Initializing C modules

These functions are usually used in the module initialization function.

PyObject* PyModule_Create(PyModuleDef *module)
Create a new module object, given the definition in module. This behaves like PyModule_Create2 with
module_api_version set to PYTHON_API_VERSION.

PyObject* PyModule_Create2(PyModuleDef *module, int module_api_version)
Create a new module object, given the definition in module, assuming the API version module_api_version. If
that version does not match the version of the running interpreter, a RuntimeWarning is emitted.

Note: Most uses of this function should be using PyModule_Create instead; only use this if you are sure
you need it.

PyModuleDef
This struct holds all information that is needed to create a module object. There is usually only one static
variable of that type for each module, which is statically initialized and then passed to PyModule_Create in
the module initialization function.

PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_HEAD_INIT.

char* m_name
Name for the new module.

char* m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.

Py_ssize_t m_size
If the module object needs additional memory, this should be set to the number of bytes to allocate; a
pointer to the block of memory can be retrieved with PyModule_GetState. If no memory is needed,
set this to -1.
This memory should be used, rather than static globals, to hold per-module state, since it is then safe
for use in multiple sub-interpreters. It is freed when the module object is deallocated, after the m_free
function has been called, if present.

PyMethodDef* m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

inquiry m_reload
Currently unused, should be NULL.

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.

7.5. Other Objects 83

The Python/C API, Release 3.1

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’s initial-
ization function. This steals a reference to value. Return -1 on error, 0 on success.

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’s initial-
ization function. Return -1 on error, 0 on success.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be null-terminated. Return -1 on error, 0 on success.

int PyModule_AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddConstant(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.

int PyModule_AddStringMacro(PyObject *module, macro)
Add a string constant to module.

7.5.7 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__() method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIter_Type
Type object for iterator objects returned by PySeqIter_New and the one-argument form of the iter()
built-in function for built-in sequence types.

int PySeqIter_Check(op)
Return true if the type of op is PySeqIter_Type.

PyObject* PySeqIter_New(PyObject *seq)
Return value: New reference.
Return an iterator that works with a general sequence object, seq. The iteration ends when the sequence raises
IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Type object for iterator objects returned by PyCallIter_New and the two-argument form of the iter()
built-in function.

int PyCallIter_Check(op)
Return true if the type of op is PyCallIter_Type.

PyObject* PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference.
Return a new iterator. The first parameter, callable, can be any Python callable object that can be called with no
parameters; each call to it should return the next item in the iteration. When callable returns a value equal to
sentinel, the iteration will be terminated.

7.5.8 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
The type object for the built-in descriptor types.

PyObject* PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

84 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return value: New reference.

PyObject* PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference.

PyObject* PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference.

PyObject* PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference.

PyObject* PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference.

int PyDescr_IsData(PyObject *descr)
Return true if the descriptor objects descr describes a data attribute, or false if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject* PyWrapper_New(PyObject *, PyObject *)
Return value: New reference.

7.5.9 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as slice and types.SliceType.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference.
Return a new slice object with the given values. The start, stop, and step parameters are used as the values of
the slice object attributes of the same names. Any of the values may be NULL, in which case the None will be
used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.

int PySlice_GetIndicesEx(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement for PySlice_GetIndices. Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.

7.5. Other Objects 85

The Python/C API, Release 3.1

7.5.10 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check(ob)
Return true if ob is either a reference or proxy object.

int PyWeakref_CheckRef(ob)
Return true if ob is a reference object.

int PyWeakref_CheckProxy(ob)
Return true if ob is a proxy object.

PyObject* PyWeakref_NewRef(PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference object for the object ob. This will always return a new reference, but is not guaranteed
to create a new object; an existing reference object may be returned. The second parameter, callback, can be a
callable object that receives notification when ob is garbage collected; it should accept a single parameter, which
will be the weak reference object itself. callback may also be None or NULL. If ob is not a weakly-referencable
object, or if callback is not callable, None, or NULL, this will return NULL and raise TypeError.

PyObject* PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference.
Return a weak reference proxy object for the object ob. This will always return a new reference, but is not
guaranteed to create a new object; an existing proxy object may be returned. The second parameter, callback, can
be a callable object that receives notification when ob is garbage collected; it should accept a single parameter,
which will be the weak reference object itself. callback may also be None or NULL. If ob is not a weakly-
referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise TypeError.

PyObject* PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference.
Return the referenced object from a weak reference, ref. If the referent is no longer live, returns None.

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference.
Similar to PyWeakref_GetObject, but implemented as a macro that does no error checking.

7.5.11 Capsules

Refer to Providing a C API for an Extension Module (in Extending and Embedding Python) for more information on
using these objects.

PyCapsule
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

PyCapsule_Destructor
The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact(PyObject *p)

86 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return true if its argument is a PyCapsule.

PyObject* PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference.
Create a PyCapsule encapsulating the pointer. The pointer argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as
modulename.attributename. This will enable other modules to import the capsule using
PyCapsule_Import.

void* PyCapsule_GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function strcmp to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid or PyErr_Occurred to disambiguate.

void* PyCapsule_GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid or PyErr_Occurred to disambiguate.

const char* PyCapsule_GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid or PyErr_Occurred to disambiguate.

void* PyCapsule_Import(const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as in module.attribute. The name stored in the capsule must match this string ex-
actly. If no_block is true, import the module without blocking (using PyImport_ImportModuleNoBlock).
If no_block is false, import the module conventionally (using PyImport_ImportModule).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL. However, if
PyCapsule_Import failed to import the module, and no_block was true, no exception is set.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact, has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule_GetPointer for information on how capsule names are compared.)

In other words, if PyCapsule_IsValid returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

7.5. Other Objects 87

The Python/C API, Release 3.1

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name
stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

7.5.12 CObjects

Warning: The CObject API is deprecated as of Python 3.1. Please switch to the new Capsules API.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject_Check(PyObject *p)
Return true if its argument is a PyCObject.

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference.
Create a PyCObject from the void * cobj. The destr function will be called when the object is reclaimed,
unless it is NULL.

PyObject* PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference.
Create a PyCObject from the void * cobj. The destr function will be called when the object is reclaimed.
The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr(PyObject* self)
Return the object void * that the PyCObject self was created with.

void* PyCObject_GetDesc(PyObject* self)
Return the description void * that the PyCObject self was created with.

int PyCObject_SetVoidPtr(PyObject* self, void* cobj)
Set the void pointer inside self to cobj. The PyCObject must not have an associated destructor. Return true
on success, false on failure.

7.5.13 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

88 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check(ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New(PyObject *ob)
Return value: New reference.
Create and return a new cell object containing the value ob. The parameter may be NULL.

PyObject* PyCell_Get(PyObject *cell)
Return value: New reference.
Return the contents of the cell cell.

PyObject* PyCell_GET(PyObject *cell)
Return value: Borrowed reference.
Return the contents of the cell cell, but without checking that cell is non-NULL and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will
be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

7.5.14 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New.

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects

int PyGen_Check(ob)
Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact(ob)
Return true if ob‘s type is PyGen_Type is a generator object; ob must not be NULL.

PyObject* PyGen_New(PyFrameObject *frame)
Return value: New reference.
Create and return a new generator object based on the frame object. A reference to frame is stolen by this
function. The parameter must not be NULL.

7.5.15 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the
header file datetime.h must be included in your source (note that this is not included by Python.h), and the
macro PyDateTime_IMPORT must be invoked. The macro puts a pointer to a C structure into a static variable,
PyDateTimeAPI, that is used by the following macros.

7.5. Other Objects 89

The Python/C API, Release 3.1

Type-check macros:

int PyDate_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob
must not be NULL.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.

Macros to create objects:

PyObject* PyDate_FromDate(int year, int month, int day)
Return value: New reference.
Return a datetime.date object with the specified year, month and day.

PyObject* PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second, int
usecond)

Return value: New reference.
Return a datetime.datetime object with the specified year, month, day, hour, minute, second and mi-
crosecond.

PyObject* PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference.
Return a datetime.time object with the specified hour, minute, second and microsecond.

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference.
Return a datetime.timedelta object representing the given number of days, seconds and microseconds.
Normalization is performed so that the resulting number of microseconds and seconds lie in the ranges docu-
mented for datetime.timedelta objects.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR(PyDateTime_Date *o)

90 Chapter 7. Concrete Objects Layer

The Python/C API, Release 3.1

Return the year, as a positive int.

int PyDateTime_GET_MONTH(PyDateTime_Date *o)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY(PyDateTime_Date *o)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)
Return the minute, as an int from 0 through 59.

int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)
Return the microsecond, as an int from 0 through 999999.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)
Return the hour, as an int from 0 through 23.

int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)
Return the minute, as an int from 0 through 59.

int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)
Return the microsecond, as an int from 0 through 999999.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp(PyObject *args)
Return value: New reference.
Create and return a new datetime.datetime object given an argument tuple suitable for passing to
datetime.datetime.fromtimestamp().

PyObject* PyDate_FromTimestamp(PyObject *args)
Return value: New reference.
Create and return a new datetime.date object given an argument tuple suitable for passing to
datetime.date.fromtimestamp().

7.5. Other Objects 91

The Python/C API, Release 3.1

92 Chapter 7. Concrete Objects Layer

CHAPTER

EIGHT

INITIALIZATION, FINALIZATION, AND
THREADS

void Py_Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any

other Python/C API functions; with the exception of Py_SetProgramName, PyEval_InitThreads,
PyEval_ReleaseLock, and PyEval_AcquireLock. This initializes the table of loaded modules
(sys.modules), and creates the fundamental modules builtins, __main__ and sys. It also initial-
izes the module search path (sys.path). It does not set sys.argv; use PySys_SetArgv for that. This is
a no-op when called for a second time (without calling Py_Finalize first). There is no return value; it is a
fatal error if the initialization fails.

void Py_InitializeEx(int initsigs)
This function works like Py_Initialize if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After Py_Finalize
is called, this returns false until Py_Initialize is called again.

void Py_Finalize()
Undo all initializations made by Py_Initialize and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter below) that were created and not yet destroyed since the last
call to Py_Initialize. Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Initialize again first). There is no return value; errors
during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__() methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py_Initialize and Py_Finalize more than once.

PyThreadState* Py_NewInterpreter()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python

code. In particular, the new interpreter has separate, independent versions of all imported modules, including

93

The Python/C API, Release 3.1

the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules)
and the module search path (sys.path) are also separate. The new environment has no sys.argv variable.
It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these
refer to the same underlying FILE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of
the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in the
current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global
interpreter lock must be held before calling this function and is still held when it returns; however, unlike most
other Python/C API functions, there needn’t be a current thread state on entry.) Extension modules are shared
between (sub-)interpreters as follows: the first time a particular extension is imported, it is initialized normally,
and a (shallow) copy of its module’s dictionary is squirreled away. When the same extension is imported by
another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension’s
init function is not called. Note that this is different from what happens when an extension is imported after
the interpreter has been completely re-initialized by calling Py_Finalize and Py_Initialize; in that
case, the extension’s initmodule function is called again. Bugs and caveats: Because sub-interpreters (and
the main interpreter) are part of the same process, the insulation between them isn’t perfect — for example,
using low-level file operations like os.close() they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the
extension manipulates its module’s dictionary after its initialization. It is possible to insert objects created in
one sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid
sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations
executed by such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is
a hard-to-fix bug that will be addressed in a future release.)

Also note that the use of this functionality is incompatible with extension modules such as PyObjC and ctypes
that use the PyGILState_* APIs (and this is inherent in the way the PyGILState_* functions work).
Simple things may work, but confusing behavior will always be near.

void Py_EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL.
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returns.) Py_Finalize will destroy all sub-interpreters that
haven’t been explicitly destroyed at that point.

void Py_SetProgramName(wchar_t *name)
This function should be called before Py_Initialize is called for the first time, if it is called at all. It

tells the interpreter the value of the argv[0] argument to the main function of the program (converted to
wide characters). This is used by Py_GetPath and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is ’python’. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

wchar* Py_GetProgramName()
Return the program name set with Py_SetProgramName, or the default. The returned string points into static
storage; the caller should not modify its value.

wchar_t* Py_GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName and some environment variables; for example, if the
program name is ’/usr/local/bin/python’, the prefix is ’/usr/local’. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-level
Makefile and the --prefix argument to the configure script at build time. The value is available to Python
code as sys.prefix. It is only useful on Unix. See also the next function.

94 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 3.1

wchar_t* Py_GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated
rules from the program name set with Py_SetProgramName and some environment variables; for example,
if the program name is ’/usr/local/bin/python’, the exec-prefix is ’/usr/local’. The returned
string points into static storage; the caller should not modify its value. This corresponds to the exec_prefix
variable in the top-level Makefile and the --exec-prefix argument to the configure script at build time.
The value is available to Python code as sys.exec_prefix. It is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

wchar_t* Py_GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the de-

fault module search path from the program name (set by Py_SetProgramName above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable.

wchar_t* Py_GetPath()
Return the default module search path; this is computed from the program name (set by

Py_SetProgramName above) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter character is ’:’ on Unix
and Mac OS X, ’;’ on Windows. The returned string points into static storage; the caller should not modify its
value. The value is available to Python code as the list sys.path, which may be modified to change the future
search path for loaded modules.

const char* Py_GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as sys.version.

const char* Py_GetBuildNumber()
Return a string representing the Subversion revision that this Python executable was built from. This number is
a string because it may contain a trailing ‘M’ if Python was built from a mixed revision source tree.

const char* Py_GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ’sunos5’. On Mac OS X, it is ’darwin’. On Windows, it is ’win’.
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.platform.

const char* Py_GetCopyright()
Return the official copyright string for the current Python version, for example

95

The Python/C API, Release 3.1

’Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’ The returned
string points into static storage; the caller should not modify its value. The value is available to Python code as
sys.copyright.

const char* Py_GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char* Py_GetBuildInfo()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgv(int argc, wchar_t **argv)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main

function with the difference that the first entry should refer to the script file to be executed rather than the exe-
cutable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty
string. If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError.

This function also prepends the executed script’s path to sys.path. If no script is executed (in the case of
calling python -c or just the interactive interpreter), the empty string is used instead.

void Py_SetPythonHome(char *home)
Set the default “home” directory, that is, the location of the standard Python libraries. The libraries are searched
in home/lib/pythonversion and home/lib/pythonversion.

char* Py_GetPythonHome()
Return the default “home”, that is, the value set by a previous call to Py_SetPythonHome, or the value of
the PYTHONHOME environment variable if it is set.

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice. Therefore, the rule exists that only the thread that has
acquired the global interpreter lock may operate on Python objects or call Python/C API functions. In order to support
multi-threaded Python programs, the interpreter regularly releases and reacquires the lock — by default, every 100
bytecode instructions (this can be changed with sys.setcheckinterval()). The lock is also released and
reacquired around potentially blocking I/O operations like reading or writing a file, so that other threads can run while
the thread that requests the I/O is waiting for the I/O operation to complete. The Python interpreter needs to keep some
bookkeeping information separate per thread — for this it uses a data structure called PyThreadState. There’s one
global variable, however: the pointer to the current PyThreadState structure. Before the addition of thread-local
storage (TLS) the current thread state had to be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

96 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 3.1

Save the thread state in a local variable.
Release the global interpreter lock.
...Do some blocking I/O operation...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and GIL manipula-
tions.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particular, PyEval_RestoreThread saves and restores the value of the
global variable errno, since the lock manipulation does not guarantee that errno is left alone. Also, when thread
support is disabled, PyEval_SaveThread and PyEval_RestoreThread don’t manipulate the GIL; in this
case, PyEval_ReleaseLock and PyEval_AcquireLock are not available. This is done so that dynamically
loaded extensions compiled with thread support enabled can be loaded by an interpreter that was compiled with
disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving
the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread
could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring
the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

It is important to note that when threads are created from C, they don’t have the global interpreter lock, nor is there a
thread state data structure for them. Such threads must bootstrap themselves into existence, by first creating a thread
state data structure, then acquiring the lock, and finally storing their thread state pointer, before they can start using the
Python/C API. When they are done, they should reset the thread state pointer, release the lock, and finally free their
thread state data structure.

Threads can take advantage of the PyGILState_* functions to do all of the above automatically. The typical idiom
for calling into Python from a C thread is now:

8.1. Thread State and the Global Interpreter Lock 97

The Python/C API, Release 3.1

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize). Python still supports the creation of additional interpreters (using Py_NewInterpreter),
but mixing multiple interpreters and the PyGILState_* API is unsupported.

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-

ating a second thread or engaging in any other thread operations such as PyEval_ReleaseLock
or PyEval_ReleaseThread(tstate). It is not needed before calling PyEval_SaveThread or
PyEval_RestoreThread. This is a no-op when called for a second time. It is safe to call this function
before calling Py_Initialize. When only the main thread exists, no GIL operations are needed. This is
a common situation (most Python programs do not use threads), and the lock operations slow the interpreter
down a bit. Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock:
when there is only a single thread, all object accesses are safe. Therefore, when this function initializes the
global interpreter lock, it also acquires it. Before the Python _thread module creates a new thread, knowing
that either it has the lock or the lock hasn’t been created yet, it calls PyEval_InitThreads. When this call
returns, it is guaranteed that the lock has been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_InitThreads has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.

void PyEval_AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval_ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier. This function is not available when
thread support is disabled at compile time.

void PyEval_AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The

98 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 3.1

lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is not
available when thread support is disabled at compile time.

void PyEval_ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used
to check that it represents the current thread state — if it isn’t, a fatal error is reported. This function is not
available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current
thread must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval_RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues. (This function is available even when thread support is disabled at compile time.)

void PyEval_ReInitThreads()
This function is called from PyOS_AfterFork to ensure that newly created child processes don’t hold locks
referring to threads which are not running in the child process.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note that
it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADS macro. See
above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it
must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See above for further discussion of
this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the global interpreter lock has been created.

PyInterpreterState* PyInterpreterState_New()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear.

PyThreadState* PyThreadState_New(PyInterpreterState *interp)

8.1. Thread State and the Global Interpreter Lock 99

The Python/C API, Release 3.1

Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not
be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState_Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear.

PyThreadState* PyThreadState_Get()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held.

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should use
a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is
available. If this function returns NULL, no exception has been raised and the caller should assume no current
thread state is available.

int PyThreadState_SetAsyncExc(long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions.

PyGILState_STATE PyGILState_Ensure()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as each
call is matched with a call to PyGILState_Release. In general, other thread-related APIs may be used
between PyGILState_Ensure and PyGILState_Release calls as long as the thread state is restored to
its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState_Ensure was called, and must
be passed to PyGILState_Release to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure must save the handle
for its call to PyGILState_Release.

When the function returns, the current thread will hold the GIL. Failure is a fatal error.

void PyGILState_Release(PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure call (but generally this state will be unknown to the caller, hence the
use of the GILState API.)

Every call to PyGILState_Ensure must be matched by a call to PyGILState_Release on the same
thread.

8.2 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void argument. Every check interval, when the global interpreter lock is released

100 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 3.1

and reacquired, python will also call any such provided functions. This can be used for example by asynchronous
IO handlers. The notification can be scheduled from a worker thread and the actual call than made at the earliest
convenience by the main thread where it has possession of the global interpreter lock and can perform any Python API
calls.

void Py_AddPendingCall(int (*func)(void *, void *arg))
Post a notification to the Python main thread. If successful, func will be called with the argument arg at the
earliest convenience. func will be called having the global interpreter lock held and can thus use the full Python
API and can take any action such as setting object attributes to signal IO completion. It must return 0 on success,
or -1 signalling an exception. The notification function won’t be interrupted to perform another asynchronous
notification recursively, but it can still be interrupted to switch threads if the global interpreter lock is released,
for example, if it calls back into python code.

This function returns 0 on success in which case the notification has been scheduled. Otherwise, for example if
the notification buffer is full, it returns -1 without setting any exception.

This function can be called on any thread, be it a Python thread or some other system thread. If it is a Python
thread, it doesn’t matter if it holds the global interpreter lock or not. New in version 3.1.

8.3 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had
been reported to the Python-level trace functions in previous versions.

(*Py_tracefunc)
The type of the trace function registered using PyEval_SetProfile and PyEval_SetTrace. The first
parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

Value of what Meaning of arg
PyTrace_CALL Always NULL.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always NULL.
PyTrace_RETURN Value being returned to the caller.
PyTrace_C_CALL Name of function being called.
PyTrace_C_EXCEPTION Always NULL.
PyTrace_C_RETURN Always NULL.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is
not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The call-
back function is called with this value for what when after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace
functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

8.3. Profiling and Tracing 101

The Python/C API, Release 3.1

The value passed as the what parameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is returning without propagating
an exception.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has thrown an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile, except the tracing function does
receive line-number events.

PyObject* PyEval_GetCallStats(PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

Name Value
PCALL_ALL 0
PCALL_FUNCTION 1
PCALL_FAST_FUNCTION 2
PCALL_FASTER_FUNCTION 3
PCALL_METHOD 4
PCALL_BOUND_METHOD 5
PCALL_CFUNCTION 6
PCALL_TYPE 7
PCALL_GENERATOR 8
PCALL_OTHER 9
PCALL_POP 10

PCALL_FAST_FUNCTION means no argument tuple needs to be created. PCALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

This function is only present if Python is compiled with CALL_PROFILE defined.

8.4 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState_Head()
Return the interpreter state object at the head of the list of all such objects.

PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

102 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 3.1

PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)
Return the a pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState* PyThreadState_Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

8.4. Advanced Debugger Support 103

The Python/C API, Release 3.1

104 Chapter 8. Initialization, Finalization, and Threads

CHAPTER

NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document. To avoid memory corruption, extension writers
should never try to operate on Python objects with the functions exported by the C library: malloc, calloc,
realloc and free. This will result in mixed calls between the C allocator and the Python memory manager
with fatal consequences, because they implement different algorithms and operate on different heaps. However, one
may safely allocate and release memory blocks with the C library allocator for individual purposes, as shown in the
following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with
new object types written in C. Another reason for using the Python heap is the desire to inform the Python memory

105

The Python/C API, Release 3.1

manager about the memory needs of the extension module. Even when the requested memory is used exclusively for
internal, highly-specific purposes, delegating all memory requests to the Python memory manager causes the inter-
preter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances,
the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction
or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the
allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to
zero, the memory block is resized but is not freed, and the returned pointer is non-NULL. Unless p is NULL,
it must have been returned by a previous call to PyMem_Malloc or PyMem_Realloc. If the request fails,
PyMem_Realloc returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc
or PyMem_Realloc. Otherwise, or if PyMem_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem_New(TYPE, size_t n)
Same as PyMem_Malloc, but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast to
TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as PyMem_Realloc, but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del(void *p)
Same as PyMem_Free.

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

PyMem_MALLOC, PyMem_REALLOC, PyMem_FREE.

PyMem_NEW, PyMem_RESIZE, PyMem_DEL.

9.3 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

106 Chapter 9. Memory Management

The Python/C API, Release 3.1

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal
because it mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyObject_New, PyObject_NewVar and PyObject_Del.

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 107

The Python/C API, Release 3.1

108 Chapter 9. Memory Management

CHAPTER

TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject* PyObject_Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference.
Initialize a newly-allocated object op with its type and initial reference. Returns the initialized object. If type
indicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of observed
objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference.
This does everything PyObject_Init does, and also initializes the length information for a variable-size
object.

TYPE* PyObject_New(TYPE, PyTypeObject *type)
Return value: New reference.
Allocate a new Python object using the C structure type TYPE and the Python type object type. Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of the
memory allocation is determined from the tp_basicsize field of the type object.

TYPE* PyObject_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference.
Allocate a new Python object using the C structure type TYPE and the Python type object type. Fields not
defined by the Python object header are not initialized. The allocated memory allows for the TYPE structure
plus size fields of the size given by the tp_itemsize field of type. This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into the
same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject_Del(PyObject *op)
Releases memory allocated to an object using PyObject_New or PyObject_NewVar. This is normally
called from the tp_dealloc handler specified in the object’s type. The fields of the object should not be
accessed after this call as the memory is no longer a valid Python object.

109

The Python/C API, Release 3.1

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

See Also:

PyModule_Create To allocate and create extension modules.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count
and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion of the
PyObject_HEAD macro.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some
notion of length. This type does not often appear in the Python/C API. It corresponds to the fields defined by
the expansion of the PyObject_VAR_HEAD macro.

These macros are used in the definition of PyObject and PyVarObject:

PyObject_HEAD
This is a macro which expands to the declarations of the fields of the PyObject type; it is used when declaring
new types which represent objects without a varying length. The specific fields it expands to depend on the
definition of Py_TRACE_REFS. By default, that macro is not defined, and PyObject_HEAD expands to:

Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

When Py_TRACE_REFS is defined, it expands to:

PyObject *_ob_next, *_ob_prev;
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

PyObject_VAR_HEAD
This is a macro which expands to the declarations of the fields of the PyVarObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject_HEAD
Py_ssize_t ob_size;

Note that PyObject_HEAD is part of the expansion, and that its own expansion varies depending on the
definition of Py_TRACE_REFS.

110 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

PyObject_HEAD_INIT
This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return value is NULL, an exception shall have been
set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python. The
function must return a new reference.

PyCFunctionWithKeywords
Type of the functions used to implement Python callables in C that take keyword arguments: they take three
PyObject* parameters and return one such value. See PyCFunction above for the meaning of the return
value.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml_name char * name of the method
ml_meth PyCFunction pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses a the
specific C type of the self object.

The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH_VARARGS and METH_KEYWORDS
can be combined (but note that METH_KEYWORDS alone is equivalent to METH_VARARGS | METH_KEYWORDS).
Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunction. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it has the value given
to Py_InitModule4 (or NULL if Py_InitModule was used). The second parameter (often called args) is
a tuple object representing all arguments. This parameter is typically processed using PyArg_ParseTuple
or PyArg_UnpackTuple.

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three pa-
rameters: self, args, and a dictionary of all the keyword arguments. The flag is typically combined with
METH_VARARGS, and the parameters are typically processed using PyArg_ParseTupleAndKeywords.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. When used with object methods, the first

10.2. Common Object Structures 111

The Python/C API, Release 3.1

parameter is typically named self and will hold a reference to the object instance. In all cases the second
parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple with a "O" argument. They have the type PyCFunction, with the self parameter,
and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod() built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod() built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__() and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning
name char * name of the member
type int the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

112 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

Macro name C type
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. Only T_OBJECT and T_OBJECT_EX members can be deleted. (They are set to NULL).

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_* functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, intargfunc, intintargfunc, intobjargproc, intintobjargproc, ob-
jobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, reprfunc, hashfunc

The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;

10.3. Type Objects 113

The Python/C API, Release 3.1

void *tp_reserved;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */

114 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* _ob_next
PyObject* _ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is
taken care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always
remain NULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked
list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is
to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREFS
is set.

These fields are not inherited by subtypes.

Py_ssize_t ob_refcnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

PyTypeObject* ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready will not change this
field if it is non-zero.

This field is inherited by subtypes.

Py_ssize_t ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package P
should have the tp_name initializer "P.Q.M.T".

10.3. Type Objects 115

The Python/C API, Release 3.1

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ’__module__’.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name__ attribute.

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle.

This field is not inherited by subtypes.

Py_ssize_t tp_basicsize
Py_ssize_t tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of N
is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size to indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout.
The basic size does not include the GC header size.

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gen-
erally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).

destructor tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis).

The destructor function is called by the Py_DECREF and Py_XDECREF macros when the new reference count
is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the free-
ing function corresponding to the allocation function used to allocate the buffer), and finally (as its last action)
call the type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE
flag bit set), it is permissible to call the object deallocator directly instead of via tp_free. The object deal-
locator should be the one used to allocate the instance; this is normally PyObject_Del if the instance was
allocated using PyObject_New or PyObject_VarNew, or PyObject_GC_Del if the instance was allo-
cated using PyObject_GC_New or PyObject_GC_VarNew.

This field is inherited by subtypes.

printfunc tp_print
An optional pointer to the instance print function.

The print function is only called when the instance is printed to a real file; when it is printed to a pseudo-file
(like a StringIO instance), the instance’s tp_repr or tp_str function is called to convert it to a string.

116 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

These are also called when the type’s tp_print field is NULL. A type should never implement tp_print in
a way that produces different output than tp_repr or tp_str would.
The print function is called with the same signature as PyObject_Print: int tp_print(PyObject

*self, FILE *file, int flags). The self argument is the instance to be printed. The file argument
is the stdio file to which it is to be printed. The flags argument is composed of flag bits. The only flag bit
currently defined is Py_PRINT_RAW. When the Py_PRINT_RAW flag bit is set, the instance should be printed
the same way as tp_str would format it; when the Py_PRINT_RAW flag bit is clear, the instance should be
printed the same was as tp_repr would format it. It should return -1 and set an exception condition when an
error occurred during the comparison.
It is possible that the tp_print field will be deprecated. In any case, it is recommended not to define
tp_print, but instead to rely on tp_repr and tp_str for printing.
This field is inherited by subtypes.

getattrfunc tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as for PyObject_GetAttrString.
This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc tp_setattr
An optional pointer to the set-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as for PyObject_SetAttrString.
This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

void* tp_reserved
Reserved slot, formerly known as tp_compare.

reprfunc tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr; it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval(), given a suitable environment, returns an object
with the same value. If this is not feasible, it should return a string starting with ’<’ and ending with ’>’ from
which both the type and the value of the object can be deduced.
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.
This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

10.3. Type Objects 117

The Python/C API, Release 3.1

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc tp_hash
An optional pointer to a function that implements the built-in function hash().

The signature is the same as for PyObject_Hash; it must return a C long. The value -1 should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and return -1.

This field can be set explicitly to PyObject_HashNotImplemented to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being
set to PyObject_HashNotImplemented.

When this field is not set, an attempt to take the hash of the object raises TypeError.

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call.

This field is inherited by subtypes.

reprfunc tp_str
An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str to do the actual work,
and PyObject_Str will call this handler.)

The signature is the same as for PyObject_Str; it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used,
among other things, by the print() function.

When this field is not set, PyObject_Repr is called to return a string representation.

This field is inherited by subtypes.

getattrofunc tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr. It is usually convenient to set this field to
PyObject_GenericGetAttr, which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrofunc tp_setattro
An optional pointer to the set-attribute function.

The signature is the same as for PyObject_SetAttr. It is usually convenient to set this field to
PyObject_GenericSetAttr, which implements the normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyBufferProcs* tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer inter-
face. These fields are documented in Buffer Object Structures.

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

long tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not

118 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_flags field. The macro PyType_HasFeature takes a type and a flags value, tp and f, and
checks whether tp->tp_flags & f is non-zero.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by PyType_Ready.

Py_TPFLAGS_READYING
This bit is set while PyType_Ready is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New and destroyed using PyObject_GC_Del. More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in the
type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION, Py_TPFLAGS_HAVE_VERSION_TAG.

char* tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc__ attribute on the type and instances of the type.

This field is not inherited by subtypes.

traverseproc tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can
be found in section Supporting Cyclic Garbage Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementa-
tion of a tp_traverse function simply calls Py_VISIT on each of the instance’s members that are Python
objects. For example, this is function local_traverse from the _thread extension module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);

10.3. Type Objects 119

The Python/C API, Release 3.1

return 0;
}

Note that Py_VISIT is called only on those members that can participate in reference cycles. Although there is
also a self->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents() function will include it.

Note that Py_VISIT requires the visit and arg parameters to local_traverse to have these specific names;
don’t name them just anything.

This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set.

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement
a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclama-
tion activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated
with the contained object). If it’s possible for such code to reference self again, it’s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

120 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

richcmpfunc tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject

*tp_richcompare(PyObject *a, PyObject *b, int op).

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set an
exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and
!=, but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare:

Constant Comparison
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

long tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs and the PyWeakref_* functions. The instance structure needs to include a
field of type PyObject* which is initialized to NULL.

Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no __slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance
layout and setting the tp_weaklistoffset of that slot’s offset.

When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.

When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter.

This field is inherited by subtypes.

iternextfunc tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence signals that the instances of this type are iterators.

Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as PyIter_Next.

This field is inherited by subtypes.

10.3. Type Objects 121

The Python/C API, Release 3.1

struct PyMethodDef* tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp_getset
An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed at-
tributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

typedef struct PyGetSetDef {
char *name; /* attribute name */
getter get; /* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */
void *closure; /* optional additional data for getter and setter */

} PyGetSetDef;

PyTypeObject* tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* tp_dict
The type’s dictionary is stored here by PyType_Ready.

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized
to a dictionary containing initial attributes for the type. Once PyType_Ready has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp_descr_get
An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

122 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

XXX explain.

This field is inherited by subtypes.

descrsetfunc tp_descr_set
An optional pointer to a “descriptor set” function.

The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

This field is inherited by subtypes.

XXX explain.

long tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr.

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset from the end of the instance structure. A negative offset is
more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtypes of str or tuple. Note that the
tp_basicsize field should account for the dictionary added to the end in that case, even though the dictionary
is not included in the basic object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should
be set to -4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because ints use the sign of ob_size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr.)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement has no __slots__ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to
that slot’s offset.

When a type defined by a class statement has a __slots__ declaration, the type inherits its tp_dictoffset
from its base type.

(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like __weakref__ though.)

initproc tp_init
An optional pointer to an instance initialization function.

This function corresponds to the __init__() method of classes. Like __init__(), it is possible to
create an instance without calling __init__(), and it is possible to reinitialize an instance by calling its
__init__() method again.

The function signature is

10.3. Type Objects 123

The Python/C API, Release 3.1

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns
an instance of a subtype of the original type, the subtype’s tp_init is called.

This field is inherited by subtypes.

allocfunc tp_alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero, the
object’s ob_size field should be initialized to nitems and the length of the allocated memory block should be
tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is always set to PyType_GenericAlloc, to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc tp_new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely
be ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable
types, all initialization should take place in tp_new, while for mutable types, most initialization should be
deferred to tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

destructor tp_free
An optional pointer to an instance deallocation function. Its signature is freefunc:

void tp_free(void *)

124 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

An initializer that is compatible with this signature is PyObject_Free.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is set to a deallocator suitable to match PyType_GenericAlloc and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

inquiry tp_is_gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to distin-
guish between statically and dynamically allocated types.)

This field is inherited by subtypes.

PyObject* tp_bases
Tuple of base types.

This is set for types created by a class statement. It should be NULL for statically defined types.

This field is not inherited.

PyObject* tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.

This field is not inherited; it is calculated fresh by PyType_Ready.

PyObject* tp_cache
Unused. Not inherited. Internal use only.

PyObject* tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal use
only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py_ssize_t tp_allocs
Number of allocations.

Py_ssize_t tp_frees
Number of frees.

Py_ssize_t tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called
will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from
some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called
tp_dealloc will not violate any assumptions of the library.

10.3. Type Objects 125

The Python/C API, Release 3.1

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
} PyNumberMethods;

Note: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for
the given operands, binary and ternary functions must return Py_NotImplemented, if another error occurred
they must return NULL and set an exception.

126 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

Note: The nb_reserved field should always be NULL. It was previously called nb_long, and was renamed
in Python 3.0.1.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc mp_length
This function is used by PyMapping_Length and PyObject_Size, and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc mp_subscript
This function is used by PyObject_GetItem and has the same signature. This slot must be filled for the
PyMapping_Check function to return 1, it can be NULL otherwise.

objobjargproc mp_ass_subscript
This function is used by PyObject_SetItem and has the same signature. If this slot is NULL, the object
does not support item assignment.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc sq_length
This function is used by PySequence_Size and PyObject_Size, and has the same signature.

binaryfunc sq_concat
This function is used by PySequence_Concat and has the same signature. It is also used by the + operator,
after trying the numeric addition via the tp_as_number.nb_add slot.

ssizeargfunc sq_repeat
This function is used by PySequence_Repeat and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the tp_as_number.nb_mul slot.

ssizeargfunc sq_item
This function is used by PySequence_GetItem and has the same signature. This slot must be filled for the
PySequence_Check function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc sq_ass_item
This function is used by PySequence_SetItem and has the same signature. This slot may be left to NULL
if the object does not support item assignment.

objobjproc sq_contains
This function may be used by PySequence_Contains and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains simply traverses the sequence until it finds a match.

binaryfunc sq_inplace_concat
This function is used by PySequence_InPlaceConcat and has the same signature. It should modify its
first operand, and return it.

10.5. Mapping Object Structures 127

The Python/C API, Release 3.1

ssizeargfunc sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat and has the same signature. It should modify its
first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data.

If an object does not export the buffer interface, then its tp_as_buffer member in the PyTypeObject structure
should be NULL. Otherwise, the tp_as_buffer will point to a PyBufferProcs structure.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

getbufferproc bf_getbuffer
This should fill a Py_buffer with the necessary data for exporting the type. The signature of
getbufferproc is int (PyObject *obj, PyObject *view, int flags). obj is the ob-
ject to export, view is the Py_buffer struct to fill, and flags gives the conditions the caller wants the
memory under. (See PyObject_GetBuffer for all flags.) bf_getbuffer is responsible for fill-
ing view with the appropriate information. (PyBuffer_FillView can be used in simple cases.) See
Py_buffers docs for what needs to be filled in.

releasebufferproc bf_releasebuffer
This should release the resources of the buffer. The signature of releasebufferproc is void
(PyObject *obj, Py_buffer *view). If the bf_releasebuffer function is not provided
(i.e. it is NULL), then it does not ever need to be called.
The exporter of the buffer interface must make sure that any memory pointed to in the Py_buffer
structure remains valid until releasebuffer is called. Exporters will need to define a bf_releasebuffer
function if they can re-allocate their memory, strides, shape, suboffsets, or format variables which they
might share through the struct bufferinfo.
See PyBuffer_Release.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC and
provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated using PyObject_GC_New or PyObject_GC_VarNew.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track.

128 Chapter 10. Object Implementation Support

The Python/C API, Release 3.1

TYPE* PyObject_GC_New(TYPE, PyTypeObject *type)
Analogous to PyObject_New but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Analogous to PyObject_NewVar but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

TYPE* PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar. Returns the resized object or NULL on failure.

void PyObject_GC_Track(PyObject *op)
Adds the object op to the set of container objects tracked by the collector. The collector can run at unexpected
times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.

void _PyObject_GC_TRACK(PyObject *op)
A macro version of PyObject_GC_Track. It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack must be called.

2. The object’s memory must be deallocated using PyObject_GC_Del.

void PyObject_GC_Del(void *op)
Releases memory allocated to an object using PyObject_GC_New or PyObject_GC_NewVar.

void PyObject_GC_UnTrack(void *op)
Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject_GC_UNTRACK(PyObject *op)
A macro version of PyObject_GC_UnTrack. It should not be used for extension modules.

The tp_traverse handler accepts a function parameter of this type:

(*visitproc)
Type of the visitor function passed to the tp_traverse handler. The function should be called with an object
to traverse as object and the third parameter to the tp_traverse handler as arg. The Python core uses several
visitor functions to implement cyclic garbage detection; it’s not expected that users will need to write their own
visitor functions.

The tp_traverse handler must have the following type:

(*traverseproc)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

void Py_VISIT(PyObject *o)
Call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it. Using this
macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

10.8. Supporting Cyclic Garbage Collection 129

The Python/C API, Release 3.1

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.

(*inquiry)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling this
method (don’t just call Py_DECREF on a reference). The collector will call this method if it detects that this
object is involved in a reference cycle.

130 Chapter 10. Object Implementation Support

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inter-
actively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3 - Automated Python 2 to 3 code translation (in The Python Library Refer-
ence).

abstract base class Abstract Base Classes (abbreviated ABCs) complement duck-typing by providing a way to define
interfaces when other techniques like hasattr() would be clumsy. Python comes with many builtin ABCs
for data structures (in the collections module), numbers (in the numbers module), and streams (in the io
module). You can create your own ABC with the abc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length: * accepts or passes (if in the function definition or call) several positional
arguments in a list, while ** does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object o has an attribute a it would be referenced as o.a.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the inter-
preter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machine that executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which oper-
ate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For example, int(3.15) converts the floating point number to the integer 3, but in
3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same type
before they can be added or it will raise a TypeError. Without coercion, all arguments of even compatible
types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just
3+4.5.

131

http://www.python.org/~{}guido/

The Python/C API, Release 3.1

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often written i in mathematics or j in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__()
and __exit__() methods. See PEP 343.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in con-
texts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions (in The Python Language Reference) and class definitions (in The Python Language Reference) for
more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors (in The Python Language
Reference).

dictionary An associative array, where arbitrary keys are mapped to values. The use of dict closely resembles that
for list, but the keys can be any object with a __hash__() function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance().
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

132 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python/C API, Release 3.1

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as if. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

finder An object that tries to find the loader for a module. It must implement a method named find_module().
See PEP 302 for details and importlib.abc.Finder for an abstract base class.

floor division Mathematical division discarding any remainder. The floor division operator is //. For example, the
expression 11//4 evaluates to 2 in contrast to the 2.75 returned by float true division.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also argument and method.

__future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was first
added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using a yield statement instead of a return statement. Generator functions often contain one or
more for or while loops which yield elements back to the caller. The function execution is stopped at the
yield keyword (returning the result) and is resumed there when the next element is requested by calling the
__next__() method of the returned iterator.

generator expression An expression that returns a generator. It looks like a normal expression followed by a for
expression defining a loop variable, range, and an optional if expression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

133

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 3.1

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict and file and objects of any
classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for loop
and in many other places where a sequence is needed (zip(), map(), ...). When an iterable object is passed
as an argument to the builtin function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() (or passing it to
the builtin function) next() method return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further
calls to its next() method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A
container object (such as a list) produces a fresh new iterator each time you pass it to the iter() function
or use it in a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

More information can be found in Iterator Types (in The Python Library Reference).

keyword argument Arguments which are preceded with a variable_name= in the call. The variable name des-
ignates the local name in the function to which the value is assigned. ** is used to accept or pass a dictionary
of keyword arguments. See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

134 Appendix A. Glossary

The Python/C API, Release 3.1

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted, all
elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

mapping A container object (such as dict) which supports arbitrary key lookups using the special method
__getitem__().

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation (in The Python Language Reference).

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and nested
scope.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where the year is accessible either with an index such as
t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a self-
documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open() and os.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call. * is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a function. See argument.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

135

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 3.1

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a len() method that returns the length of the sequence. Some built-in sequence types are
list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but
is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (sub-
script) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method names (in The Python Language Reference).

statement A statement is part of a suite (a “block” of code). A statement is either an expression or a one of several
constructs with a keyword, such as if, while or for.

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

view The objects returned from dict.keys(), dict.values(), and dict.items() are called dictionary
views. They are lazy sequences that will see changes in the underlying dictionary. To force the dictionary view
to become a full list use list(dictview). See Dictionary view objects (in The Python Library Reference).

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

136 Appendix A. Glossary

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain takes place on the docs@python.org mailing list. We’re always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

See Reporting Bugs in Python for information how to report bugs in this documentation, or Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
– if you feel that you or anyone else should be on this list, please let us know (send email to docs@python.org), and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesús Cea Avión, Manuel Balsera, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter,
Alexander Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg
Brandl, Keith Briggs, Ian Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Hernán Martínez Foffani, Stefan Franke, Jim Fulton, Peter
Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Matt
Giuca, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond, Har-
ald Hanche-Olsen, Manus Hand, Gerhard Häring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bern-
hard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden,
Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hyl-
ton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung,
Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuch-
ling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann,
Marc-André Lemburg, Ross Light, Ulf A. Lindgren, Everett Lipman, Mirko Liss, Martin von Löwis, Fredrik Lundh,
Jeff MacDonald, John Machin, Andrew MacIntyre, Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel
May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender,
Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup, Denis S. Otkidach, Zooko O’Whielacronx, Shriphani

137

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python/C API, Release 3.1

Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher
Petrilli, Justin D. Pettit, Chris Phoenix, François Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Terry
J. Reedy, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel, Armin Ronacher, Jim Roskind, Guido van
Rossum, Donald Wallace Rouse II, Mark Russell, Nick Russo, Chris Ryland, Constantina S., Hugh Sasse, Bob Savage,
Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sernbrant, Justin Sheehy, Charlie Shepherd, Michael Simcich,
Ionel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo,
Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim
Tittsler, David Turner, Ville Vainio, Martijn Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster,
Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin
Winter, Blake Winton, Dan Wolfe, Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan
Zamazal, Cheng Zhang, Trent Nelson, Michael Foord.

It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

138 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see http://www.python.org/psf/) was formed,
a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

139

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python/C API, Release 3.1

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
2.4.4 2.4.3 2006 PSF yes
2.5 2.4 2006 PSF yes
2.5.1 2.5 2007 PSF yes
2.6 2.5 2008 PSF yes
2.6.1 2.6 2008 PSF yes
3.0 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.1

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 3.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 3.1 alone or in any derivative version, provided, however, that PSF’s
License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software Foundation;
All Rights Reserved” are retained in Python 3.1 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 3.1.

140 Appendix C. History and License

The Python/C API, Release 3.1

4. PSF is making Python 3.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.1 FOR ANY IN-
CIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 3.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 3.1, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

C.2. Terms and conditions for accessing or otherwise using Python 141

http://www.pythonlabs.com/logos.html

The Python/C API, Release 3.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI’s License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995, Stichting
Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT

142 Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python/C API, Release 3.1

SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 143

http://www.math.keio.ac.jp/

The Python/C API, Release 3.1

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ‘‘AS IS’’ AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |

144 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 3.1

| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 145

The Python/C API, Release 3.1

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the software
to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

146 Appendix C. History and License

The Python/C API, Release 3.1

C.3.7 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O’Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 147

The Python/C API, Release 3.1

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.9 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

148 Appendix C. History and License

The Python/C API, Release 3.1

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

C.3. Licenses and Acknowledgements for Incorporated Software 149

http://www.netlib.org/fp/

The Python/C API, Release 3.1

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***/

150 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

151

The Python/C API, Release 3.1

152 Appendix D. Copyright

INDEX

Symbols
..., 131
_PyBytes_Resize (C function), 58
_PyImport_FindExtension (C function), 26
_PyImport_Fini (C function), 26
_PyImport_FixupExtension (C function), 26
_PyImport_Init (C function), 26
_PyObject_GC_TRACK (C function), 129
_PyObject_GC_UNTRACK (C function), 129
_PyObject_New (C function), 109
_PyObject_NewVar (C function), 109
_PyTuple_Resize (C function), 74
_Py_NoneStruct (C variable), 109
_Py_c_diff (C function), 56
_Py_c_neg (C function), 56
_Py_c_pow (C function), 56
_Py_c_prod (C function), 56
_Py_c_quot (C function), 56
_Py_c_sum (C function), 55
__all__ (package variable), 25
__dict__ (module attribute), 82
__doc__ (module attribute), 82
__file__ (module attribute), 82
__future__, 133
__import__

built-in function, 25
__main__

module, 9, 93
__name__ (module attribute), 82
__slots__, 136
_frozen (C type), 26
_inittab (C type), 27
_ob_next (C member), 115
_ob_prev (C member), 115
_thread

module, 98
>>>, 131
2to3, 131

A
abort(), 24

abs
built-in function, 43

abstract base class, 131
argument, 131
argv (in module sys), 96
ascii

built-in function, 40
attribute, 131

B
BDFL, 131
bf_getbuffer (C member), 128
bf_releasebuffer (C member), 128
buf (C member), 70
buffer

object, 70
buffer interface, 70
built-in function

__import__, 25
abs, 43
ascii, 40
bytes, 40
classmethod, 112
compile, 25
divmod, 43
float, 45
hash, 41, 118
int, 45
len, 42, 46, 48, 74, 77, 79
pow, 43, 45
repr, 40, 117
staticmethod, 112
str, 40
tuple, 47, 75
type, 42

builtins
module, 9, 93

bytearray
object, 58

bytecode, 131
bytes

built-in function, 40

153

The Python/C API, Release 3.1

object, 57
BytesType (in module types), 57

C
calloc(), 105
Capsule

object, 86
class, 131
classmethod

built-in function, 112
cleanup functions, 24
close() (in module os), 94
CO_FUTURE_DIVISION (C variable), 14
CObject

object, 88
coercion, 131
compile

built-in function, 25
complex number, 131

object, 55
context manager, 132
copyright (in module sys), 96
CPython, 132

D
decorator, 132
descriptor, 132
dictionary, 132

object, 75
DictionaryType (in module types), 76
DictType (in module types), 76
divmod

built-in function, 43
docstring, 132
duck-typing, 132

E
EAFP, 132
environment variable

exec_prefix, 3, 4
PATH, 9
prefix, 3, 4
PYTHONDUMPREFS, 115
PYTHONHOME, 9, 96
PYTHONPATH, 9

EOFError (built-in exception), 82
errno, 97
exc_info() (in module sys), 7
exceptions

module, 9
exec_prefix, 3, 4
executable (in module sys), 95
exit(), 24
expression, 132

extension module, 133

F
file

object, 81
finder, 133
float

built-in function, 45
floating point

object, 54
FloatType (in modules types), 55
floor division, 133
free(), 105
freeze utility, 26
frozenset

object, 78
function, 133

object, 79

G
garbage collection, 133
generator, 133
generator expression, 133
GIL, 133
global interpreter lock, 96, 133

H
hash

built-in function, 41, 118
hashable, 133

I
IDLE, 134
immutable, 134
importer, 134
incr_item(), 8, 9
inquiry (C type), 130
instancemethod

object, 80
int

built-in function, 45
integer

object, 52
interactive, 134
internal (C member), 71
interpreted, 134
interpreter lock, 96
itemsize (C member), 71
iterable, 134
iterator, 134

K
KeyboardInterrupt (built-in exception), 20, 21
keyword argument, 134

154 Index

The Python/C API, Release 3.1

L
lambda, 134
LBYL, 134
len

built-in function, 42, 46, 48, 74, 77, 79
list, 134

object, 74
list comprehension, 134
ListType (in module types), 74
loader, 135
lock, interpreter, 96
long integer

object, 52
LONG_MAX, 53

M
m_base (C member), 83
m_clear (C member), 83
m_doc (C member), 83
m_free (C member), 83
m_methods (C member), 83
m_name (C member), 83
m_reload (C member), 83
m_size (C member), 83
m_traverse (C member), 83
main(), 94, 96
malloc(), 105
mapping, 135

object, 75
metaclass, 135
METH_CLASS (built-in variable), 112
METH_COEXIST (built-in variable), 112
METH_KEYWORDS (built-in variable), 111
METH_NOARGS (built-in variable), 111
METH_O (built-in variable), 112
METH_STATIC (built-in variable), 112
METH_VARARGS (built-in variable), 111
method, 135

object, 81
MethodType (in module types), 80, 81
module

__main__, 9, 93
_thread, 98
builtins, 9, 93
exceptions, 9
object, 82
search path, 9, 93, 95
signal, 20
sys, 9, 93

modules (in module sys), 25, 93
ModuleType (in module types), 82
mp_ass_subscript (C member), 127
mp_length (C member), 127
mp_subscript (C member), 127

mutable, 135

N
named tuple, 135
namespace, 135
ndim (C member), 70
nested scope, 135
new-style class, 135
None

object, 52
numeric

object, 52

O
ob_refcnt (C member), 115
ob_size (C member), 115
ob_type (C member), 115
object, 135

buffer, 70
bytearray, 58
bytes, 57
Capsule, 86
CObject, 88
complex number, 55
dictionary, 75
file, 81
floating point, 54
frozenset, 78
function, 79
instancemethod, 80
integer, 52
list, 74
long integer, 52
mapping, 75
method, 81
module, 82
None, 52
numeric, 52
sequence, 56
set, 78
tuple, 73
type, 4, 51

OverflowError (built-in exception), 53, 54

P
package variable

__all__, 25
PATH, 9
path

module search, 9, 93, 95
path (in module sys), 9, 93, 95
platform (in module sys), 95
positional argument, 135
pow

Index 155

The Python/C API, Release 3.1

built-in function, 43, 45
prefix, 3, 4
Py_AddPendingCall (C function), 101
Py_AddPendingCall(), 101
Py_AtExit (C function), 24
Py_BEGIN_ALLOW_THREADS, 97
Py_BEGIN_ALLOW_THREADS (C macro), 99
Py_BLOCK_THREADS (C macro), 99
Py_buffer (C type), 70
Py_BuildValue (C function), 33
Py_CLEAR (C function), 15
Py_CompileString (C function), 13
Py_CompileString(), 14
Py_CompileStringFlags (C function), 13
Py_complex (C type), 55
Py_DECREF (C function), 15
Py_DECREF(), 4
Py_END_ALLOW_THREADS, 97
Py_END_ALLOW_THREADS (C macro), 99
Py_EndInterpreter (C function), 94
Py_eval_input (C variable), 14
Py_Exit (C function), 24
Py_False (C variable), 54
Py_FatalError (C function), 24
Py_FatalError(), 96
Py_FdIsInteractive (C function), 23
Py_file_input (C variable), 14
Py_Finalize (C function), 93
Py_Finalize(), 24, 93, 94
Py_GetBuildInfo (C function), 96
Py_GetBuildNumber (C function), 95
Py_GetCompiler (C function), 96
Py_GetCopyright (C function), 95
Py_GetExecPrefix (C function), 94
Py_GetExecPrefix(), 9
Py_GetPath (C function), 95
Py_GetPath(), 9, 94
Py_GetPlatform (C function), 95
Py_GetPrefix (C function), 94
Py_GetPrefix(), 9
Py_GetProgramFullPath (C function), 95
Py_GetProgramFullPath(), 9
Py_GetProgramName (C function), 94
Py_GetPythonHome (C function), 96
Py_GetVersion (C function), 95
Py_INCREF (C function), 15
Py_INCREF(), 4
Py_Initialize (C function), 93
Py_Initialize(), 9, 94, 98
Py_InitializeEx (C function), 93
Py_IsInitialized (C function), 93
Py_IsInitialized(), 9
Py_Main (C function), 11
Py_NewInterpreter (C function), 93

Py_None (C variable), 52
Py_PRINT_RAW, 82
Py_RETURN_FALSE (C macro), 54
Py_RETURN_NONE (C macro), 52
Py_RETURN_TRUE (C macro), 54
Py_SetProgramName (C function), 94
Py_SetProgramName(), 9, 93–95
Py_SetPythonHome (C function), 96
Py_single_input (C variable), 14
PY_SSIZE_T_MAX, 53
Py_TPFLAGS_BASETYPE (built-in variable), 119
Py_TPFLAGS_DEFAULT (built-in variable), 119
Py_TPFLAGS_HAVE_GC (built-in variable), 119
Py_TPFLAGS_HEAPTYPE (built-in variable), 119
Py_TPFLAGS_READY (built-in variable), 119
Py_TPFLAGS_READYING (built-in variable), 119
Py_tracefunc (C type), 101
Py_True (C variable), 54
Py_UNBLOCK_THREADS (C macro), 99
Py_UNICODE (C type), 59
Py_UNICODE_ISALNUM (C function), 60
Py_UNICODE_ISALPHA (C function), 60
Py_UNICODE_ISDECIMAL (C function), 60
Py_UNICODE_ISDIGIT (C function), 60
Py_UNICODE_ISLINEBREAK (C function), 60
Py_UNICODE_ISLOWER (C function), 60
Py_UNICODE_ISNUMERIC (C function), 60
Py_UNICODE_ISPRINTABLE (C function), 60
Py_UNICODE_ISSPACE (C function), 60
Py_UNICODE_ISTITLE (C function), 60
Py_UNICODE_ISUPPER (C function), 60
Py_UNICODE_TODECIMAL (C function), 60
Py_UNICODE_TODIGIT (C function), 61
Py_UNICODE_TOLOWER (C function), 60
Py_UNICODE_TONUMERIC (C function), 61
Py_UNICODE_TOTITLE (C function), 60
Py_UNICODE_TOUPPER (C function), 60
Py_VaBuildValue (C function), 34
Py_VISIT (C function), 129
Py_XDECREF (C function), 15
Py_XDECREF(), 9
Py_XINCREF (C function), 15
PyAnySet_Check (C function), 78
PyAnySet_CheckExact (C function), 78
PyArg_Parse (C function), 32
PyArg_ParseTuple (C function), 32
PyArg_ParseTupleAndKeywords (C function), 32
PyArg_UnpackTuple (C function), 32
PyArg_VaParse (C function), 32
PyArg_VaParseTupleAndKeywords (C function), 32
PyBool_Check (C function), 54
PyBool_FromLong (C function), 54
PyBuffer_FillContiguousStrides (C function), 73
PyBuffer_FillInfo (C function), 73

156 Index

The Python/C API, Release 3.1

PyBuffer_IsContiguous (C function), 73
PyBuffer_Release (C function), 72
PyBuffer_SizeFromFormat (C function), 72
PyBufferProcs, 70
PyBufferProcs (C type), 128
PyByteArray_AS_STRING (C function), 59
PyByteArray_AsString (C function), 59
PyByteArray_Check (C function), 58
PyByteArray_CheckExact (C function), 58
PyByteArray_Concat (C function), 59
PyByteArray_FromObject (C function), 59
PyByteArray_FromStringAndSize (C function), 59
PyByteArray_GET_SIZE (C function), 59
PyByteArray_Resize (C function), 59
PyByteArray_Size (C function), 59
PyByteArray_Type (C variable), 58
PyByteArrayObject (C type), 58
PyBytes_AS_STRING (C function), 58
PyBytes_AsString (C function), 58
PyBytes_AsStringAndSize (C function), 58
PyBytes_Check (C function), 57
PyBytes_CheckExact (C function), 57
PyBytes_Concat (C function), 58
PyBytes_ConcatAndDel (C function), 58
PyBytes_FromFormat (C function), 57
PyBytes_FromFormatV (C function), 57
PyBytes_FromObject (C function), 57
PyBytes_FromString (C function), 57
PyBytes_FromStringAndSize (C function), 57
PyBytes_GET_SIZE (C function), 58
PyBytes_Size (C function), 58
PyBytes_Type (C variable), 57
PyBytesObject (C type), 57
PyCallable_Check (C function), 41
PyCallIter_Check (C function), 84
PyCallIter_New (C function), 84
PyCallIter_Type (C variable), 84
PyCapsule (C type), 86
PyCapsule_CheckExact (C function), 86
PyCapsule_Destructor (C type), 86
PyCapsule_GetContext (C function), 87
PyCapsule_GetDestructor (C function), 87
PyCapsule_GetName (C function), 87
PyCapsule_GetPointer (C function), 87
PyCapsule_Import (C function), 87
PyCapsule_IsValid (C function), 87
PyCapsule_New (C function), 87
PyCapsule_SetContext (C function), 87
PyCapsule_SetDestructor (C function), 87
PyCapsule_SetName (C function), 88
PyCapsule_SetPointer (C function), 88
PyCell_Check (C function), 89
PyCell_GET (C function), 89
PyCell_Get (C function), 89

PyCell_New (C function), 89
PyCell_SET (C function), 89
PyCell_Set (C function), 89
PyCell_Type (C variable), 89
PyCellObject (C type), 88
PyCFunction (C type), 111
PyCFunctionWithKeywords (C type), 111
PyCObject (C type), 88
PyCObject_AsVoidPtr (C function), 88
PyCObject_Check (C function), 88
PyCObject_FromVoidPtr (C function), 88
PyCObject_FromVoidPtrAndDesc (C function), 88
PyCObject_GetDesc (C function), 88
PyCObject_SetVoidPtr (C function), 88
PyCompilerFlags (C type), 14
PyComplex_AsCComplex (C function), 56
PyComplex_Check (C function), 56
PyComplex_CheckExact (C function), 56
PyComplex_FromCComplex (C function), 56
PyComplex_FromDoubles (C function), 56
PyComplex_ImagAsDouble (C function), 56
PyComplex_RealAsDouble (C function), 56
PyComplex_Type (C variable), 56
PyComplexObject (C type), 56
PyDate_Check (C function), 90
PyDate_CheckExact (C function), 90
PyDate_FromDate (C function), 90
PyDate_FromTimestamp (C function), 91
PyDateTime_Check (C function), 90
PyDateTime_CheckExact (C function), 90
PyDateTime_DATE_GET_HOUR (C function), 91
PyDateTime_DATE_GET_MICROSECOND (C func-

tion), 91
PyDateTime_DATE_GET_MINUTE (C function), 91
PyDateTime_DATE_GET_SECOND (C function), 91
PyDateTime_FromDateAndTime (C function), 90
PyDateTime_FromTimestamp (C function), 91
PyDateTime_GET_DAY (C function), 91
PyDateTime_GET_MONTH (C function), 91
PyDateTime_GET_YEAR (C function), 90
PyDateTime_TIME_GET_HOUR (C function), 91
PyDateTime_TIME_GET_MICROSECOND (C func-

tion), 91
PyDateTime_TIME_GET_MINUTE (C function), 91
PyDateTime_TIME_GET_SECOND (C function), 91
PyDelta_Check (C function), 90
PyDelta_CheckExact (C function), 90
PyDelta_FromDSU (C function), 90
PyDescr_IsData (C function), 85
PyDescr_NewClassMethod (C function), 85
PyDescr_NewGetSet (C function), 84
PyDescr_NewMember (C function), 85
PyDescr_NewMethod (C function), 85
PyDescr_NewWrapper (C function), 85

Index 157

The Python/C API, Release 3.1

PyDict_Check (C function), 76
PyDict_CheckExact (C function), 76
PyDict_Clear (C function), 76
PyDict_Contains (C function), 76
PyDict_Copy (C function), 76
PyDict_DelItem (C function), 76
PyDict_DelItemString (C function), 76
PyDict_GetItem (C function), 76
PyDict_GetItemString (C function), 76
PyDict_GetItemWithError (C function), 76
PyDict_Items (C function), 76
PyDict_Keys (C function), 76
PyDict_Merge (C function), 77
PyDict_MergeFromSeq2 (C function), 78
PyDict_New (C function), 76
PyDict_Next (C function), 77
PyDict_SetItem (C function), 76
PyDict_SetItemString (C function), 76
PyDict_Size (C function), 77
PyDict_Type (C variable), 75
PyDict_Update (C function), 78
PyDict_Values (C function), 77
PyDictObject (C type), 75
PyDictProxy_New (C function), 76
PyErr_BadArgument (C function), 19
PyErr_BadInternalCall (C function), 20
PyErr_CheckSignals (C function), 20
PyErr_Clear (C function), 18
PyErr_Clear(), 7, 9
PyErr_ExceptionMatches (C function), 17
PyErr_ExceptionMatches(), 9
PyErr_Fetch (C function), 18
PyErr_Format (C function), 18
PyErr_GivenExceptionMatches (C function), 17
PyErr_NewException (C function), 21
PyErr_NoMemory (C function), 19
PyErr_NormalizeException (C function), 18
PyErr_Occurred (C function), 17
PyErr_Occurred(), 7
PyErr_Print (C function), 17
PyErr_PrintEx (C function), 17
PyErr_Restore (C function), 18
PyErr_SetExcFromWindowsErr (C function), 20
PyErr_SetExcFromWindowsErrWithFilename (C func-

tion), 20
PyErr_SetFromErrno (C function), 19
PyErr_SetFromErrnoWithFilename (C function), 19
PyErr_SetFromWindowsErr (C function), 19
PyErr_SetFromWindowsErrWithFilename (C function),

20
PyErr_SetInterrupt (C function), 21
PyErr_SetNone (C function), 19
PyErr_SetObject (C function), 18
PyErr_SetString (C function), 18

PyErr_SetString(), 7
PyErr_WarnEx (C function), 20
PyErr_WarnExplicit (C function), 20
PyErr_WriteUnraisable (C function), 21
PyEval_AcquireLock (C function), 98
PyEval_AcquireLock(), 93, 97
PyEval_AcquireThread (C function), 98
PyEval_EvalCode (C function), 13
PyEval_EvalCodeEx (C function), 13
PyEval_EvalFrame (C function), 13
PyEval_EvalFrameEx (C function), 13
PyEval_GetBuiltins (C function), 36
PyEval_GetCallStats (C function), 102
PyEval_GetFrame (C function), 36
PyEval_GetFuncDesc (C function), 37
PyEval_GetFuncName (C function), 37
PyEval_GetGlobals (C function), 36
PyEval_GetLocals (C function), 36
PyEval_GetRestricted (C function), 36
PyEval_InitThreads (C function), 98
PyEval_InitThreads(), 93
PyEval_MergeCompilerFlags (C function), 14
PyEval_ReInitThreads (C function), 99
PyEval_ReleaseLock (C function), 98
PyEval_ReleaseLock(), 93, 97, 98
PyEval_ReleaseThread (C function), 99
PyEval_ReleaseThread(), 98
PyEval_RestoreThread (C function), 99
PyEval_RestoreThread(), 97, 98
PyEval_SaveThread (C function), 99
PyEval_SaveThread(), 97, 98
PyEval_SetProfile (C function), 102
PyEval_SetTrace (C function), 102
PyEval_ThreadsInitialized (C function), 98
PyExc_ArithmeticError, 22
PyExc_AssertionError, 22
PyExc_AttributeError, 22
PyExc_BaseException, 22
PyExc_EnvironmentError, 22
PyExc_EOFError, 22
PyExc_Exception, 22
PyExc_FloatingPointError, 22
PyExc_ImportError, 22
PyExc_IndexError, 22
PyExc_IOError, 22
PyExc_KeyboardInterrupt, 22
PyExc_KeyError, 22
PyExc_LookupError, 22
PyExc_MemoryError, 22
PyExc_NameError, 22
PyExc_NotImplementedError, 22
PyExc_OSError, 22
PyExc_OverflowError, 22
PyExc_ReferenceError, 22

158 Index

The Python/C API, Release 3.1

PyExc_RuntimeError, 22
PyExc_SyntaxError, 22
PyExc_SystemError, 22
PyExc_SystemExit, 22
PyExc_TypeError, 22
PyExc_ValueError, 22
PyExc_WindowsError, 22
PyExc_ZeroDivisionError, 22
PyException_GetCause (C function), 21
PyException_GetContext (C function), 21
PyException_GetTraceback (C function), 21
PyException_SetCause (C function), 21
PyException_SetContext (C function), 21
PyException_SetTraceback (C function), 21
PyFile_FromFd (C function), 81
PyFile_GetLine (C function), 82
PyFile_WriteObject (C function), 82
PyFile_WriteString (C function), 82
PyFloat_AS_DOUBLE (C function), 55
PyFloat_AsDouble (C function), 55
PyFloat_Check (C function), 55
PyFloat_CheckExact (C function), 55
PyFloat_ClearFreeList (C function), 55
PyFloat_FromDouble (C function), 55
PyFloat_FromString (C function), 55
PyFloat_GetInfo (C function), 55
PyFloat_GetMax (C function), 55
PyFloat_GetMin (C function), 55
PyFloat_Type (C variable), 54
PyFloatObject (C type), 54
PyFrozenSet_Check (C function), 78
PyFrozenSet_CheckExact (C function), 78
PyFrozenSet_New (C function), 79
PyFrozenSet_Type (C variable), 78
PyFunction_Check (C function), 80
PyFunction_GetAnnotations (C function), 80
PyFunction_GetClosure (C function), 80
PyFunction_GetCode (C function), 80
PyFunction_GetDefaults (C function), 80
PyFunction_GetGlobals (C function), 80
PyFunction_GetModule (C function), 80
PyFunction_New (C function), 80
PyFunction_SetAnnotations (C function), 80
PyFunction_SetClosure (C function), 80
PyFunction_SetDefaults (C function), 80
PyFunction_Type (C variable), 80
PyFunctionObject (C type), 79
PyGen_Check (C function), 89
PyGen_CheckExact (C function), 89
PyGen_New (C function), 89
PyGen_Type (C variable), 89
PyGenObject (C type), 89
PyGILState_Ensure (C function), 100
PyGILState_Release (C function), 100

PyImport_AddModule (C function), 25
PyImport_AppendInittab (C function), 27
PyImport_Cleanup (C function), 26
PyImport_ExecCodeModule (C function), 25
PyImport_ExtendInittab (C function), 27
PyImport_FrozenModules (C variable), 26
PyImport_GetImporter (C function), 26
PyImport_GetMagicNumber (C function), 26
PyImport_GetModuleDict (C function), 26
PyImport_Import (C function), 25
PyImport_ImportFrozenModule (C function), 26
PyImport_ImportModule (C function), 24
PyImport_ImportModuleEx (C function), 25
PyImport_ImportModuleLevel (C function), 25
PyImport_ImportModuleNoBlock (C function), 25
PyImport_ReloadModule (C function), 25
PyIndex_Check (C function), 46
PyInstanceMethod_Check (C function), 81
PyInstanceMethod_Function (C function), 81
PyInstanceMethod_GET_FUNCTION (C function), 81
PyInstanceMethod_New (C function), 81
PyInstanceMethod_Type (C variable), 80
PyInterpreterState (C type), 98
PyInterpreterState_Clear (C function), 99
PyInterpreterState_Delete (C function), 99
PyInterpreterState_Head (C function), 102
PyInterpreterState_New (C function), 99
PyInterpreterState_Next (C function), 102
PyInterpreterState_ThreadHead (C function), 102
PyIter_Check (C function), 48
PyIter_Next (C function), 48
PyList_Append (C function), 75
PyList_AsTuple (C function), 75
PyList_Check (C function), 74
PyList_CheckExact (C function), 74
PyList_GET_ITEM (C function), 75
PyList_GET_SIZE (C function), 74
PyList_GetItem (C function), 74
PyList_GetItem(), 6
PyList_GetSlice (C function), 75
PyList_Insert (C function), 75
PyList_New (C function), 74
PyList_Reverse (C function), 75
PyList_SET_ITEM (C function), 75
PyList_SetItem (C function), 75
PyList_SetItem(), 5
PyList_SetSlice (C function), 75
PyList_Size (C function), 74
PyList_Sort (C function), 75
PyList_Type (C variable), 74
PyListObject (C type), 74
PyLong_AsDouble (C function), 54
PyLong_AsLong (C function), 53
PyLong_AsLongAndOverflow (C function), 53

Index 159

The Python/C API, Release 3.1

PyLong_AsLongLong (C function), 54
PyLong_AsSize_t (C function), 53
PyLong_AsSsize_t (C function), 53
PyLong_AsUnsignedLong (C function), 53
PyLong_AsUnsignedLongLong (C function), 54
PyLong_AsUnsignedLongLongMask (C function), 54
PyLong_AsUnsignedLongMask (C function), 54
PyLong_AsVoidPtr (C function), 54
PyLong_Check (C function), 52
PyLong_CheckExact (C function), 52
PyLong_FromDouble (C function), 53
PyLong_FromLong (C function), 52
PyLong_FromLongLong (C function), 53
PyLong_FromSize_t (C function), 53
PyLong_FromSsize_t (C function), 53
PyLong_FromString (C function), 53
PyLong_FromUnicode (C function), 53
PyLong_FromUnsignedLong (C function), 52
PyLong_FromUnsignedLongLong (C function), 53
PyLong_FromVoidPtr (C function), 53
PyLong_Type (C variable), 52
PyLongObject (C type), 52
PyMapping_Check (C function), 47
PyMapping_DelItem (C function), 48
PyMapping_DelItemString (C function), 48
PyMapping_GetItemString (C function), 48
PyMapping_HasKey (C function), 48
PyMapping_HasKeyString (C function), 48
PyMapping_Items (C function), 48
PyMapping_Keys (C function), 48
PyMapping_Length (C function), 47
PyMapping_SetItemString (C function), 48
PyMapping_Size (C function), 47
PyMapping_Values (C function), 48
PyMappingMethods (C type), 127
PyMarshal_ReadLastObjectFromFile (C function), 28
PyMarshal_ReadLongFromFile (C function), 27
PyMarshal_ReadObjectFromFile (C function), 28
PyMarshal_ReadObjectFromString (C function), 28
PyMarshal_ReadShortFromFile (C function), 28
PyMarshal_WriteLongToFile (C function), 27
PyMarshal_WriteObjectToFile (C function), 27
PyMarshal_WriteObjectToString (C function), 27
PyMem_Del (C function), 106
PyMem_Free (C function), 106
PyMem_Malloc (C function), 106
PyMem_New (C function), 106
PyMem_Realloc (C function), 106
PyMem_Resize (C function), 106
PyMemberDef (C type), 112
PyMemoryView_FromObject (C function), 73
PyMethod_Check (C function), 81
PyMethod_ClearFreeList (C function), 81
PyMethod_Function (C function), 81

PyMethod_GET_FUNCTION (C function), 81
PyMethod_GET_SELF (C function), 81
PyMethod_New (C function), 81
PyMethod_Self (C function), 81
PyMethod_Type (C variable), 81
PyMethodDef (C type), 111
PyModule_AddIntConstant (C function), 84
PyModule_AddIntMacro (C function), 84
PyModule_AddObject (C function), 83
PyModule_AddStringConstant (C function), 84
PyModule_AddStringMacro (C function), 84
PyModule_Check (C function), 82
PyModule_CheckExact (C function), 82
PyModule_Create (C function), 83
PyModule_Create2 (C function), 83
PyModule_GetDef (C function), 83
PyModule_GetDict (C function), 82
PyModule_GetFilename (C function), 82
PyModule_GetName (C function), 82
PyModule_GetState (C function), 83
PyModule_New (C function), 82
PyModule_Type (C variable), 82
PyModuleDef (C type), 83
PyNumber_Absolute (C function), 43
PyNumber_Add (C function), 43
PyNumber_And (C function), 44
PyNumber_AsSsize_t (C function), 45
PyNumber_Check (C function), 43
PyNumber_Divmod (C function), 43
PyNumber_Float (C function), 45
PyNumber_FloorDivide (C function), 43
PyNumber_Index (C function), 45
PyNumber_InPlaceAdd (C function), 44
PyNumber_InPlaceAnd (C function), 45
PyNumber_InPlaceFloorDivide (C function), 44
PyNumber_InPlaceLshift (C function), 45
PyNumber_InPlaceMultiply (C function), 44
PyNumber_InPlaceOr (C function), 45
PyNumber_InPlacePower (C function), 44
PyNumber_InPlaceRemainder (C function), 44
PyNumber_InPlaceRshift (C function), 45
PyNumber_InPlaceSubtract (C function), 44
PyNumber_InPlaceTrueDivide (C function), 44
PyNumber_InPlaceXor (C function), 45
PyNumber_Int (C function), 45
PyNumber_Invert (C function), 43
PyNumber_Long (C function), 45
PyNumber_Lshift (C function), 44
PyNumber_Multiply (C function), 43
PyNumber_Negative (C function), 43
PyNumber_Or (C function), 44
PyNumber_Positive (C function), 43
PyNumber_Power (C function), 43
PyNumber_Remainder (C function), 43

160 Index

The Python/C API, Release 3.1

PyNumber_Rshift (C function), 44
PyNumber_Subtract (C function), 43
PyNumber_ToBase (C function), 45
PyNumber_TrueDivide (C function), 43
PyNumber_Xor (C function), 44
PyNumberMethods (C type), 126
PyObject (C type), 110
PyObject_AsCharBuffer (C function), 49
PyObject_ASCII (C function), 40
PyObject_AsFileDescriptor (C function), 82
PyObject_AsReadBuffer (C function), 49
PyObject_AsWriteBuffer (C function), 49
PyObject_Bytes (C function), 40
PyObject_Call (C function), 41
PyObject_CallFunction (C function), 41
PyObject_CallFunctionObjArgs (C function), 41
PyObject_CallMethod (C function), 41
PyObject_CallMethodObjArgs (C function), 41
PyObject_CallObject (C function), 41
PyObject_CheckBuffer (C function), 71
PyObject_CheckReadBuffer (C function), 49
PyObject_CopyToObject (C function), 72
PyObject_Del (C function), 109
PyObject_DelAttr (C function), 40
PyObject_DelAttrString (C function), 40
PyObject_DelItem (C function), 42
PyObject_Dir (C function), 42
PyObject_GC_Del (C function), 129
PyObject_GC_New (C function), 128
PyObject_GC_NewVar (C function), 129
PyObject_GC_Resize (C function), 129
PyObject_GC_Track (C function), 129
PyObject_GC_UnTrack (C function), 129
PyObject_GenericGetAttr (C function), 39
PyObject_GenericSetAttr (C function), 40
PyObject_GetAttr (C function), 39
PyObject_GetAttrString (C function), 39
PyObject_GetBuffer (C function), 71
PyObject_GetItem (C function), 42
PyObject_GetIter (C function), 42
PyObject_HasAttr (C function), 39
PyObject_HasAttrString (C function), 39
PyObject_Hash (C function), 41
PyObject_HashNotImplemented (C function), 42
PyObject_HEAD (C macro), 110
PyObject_HEAD_INIT (C macro), 110
PyObject_Init (C function), 109
PyObject_InitVar (C function), 109
PyObject_IsInstance (C function), 40
PyObject_IsSubclass (C function), 41
PyObject_IsTrue (C function), 42
PyObject_Length (C function), 42
PyObject_New (C function), 109
PyObject_NewVar (C function), 109

PyObject_Not (C function), 42
PyObject_Print (C function), 39
PyObject_Repr (C function), 40
PyObject_RichCompare (C function), 40
PyObject_RichCompareBool (C function), 40
PyObject_SetAttr (C function), 39
PyObject_SetAttrString (C function), 39
PyObject_SetItem (C function), 42
PyObject_Size (C function), 42
PyObject_Str (C function), 40
PyObject_Type (C function), 42
PyObject_TypeCheck (C function), 42
PyObject_VAR_HEAD (C macro), 110
PyOS_AfterFork (C function), 23
PyOS_ascii_atof (C function), 36
PyOS_ascii_formatd (C function), 35
PyOS_ascii_strtod (C function), 35
PyOS_CheckStack (C function), 23
PyOS_double_to_string (C function), 36
PyOS_getsig (C function), 23
PyOS_setsig (C function), 23
PyOS_snprintf (C function), 34
PyOS_stricmp (C function), 36
PyOS_string_to_double (C function), 35
PyOS_strnicmp (C function), 36
PyOS_vsnprintf (C function), 35
PyParser_SimpleParseFile (C function), 12
PyParser_SimpleParseFileFlags (C function), 12
PyParser_SimpleParseString (C function), 12
PyParser_SimpleParseStringFlags (C function), 12
PyParser_SimpleParseStringFlagsFilename (C function),

12
PyProperty_Type (C variable), 84
PyRun_AnyFile (C function), 11
PyRun_AnyFileEx (C function), 11
PyRun_AnyFileExFlags (C function), 11
PyRun_AnyFileFlags (C function), 11
PyRun_File (C function), 13
PyRun_FileEx (C function), 13
PyRun_FileExFlags (C function), 13
PyRun_FileFlags (C function), 13
PyRun_InteractiveLoop (C function), 12
PyRun_InteractiveLoopFlags (C function), 12
PyRun_InteractiveOne (C function), 12
PyRun_InteractiveOneFlags (C function), 12
PyRun_SimpleFile (C function), 12
PyRun_SimpleFileEx (C function), 12
PyRun_SimpleFileExFlags (C function), 12
PyRun_SimpleFileFlags (C function), 12
PyRun_SimpleString (C function), 11
PyRun_SimpleStringFlags (C function), 11
PyRun_String (C function), 12
PyRun_StringFlags (C function), 12
PySeqIter_Check (C function), 84

Index 161

The Python/C API, Release 3.1

PySeqIter_New (C function), 84
PySeqIter_Type (C variable), 84
PySequence_Check (C function), 46
PySequence_Concat (C function), 46
PySequence_Contains (C function), 47
PySequence_Count (C function), 47
PySequence_DelItem (C function), 46
PySequence_DelSlice (C function), 46
PySequence_Fast (C function), 47
PySequence_Fast_GET_ITEM (C function), 47
PySequence_Fast_GET_SIZE (C function), 47
PySequence_Fast_ITEMS (C function), 47
PySequence_GetItem (C function), 46
PySequence_GetItem(), 6
PySequence_GetSlice (C function), 46
PySequence_Index (C function), 47
PySequence_InPlaceConcat (C function), 46
PySequence_InPlaceRepeat (C function), 46
PySequence_ITEM (C function), 47
PySequence_Length (C function), 46
PySequence_List (C function), 47
PySequence_Repeat (C function), 46
PySequence_SetItem (C function), 46
PySequence_SetSlice (C function), 46
PySequence_Size (C function), 46
PySequence_Tuple (C function), 47
PySequenceMethods (C type), 127
PySet_Add (C function), 79
PySet_Check (C function), 78
PySet_Clear (C function), 79
PySet_Contains (C function), 79
PySet_Discard (C function), 79
PySet_GET_SIZE (C function), 79
PySet_New (C function), 79
PySet_Pop (C function), 79
PySet_Size (C function), 79
PySet_Type (C variable), 78
PySetObject (C type), 78
PySignal_SetWakeupFd (C function), 21
PySlice_Check (C function), 85
PySlice_GetIndices (C function), 85
PySlice_GetIndicesEx (C function), 85
PySlice_New (C function), 85
PySlice_Type (C variable), 85
PySys_AddWarnOption (C function), 24
PySys_GetFile (C function), 23
PySys_GetObject (C function), 23
PySys_ResetWarnOptions (C function), 24
PySys_SetArgv (C function), 96
PySys_SetArgv(), 9, 93
PySys_SetObject (C function), 24
PySys_SetPath (C function), 24
PySys_WriteStderr (C function), 24
PySys_WriteStdout (C function), 24

Python 3000, 135
Python Enhancement Proposals

PEP 238, 14
PEP 302, 133, 135
PEP 343, 132

PYTHONDUMPREFS, 115
PYTHONHOME, 9, 96
Pythonic, 135
PYTHONPATH, 9
PyThreadState, 96
PyThreadState (C type), 98
PyThreadState_Clear (C function), 100
PyThreadState_Delete (C function), 100
PyThreadState_Get (C function), 100
PyThreadState_GetDict (C function), 100
PyThreadState_New (C function), 99
PyThreadState_Next (C function), 103
PyThreadState_SetAsyncExc (C function), 100
PyThreadState_Swap (C function), 100
PyTime_Check (C function), 90
PyTime_CheckExact (C function), 90
PyTime_FromTime (C function), 90
PyTrace_C_CALL (C variable), 102
PyTrace_C_EXCEPTION (C variable), 102
PyTrace_C_RETURN (C variable), 102
PyTrace_CALL (C variable), 101
PyTrace_EXCEPTION (C variable), 101
PyTrace_LINE (C variable), 101
PyTrace_RETURN (C variable), 102
PyTuple_Check (C function), 73
PyTuple_CheckExact (C function), 73
PyTuple_ClearFreeList (C function), 74
PyTuple_GET_ITEM (C function), 74
PyTuple_GET_SIZE (C function), 73
PyTuple_GetItem (C function), 73
PyTuple_GetSlice (C function), 74
PyTuple_New (C function), 73
PyTuple_Pack (C function), 73
PyTuple_SET_ITEM (C function), 74
PyTuple_SetItem (C function), 74
PyTuple_SetItem(), 5
PyTuple_Size (C function), 73
PyTuple_Type (C variable), 73
PyTupleObject (C type), 73
PyType_Check (C function), 51
PyType_CheckExact (C function), 51
PyType_ClearCache (C function), 51
PyType_GenericAlloc (C function), 52
PyType_GenericNew (C function), 52
PyType_HasFeature (C function), 51
PyType_IS_GC (C function), 51
PyType_IsSubtype (C function), 52
PyType_Modified (C function), 51
PyType_Ready (C function), 52

162 Index

The Python/C API, Release 3.1

PyType_Type (C variable), 51
PyTypeObject (C type), 51
PyTZInfo_Check (C function), 90
PyTZInfo_CheckExact (C function), 90
PyUnicode_AS_DATA (C function), 60
PyUnicode_AS_UNICODE (C function), 60
PyUnicode_AsASCIIString (C function), 67
PyUnicode_AsCharmapString (C function), 67
PyUnicode_AsEncodedString (C function), 63
PyUnicode_AsLatin1String (C function), 66
PyUnicode_AsMBCSString (C function), 68
PyUnicode_AsRawUnicodeEscapeString (C function),

66
PyUnicode_AsUnicode (C function), 62
PyUnicode_AsUnicodeEscapeString (C function), 66
PyUnicode_AsUTF16String (C function), 65
PyUnicode_AsUTF32String (C function), 65
PyUnicode_AsUTF8String (C function), 64
PyUnicode_AsWideChar (C function), 63
PyUnicode_Check (C function), 59
PyUnicode_CheckExact (C function), 59
PyUnicode_ClearFreeList (C function), 60
PyUnicode_Compare (C function), 69
PyUnicode_CompareWithASCIIString (C function), 69
PyUnicode_Concat (C function), 68
PyUnicode_Contains (C function), 69
PyUnicode_Count (C function), 69
PyUnicode_Decode (C function), 63
PyUnicode_DecodeASCII (C function), 66
PyUnicode_DecodeCharmap (C function), 67
PyUnicode_DecodeLatin1 (C function), 66
PyUnicode_DecodeMBCS (C function), 67
PyUnicode_DecodeMBCSStateful (C function), 68
PyUnicode_DecodeRawUnicodeEscape (C function), 66
PyUnicode_DecodeUnicodeEscape (C function), 65
PyUnicode_DecodeUTF16 (C function), 65
PyUnicode_DecodeUTF16Stateful (C function), 65
PyUnicode_DecodeUTF32 (C function), 64
PyUnicode_DecodeUTF32Stateful (C function), 64
PyUnicode_DecodeUTF8 (C function), 63
PyUnicode_DecodeUTF8Stateful (C function), 64
PyUnicode_Encode (C function), 63
PyUnicode_EncodeASCII (C function), 66
PyUnicode_EncodeCharmap (C function), 67
PyUnicode_EncodeLatin1 (C function), 66
PyUnicode_EncodeMBCS (C function), 68
PyUnicode_EncodeRawUnicodeEscape (C function), 66
PyUnicode_EncodeUnicodeEscape (C function), 66
PyUnicode_EncodeUTF16 (C function), 65
PyUnicode_EncodeUTF32 (C function), 64
PyUnicode_EncodeUTF8 (C function), 64
PyUnicode_Find (C function), 69
PyUnicode_Format (C function), 69
PyUnicode_FromEncodedObject (C function), 62

PyUnicode_FromFormat (C function), 61
PyUnicode_FromFormatV (C function), 62
PyUnicode_FromObject (C function), 62
PyUnicode_FromString (C function), 61
PyUnicode_FromString(), 76
PyUnicode_FromStringAndSize (C function), 61
PyUnicode_FromUnicode (C function), 61
PyUnicode_FromWideChar (C function), 63
PyUnicode_FSConverter (C function), 68
PyUnicode_GET_DATA_SIZE (C function), 59
PyUnicode_GET_SIZE (C function), 59
PyUnicode_GetSize (C function), 62
PyUnicode_InternFromString (C function), 69
PyUnicode_InternInPlace (C function), 69
PyUnicode_Join (C function), 68
PyUnicode_Replace (C function), 69
PyUnicode_RichCompare (C function), 69
PyUnicode_Split (C function), 68
PyUnicode_Splitlines (C function), 68
PyUnicode_Tailmatch (C function), 69
PyUnicode_Translate (C function), 68
PyUnicode_TranslateCharmap (C function), 67
PyUnicode_Type (C variable), 59
PyUnicodeObject (C type), 59
PyVarObject (C type), 110
PyVarObject_HEAD_INIT (C macro), 111
PyWeakref_Check (C function), 86
PyWeakref_CheckProxy (C function), 86
PyWeakref_CheckRef (C function), 86
PyWeakref_GET_OBJECT (C function), 86
PyWeakref_GetObject (C function), 86
PyWeakref_NewProxy (C function), 86
PyWeakref_NewRef (C function), 86
PyWrapper_New (C function), 85

R
readonly (C member), 70
realloc(), 105
reference count, 136
repr

built-in function, 40, 117

S
search

path, module, 9, 93, 95
sequence, 136

object, 56
set

object, 78
set_all(), 6
setcheckinterval() (in module sys), 96, 100
shape (C member), 70
SIGINT, 20, 21
signal

Index 163

The Python/C API, Release 3.1

module, 20
slice, 136
SliceType (in module types), 85
special method, 136
sq_ass_item (C member), 127
sq_concat (C member), 127
sq_contains (C member), 127
sq_inplace_concat (C member), 127
sq_inplace_repeat (C member), 127
sq_item (C member), 127
sq_length (C member), 127
sq_repeat (C member), 127
statement, 136
staticmethod

built-in function, 112
stderr (in module sys), 93
stdin (in module sys), 93
stdout (in module sys), 93
str

built-in function, 40
strerror(), 19
strides (C member), 70
suboffsets (C member), 70
sum_list(), 6
sum_sequence(), 7, 8
sys

module, 9, 93
SystemError (built-in exception), 82

T
tp_alloc (C member), 124
tp_allocs (C member), 125
tp_as_buffer (C member), 118
tp_as_mapping (C member), 117
tp_as_number (C member), 117
tp_as_sequence (C member), 117
tp_base (C member), 122
tp_bases (C member), 125
tp_basicsize (C member), 116
tp_cache (C member), 125
tp_call (C member), 118
tp_clear (C member), 120
tp_dealloc (C member), 116
tp_descr_get (C member), 122
tp_descr_set (C member), 123
tp_dict (C member), 122
tp_dictoffset (C member), 123
tp_doc (C member), 119
tp_flags (C member), 118
tp_free (C member), 124
tp_frees (C member), 125
tp_getattr (C member), 117
tp_getattro (C member), 118
tp_getset (C member), 122

tp_hash (C member), 118
tp_init (C member), 123
tp_is_gc (C member), 125
tp_itemsize (C member), 116
tp_iter (C member), 121
tp_iternext (C member), 121
tp_maxalloc (C member), 125
tp_members (C member), 122
tp_methods (C member), 121
tp_mro (C member), 125
tp_name (C member), 115
tp_new (C member), 124
tp_next (C member), 125
tp_print (C member), 116
tp_repr (C member), 117
tp_reserved (C member), 117
tp_richcompare (C member), 120
tp_setattr (C member), 117
tp_setattro (C member), 118
tp_str (C member), 118
tp_subclasses (C member), 125
tp_traverse (C member), 119
tp_weaklist (C member), 125
tp_weaklistoffset (C member), 121
traverseproc (C type), 129
triple-quoted string, 136
tuple

built-in function, 47, 75
object, 73

TupleType (in module types), 73
type, 136

built-in function, 42
object, 4, 51

TypeType (in module types), 51

U
ULONG_MAX, 53

V
version (in module sys), 95, 96
view, 136
virtual machine, 136
visitproc (C type), 129

Z
Zen of Python, 136

164 Index

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Exception Objects
	Standard Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Thread State and the Global Interpreter Lock
	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

