
Prima - the perl graphic toolkit

Dmitry Karasik

December 21, 2007

Contents

1 Introduction 2

2 Tutorials 4
2.1 Prima::tutorial . 4

3 Core toolkit classes 12
3.1 Prima . 12
3.2 Prima::Object . 15
3.3 Prima::Classes . 31
3.4 Prima::Drawable . 32
3.5 Prima::Image . 52
3.6 Prima::image-load . 63
3.7 Prima::Widget . 70
3.8 Prima::Widget::pack . 106
3.9 Prima::Widget::place . 110
3.10 Prima::Window . 113
3.11 Prima::Clipboard . 121
3.12 Prima::Menu . 125
3.13 Prima::Timer . 134
3.14 Prima::Application . 136
3.15 Prima::Printer . 145
3.16 Prima::File . 149

4 Widget library 151
4.1 Prima::Buttons . 151
4.2 Prima::Calendar . 158
4.3 Prima::ComboBox . 160
4.4 Prima::DetailedList . 163
4.5 Prima::DetailedOutline . 165
4.6 Prima::DockManager . 166
4.7 Prima::Docks . 173
4.8 Prima::Edit . 184
4.9 Prima::ExtLists . 193
4.10 Prima::FrameSet . 194
4.11 Prima::Grids . 195
4.12 Prima::Header . 204
4.13 Prima::HelpViewer . 206
4.14 Prima::Image::TransparencyControl . 208
4.15 Prima::ImageViewer . 209
4.16 Prima::InputLine . 212
4.17 Prima::KeySelector . 215
4.18 Prima::Label . 217

1

4.19 Prima::Lists . 219
4.20 Prima::MDI . 226
4.21 Prima::Notebooks . 232
4.22 Prima::Outlines . 238
4.23 Prima::PodView . 245
4.24 Prima::ScrollBar . 249
4.25 Prima::ScrollWidget . 252
4.26 Prima::Sliders . 253
4.27 Prima::StartupWindow . 261
4.28 Prima::TextView . 262
4.29 Prima::Themes . 267

5 Standard dialogs 270
5.1 Prima::ColorDialog . 270
5.2 Prima::FindDialog, Prima::ReplaceDialog . 273
5.3 Prima::FileDialog . 275
5.4 Prima::FontDialog . 279
5.5 Prima::ImageDialog . 280
5.6 Prima::MsgBox . 282
5.7 Prima::PrintDialog . 285
5.8 Prima::StdDlg . 286

6 Visual Builder 288
6.1 VB . 288
6.2 Prima::VB::VBLoader . 293
6.3 Prima::VB::CfgMaint . 297
6.4 Prima::VB::CfgMaint . 299

7 PostScript printer interface 301
7.1 Prima::PS::Drawable . 301
7.2 Prima::PS::Encodings . 303
7.3 Prima::PS::Fonts . 304
7.4 Prima::PS::Printer . 305

8 C interface to the toolkit 308
8.1 Prima::internals . 308
8.2 Prima::codecs . 324
8.3 gencls . 333

9 Miscellaneous 342
9.1 Prima::faq . 342
9.2 Prima::Const . 349
9.3 Prima::EventHook . 363
9.4 Prima::IniFile . 365
9.5 Prima::IntUtils . 368
9.6 Prima::StdBitmap . 371
9.7 Prima::Stress . 373
9.8 Prima::Tie . 374
9.9 Prima::Utils . 376
9.10 Prima::Widgets . 379
9.11 Prima::gp-problems . 380
9.12 Prima::X11 . 386

2

1 Introduction

Preface

Prima is an extensible Perl toolkit for multi-platform GUI development. Platforms supported
include Linux, Windows NT/9x/2K, OS/2 and UNIX/X11 workstations (FreeBSD, IRIX, SunOS,
Solaris and others). The toolkit contains a rich set of standard widgets and has emphasis on 2D
image processing tasks. A Perl program using PRIMA looks and behaves identically on X, Win32
and OS/2 PM.

The Prima project was started in 1997 in Protein Laboratory, Copenhagen, by Anton Berezin,
Dmitry Karasik, and Vadim Belman.

This document describes programming with Prima graphic toolkit, and is a collection of manual
pages of Prima application program interface (API), written by D.Karasik, except Prima::IniFile
and Prima::ScrollBar, written by A.Berezin.

Requirements

Prima supports perl versions 5.004 and above. The recommended perl versions are 5.005 and above.
In UNIX(tm) environments, Prima can use the following graphic libraries: libjpeg, libungif, libtiff,
libpng, libXpm.

Installation

The toolkit can be downloaded from http://www.prima.eu.org in source and binary forms.
Before installing, check the content of README file in the distribution. The installation from the
source is performed by executing commands

perl Makefile.PL

make

make test

make install

There is a mailing list dedicated for various Prima-related discussions, prima@prima.eu.org.
This list is also a proper place to send bug reports to. To subscribe to the list, send mail to
<majordomo@prima.eu.org> and include subscribe prima <optional address> in the body of
your message.

Authors

Dmitry Karasik, Anton Berezin, Vadim Belman

Credits

David Scott, Kai Fiebach, Johannes Blankenstein, Teo Sankaro, Mike Castle, H.Merijn Brand,
Richard Morgan – thank you for your help.

3

Copyright

(c) 1997-2003 The Protein Laboratory, University of Copenhagen (c) 1997-2007 Dmitry Karasik

4

2 Tutorials

2.1 Prima::tutorial

Introductory tutorial

Description

Programming graphic interfaces is often considered somewhat boring, and not without a cause.
It is a small pride in knowing that your buttons and scrollbars work exactly as millions of others
buttons and scrollbars do, so whichever GUI toolkit is chosen, it is usually regarded as a tool of
small importance, and the less obtrusive, the better. Given that, and trying to live up to the
famous Perl ’making easy things easy and hard things possible’ mantra, this manual page is an
introductory tutorial meant to show how to write easy things easy. The hard things are explained
in the other Prima manual pages (see the Prima section).

Introduction - a ”Hello world” program

Prima is written and is expected to be used in some traditions of Perl coding, such as DWIM (
do what I mean) or TMTOWTDI (there are more than one way to do it). Perl itself is language
(arguably) most effective in small programs, as the programmer doesn’t need to include lines and
lines of prerequisite code before even getting to the problem itself. Prima can’t compete with that,
but the introductory fee is low; a minimal working ’Hello world’ can be written in three lines of
code:

use Prima qw(Application);

Prima::MainWindow-> new(text => ’Hello world!’);

run Prima;

5

Line 1 here is the invocation of modules Prima and Prima::Application. Sure, one can explicitly
invoke both use Prima and use Prima::Application etc etc, but as module Prima doesn’t export
method names, the exemplified syntax is well-suited for such a compression.

Line 2 creates a window of Prima::MainWindow class, which is visualized as a screen window,
titled as ’Hello world’. The class terminates the application when the window is closed; this is the
only difference from ’Window’ windows, that do nothing after their closing. From here, Prima::
prefix in class names will be omitted, and will be used only when necessary, such as in code
examples.

Line 3 enters the Prima event loop. The loop is terminated when the only instance of Applica-
tion class, created by use Prima::Application invocation and stored in $::application scalar,
is destroyed.

Strictly speaking, a minimal ’hello world’ program can be written even in two lines:

use Prima;

Prima::message(’Hello world’);

but it is not illustrative and not useful. Prima::message is rarely used, and is one of few
methods contained in Prima:: namespace. To display a message, the MsgBox module is often
preferred, with its control over message buttons and pre-defined icons. With its use, the code
above can be rewritten as

use Prima qw(Application MsgBox);

message(’Hello world’);

but where Prima::message accepts the only text scalar parameters, Prima::MsgBox::message
can do lot more. For example

use Prima qw(Application MsgBox);

message(’Hello world’, mb::OkCancel|mb::Information);

6

displays two buttons and an icon. A small achievement, but the following is a bit more
interesting:

use Prima qw(Application MsgBox);

message(’Hello world’, mb::OkCancel|mb::Information, {

buttons => {

mb::Cancel => {

there are predefined color constants to use

backColor => cl::LightGreen,

but RGB integers are also o.k.

color => 0xFFFFFF,

},

mb::Ok => {

text => ’Indeed’,

},

}

});

The definition of many object properties at once is a major feature of Prima, and is seen
throughout the toolkit. Returning back to the very first example, we can demonstrate the manip-
ulation of the window properties in the same fashion:

use Prima qw(Application);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

backColor => cl::Yellow,

7

size => [200, 200],

);

run Prima;

Note that the size property is a two-integer array, and color constant is registered in cl::

namespace. In Prima there is a number of such two- and three-letter namespaces, containing
usually integer constants for various purposes. The design reason for choosing such syntax over
string constants (as in Perl-Tk, such as color => ’yellow’) is that the syntax is checked on
the compilation stage, thus narrowing the possibility of a bug.

There are over a hundred properties, such as color, text, or size, defined on descendants of
Widget class. These can be set in new (alias create) call, or referred later, either individually

$window-> size(300, 150);

or in a group

$window-> set(

text => ’Hello again’,

color => cl::Black,

);

In addition to these, there are also more than 30 events, called whenever a certain action is
performed; the events have syntax identical to the properties. Changing the code again, we can
catch a mouse click on the window:

use Prima qw(Application MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

size => [200, 200],

onMouseDown => sub {

my ($self, $button, $mod, $x, $y) = @_;

message("Aww! You’ve clicked me right in $x:$y!");

},

);

run Prima;

While an interesting concept, it is not really practical if the only thing you want is to catch a
click, and this is the part where a standard button is probably should be preferred:

use Prima qw(Application Buttons MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

size => [200, 200],

);

$window-> insert(Button =>

text => ’Click me’,

growMode => gm::Center,

onClick => sub { message("Hello!") }

);

run Prima;

8

For those who know Perl-Tk and prefer its ways to position a widget, Prima provides pack and
place interfaces. Here one can replace the line

growMode => gm::Center,

to

pack => { expand => 1 },

with exactly the same effect.

Widgets overview

Prima contains a set of standard (in GUI terms) widgets, such as buttons, input lines, list boxes,
scroll bars, etc etc. These are diluted with the other more exotic widgets, such as POD viewer or
docking windows. Technically, these are collected in Prima/*.pm modules and each contains its
own manual page, but for informational reasons here is the table of these, an excerpt of Prima

manpage:
the Prima::Buttons section - buttons and button grouping widgets
the Prima::Calendar section - calendar widget
the Prima::ComboBox section - combo box widget
the Prima::DetailedList section - multi-column list viewer with controlling header widget
the Prima::DetailedOutline section - a multi-column outline viewer with controlling header

widget
the Prima::DockManager section - advanced dockable widgets
the Prima::Docks section - dockable widgets
the Prima::Edit section - text editor widget
the Prima::ExtLists section - listbox with checkboxes
the Prima::FrameSet section - frameset widget class
the Prima::Grids section - grid widgets
the Prima::Header section - a multi-tabbed header widget
the Prima::ImageViewer section - bitmap viewer
the Prima::InputLine section - input line widget
the Prima::Label section - static text widget
the Prima::Lists section - user-selectable item list widgets

9

the Prima::MDI section - top-level windows emulation classes
the Prima::Notebooks section - multipage widgets
the Prima::Outlines section - tree view widgets
the Prima::PodView section - POD browser widget
the Prima::ScrollBar section - scroll bars
the Prima::Sliders section - sliding bars, spin buttons and input lines, dial widget etc.
the Prima::TextView section - rich text browser widget

Building a menu

In Prima, a tree-like menu is built by passing a nested set of arrays, where each array corresponds
to a single menu entry. Such as, to modify the hello-world program to contain a simple menu, it
is enough to write this:

use Prima qw(Application MsgBox);

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

menuItems => [

[’~File’ => [

[’~Open’, ’Ctrl+O’, ’^O’, sub { message(’open!’) }],

[’~Save as...’, sub { message(’save as!’) }],

[],

[’~Exit’, ’Alt+X’, km::Alt | ord(’X’), sub { shift-> close }],

]],

],

);

run Prima;

Each of five arrays here in the example is written using different semantics, to represent either
a text menu item, a sub-menu entry, or a menu separator. Strictly speaking, menus can also
display images, but that syntax is practically identical to the text item syntax.

The idea behind all this complexity is to be able to tell what exactly the menu item is, just
by looking at the number of items in each array. So, zero or one items are treated as a menu
separator:

[],

[’my_separator’]

The one-item syntax is needed when the separator menu item need to be later addressed
explicitly. This means that each menu item after it is created is assigned a (unique) identifier, and
that identifier looks like ’#1’, ’#2’, etc, unless it is given by the programmer. Here, for example,
it is possible to delete the separator, after the menu is created:

10

$window-> menu-> remove(’my_separator’);

It is also possible to assign the identifier to any menu item, not just to a separator. The other
types (text,image,sub-menu) are discerned by looking at the type of scalars they contain. Thus, a
two-item array with the last item an array reference (or, as before, three-item for the explicit ID
set), is clearly a sub-menu. The reference, as in the example, may contain more menu items, in
the recursive fashion:

menuItems => [

[’~File’ => [

[’~Level1’ => [

[’~Level2’ => [

[’~Level3’ => [

[]

]],

]],

]],

]],

],

Finally, text items, with the most complex syntax, can be constructed with three to six items
in the array. There can be set the left-aligned text string for the item, the right-aligned text string
for the display of the hot key, if any, the definition of the hot hey itself, and the action to be taken
if the user has pressed either the menu item or the hot key combination. Also, as in the previous
cases, the explicit ID can be set, and also an arbitrary data scalar, for generic needs. This said,
the text item combinations are:

Three items - [ID, text, action]
Four items - [text, hot key text, hot key, action]
Five items - [ID, text, hot key text, hot key, action]
Six items - [ID, text, hot key text, hot key, action, data]
Image items are fully analogous to the text items, except that instead of the text string, an

image object is supplied:

use Prima qw(Application MsgBox);

use Prima::Utils qw(find_image);

my $i = Prima::Image-> load(find_image(’examples/Hand.gif’));

$i ||= ’No image found or can be loaded’;

my $window = Prima::MainWindow-> new(

text => ’Hello world!’,

menuItems => [

[’~File’ => [

[$i, sub {}],

]],

],

);

run Prima;

11

The action item of them menu description array points to the code executed when the menu
item is selected. It is either an anonymous subroutine, as it is shown in all the examples above, or
a string. The latter case will cause the method of the menu owner (in this example, the window
) to be called. This can be useful when constructing a generic class with menu actions that can
be overridden:

package MyWindow;

use vars qw(@ISA);

@ISA = qw(Prima::MainWindow);

sub action

{

my ($self, $menu_item) = @_;

print "hey! $menu_item called me!\n"

}

my $window = MyWindow-> new(

menuItems => [

[’~File’ => [

[’~Action’, q(action)],

]],

],

);

All actions are called with the menu item identifier passed in as a string parameter.
Another trick is to define a hot key. While its description can be arbitrary, and will be displayed

as is, the hot key definition can be constructed in two ways. It is either a literal such as ^A for
Control+A, or @B for Alt+B, or ^@#F10 for Control+Alt+Shift+F10. Or, alternatively, it is a
combination of km:: constants either with ordinal of the character letter or the key code, where
the key code is one of kb:: constants. The latter method produces a less readable code, but is
more explicit and powerful:

[’~Reboot’, ’Ctrl+Alt+Delete’, km::Alt | km::Ctrl | kb::Delete, sub {

print "wow!\n";

}],

[’~Or not reboot?’, ’Ctrl+Alt+R’, km::Alt | km::Ctrl | ord(’R’), sub {}],

This concludes the short tutorial on menus. To read more, see the Prima::Menu section .

12

3 Core toolkit classes

3.1 Prima

A perl graphic toolkit

Synopsis

use Prima qw(Application Buttons);

new Prima::MainWindow(

text => ’Hello world!’,

size => [200, 200],

)-> insert(Button =>

centered => 1,

text => ’Hello world!’,

onClick => sub { $::application-> close },

);

run Prima;

Description

The toolkit is combined from two basic set of classes - core and external. The core classes are
coded in C and form a base line for every Prima object written in perl. The usage of C is possible
together with the toolkit; however, its full power is revealed in the perl domain. The external
classes present easily expandable set of widgets, written completely in perl and communicating
with the system using Prima library calls.

The core classes form an hierarchy, which is displayed below:

Prima::Object

Prima::Component

Prima::AbstractMenu

Prima::AccelTable

Prima::Menu

Prima::Popup

Prima::Clipboard

Prima::Drawable

Prima::DeviceBitmap

Prima::Printer

Prima::Image

Prima::Icon

Prima::File

Prima::Timer

13

Prima::Widget

Prima::Application

Prima::Window

The external classes are derived from these; the list of widget classes can be found below in
the SEE ALSO entry.

Basic program

The very basic code shown in the Synopsis entry is explained here. The code creates a window
with ’Hello, world’ title and a centered button with the same text. The program terminates after
the button is pressed.

A basic construct for a program written with Prima obviously requires

use Prima;

code; however, the effective programming requires usage of the other modules, for example,
Prima::Buttons, which contains set of button widgets. Prima.pm module can be invoked with a
list of such modules, which makes the construction

use Prima;

use Prima::Application;

use Prima::Buttons;

shorter by using the following scheme:

use Prima qw(Application Buttons);

Another basic issue is the event loop, which is called by

run Prima;

sentence and requires a Prima::Application object to be created beforehand. Invoking
Prima::Application standard module is one of the possible ways to create an application object.
The program usually terminates after the event loop is finished.

The window is created by invoking

new Prima::Window();

or

Prima::Window-> create()

code with the additional parameters. Actually, all Prima objects are created by such a scheme.
The class name is passed as the first parameter, and a custom set of parameters is passed after-
wards. These parameters are usually represented in a hash syntax, although actually passed as
an array. The hash syntax is preferred for the code readability:

$new_object = new Class(

parameter => value,

parameter => value,

...

);

Here, parameters are the class properties names, and differ from class to class. Classes often
have common properties, primarily due to the object inheritance.

In the example, the following properties are set :

14

Window::text

Window::size

Button::text

Button::centered

Button::onClick

Property values can be of any type, given that they are scalar. As depicted here, ::text

property accepts a string, ::size - an anonymous array of two integers and onClick - a sub.
onXxxx are special properties that form a class of events, which share the new/create syntax,

and are additive when the regular properties are substitutive (read more in the Prima::Object
section). Events are called in the object context when a specific condition occurs. The onClick

event here, for example, is called when the user presses (or otherwise activates) the button.

API

This section describes miscellaneous methods, registered in Prima:: namespace.

message TEXT

Displays a system message box with TEXT.

run

Enters the program event loop. The loop is ended when Prima::Application’s destroy or
close method is called.

parse argv @ARGS

Parses prima options from @ARGS, returns unparsed arguments.

OPTIONS

Prima applications do not have a portable set of arguments; it depends on the particular platform.
Run

perl -e ’$ARGV[0]=q(--help); require Prima’

or any Prima program with --help argument to get the list of supported arguments. Pro-
grammaticaly, setting and obtaining these options can be done by using Prima::options routine.

In cases where Prima argument parsing conflicts with application options, use the
Prima::noARGV section to disable automatic parsing; also see the parse argv entry. Alterna-
tively, the construct

BEGIN { local @ARGV; require Prima; }

will also do.

15

3.2 Prima::Object

Prima toolkit base classes

Synopsis

if ($obj-> isa(’Prima::Component’)) {

set and get a property

my $name = $obj-> name;

$obj->name(’an object’);

set a notification callback

$obj-> onPostMessage(sub {

shift;

print "hey! I’ve received this: @_\n";

});

can set multiple properties. note, that ’name’ and ’owner’,

replace the old values, while onPostMessage are aggregated.

$obj-> set(

name => ’AnObject’,

owner => $new_owner,

onPostMessage => sub {

shift;

print "hey! me too!\n";

},

);

de-reference by name

$new_owner-> AnObject-> post_message(1,2);

}

Description

Prima::Object and Prima::Component are the root objects of the Prima toolkit hierarchy. All
the other objects are derived from the Component class, which in turn is the only descendant of
Object class. Both of these classes are never used for spawning their instances, although this is
possible using

Prima::Component-> create(.. parameters ...);

call. This document describes the basic concepts of the OO programming with Prima toolkit.
Although Component has wider functionality than Object, all examples will be explained on
Component, since Object has no descendant classes and all the functionality of Object is present in
Component. Some of the information here can be found in the Prima::internals section as well, the
difference is that the Prima::internals section considers the coding tasks from a C programmer’s
view, whereas this document is wholly about perl programming.

Object base features

Creation

Object creation has fixed syntax:

16

$new_object = Class-> create(

parameter => value,

parameter => value,

...

);

Parameters and values form a hash, which is passed to the create() method. This hash is
applied to a default parameter-value hash (a profile), specific to every Prima class. The object
creation is performed in several stages.

create

create() calls profile default() method that returns (as its name states) the default profile, a
hash with the appropriate default values assigned to its keys. The Component class defaults
are (see Classes.pm):

name => ref $_[0],

owner => $::application,

delegations => undef,

While the exact meaning of these parameters is described later, in the Properties entry,
the idea is that a newly created object will have ’owner’ parameter set to ’$::application’
and ’delegations’ to undef etc etc - unless these parameters are explicitly passed to create().
Example:

$a1 = Prima::Component-> create();

$a1’s owner will be $::application

$a2 = Prima::Component-> create(owner => $a1);

$a2’s owner will be $a1. The actual merging of the default and the parameter hashes is
performed on the next stage, in profile check in() method which is called inside profile add()
method.

profile check in

A profile check in() method merges the default and the parameter profiles. By default all
specified parameters have the ultimate precedence over the default ones, but in case the
specification is incomplete or ambiguous, the profile check in()’s task is to determine actual
parameter values. In case of Component, this method maintains a simple automatic naming
of the newly created objects. If the object name was not specified with create(), it is assigned
to a concatenated class name with an integer - Component1, Component2 etc.

Another example can be taken from Prima::Widget::profile check in(). Prima::Widget hori-
zontal position can be specified by using basic left and width parameters, and as well by
auxiliary right, size and rect. The default of both left and width is 100. But if only
right parameter, for example, was passed to create() it is profile check in() job to determine
left value, given that width is still 100.

After profiles gets merged, the resulting hash is passed to the third stage, init().

init

init() duty is to map the profile content into object, e.g., assign name property to name

parameter value, and so on - for all relevant parameters. After that, it has to return the
profile in order the overridden subsequent init() methods can perform same actions. This
stage along with the previous is exemplified in almost all Prima modules.

17

Note: usually init() attaches the object to its owner in order to keep the newly-created object
instance from being deleted by garbage-collection mechanisms. More on that later (see the
Links between objects entry).

After init() finishes, create() calls setup() method

setup

setup() method is a convenience function, it is used when some post-init actions must be
taken. It is seldom overloaded, primarily because the Component::setup() method calls
onCreate notification, which is more convenient to overload than setup().

As can be noticed from the code pieces above, a successful create() call returns a newly created
object. If an error condition occurred, undef is returned. It must be noted, that only errors that
were generated via die() during init() stage result in undef. Other errors raise an exception instead.
It is not recommended to frame create() calls in an eval{} block, because the error conditions
can only occur in two situations. The first is a system error, either inside perl or Prima guts,
and not much can be done here, since that error can very probably lead to an unstable program
and almost always signals an implementation bug. The second reason is a caller’s error, when an
unexistent parameter key or invalid value is passed; such conditions are not subject to a runtime
error handling as are not the syntax errors.

After create(), the object is subject to the event flow. As onCreate event is the first event the
object receives, only after that stage other events can be circulated.

Destruction

Object destruction can be caused by many conditions, but all execution flow is finally passed
through destroy() method. destroy(), as well as create() performs several finalizing steps:

cleanup

The first method called inside destroy() is cleanup(). cleanup() is the pair to setup(), as de-
stroy() is the pair to create(). cleanup() generates onDestroy event, which can be overridden
more easily than cleanup() itself.

onDestroy is the last event the object sees. After cleanup() no events are allowed to circulate.

done

done() method is the pair to init(), and is the place where all object resources are freed.
Although it is as safe to overload done() as init(), it almost never gets overloaded, primarily
because overloading onDestroy is easier.

The typical conditions that lead to object destructions are direct destroy() call, garbage collec-
tions mechanisms, user-initiated window close (on Prima::Window only), and exception during
init() stage. Thus, one must be careful implementing done() which is called after init() throws an
exception.

Methods

The class methods are declared and used with perl OO syntax, which allow both method of object
referencing:

$object-> method();

and

method($object);

The actual code is a sub, located under the object class package. The overloaded methods that
call their ancestor code use

18

$object-> SUPER::method();

syntax. Most Prima methods have fixed number of parameters.

Properties

Properties are methods that combine functionality of two ephemeral ”get” and ”set” methods.
The idea behind properties is that many object parameters require two independent methods, one
that returns some internal state and another that changes it. For example, for managing the object
name, set name() and get name() methods are needed. Indeed, the early Prima implementation
dealt with large amount of these get’s and set’s, but later these method pairs were deprecated in
the favor of properties. Currently, there is only one method name() (referred as ::name later in
the documentation).

The property returns a value if no parameters (except the object) are passed, and changes
the internal data to the passed parameters otherwise. Here’s a sketch code for ::name property
implementation:

sub name

{

return $_[0]-> {name} unless $#_;

$_[0]->{name} = $_[1];

}

There are many examples of properties throughout the toolkit. Not all properties deal with
scalar values, some accept arrays or hashes as well. The properties can be set-called not only by
name like

$object-> name("new name");

but also with set() method. The set() method accepts a hash, that is much like to create(),
and assigns the values to the corresponding properties. For example, the code

$object-> name("new name");

$object-> owner($owner);

can be rewritten as

$object-> set(

name => "new name",

owner => $owner

);

A minor positive effect of a possible speed-up is gained by eliminating C-to-perl and perl-to-
C calls, especially if the code called is implemented in C. The negative effect of such technique
is that the order in which the properties are set, is undefined. Therefore, the usage of set() is
recommended either when the property order is irrelevant, or it is known beforehand that such
a call speeds up the code, or is an only way to achieve the result. An example of the latter case
from the Prima::internals section shows that Prima::Image calls

$image-> type($a);

$image-> palette($b);

and

$image-> palette($b);

$image-> type($a);

19

produce different results. It is indeed the only solution to call for such a change using

$image-> set(

type => $a,

palette => $b

);

when it is known beforehand that Prima::Image::set is aware of such combinations and calls
neither ::type nor ::palette but performs another image conversion instead.

Some properties are read-only and some are write-only. Some methods that might be declared
as properties are not; these are declared as plain methods with get or set name prefix. There is
not much certainty about what methods are better off being declared as properties and vice versa.

However, if get or set methods cannot be used in correspondingly write or read fashion, the
R/O and W/O properties can. They raise an exception on an attempt to do so.

Links between objects

Prima::Component descendants can be used as containers, as objects that are on a higher hierarchy
level than the others. This scheme is implemented in a child-owner relationship. The ’children’
objects have the ::owner property value assigned to a reference to a ’owner’ object, while the
’owner’ object conducts the list of its children. It is a one-to-many hierarchy scheme, as a ’child’
object can have only one owner, but an ’owner’ object can have many children. The same object
can be an owner and a child at the same time, so the owner-child hierarchy can be viewed as a
tree-like structure.

Prima::Component::owner property maintains this relation, and is writable - the object can
change its owner dynamically. There is no corresponding property that manages children objects,
but is a method get components(), that returns an array of the child references.

The owner-child relationship is used in several ways in the toolkit. For example, the widgets
that are children of another widget appear (usually, but not always) in the geometrical interior
of the owner widget. Some events (keyboard events, for example) are propagated automati-
cally up and/or down the object tree. Another important feature is that when an object gets
destroyed, its children are destroyed first. In a typical program the whole object tree roots in a
Prima::Application object instance. When the application finishes, this feature helps cleaning up
the widgets and quitting gracefully.

Implementation note: name ’owner’ was taken instead of initial ’parent’, because the ’parent’
is a fixed term for widget hierarchy relationship description. Prima::Widget relationship between
owner and child is not the same as GUI’s parent-to-child. The parent is the widget for the children
widgets located in and clipped by its inferior. The owner widget is more than that, its children
can be located outside its owner boundaries.

The special convenience variety of create(), the insert() method is used to explicitly select
owner of the newly created object. insert() can be considered a ’constructor’ in OO-terms. It
makes the construct

$obj = Class-> create(owner => $owner, name => ’name);

more readable by introducing

$obj = $owner-> insert(’Class’, name => ’name’);

scheme. These two code blocks are identical to each other.
There is another type of relation, where objects can hold references to each other. Internally

this link level is used to keep objects from deletion by garbage collection mechanisms. This
relation is many-to-many scheme, where every object can have many links to other objects. This
functionality is managed by attach() and detach() methods.

20

Events

Prima::Component descendants employ a well-developed event propagation mechanism, which
allows handling events using several different schemes. An event is a condition, caused by the
system or the user, or an explicit notify() call. The formerly described events onCreate and
onDestroy are triggered after a new object is created or before it gets destroyed. These two
events, and the described below onPostMessage are present in namespaces of all Prima objects.
New classes can register their own events and define their execution flow, using notification types()
method. This method returns all available information about the events registered in a class.

Prima defines also a non-object event dispatching and filtering mechanism, available through
the event hook entry static method.

Propagation

The event propagation mechanism has three layers of user-defined callback registration, that are
called in different order and contexts when an event is triggered. The examples below show the
usage of these layers. It is assumed that an implicit

$obj-> notify("PostMessage", $data1, $data2);

call is issued for all these examples.

Direct methods

As it is usual in OO programming, event callback routines are declared as methods. ’Direct
methods’ employ such a paradigm, so if a class method with name on postmessage is present,
it will be called as a method (i.e., in the object context) when onPostMessage event is
triggered. Example:

sub on_postmessage

{

my ($self, $data1, $data2) = @_;

...

}

The callback name is a modified lower-case event name: the name for Create event is
on create, PostMessage - on postmessage etc. These methods can be overloaded in the
object’s class descendants. The only note on declaring these methods in the first instance is
that no ::SUPER call is needed, because these methods are not defined by default.

Usually the direct methods are used for the internal object book-keeping, reacting on the
events that are not designed to be passed higher. For example, a Prima::Button class catches
mouse and keyboard events in such a fashion, because usually the only notification that is
interesting for the code that employs push-buttons is Click. This scheme is convenient when
an event handling routine serves the internal, implementation-specific needs.

Delegated methods

The delegated methods are used when objects (mostly widgets) include other dependent
objects, and the functionality requires interaction between these. The callback functions
here are the same methods as direct methods, except that they get called in context of
two, not one, objects. If, for example, a $obj’s owner, $owner would be interested in $obj’s
PostMessage event, it would register the notification callback by

$obj-> delegations([$owner, ’PostMessage’]);

where the actual callback sub will be

21

sub Obj_PostMessage

{

my ($self, $obj, $data1, $data2) = @_;

}

Note that the naming style is different - the callback name is constructed from object name
(let assume that $obj’s name is ’Obj’) and the event name. (This is one of the reasons why
Component::profile check in() performs automatic naming of newly created onbjects). Note
also that context objects are $self (that equals $owner) and $obj.

The delegated methods can be used not only for the owner-child relations. Every Prima
object is free to add a delegation method to every other object. However, if the objects are
in other than owner-child relation, it is a good practice to add Destroy notification to the
object which events are of interest, so if it gets destroyed, the partner object gets a message
about that.

Anonymous subroutines

The two previous callback types are more relevant when a separate class is developed, but
it is not necessary to declare a new class every time the event handling is needed. It is
possible to use the third and the most powerful event hook method using perl anonymous
subroutines (subs) for the easy customization.

Contrary to the usual OO event implementations, when only one routine per class dispatches
an event, and calls inherited handlers when it is appropriate, Prima event handling mech-
anism can accept many event handlers for one object (it is greatly facilitated by the fact
that perl has anonymous subs, however).

All the callback routines are called when an event is triggered, one by one in turn. If the
direct and delegated methods can only be multiplexed by the usual OO inheritance, the
anonymous subs are allowed to be multiple by the design. There are three syntaxes for
setting such a event hook; the example below sets a hook on $obj using each syntax for a
different situation:

- during create():

$obj = Class-> create(

...

onPostMessage => sub {

my ($self, $data1, $data2) = @_;

},

...

);

- after create using set()

$obj-> set(onPostMessage => sub {

my ($self, $data1, $data2) = @_;

});

- after create using event name:

$obj-> onPostMessage(sub {

my ($self, $data1, $data2) = @_;

});

22

As was noted in the Prima section, the events can be addressed as properties, with the
exception that they are not substitutive but additive. The additivity is that when the latter
type of syntax is used, the subs already registered do not get overwritten or discarded but
stack in queue. Thus,

$obj-> onPostMessage(sub { print "1" });

$obj-> onPostMessage(sub { print "2" });

$obj-> notify("PostMessage", 0, 0);

code block would print

21

as the execution result.

This, it is a distinctive feature of a toolkit is that two objects of same class may have different
set of event handlers.

Flow

When there is more than one handler of a particular event type present on an object, a question
is risen about what are callbacks call priorities and when does the event processing stop. One of
ways to regulate the event flow is based on prototyping events, by using notification types() event
type description. This function returns a hash, where keys are the event names and the values
are the constants that describe the event flow. The constant can be a bitwise OR combination of
several basic flow constants, that control the three aspects of the event flow.

Order

If both anonymous subs and direct/delegated methods are present, it must be decided which
callback class must be called first. Both ’orders’ are useful: for example, if it is designed
that a class’s default action is to be overridden, it is better to call the custom actions first.
If, on the contrary, the class action is primary, and the others are supplementary, the reverse
order is preferred. One of two nt::PrivateFirst and nt::CustomFirst constants defines
the order.

Direction

Almost the same as order, but for finer granulation of event flow, the direction constants
nt::FluxNormal and nt::FluxReverse are used. The ’normal flux’ defines FIFO (first
in first out) direction. That means, that the sooner the callback is registered, the greater
priority it would possess during the execution. The code block shown above

$obj-> onPostMessage(sub { print "1" });

$obj-> onPostMessage(sub { print "2" });

$obj-> notify("PostMessage", 0, 0);

results in 21, not 12 because PostMessage event type is prototyped nt::FluxReverse.

Execution control

It was stated above that the events are additive, - the callback storage is never discarded when
’set’-syntax is used. However, the event can be told to behave like a substitutive property,
e.g. to call one and only one callback. This functionality is governed by nt::Single bit in
execution control constant set, which consists of the following constants:

23

nt::Single

nt::Multiple

nt::Event

These constants are mutually exclusive, and may not appear together in an event type dec-
laration. A nt::Single-prototyped notification calls only the first (or the last - depending
on order and direction bits) callback. The usage of this constant is somewhat limited.

In contrary of nt::Single, the nt::Multiple constant sets the execution control to call all
the available callbacks, with respect to direction and order bits.

The third constant, nt::Event, is the impact as nt::Multiple, except that the event flow
can be stopped at any time by calling clear event() method.

Although there are 12 possible event type combinations, a half of them are not viable. Another
half were assigned to unique more-less intelligible names:

nt::Default (PrivateFirst | Multiple | FluxReverse)

nt::Property (PrivateFirst | Single | FluxNormal)

nt::Request (PrivateFirst | Event | FluxNormal)

nt::Notification (CustomFirst | Multiple | FluxReverse)

nt::Action (CustomFirst | Single | FluxReverse)

nt::Command (CustomFirst | Event | FluxReverse)

Success state

Events do not return values, although the event generator, the notify() method does - it returns
either 1 or 0, which is the value of event success state. The 0 and 1 results in general do not mean
either success or failure, they simply reflect the fact whether clear event() method was called
during the processing - 1 if it was not, 0 otherwise. The state is kept during the whole processing
stage, and can be accessed from Component::eventFlag property. Since it is allowed to call notify()
inside event callbacks, the object maintains a stack for those states. Component::eventFlags always
works with the topmost one, and fails if is called from outside the event processing stage. Actually,
clear event() is an alias for ::eventFlag(0) call. The state stack is operated by push event() and
pop event() methods.

Implementation note: a call of clear event() inside a nt::Event-prototyped event call does not
automatically stops the execution. The execution stops if the state value equals to 0 after the
callback is finished. A ::eventFlag(1) call thus cancels the effect of clear event().

A particular coding style is used when the event is nt::Single-prototyped and is called many
times in a row, so overheads of calling notify() become a burden. Although notify() logic is some-
what complicated, it is rather simple with nt::Single case. The helper function get notify sub()
returns the context of callback to-be-called, so it can be used to emulate notify() behavior. Ex-
ample:

for (...) {

$result = $obj-> notify("Measure", @parms);

}

can be expressed in more cumbersome, but efficient code if nt::Single-prototyped event is
used:

my ($notifier, @notifyParms) = $obj-> get_notify_sub("Measure");

$obj-> push_event;

for (...) {

$notifier-> (@notifyParms, @parms);

$result = $obj-> eventFlag; # this is optional

}

$result = $obj-> pop_event;

24

API

Prima::Object methods

alive

Returns the object ’vitality’ state - true if the object is alive and usable, false otherwise.
This method can be used as a general checkout if the scalar passed is a Prima object, and if
it is usable. The true return value can be 1 for normal and operational object state, and 2
if the object is alive but in its init() stage. Example:

print $obj-> name if Prima::Object::alive($obj);

can NAME, CACHE = 1

Checks if an object namespace contains a NAME method. Returns the code reference to it,
if found, and undef if not. If CACHE is true, caches the result to speed-up subsequent calls.

cleanup

Called right after destroy() started. Used to initiate cmDestroy event. Is never called
directly.

create CLASS, %PARAMETERS

Creates a new object instance of a given CLASS and sets its properties corresponding to the
passed parameter hash. Examples:

$obj = Class-> create(PARAMETERS);

$obj = Prima::Object::create("class" , PARAMETERS);

Is never called in an object context.

Alias: new()

destroy

Initiates the object destruction. Perform in turn cleanup() and done() calls. destroy() can
be called several times and is the only Prima re-entrant function, therefore may not be
overloaded.

done

Called by destroy() after cleanup() is finished. Used to free the object resources, as a
finalization stage. During done() no events are allowed to circulate, and alive() returns 0.
The object is not usable after done() finishes. Is never called directly.

Note: the eventual child objects are destroyed inside done() call.

get @PARAMETERS

Returns hash where keys are @PARAMETERS and values are the corresponding object
properties.

init %PARAMETERS

The most important stage of object creation process. %PARAMETERS is the modified
hash that was passed to create(). The modification consists of merging with the result
of profile default() class method inside profile check in() method. init() is responsible for
applying the relevant data into PARAMETERS to the object properties. Is never called
directly.

25

insert CLASS, %PARAMETERS

A convenience wrapper for create(), that explicitly sets the owner property for a newly
created object.

$obj = $owner-> insert(’Class’, name => ’name’);

is adequate to

$obj = Class-> create(owner => $owner, name => ’name);

code. insert() has another syntax that allows simultaneous creation of several objects:

@objects = $owner-> insert(

[’Class’, %parameters],

[’Class’, %parameters],

...

);

With such syntax, all newly created objects would have $owner set to their ’owner’ properties.

new CLASS, %PARAMETERS

Same as the create entry.

profile add PROFILE

The first stage of object creation process. PROFILE is a reference to a PARAMETERS hash,
passed to create(). It is merged with profile default() after passing both to profile check in().
The merge result is stored back in PROFILE. Is never called directly.

profile check in CUSTOM PROFILE, DEFAULT PROFILE

The second stage of object creation process. Resolves eventual ambiguities in CUS-
TOM PROFILE, which is the reference to PARAMETERS passed to create(), by comparing
to and using default values from DEFAULT PROFILE, which is the result of profile default()
method. Is never called directly.

profile default

Returns hash of the appropriate default values for all properties of a class. In object creation
process serves as a provider of fall-back values, and is called implicitly. This method can be
used directly, contrary to the other creation process-related functions.

Can be called in a context of class.

raise ro TEXT

Throws an exception with text TEXT when a read-only property is called in a set- context.

raise wo TEXT

Throws an exception with text TEXT when a write-only property is called in a get- context.

set %PARAMETERS

The default behavior is an equivalent to

sub set

{

my $obj = shift;

my %PARAMETERS = @_;

$obj-> $_($PARAMETERS{$_}) for keys %PARAMETERS;

}

26

code. Assigns object properties correspondingly to PARAMETERS hash. Many
Prima::Component descendants overload set() to make it more efficient for particular pa-
rameter key patterns.

As the code above, raises an exception if the key in PARAMETERS has no correspondent
object property.

setup

The last stage of object creation process. Called after init() finishes. Used to initiate
cmCreate event. Is never called directly.

Prima::Component methods

add notification NAME, SUB, REFERER = undef, INDEX = -1

Adds SUB to the list of notification of event NAME. REFERER is the object reference,
which is used to create a context to SUB and is passed as a parameter to it when called. If
REFERER is undef (or not specified), the same object is assumed. REFERER also gets
implicitly attached to the object, - the implementation frees the link between objects when
one of these gets destroyed.

INDEX is a desired insert position in the notification list. By default it is -1, what means
’in the start’. If the notification type contains nt::FluxNormal bit set, the newly inserted
SUB will be called first. If it has nt::FluxReverse, it is called last, correspondingly.

Returns positive integer value on success, 0 on failure. This value can be later used to refer
to the SUB in remove notification().

See also: remove notification, get notification.

attach OBJECT

Inserts OBJECT to the attached objects list and increases OBJECT’s reference count. The
list can not hold more than one reference to the same object. The warning is issued on such
an attempt.

See also: detach.

bring NAME

Looks for a immediate child object that has name equals to NAME. Returns its reference
on success, undef otherwise. It is a convenience method, that makes possible the usage of
the following constructs:

$obj-> name("Obj");

$obj-> owner($owner);

...

$owner-> Obj-> destroy;

can event

Returns true if the object event circulation is allowed. In general, the same as alive() ==

1, except that can event() fails if an invalid object reference is passed.

clear event

Clears the event state, that is set to 1 when the event processing begins. Signals the event
execution stop for nt::Event-prototyped events.

See also: the Events entry, push event, pop event, ::eventFlag, notify.

27

detach OBJECT, KILL

Removes OBJECT from the attached objects list and decreases OBJECT’s reference count.
If KILL is true, destroys OBJECT.

See also: attach

event error

Issues a system-dependent warning sound signal.

event hook [SUB]

Installs a SUB to receive all events on all Prima objects. SUB receives same parameters
passed to the notify entry, and must return an integer, either 1 or 0, to pass or block the
event respectively.

If no SUB is set, returns currently installed event hook pointer. If SUB is set, replaces the
old hook sub with SUB. If SUB is ’undef’, event filtering is not used.

Since the ’event hook’ mechanism allows only one hook routine to be installed at a time,
direct usage of the method is discouraged. Instead, use the Prima::EventHook section for
multiplexing of the hook access.

The method is static, and can be called either with or without class or object as a first
parameter.

get components

Returns array of the child objects.

See: create, the Links between objects entry.

get handle

Returns a system-dependent handle for the object. For example, Prima::Widget return its
system WINDOW/HWND handles, Prima::DeviceBitmap - its system PIXMAP/HBITMAP
handles, etc.

Can be used to pass the handle value outside the program, for an eventual interprocess
communication scheme.

get notification NAME, @INDEX LIST

For each index in INDEX LIST return three scalars, bound at the index position in the
NAME event notification list. These three scalars are REFERER, SUB and ID. REFERER
and SUB are those passed to add notification, and ID is its result.

See also: remove notification, add notification.

get notify sub NAME

A convenience method for nt::Single-prototyped events. Returns code reference and context
for the first notification sub for event NAME.

See the Success state entry for example.

notification types

Returns a hash, where the keys are the event names and the values are the nt:: constants
that describe the event flow.

Can be called in a context of class.

See the Events entry and the Flow entry for details.

28

notify NAME, @PARAMETERS

Calls the subroutines bound to the event NAME with parameters @PARAMETERS in
context of the object. The calling order is described by nt:: constants, contained in the
notification types() result hash.

notify() accepts variable number of parameters, and while it is possible, it is not recom-
mended to call notify() with the exceeding number of parameters; the call with the deficient
number of parameters results in an exception.

Example:

$obj-> notify("PostMessage", 0, 1);

See the Events entry and the Flow entry for details.

pop event

Closes event processing stage brackets.

See push event, the Events entry

post message SCALAR1, SCALAR2

Calls PostMessage event with parameters SCALAR1 and SCALAR2 once during idle event
loop. Returns immediately. Does not guarantee that PostMessage will be called, however.

See also the post entry in the Prima::Utils section

push event

Opens event processing stage brackets.

See pop event, the Events entry

remove notification ID

Removes a notification subroutine that was registered before with add notification, where
ID was its result. After successful removal, the eventual context object gets implicitly
detached from the storage object.

See also: add notification, get notification.

set notification NAME, SUB

Adds SUB to the event NAME notification list. Almost never used directly, but is a key
point in enabling the following notification add syntax

$obj-> onPostMessage(sub { ... });

or

$obj-> set(onPostMessage => sub { ... });

that are shortcuts for

$obj-> add_notification("PostMessage", sub { ... });

unlink notifier REFERER

Removes all notification subs from all event lists bound to REFERER object.

29

Prima::Component properties

eventFlag STATE

Provides access to the last event processing state in the object event state stack.

See also: the Success state entry, clear event, the Events entry.

delegations [<REFERER>, NAME, <NAME>, < <REFERER>, NAME, ... >]

Accepts an anonymous array in set- context, which consists of a list of event NAMEs, that
a REFERER object (the caller object by default) is interested in. Registers notification
entries for routines if subs with naming scheme REFERER NAME are present on REFERER
name space. The example code

$obj-> name("Obj");

$obj-> delegations([$owner, ’PostMessage’]);

registers Obj PostMessage callback if it is present in $owner namespace.

In get- context returns an array reference that reflects the object’s delegated events list
content.

See also: the Delegated methods entry.

name NAME

Maintains object name. NAME can be an arbitrary string, however it is recommended
against usage of special characters and spaces in NAME, to facilitate the indirect object
access coding style:

$obj-> name("Obj");

$obj-> owner($owner);

...

$owner-> Obj-> destroy;

and to prevent system-dependent issues. If the system provides capabilities that allow to
predefine some object parameters by its name (or class), then it is impossible to know
beforehand the system naming restrictions. For example, in X window system the following
resource string would make all Prima toolkit buttons green:

Prima*Button*backColor: green

In this case, using special characters such as : or * in the name of an object would make
the X resource unusable.

owner OBJECT

Selects an owner of the object, which may be any Prima::Component descendant. Setting
an owner to a object does not alter its reference count. Some classes allow OBJECT to
be undef, while some do not. All widget objects can not exist without a valid owner;
Prima::Application on the contrary can only exist with owner set to undef. Prima::Image
objects are indifferent to the value of the owner property.

Changing owner dynamically is allowed, but it is a main source of implementation bugs,
since the whole hierarchy tree is needed to be recreated. Although this effect is not visible
in perl, the results are deeply system-dependent, and the code that changes owner property
should be thoroughly tested.

Changes to owner result in up to three notifications: ChangeOwner, which is called to the
object itself, ChildLeave, which notifies the previous owner that the object is about to leave,
and ChildEnter, telling the new owner about the new child.

30

Prima::Component events

ChangeOwner OLD OWNER

Called at runtime when the object changes its owner.

ChildEnter CHILD

Triggered when a child object is attached, either as a new instance or as a result of runtime
owner change.

ChildLeave CHILD

Triggered when a child object is detached, either because it is getting destroyed or as a result
of runtime owner change.

Create

The first event an event sees. Called automatically after init() is finished. Is never called
directly.

Destroy

The last event an event sees. Called automatically before done() is started. Is never called
directly.

PostMessage SCALAR1, SCALAR2

Called after post message() call is issued, not inside post message() but at the next idle
event loop. SCALAR1 and SCALAR2 are the data passed to post message().

31

3.3 Prima::Classes

Binder module for the built-in classes.

Description

Prima::Classes and the Prima::Const section is a minimal set of perl modules needed for the
toolkit. Since the module provides bindings for the core classes, it is required to be included in
every Prima-related module and program.

32

3.4 Prima::Drawable

2-D graphic interface

Synopsis

if ($object-> isa(’Prima::Drawable’)) {

$object-> begin_paint;

$object-> color(cl::Black);

$object-> line(100, 100, 200, 200);

$object-> ellipse(100, 100, 200, 200);

$object-> end_paint;

}

Description

Prima::Drawable is a descendant of Prima::Component. It provides access to the object-bound
graphic context and canvas through its methods and properties. The Prima::Drawable descendants
Prima::Widget, Prima::Image, Prima::DeviceBitmap and Prima::Printer are backed by system-
dependent routines that allow drawing and painting on the system objects.

Usage

Prima::Drawable, as well as its ancestors Prima::Component and Prima::Object, is never used
directly, because Prima::Drawable class by itself provides only the interface. It provides a three-
state object access - when drawing and painting is enabled, when these are disabled, and the
information acquisition state. By default, the object is created in paint-disabled state. To switch
to the enabled state, begin paint() method is used. Once in the enabled state, the object draw-
ing and painting methods apply to the object-bound canvas. To return to the disabled state,
end paint() method is called. The information state can be managed by using begin paint info()
and end paint info() methods pair. An object cannot be triggered from the information state to
the enabled state (and vice versa) directly. These states differ on how do they apply to a graphic
context and a canvas.

Graphic context and canvas

The graphic context is the set of variables, that control how exactly graphic primitives are rendered.
The variable examples are color, font, line width, etc. Another term used here is ’canvas’ - the
graphic area of a certain extent, bound to the object, where the drawing and painting methods
are applied to.

In all three states a graphic context is allowed to be modified, but in different ways. In
the disabled state the graphic context values form a template values; when a object enters the
information or the enabled state, the values are preserved, but when the object is back to the
disabled state, the graphic context is restored to the values last assigned before entering new
state. The code example below illustrates the idea:

$d = Prima::Drawable-> create;

$d-> lineWidth(5);

$d-> begin_paint_info;

lineWidth is 5 here

$d-> lineWidth(1);

lineWidth is 1

$d-> end_paint_info;

lineWidth is 5 again

33

(Note: ::region, ::clipRect and ::translate properties are exceptions. They can not be
used in the disabled state; their values are neither recorded nor used as a template).

That is, in disabled state any Drawable maintains only the graphic context. To draw on a
canvas, the object must enter the enabled state by calling begin paint(). This function can be
unsuccessful, because the object binds with system resources during this stage, and might fail.
Only after the enabled state is entered, the canvas is accessible:

$d = Prima::Image-> create(width => 100, height => 100);

if ($d-> begin_paint) {

$d-> color(cl::Black);

$d-> bar(0, 0, $d-> size);

$d-> color(cl::White);

$d-> fill_ellipse($d-> width / 2, $d-> height / 2, 30, 30);

$d-> end_paint;

}

Different objects are mapped to different types of canvases - Prima::Image canvas pertains
its content after end paint(), Prima::Widget maps it to a screen area, which content is of more
transitory nature, etc.

The information state is as same as the enabled state, but the changes to a canvas are not
visible. Its sole purpose is to read, not to write information. Because begin paint() requires some
amount of system resources, there is a chance that a resource request can fail, for any reason.
The begin paint info() requires some resources as well, but usually much less, and therefore if only
information is desired, it is usually faster and cheaper to obtain it inside the information state. A
notable example is get text width() method, that returns the length of a text string in pixels. It
works in both enabled and information states, but code

$d = Prima::Image-> create(width => 10000, height => 10000);

$d-> begin_paint;

$x = $d-> get_text_width(’A’);

$d-> end_paint;

is much more ’expensive’ than

$d = Prima::Image-> create(width => 10000, height => 10000);

$d-> begin_paint_info;

$x = $d-> get_text_width(’A’);

$d-> end_paint_info;

for the obvious reasons.
It must be noted that some information methods like get text width() work even under the

disabled state; the object is switched to the information state implicitly if it is necessary.

Color space

Graphic context and canvas operations rely completely on a system implementation. The internal
canvas color representation is therefore system-specific, and usually could not be described in
standard definitions. Often the only information available about color space is its color depth.

Therefore, all color manipulations, including dithering and antialiasing are subject to system
implementation, and can not be controlled from perl code. When a property is set in the object
disabled state, it is recorded verbatim; color properties are no exception. After the object switched
to the enabled state, a color value is transformed to a system color representation, which might be
different from Prima’s. For example, if a display color depth is 15 bits, 5 bits for every component,
then white color value 0xffffff is mapped to

34

11111000 11111000 11111000

--R----- --G----- --B-----

that equals to 0xf8f8f8, not 0xffffff (See the Prima::gp-problems section for inevident graphic
issues discussion).

The Prima::Drawable color format is RRGGBB, with each component resolution of 8 bit, thus
allowing 2ˆ24 color combinations. If the device color space depth is different, the color is truncated
or expanded automatically. In case the device color depth is small, dithering algorithms might
apply.

Note: not only color properties, but all graphic context properties allow all possible values in the
disabled state, which transformed into system-allowed values in the enabled and the information
states. This feature can be used to test if a graphic device is capable of performing certain
operations (for example, if it supports raster operations - the printers usually do not). Example:

$d-> begin_paint;

$d-> rop(rop::Or);

if ($d-> rop != rop::Or) { # this assertion is always false without

... # begin_paint/end_paint brackets

}

$d-> end_paint;

There are (at least) two color properties on each drawable - ::color and ::backColor. The
values they operate are integers in the discussed above RRGGBB format, however, the toolkit
defines some mnemonic color constants:

cl::Black

cl::Blue

cl::Green

cl::Cyan

cl::Red

cl::Magenta

cl::Brown

cl::LightGray

cl::DarkGray

cl::LightBlue

cl::LightGreen

cl::LightCyan

cl::LightRed

cl::LightMagenta

cl::Yellow

cl::White

cl::Gray

As stated before, it is not unlikely that if a device color depth is small, the primitives plotted in
particular colors will be drawn with dithered or incorrect colors. This usually happens on paletted
displays, with 256 or less colors.

There exists two methods that facilitate the correct color representation. The first way is
to get as much information as possible about the device. The methods get nearest color() and
get physical palette() provide possibility to avoid mixed colors drawing by obtaining indirect infor-
mation about solid colors, supported by a device. Another method is to use ::palette property.
It works by inserting the colors into the system palette, so if an application knows the colors it
needs beforehand, it can employ this method - however this might result in system palette flash
when a window focus toggles.

Both of these methods are applicable both with drawing routines and image output. An image
desired to output with least distortion is advised to export its palette to an output device, because

35

images usually are not subject to automatic dithering algorithms. Prima::ImageViewer module
employs this scheme.

Fonts

Prima maintains its own font naming convention, that usually does not conform to system’s. Since
its goal is interoperability, it might be so that some system fonts would not be accessible from
within the toolkit.

Prima::Drawable provides property ::font, that accepts/returns a hash, that represents the
state of a font in the object-bound graphic context. The font hash keys that are acceptable on
set-call are:

name

The font name string. If there is no such font, a default font name is used. To select default
font, a ’Default’ string can be passed with the same result (unless the system has a font
named ’Default’, of course).

height

An integer value from 1 to MAX INT. Specifies the desired extent of a font glyph between
descent and ascent lines in pixels.

size

An integer value from 1 to MAX INT. Specifies the desired extent of a font glyph between
descent and internal leading lines in points. The relation between size and height is

height - internal_leading

size = --------------------------- * 72.27

resolution

That differs from some other system representations: Win32, for example, rounds 72.27
constant to 72.

width

A integer value from 0 to MAX INT. If greater than 0, specifies the desired extent of a font
glyph width in pixels. If 0, sets the default (designed) width corresponding to the font size
or height.

style

A combination of fs:: (font style) constants. The constants hight

fs::Normal

fs::Bold

fs::Thin

fs::Italic

fs::Underlined

fs::StruckOut

fs::Outline

and can be OR-ed together to express the font style. fs::Normal equals to 0 and usually
never used. If some styles are not supported by a system-dependent font subsystem, they
are ignored.

pitch

A one of three constants:

36

fp::Default

fp::Fixed

fp::Variable

fp::Default specifies no interest about font pitch selection. fp::Fixed is set when a monospaced
(all glyphs are of same width) font is desired. fp::Variable pitch specifies a font with different
glyph widths. This key is of the highest priority; all other keys may be altered for the
consistency of the pitch key.

direction

A counter-clockwise rotation angle - 0 is default, 90 is pi/2, 180 is pi, etc. If a font could
not be rotated, it is usually substituted to the one that can.

encoding

A string value, one of the strings returned by Prima::Application::font encodings. Se-
lects desired font encoding; if empty, picks the first matched encoding, preferably the locale
set up by the user.

The encodings provided by different systems are different; in addition, the only encodings
are recognizable by the system, that are represented by at least one font in the system.

Unix systems and the toolkit PostScript interface usually provide the following encodings:

iso8859-1

iso8859-2

... other iso8859 ...

fontspecific

Win32 returns the literal strings like

Western

Baltic

Cyrillic

Hebrew

Symbol

A hash that ::font returns, is a tied hash, whose keys are also available as separate properties.
For example,

$x = $d-> font-> {style};

is equivalent to

$x = $d-> font-> style;

While the latter gives nothing but the arguable coding convenience, its usage in set-call is
much more usable:

$d-> font-> style(fs::Bold);

instead of

my %temp = %{$d-> font};

$temp{ style} = fs::Bold;

$d-> font(\%temp);

37

The properties of a font tied hash are also accessible through set() call, like in Prima::Object:

$d-> font-> style(fs::Bold);

$d-> font-> width(10);

is adequate to

$d-> font-> set(

style => fs::Bold,

width => 10,

);

When get-called, ::font property returns a hash where more entries than the described above
can be found. These keys are read-only, their values are discarded if passed to ::font in a set-call.

In order to query the full list of fonts available to a graphic device, a ::fonts method is used.
This method is not present in Prima::Drawable namespace; it can be found in two built-in class
instances, Prima::Application and Prima::Printer.

Prima::Application::fonts returns metrics for the fonts available to a screen device, while
Prima::Printer::fonts (or its substitute Prima::PS::Printer) returns fonts for the printing
device. The result of this method is an array of font metrics, fully analogous to these returned by
Prima::Drawable::font method.

family

A string with font family name. The family is a secondary string key, used for distinguishing
between fonts with same name but of different vendors (for example, Adobe Courier and
Microsoft Courier).

vector

A boolean; true if the font is vector (e.g. can be scaled with no quality loss), false
otherwise. The false value does not show if the font can be scaled at all - the behavior
is system-dependent. Win32 and OS/2 can scale all non-vector fonts; X11 only the fonts
specified as the scalable.

ascent

Number of pixels between a glyph baseline and descent line.

descent

Number of pixels between a glyph baseline and descent line.

internalLeading

Number of pixels between ascent and internal leading lines. Negative if the ascent line is
below the internal leading line.

externalLeading

Number of pixels between ascent and external leading lines. Negative if the ascent line is
above the external leading line.

38

weight

A font designed weight. Can be one of

fw::UltraLight

fw::ExtraLight

fw::Light

fw::SemiLight

fw::Medium

fw::SemiBold

fw::Bold

fw::ExtraBold

fw::UltraBold

constants.

maximalWidth

Maximal extent of a glyph in pixels. Equals to width in monospaced fonts.

xDeviceRes

Designed horizontal font resolution in dpi.

yDeviceRes

Designed vertical font resolution in dpi.

firstChar

Index of the first glyph present in a font.

lastChar

Index of the last glyph present in a font.

breakChar

Index of the default character used to divide words. In a typical western language font it is
32, ASCII space character.

defaultChar

Index of a glyph that is drawn instead of nonexistent glyph if its index is passed to the text
drawing routines.

39

Font ABC metrics

Besides these characteristics, every font glyph has an ABC-metric, the three integer values that
describe horizontal extents of a glyph’s black part relative to the glyph extent:

A and C are negative, if a glyphs ’hangs’ over it neighbors, as shown in picture on the left. A
and C values are positive, if a glyph contains empty space in front or behind the neighbor glyphs,
like in picture on the right. As can be seen, B is the width of a glyph’s black part.

ABC metrics returned by get font abc() method.

Raster operations

A drawable has two raster operation properties: ::rop and ::rop2. These define how the graphic
primitives are plotted. ::rop deals with the foreground color drawing, and ::rop2 with the
background.

The toolkit defines the following operations:

rop::Blackness # = 0

rop::NotOr # = !(src | dest)

rop::NotSrcAnd # &= !src

rop::NotPut # = !src

rop::NotDestAnd # = !dest & src

rop::Invert # = !dest

rop::XorPut # ^= src

rop::NotAnd # = !(src & dest)

rop::AndPut # &= src

rop::NotXor # = !(src ^ dest)

rop::NotSrcXor # alias for rop::NotXor

rop::NotDestXor # alias for rop::NotXor

rop::NoOper # = dest

rop::NotSrcOr # |= !src

rop::CopyPut # = src

rop::NotDestOr # = !dest | src

rop::OrPut # |= src

rop::Whiteness # = 1

Usually, however, graphic devices support only a small part of the above set, limiting ::rop

to the most important operations: Copy, And, Or, Xor, NoOp. ::rop2 is usually even more
restricted - it is only OS/2 system that supports currently rop2 modes others than Copy and
NoOp.

The raster operations apply to all graphic primitives except SetPixel.

40

Coordinates

The Prima toolkit employs a geometrical XY grid, where X ascends rightwards and Y ascends
upwards. There, the (0,0) location is the bottom-left pixel of a canvas.

All graphic primitives use inclusive-inclusive boundaries. For example,

$d-> bar(0, 0, 1, 1);

plots a bar that covers 4 pixels: (0,0), (0,1), (1,0) and (1,1).
The coordinate origin can be shifted using ::translate property, that translates the (0,0)

point to the given offset. Calls to ::translate, ::clipRect and ::region always use the ’phys-
ical’ (0,0) point, whereas the plotting methods use the transformation result, the ’logical’ (0,0)
point.

As noted before, these three properties can not be used in when an object is in its disabled
state.

API

Graphic context properties

backColor COLOR

Reflects background color in the graphic context. All drawing routines that use non-solid or
transparent fill or line patterns use this property value.

color COLOR

Reflects foreground color in the graphic context. All drawing routines use this property
value.

clipRect X1, Y1, X2, Y2

Selects the clipping rectangle corresponding to the physical canvas origin. On get-call, re-
turns the extent of the clipping area, if it is not rectangular, or the clipping rectangle
otherwise. The code

$d-> clipRect(1, 1, 2, 2);

$d-> bar(0, 0, 1, 1);

thus affects only one pixel at (1,1).

Set-call discards the previous ::region value.

Note: ::clipRect can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry).

fillWinding BOOLEAN

Affect filling style of complex polygonal shapes filled by fillpoly. If 1, the filled shape
contains no holes; otherwise, holes are present where the shape edges cross.

Default value: 0

fillPattern ([@PATTERN]) or (fp::XXX)

Selects 8x8 fill pattern that affects primitives that plot filled shapes: bar(), fill chord(),
fill ellipse(), fillpoly(), fill sector(), floodfill().

Accepts either a fp:: constant or a reference to an array of 8 integers, each representing 8
bits of each line in a pattern, where the first integer is the topmost pattern line, and the bit
0x80 is the leftmost pixel in the line.

There are some predefined patterns, that can be referred via fp:: constants:

41

fp::Empty

fp::Solid

fp::Line

fp::LtSlash

fp::Slash

fp::BkSlash

fp::LtBkSlash

fp::Hatch

fp::XHatch

fp::Interleave

fp::WideDot

fp::CloseDot

fp::SimpleDots

fp::Borland

fp::Parquet

(the actual patterns are hardcoded in primguts.c) The default pattern is fp::Solid.

An example below shows encoding of fp::Parquet pattern:

76543210

84218421 Hex

0 $ $ $ 51

1 $ $ 22

2 $ $ $ 15

3 $ $ 88

4 $ $ $ 45

5 $ $ 22

6 $ $ $ 54

7 $ $ 88

$d-> fillPattern([0x51, 0x22, 0x15, 0x88, 0x45, 0x22, 0x54, 0x88]);

On a get-call always returns an array, never a fp:: constant.

font \%FONT

Manages font context. FONT hash acceptable values are name, height, size, width, style
and pitch.

Synopsis:

$d-> font-> size(10);

$d-> font-> name(’Courier’);

$d-> font-> set(

style => $x-> font-> style | fs::Bold,

width => 22

);

See the Fonts entry for the detailed descriptions.

Applies to text out(), get text width(), get text box(), get font abc().

lineEnd VALUE

Selects a line ending cap for plotting primitives. VALUE can be one of

42

le::Flat

le::Square

le::Round

constants. le::Round is the default value.

lineJoin VALUE

Selects a line joining style for polygons. VALUE can be one of

lj::Round

lj::Bevel

lj::Miter

constants. lj::Round is the default value.

linePattern PATTERN

Selects a line pattern for plotting primitives. PATTERN is either a predefined lp:: constant,
or a string where each even byte is a length of a dash, and each odd byte is a length of a
gap.

The predefined constants are:

lp::Null # "" /* */

lp::Solid # "\1" /* ___________ */

lp::Dash # "\x9\3" /* __ __ __ __ */

lp::LongDash # "\x16\6" /* _____ _____ */

lp::ShortDash # "\3\3" /* _ _ _ _ _ _ */

lp::Dot # "\1\3" /* */

lp::DotDot # "\1\1" /* */

lp::DashDot # "\x9\6\1\3" /* _._._._._._ */

lp::DashDotDot # "\x9\3\1\3\1\3" /* _.._.._.._.. */

Not all systems are capable of accepting user-defined line patterns, and in such situation
the lp:: constants are mapped to the system-defined patterns. In Win9x, for example,
lp::DashDotDot is much different from its string definition therefore.

Default value is lp::Solid.

lineWidth WIDTH

Selects a line width for plotting primitives. If a VALUE is 0, then a ’cosmetic’ pen is used
- the thinnest possible line that a device can plot. If a VALUE is greater than 0, then a
’geometric’ pen is used - the line width is set in device units. There is a subtle difference
between VALUE 0 and 1 in a way the lines are joined.

Default value is 0.

palette [@PALETTE]

Selects solid colors in a system palette, as many as possible. PALETTE is an array of integer
triplets, where each is R, G and B component. The call

$d-> palette([128, 240, 240]);

selects a gray-cyan color, for example.

The return value from get-call is the content of the previous set-call, not the actual colors
that were copied to the system palette.

43

region OBJECT

Selects a clipping region applied to all drawing and painting routines. The OBJECT is either
undef, then the clip region is erased (no clip), or a Prima::Image object with a bit depth
of 1. The bit mask of OBJECT is applied to the system clipping region. If the OBJECT
is smaller than the drawable, its exterior is assigned to clipped area as well. Discards the
previous ::clipRect value; successive get-calls to ::clipRect return the boundaries of the
region.

Note: ::region can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry).

resolution X, Y

A read-only property. Returns horizontal and vertical device resolution in dpi.

rop OPERATION

Selects raster operation that applies to foreground color plotting routines.

See also: ::rop2, the Raster operations entry.

rop2 OPERATION

Selects raster operation that applies to background color plotting routines.

See also: ::rop, the Raster operations entry.

splinePrecision INT

Selects number of steps to use for each spline segment in spline and fill spline calls.
In other words, determines smoothness of a curve. Minimum accepted value, 1, produces
straight lines; maximum value is not present, though it is hardly practical to set it higher
than the output device resolution.

Default value: 24

textOpaque FLAG

If FLAG is 1, then text out() fills the text background area with ::backColor property
value before drawing the text. Default value is 0, when text out() plots text only.

See get text box().

textOutBaseline FLAG

If FLAG is 1, then text out() plots text on a given Y coordinate correspondent to font
baseline. If FLAG is 0, a Y coordinate is mapped to font descent line. Default is 0.

translate X OFFSET, Y OFFSET

Translates the origin point by X OFFSET and Y OFFSET. Does not affect ::clipRect and
::region. Not cumulative, so the call sequence

$d-> translate(5, 5);

$d-> translate(15, 15);

is equivalent to

$d-> translate(15, 15);

Note: ::translate can not be used while the object is in the paint-disabled state, its context
is neither recorded nor used as a template (see the Graphic context and canvas entry).

44

Other properties

height HEIGHT

Selects the height of a canvas.

size WIDTH, HEIGHT

Selects the extent of a canvas.

width WIDTH

Selects the width of a canvas.

Graphic primitives methods

arc X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with center in X, Y and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE.

Context used: color, backColor, lineEnd, linePattern, lineWidth, rop, rop2

bar X1, Y1, X2, Y2

Draws a filled rectangle with (X1,Y1) - (X2,Y2) extents.

Context used: color, backColor, fillPattern, rop, rop2

chord X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with center in X, Y and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE and connects its ends with a straight line.

Context used: color, backColor, lineEnd, linePattern, lineWidth, rop, rop2

clear <X1, Y1, X2, Y2>

Draws rectangle filled with pure background color with (X1,Y1) - (X2,Y2) extents. Can be
called without parameters, in this case fills all canvas area.

Context used: backColor, rop2

draw text CANVAS, TEXT, X1, Y1, X2, Y2, [FLAGS = dt::Default,
TAB INDENT = 1]

Draws several lines of text one under another with respect to align and break rules, specified
in FLAGS and TAB INDENT tab character expansion.

draw text is a convenience wrapper around text wrap for drawing the wrapped text, and
also provides the tilde (~)- character underlining support.

The FLAGS is a combination of the following constants:

dt::Left - text is aligned to the left boundary

dt::Right - text is aligned to the right boundary

dt::Center - text is aligned horizontally in center

dt::Top - text is aligned to the upper boundary

dt::Bottom - text is aligned to the lower boundary

dt::VCenter - text is aligned vertically in center

dt::DrawMnemonic - tilde-escapement and underlining is used

dt::DrawSingleChar - sets tw::BreakSingle option to

Prima::Drawable::text_wrap call

dt::NewLineBreak - sets tw::NewLineBreak option to

Prima::Drawable::text_wrap call

dt::SpaceBreak - sets tw::SpaceBreak option to

45

Prima::Drawable::text_wrap call

dt::WordBreak - sets tw::WordBreak option to

Prima::Drawable::text_wrap call

dt::ExpandTabs - performs tab character (\t) expansion

dt::DrawPartial - draws the last line, if it is visible partially

dt::UseExternalLeading - text lines positioned vertically with respect to

the font external leading

dt::UseClip - assign ::clipRect property to the boundary rectangle

dt::QueryLinesDrawn - calculates and returns number of lines drawn

(contrary to dt::QueryHeight)

dt::QueryHeight - if set, calculates and returns vertical extension

of the lines drawn

dt::NoWordWrap - performs no word wrapping by the width of the boundaries

dt::WordWrap - performs word wrapping by the width of the boundaries

dt::Default - dt::NewLineBreak|dt::WordBreak|dt::ExpandTabs|

dt::UseExternalLeading

Context used: color, backColor, font, rop, textOpaque, textOutBaseline

ellipse X, Y, DIAMETER X, DIAMETER Y

Plots an ellipse with center in X, Y and DIAMETER X and DIAMETER Y axis.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

fill chord X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Fills a chord outline with center in X, Y and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE (see chord()).

Context used: color, backColor, fillPattern, rop, rop2

fill ellipse X, Y, DIAMETER X, DIAMETER Y

Fills an elliptical outline with center in X, Y and DIAMETER X and DIAMETER Y axis.

Context used: color, backColor, fillPattern, rop, rop2

fillpoly \@POLYGON

Fills a polygonal area defined by POLYGON set of points. POLYGON must present an
array of integer pair in (X,Y) format. Example:

$d-> fillpoly([0, 0, 15, 20, 30, 0]); # triangle

Context used: color, backColor, fillPattern, rop, rop2, fillWinding

See also: polyline().

fill sector X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Fills a sector outline with center in X, Y and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE (see sector()).

Context used: color, backColor, fillPattern, rop, rop2

fill spline \@POLYGON

Fills a polygonal area defined by a curve, projected by applying cubic spline interpolation to
POLYGON set of points. Number of vertices between each polygon equals to current value
of splinePrecision property. POLYGON must present an array of integer pair in (X,Y)
format. Example:

46

$d-> fill_spline([0, 0, 15, 20, 30, 0]);

Context used: color, backColor, fillPattern, rop, rop2, splinePrecision

See also: spline, splinePrecision, render spline

flood fill X, Y, COLOR, SINGLEBORDER = 1

Fills an area of the canvas in current fill context. The area is assumed to be bounded as
specified by the SINGLEBORDER parameter. SINGLEBORDER can be 0 or 1.

SINGLEBORDER = 0: The fill area is bounded by the color specified by the COLOR
parameter.

SINGLEBORDER = 1: The fill area is defined by the color that is specified by COLOR.
Filling continues outward in all directions as long as the color is encountered. This style is
useful for filling areas with multicolored boundaries.

Context used: color, backColor, fillPattern, rop, rop2

line X1, Y1, X2, Y2

Plots a straight line from (X1,Y1) to (X2,Y2).

Context used: color, backColor, linePattern, lineWidth, rop, rop2

lines \@LINES

LINES is an array of integer quartets in format (X1,Y1,X2,Y2). lines() plots a straight line
per quartet.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

pixel X, Y, <COLOR>

::pixel is a property - on set-call it changes the pixel value at (X,Y) to COLOR, on get-call
(without COLOR) it does return a pixel value at (X,Y).

No context is used.

polyline \@POLYGON

Draws a polygonal area defined by POLYGON set of points. POLYGON must present an
array of integer pair in (X,Y) format.

Context used: color, backColor, linePattern, lineWidth, lineJoin, lineEnd, rop, rop2

See also: fillpoly().

put image X, Y, OBJECT, [ROP]

Draws an OBJECT at coordinates (X,Y). OBJECT must be Prima::Image, Prima::Icon or
Prima::DeviceBitmap. If ROP raster operation is specified, it is used. Otherwise, value of
::rop property is used.

Context used: rop; color and backColor for a monochrome DeviceBitmap

put image indirect OBJECT, X, Y, X FROM, Y FROM, DEST WIDTH,
DEST HEIGHT, SRC WIDTH, SRC HEIGHT, ROP

Copies a OBJECT from a source rectangle into a destination rectangle, stretching or
compressing the OBJECT to fit the dimensions of the destination rectangle, if neces-
sary. The source rectangle starts at (X FROM,Y FROM), and is SRC WIDTH pixels
wide and SRC HEIGHT pixels tall. The destination rectangle starts at (X,Y), and is
abs(DEST WIDTH) pixels wide and abs(DEST HEIGHT) pixels tall. If DEST WIDTH
or DEST HEIGHT are negative, a mirroring by respective axis is performed.

OBJECT must be Prima::Image, Prima::Icon or Prima::DeviceBitmap.

No context is used, except color and backColor for a monochrome DeviceBitmap

47

rect3d X1, Y1, X2, Y2, WIDTH, LIGHT COLOR, DARK COLOR, [
BACK COLOR]

Draws 3d-shaded rectangle in boundaries X1,Y1 - X2,Y2 with WIDTH line width and
LIGHT COLOR and DARK COLOR colors. If BACK COLOR is specified, paints an infe-
rior rectangle with it, otherwise the inferior rectangle is not touched.

Context used: rop; color and backColor for a monochrome DeviceBitmap

rect focus X1, Y1, X2, Y2, [WIDTH = 1]

Draws a marquee rectangle in boundaries X1,Y1 - X2,Y2 with WIDTH line width.

No context is used.

rectangle X1, Y1, X2, Y2

Plots a rectangle with (X1,Y1) - (X2,Y2) extents.

Context used: color, backColor, linePattern, lineWidth, rop, rop2

sector X, Y, DIAMETER X, DIAMETER Y, START ANGLE, END ANGLE

Plots an arc with center in X, Y and DIAMETER X and DIAMETER Y axis from
START ANGLE to END ANGLE and connects its ends and (X,Y) with two straight lines.

Context used: color, backColor, lineEnd, linePattern, lineWidth, rop, rop2

spline \@POLYGON

Draws a cubic spline defined by set of POLYGON points. Number of vertices between each
polygon equals to current value of splinePrecision property. POLYGON must present an
array of integer pair in (X,Y) format.

Context used: color, backColor, linePattern, lineWidth, lineEnd, rop, rop2

See also: fill spline, splinePrecision, render spline.

stretch image X, Y, DEST WIDTH, DEST HEIGHT, OBJECT, [ROP]

Copies a OBJECT into a destination rectangle, stretching or compressing the OBJECT
to fit the dimensions of the destination rectangle, if necessary. If DEST WIDTH or
DEST HEIGHT are negative, a mirroring is performed. The destination rectangle starts
at (X,Y) and is DEST WIDTH pixels wide and DEST HEIGHT pixels tall.

If ROP raster operation is specified, it is used. Otherwise, value of ::rop property is used.

OBJECT must be Prima::Image, Prima::Icon or Prima::DeviceBitmap.

Context used: rop

text out TEXT, X, Y

Draws TEXT string at (X,Y).

Context used: color, backColor, font, rop, textOpaque, textOutBaseline

Methods

begin paint

Enters the enabled (active paint) state, returns success flag. Once the object is in enabled
state, painting and drawing methods can perform write operations on a canvas.

See also: end paint, begin paint info, the Graphic context and canvas entry

48

begin paint info

Enters the information state, returns success flag. The object information state is same as
enabled state (see begin paint), except painting and drawing methods do not change the
object canvas.

See also: end paint info, begin paint, the Graphic context and canvas entry

end paint

Exits the enabled state and returns the object to a disabled state.

See also: begin paint, the Graphic context and canvas entry

end paint info

Exits the information state and returns the object to a disabled state.

See also: begin paint info, the Graphic context and canvas entry

font match \%SOURCE, \%DEST, PICK = 1

Performs merging of two font hashes, SOURCE and DEST. Returns the merge result. If
PICK is true, matches the result with a system font repository.

Called implicitly by ::font on set-call, allowing the following example to work:

$d-> font-> set(size => 10);

$d-> font-> set(style => fs::Bold);

In the example, the hash ’style => fs::Bold’ does not overwrite the previous font context
(’size => 10’) but gets added to it (by font match()), providing the resulting font with
both font properties set.

fonts <FAMILY = ””, ENCODING = ””>

Member of Prima::Application and Prima::Printer, does not present in
Prima::Drawable.

Returns an array of font metric hashes for a given font FAMILY and ENCODING. Every
hash has full set of elements described in the Fonts entry.

If called without parameters, returns an array of same hashes where each hash represents
a member of font family from every system font set. It this special case, each font hash
contains additional encodings entry, which points to an array of encodings available for the
font.

If called with FAMILY parameter set but no ENCODING is set, enumerates all combinations
of fonts with all available encodings.

If called with FAMILY set to an empty string, but ENCODING specified, returns only fonts
that can be displayed with the encoding.

Example:

print sort map {"$_->{name}\n"} @{$::application-> fonts};

get bpp

Returns device color depth. 1 is for black-and-white monochrome, 24 for true color, etc.

get font abc FIRST CHAR = -1, LAST CHAR = -1, UNICODE = 0

Returns ABC font metrics for the given range, starting at FIRST CHAR and ending with
LAST CHAR. If parameters are -1, the default range (0 and 255) is assumed. UNICODE
boolean flag is responsible of representation of characters in 127-255 range. If 0, the default,

49

encoding-dependent characters are assumed. If 1, the U007F-U00FF glyphs from Latin-1
set are used.

The result is an integer array reference, where every character glyph is referred by three
integers, each triplet containing A, B and C values.

For detailed explanation of ABC meaning, see the Font ABC metrics entry;

Context used: font

get nearest color COLOR

Returns a nearest possible solid color in representation of object-bound graphic device.
Always returns same color if the device bit depth is equals or greater than 24.

get paint state

Returns paint state value - 0 if the object is in the disabled state, 1 for the enabled state, 2
for the information state.

get physical palette

Returns an anonymous array of integers, in (R,G,B) format, every color entry described by
three values, in range 0 - 255.

The physical palette array is non-empty only on paletted graphic devices, the true color
devices return an empty array.

The physical palette reflects the solid colors currently available to all programs in the system.
The information is volatile if the system palette can change colors, since any other application
may change the system colors at any moment.

get text width TEXT, ADD OVERHANG = 0

Returns TEXT string width if it would be drawn using currently selected font.

If ADD OVERHANG is 1, the first character’s absolute A value and the last character’s
absolute C value are added to the string if they are negative.

See more on ABC values at the Font ABC metrics entry.

Context used: font

get text box TEXT

Returns TEXT string extensions if it would be drawn using currently selected font.

The result is an anonymous array of 5 points (5 integer pairs in (X,Y) format). These 5
points are offsets for the following string extents, given the string is plotted at (0,0):

1: start of string at ascent line (top left)

2: start of string at descent line (bottom left)

3: end of string at ascent line (top right)

4: end of string at descent line (bottom right)

5: concatenation point

The concatenation point coordinates (XC,YC) are coordinated passed to consequent
text out() call so the conjoint string would plot as if it was a part of TEXT. Depending
on the value of the textOutBaseline property, the concatenation point is located either on
the baseline or on the descent line.

Context used: font, textOutBaseline

50

render spline VERTICES, [PRECISION]

Renders cubic spline from set of VERTICES to a polyline with given precision. The method
can be called as static, i.e. with no object initialized. PRECISION integer, if not given, is
read from splinePrecision property if the method was called on an alive object; in case of
static call, default value 24 is used.

The method is internally used by spline and fill spline, and is provided for cases when
these are insufficient.

text wrap TEXT, WIDTH, OPTIONS, TAB INDENT = 8

Breaks TEXT string in chunks that would fit into WIDTH pixels wide box.

The break algorithm and its result are governed by OPTIONS integer value which is a
combination of tw:: constants:

tw::CalcMnemonic

Use ’hot key’ semantics, when a character preceded by ~ has special meaning - it gets
underlined. If this bit is set, the first tilde character used as an escapement is not
calculated, and never appeared in the result apart from the escaped character.

tw::CollapseTilde

In addition to tw::CalcMnemonic, removes ’~’ character from the resulting chunks.

tw::CalcTabs

If set, calculates a tab (’\t’) character as TAB INDENT times space characters.

tw::ExpandTabs

If set, expands tab (’\t’) character as TAB INDENT times space characters.

tw::BreakSingle

Defines procedure behavior when the text cannot be fit in WIDTH, does not affect
anything otherwise.

If set, returns an empty array. If unset, returns a text broken by minimum number
of characters per chunk. In the latter case, the width of the resulting text blocks will
exceed WIDTH.

tw::NewLineBreak

Forces new chunk after a newline character (’\n’) is met. If UTF8 text is passed,
unicode line break characters 0x2028 and 0x2029 produce same effect as the newline
character.

tw::SpaceBreak

Forces new chunk after a space character (’ ’) or a tab character (’\t’) are met.

51

tw::ReturnChunks

Defines the result of text wrap() function.

If set, the array consists of integer pairs, each consists of a text offset within TEXT
and a its length.

If unset, the resulting array consists from text chunks.

tw::ReturnLines

Equals to 0, is a mnemonic to an unset tw::ReturnChunks.

tw::WordBreak

If unset, the TEXT breaks as soon as the chunk width exceeds WIDTH. If set, tries to
keep words in TEXT so they do not appear in two chunks, e.g. keeps breaking TEXT
by words, not by characters.

tw::ReturnFirstLineLength

If set, text wrap proceeds until the first line is wrapped, either by width or (if specified
) by break characters. Returns length of the resulting line. Used for efficiency when
the reverse function to get text width is needed.

If OPTIONS has tw::CalcMnemonic or tw::CollapseTilde bits set, then the last scalar in
the array result is a special hash reference. The hash contains extra information regarding
the ’hot key’ underline position - it is assumed that ’~’ - escapement denotes an underlined
character. The hash contains the following keys:

tildeLine

Chunk index that contains the escaped character. Set to undef if no ~ - escapement
was found. The other hash information is not relevant in this case.

tildeStart

Horizontal offset of a beginning of the line that underlines the escaped character.

tildeEnd

Horizontal offset of an end of the line that underlines the escaped character.

tildeChar

The escaped character.

Context used: font

52

3.5 Prima::Image

Bitmap routines

Synopsis

use Prima qw(Application);

create a new image from scratch

my $i = Prima::Image-> new(

width => 32,

height => 32,

type => im::BW, # same as im::bpp1 | im::GrayScale

);

draw something

$i-> begin_paint;

$i-> color(cl::White);

$i-> ellipse(5, 5, 10, 10);

$i-> end_paint;

mangle

$i-> size(64, 64);

file operations

$i-> save(’a.gif’) or die "Error saving:$@\n";

$i-> load(’a.gif’) or die "Error loading:$@\n";

draw on application

$::application-> begin_paint;

an image is drawn as specified by its palette

$::application-> set(color => cl::Red, backColor => cl::Green);

$::application-> put_image(100, 100, $i);

a bitmap is drawn as specified by destination device colors

$::application-> put_image(200, 100, $i-> bitmap);

Description

Prima::Image, Prima::Icon and Prima::DeviceBitmap are classes for bitmap handling, includ-
ing file and graphic input and output. Prima::Image and Prima::DeviceBitmap are descendants
of Prima::Drawable and represent bitmaps, stored in memory. Prima::Icon is a descendant of
Prima::Image and contains a transparency mask along with the regular data.

Usage

Images usually are represented as a memory area, where pixel data are stored row-wise. The
Prima toolkit is no exception, however, it does not assume that the GUI system uses the same
memory format. The implicit conversion routines are called when Prima::Image is about to
be drawn onto the screen, for example. The conversions are not always efficient, therefore the
Prima::DeviceBitmap class is introduced to represent a bitmap, stored in the system memory
in the system pixel format. These two basic classes serve the different needs, but can be easily
converted to each other, with image and bitmap methods. Prima::Image is a more general bitmap
representation, capable of file and graphic input and output, plus it is supplied with number of
conversion and scaling functions. The Prima::DeviceBitmap class has almost none of additional
functionality, and is targeted to efficient graphic input and output.

53

Graphic input and output

As descendants of Prima::Drawable, all Prima::Image, Prima::Icon and Prima::DeviceBitmap
objects are subject to three-state painting mode - normal (disabled), painting (enabled) and
informational. Prima::DeviceBitmap is, however, exists only in the enabled state, and can not be
switched to the other two.

When an object enters the enabled state, it serves as a canvas, and all Prima::Drawable op-
erations can be performed on it. When the object is back to the disabled state, the graphic
information is stored into the object associated memory, in the pixel format, supported by the
toolkit. This information can be visualized by using one of Prima::Drawable::put image group
methods. If the object enters the enabled state again, the graphic information is presented as an
initial state of a bitmap.

It must be noted, that if an implicit conversion takes place after an object enters and before it
leaves the enabled state, as it is with Prima::Image and Prima::Icon, the bitmap is converted to the
system pixel format. During such conversion some information can be lost, due to down-sampling,
and there is no way to preserve the information. This does not happen with Prima::DeviceBitmap.

Image objects can be drawn upon images, as well as on the screen and the Prima::Widget
section objects. This operation is performed via one of Prima::Drawable::put image group methods
(see the Prima::Drawable section), and can be called with the image object disregarding the paint
state. The following code illustrates the dualism of an image object, where it can serve both as a
drawing surface and as a drawing tool:

my $a = Prima::Image-> create(width => 100, height => 100, type => im::RGB);

$a-> begin_paint;

$a-> clear;

$a-> color(cl::Green);

$a-> fill_ellipse(50, 50, 30, 30);

$a-> end_paint;

$a-> rop(rop::XorPut);

$a-> put_image(10, 10, $a);

$::application-> begin_paint;

$::application-> put_image(0, 0, $a);

$::application-> end_paint;

It must be noted, that put image, stretch image and put image indirect are only painting
methods that allow drawing on an image that is in its paint-disabled state. Moreover, in such
context they only allow Prima::Image descendants to be passed as a source image object. This
functionality does not imply that the image is internally switched to the paint-enabled state and
back; the painting is performed without switching and without interference with the system’s
graphical layer.

Another special case is a 1-bit (monochrome) DeviceBitmap. When it is drawn upon a
drawable with bit depth greater than 1, the drawable’s color and backColor properties are used
to reflect 1 and 0 bits, respectively. On a 1-bit drawable this does not happen, and the color
properties are not used.

File input and output

Depending on the toolkit configuration, images can be read and written in different formats. This
functionality in accessible via load() and save() methods. the Prima::image-load section is
dedicated to the description of loading and saving parameters, that can be passed to the methods,
so they can handle different aspects of file format-specific options, such as multi-frame operations,
auto conversion when a format does not support a particular pixel format etc. In this document,
load() and save() methods are illustrated only in their basic, single-frame functionality. When
called with no extra parameters, these methods fail only if a disk I/O error occurred or an unknown
image format was used.

54

When an image is loaded, the old bitmap memory content is discarded, and the image attributes
are changed accordingly to the loaded image. Along with these, an image palette is loaded, if
available, and a pixel format is assigned, closest or identical to the pixel format in the image file.

Pixel formats

Prima::Image supports a number of pixel formats, governed by the ::type property. It is reflected
by an integer value, a combination of im::XXX constants. The whole set of pixel formats is
represented by colored formats, like, 16-color, 256-color and 16M-color, and by gray-scale formats,
mapped to C data types - unsigned char, unsigned short, unsigned long, float and double. The
gray-scale formats are subdivided to real-number formats and complex-number format; the last
ones are represented by two real values per pixel, containing the real and the imaginary values.

Prima::Image can also be initialized from other formats, that it does not support, but can
convert data from. Currently these are represented by a set of permutations of 32-bit RGBA
format, and 24-bit BGR format. These formats can only be used in conjunction with ::data

property.
The conversions can be performed between any of the supported formats (to do so, ::type

property is to be set-called). An image of any of these formats can be drawn on the screen, but
if the system can not accept the pixel format (as it is with non-integer or complex formats), the
bitmap data are implicitly converted. The conversion does not change the data if the image is to
be output; the conversion is performed only when the image is to be served as a drawing surface.
If, by any reason, it is desired that the pixel format is not to be changed, the ::preserveType

property must be set to 1. It does not prevent the conversion, but it detects if the image was
implicitly converted inside end paint() call, and reverts it to its previous pixel format.

There are situations, when a pixel format conversion must be made with down-sampling. One
of four down-sampling methods can be selected - normal, 8x8 ordered halftoning, error diffusion,
and error diffusion combined with optimized palette. These can be set to the ::conversion

property with one of ict::XXX constants. When there is no information loss, ::conversion

property is not used.
Another special case of conversion is a conversion with a palette.

$image-> type(im::bpp4);

$image-> palette($palette);

and

$image-> palette($palette);

$image-> type(im::bpp4);

produce different results, but none of these takes into account eventual palette remapping, be-
cause ::palette property does not change bitmap pixel data, but overwrites palette information.
A proper call syntax is

$image-> set(

palette => $palette,

type => im::bpp4,

);

This call produces correct results, if palette pixel mapping is desired. The most power of this
syntax is available when conversion is ict::Optimized (by default). This does not only allows
remapping or downsampling to a predefined colors set, but also can be used to limit palette size
to a particular number, without actual color cells values knowledge. For example, for an 24-bit
image,

$image-> set(type => im::bpp8, palette => 32);

call would calculate colors in the image, compress them to a palette of 32 cells and converts to
a 8-bit format.

Instead of palette property, colormap can also be used.

55

Data access

The pixel values can be accessed in Prima::Drawable style, via ::pixel property. However,
Prima::Image introduces several helper functions, for different aims. The ::data property is used
to set or retrieve a scalar representation of bitmap data. The data are expected to be lined up to
a ’line size’ margin (4-byte boundary), which is calculated as

$lineSize = int(($image->width * ($image-> type & im::BPP) + 31) / 32) * 4;

or returned from the read-only property ::lineSize.
This is the line size for the data as lined up internally in memory, however ::data should not

necessarily should be aligned like this, and can be accompanied with a write-only flag ’lineSize’ if
data is aligned differently:

$image-> set(width => 1, height=> 2);

$image-> type(im::RGB);

$image-> set(

data => ’RGB----RGB----’,

lineSize => 7,

);

print $image-> data, "\n";

output: RGB-RGB-

Internally, Prima contains images in memory so that the first scanline is the farthest away from
the memory start; this is consistent with general Y-axis orientation in Prima drawable terminology,
but might be inconvenient when importing data organized otherwise. Another write-only boolean
flag reverse can be set to 1 so data then are treated as if the first scanline of the image is the
closest to the start of data:

$image-> set(width => 1, height=> 2, type => im::RGB);

$image-> set(

data => ’RGB-123-’,

reverse => 1,

);

print $image-> data, "\n";

output: RGB-123-

Although it is possible to perform all kinds of calculations and modification with the pixels,
returned by ::data, it is not advisable unless the speed does not matter. Standalone PDL package
with help of PDL::PrimaImage package, and Prima-derived IPA package provide routines for data
and image analysis. Prima::Image itself provides only the simplest statistic information, namely:
lowest and highest pixel values, pixel sum, sum of square pixels, mean, variance, and standard
deviation.

Standalone usage

The image functionality can be used standalone, with all other parts of the toolkit being unini-
tialized. This is useful in non-interactive programs, running in evnironments with no GUI access,
a cgi-script with no access to X11 display, for example. Normally, Prima fails to start in such
situations, but can be told not to initialize its GUI part by explicitly operating system-dependent
options. Currently, X11 implementation provides ’–no-x11’ option which effectively turns off X11
support.

56

Prima::Icon

Prima::Icon inherits all properties of Prima::Image, and it also provides a 1-bit depth trans-
parency mask. This mask can also be loaded and saved into image files, if the format supports a
transparency information.

Alike Prima::Image ::data property, Prima::Icon ::mask property provides access to the
binary mask data. The mask can be updated automatically, after an icon object was subject
to painting or other change. The auxiliary properties ::autoMasking and ::maskColor regulate
mask update procedure. For example, if an icon was loaded with the color (vs. bitmap)
transparency information, the binary mask will be generated anyway, but it will be also recorded
that a particular color serves as a transparent indicator, so eventual conversions can rely on the
color value, instead of the mask bitmap.

If an icon is drawn upon a graphic canvas, the image output is constrained to the mask.
On raster displays it is typically simulated by a combination of and- and xor- operation modes,
therefore attempts to put an icon with ::rop, different from rop::CopyPut, usually fail.

API

Prima::Image properties

colormap @PALETTE

A color palette, used for representing 1, 4, and 8-bit bitmaps, when an image object is to be
visualized. @PALETTE contains individual colors component triplets, in RGB format. For
example, black-and-white monochrome image may contain colormap as 0,0xffffff.

See also palette.

conversion TYPE

Selects type of dithering algorithm, when down-sampling takes place. TYPE is one of
ict::XXX constants:

ict::None - no dithering

ict::Halftone - 8x8 ordered halftone dithering

ict::ErrorDiffusion - error diffusion dithering with static palette

ict::Optimized - error diffusion dithering with optimized palette

As an example, if a 4x4 color image with every pixel set to RGB(32,32,32), converted to a
1-bit image, the following results occur:

ict::None:

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

[0 0 0 0]

ict::Halftone:

[0 0 0 0]

[0 0 1 0]

[0 0 0 0]

[1 0 0 0]

ict::ErrorDiffusion, ict::Ordered:

[0 0 1 0]

[0 0 0 1]

[0 0 0 0]

[0 0 0 0]

57

data SCALAR

Provides access to the bitmap data. On get-call, returns all bitmap pixels, aligned to 4-byte
boundary. On set-call, stores the provided data with same alignment. The alignment can
be altered by submitting ’lineSize’ write-only flag to set call; the ordering of scan lines can
be altered by setting ’reverse’ write-only flag (see the Data access entry).

height INTEGER

Manages the vertical dimension of the image data. On set-call, the image data are changed
accordingly to the new height, and depending on ::vScaling property, the pixel values are
either scaled or truncated.

hScaling BOOLEAN

If 1, the bitmap data will be scaled when image changes its horizontal extent. If 0, the data
will be stripped or padded with zeros.

lineSize INTEGER

A read-only property, returning the length of an image row in bytes, as represented internally
in memory. Data returned by ::data property are aligned with ::lineSize bytes per row,
and setting ::data expects data aligned with this value, unless lineSize is set together
with data to indicate another alignment. See the Data access entry for more.

mean

Returns mean value of pixels. Mean value is ::sum of pixel values, divided by number of
pixels.

palette [@PALETTE]

A color palette, used for representing 1, 4, and 8-bit bitmaps, when an image object is to be
visualized. @PALETTE contains individual color component triplets, in BGR format. For
example, black-and-white monochrome image may contain palette as [0,0,0,255,255,255].

See also colormap.

pixel (X OFFSET, Y OFFSET) PIXEL

Provides per-pixel access to the image data when image object is in disabled paint state.
Otherwise, same as Prima::Drawable::pixel.

preserveType BOOLEAN

If 1, reverts the image type to its old value if an implicit conversion was called during
end paint().

rangeHi

Returns maximum pixel value in the image data.

rangeLo

Returns minimum pixel value in the image data.

size WIDTH, HEIGHT

Manages dimensions of the image. On set-call, the image data are changed accordingly to
the new dimensions, and depending on ::vScaling and ::hScaling properties, the pixel
values are either scaled or truncated.

stats (INDEX) VALUE

Returns one of calculated values, that correspond to INDEX, which is one of the following
is::XXX constants:

58

is::RangeLo - minimum pixel value

is::RangeHi - maximum pixel value

is::Mean - mean value

is::Variance - variance

is::StdDev - standard deviation

is::Sum - sum of pixel values

is::Sum2 - sum of squares of pixel values

The values are re-calculated on request and cached. On set-call VALUE is stored in the
cache, and is returned on next get-call. The cached values are discarded every time the
image data changes.

These values are also accessible via set of alias properties: ::rangeLo, ::rangeHi, ::mean,
::variance, ::stdDev, ::sum, ::sum2.

stdDev

Returns standard deviation of the image data. Standard deviation is the square root of
::variance.

sum

Returns sum of pixel values of the image data

sum2

Returns sum of squares of pixel values of the image data

type TYPE

Governs the image pixel format type. TYPE is a combination of im::XXX constants. The
constants are collected in groups:

Bit-depth constants provide size of pixel is bits. Their actual value is same as number of
bits, so im::bpp1 value is 1, im::bpp4 - 4, etc. The valid constants represent bit depths
from 1 to 128:

im::bpp1

im::bpp4

im::bpp8

im::bpp16

im::bpp24

im::bpp32

im::bpp64

im::bpp128

The following values designate the pixel format category:

im::Color

im::GrayScale

im::RealNumber

im::ComplexNumber

im::TrigComplexNumber

Value of im::Color is 0, whereas other category constants represented by unique bit value,
so combination of im::RealNumber and im::ComplexNumber is possible.

There also several mnemonic constants defined:

59

im::Mono - im::bpp1

im::BW - im::bpp1 | im::GrayScale

im::16 - im::bpp4

im::Nibble - im::bpp4

im::256 - im::bpp8

im::RGB - im::bpp24

im::Triple - im::bpp24

im::Byte - gray 8-bit unsigned integer

im::Short - gray 16-bit unsigned integer

im::Long - gray 32-bit unsigned integer

im::Float - float

im::Double - double

im::Complex - dual float

im::DComplex - dual double

im::TrigComplex - dual float

im::TrigDComplex - dual double

Bit depths of float- and double- derived pixel formats depend on a platform.

The groups can be masked out with the mask values:

im::BPP - bit depth constants

im::Category - category constants

im::FMT - extra format constants

The extra formats are the pixel formats, not supported by ::type, but recognized within
the combined set-call, like

$image-> set(

type => im::fmtBGRI,

data => ’BGR-BGR-’,

);

The data, supplied with the extra image format specification will be converted to the closest
supported format. Currently, the following extra pixel formats are recognized:

im::fmtBGR

im::fmtRGBI

im::fmtIRGB

im::fmtBGRI

im::fmtIBGR

variance

Returns variance of pixel values of the image data. Variance is ::sum2, divided by number
of pixels minus square of ::sum of pixel values.

vScaling BOOLEAN

If 1, the bitmap data will be scaled when image changes its vertical extent. If 0, the data
will be stripped or padded with zeros.

width INTEGER

Manages the horizontal dimension of the image data. On set-call, the image data are changed
accordingly to the new width, and depending on ::hScaling property, the pixel values are
either scaled or truncated.

60

Prima::Icon properties

autoMasking TYPE

Selects whether the mask information should be updated automatically with ::data change
or not. Every ::data change is mirrored in ::mask, using TYPE, one of am::XXX constants:

am::None - no mask update performed

am::MaskColor - mask update based on ::maskColor property

am::Auto - mask update based on corner pixel values

The ::maskColor color value is used as a transparent color if TYPE is am::MaskColor. The
transparency mask generation algorithm, turned on by am::Auto checks corner pixel values,
assuming that majority of the corner pixels represents a transparent color. Once such color
is found, the mask is generated as in am::MaskColor case.

When image ::data is stretched, ::mask is stretched accordingly, disregarding the
::autoMasking value.

mask SCALAR

Provides access to the transparency bitmap. On get-call, returns all bitmap pixels, aligned
to 4-byte boundary in 1-bit format. On set-call, stores the provided transparency data with
same alignment.

maskColor COLOR

When ::autoMasking set to am::MaskColor, COLOR is used as a transparency value.

Prima::DeviceBitmap properties

monochrome BOOLEAN

A read-only property, that can only be set during creation, reflects whether the system
bitmap is black-and-white 1-bit (monochrome) or not. The color depth of a bitmap can be
read via get bpp() method; monochrome bitmaps always have bit depth of 1.

Prima::Image methods

bitmap

Returns newly created Prima::DeviceBitmap instance, with the image dimensions and with
the bitmap pixel values copied to.

codecs

Returns array of hashes, each describing the supported image format. If the array is empty,
the toolkit was set up so it can not load and save images.

See the Prima::image-load section for details.

This method can be called without object instance.

dup

Returns a duplicate of the object, a newly created Prima::Image, with all information copied
to it.

extract X OFFSET, Y OFFSET, WIDTH, HEIGHT

Returns a newly created image object with WIDTH and HEIGHT dimensions, initialized
with pixel data from X OFFSET and Y OFFSET in the bitmap.

61

get bpp

Returns the bit depth of the pixel format. Same as ::type & im::BPP.

get handle

Returns a system handle for an image object.

load (FILENAME or FILEGLOB) [%PARAMETERS]

Loads image from file FILENAME or stream FILEGLOB into an object, and returns the
success flag. The semantics of load() is extensive, and can be influenced by PARAMETERS
hash. load() can be called either in a context of an existing object, then a boolean success
flag is returned, or in a class context, then a newly created object (or undef) is returned.
If an error occurs, $@ variable contains the error description string. These two invocation
semantics are equivalent:

my $x = Prima::Image-> create();

die "$@" unless $x-> load(...);

and

my $x = Prima::Image-> load(...);

die "$@" unless $x;

See the Prima::image-load section for details.

NB! When loading from streams on win32, mind binmode.

map COLOR

Performs iterative mapping of bitmap pixels, setting every pixel to ::color property with
respect to ::rop type if a pixel equals to COLOR, and to ::backColor property with respect
to ::rop2 type otherwise.

rop::NoOper type can be used for color masking.

Examples:

width => 4, height => 1, data => [1, 2, 3, 4]

color => 10, backColor => 20, rop => rop::CopyPut

rop2 => rop::CopyPut

input: map(2) output: [20, 10, 20, 20]

rop2 => rop::NoOper

input: map(2) output: [1, 10, 3, 4]

resample SRC LOW, SRC HIGH, DEST LOW, DEST HIGH

Performs linear scaling of gray pixel values from range (SRC LOW - SRC HIGH) to range
(DEST LOW - DEST HIGH). Can be used to visualize gray non-8 bit pixel values, by the
code:

$image-> resample($image-> rangeLo, $image-> rangeHi, 0, 255);

save (FILENAME or FILEGLOB), [%PARAMETERS]

Stores image data into image file FILENAME or stream FILEGLOB, and returns the success
flag. The semantics of save() is extensive, and can be influenced by PARAMETERS hash.
If error occurs, $@ variable contains error description string.

Note that when saving to a stream, codecID must be explicitly given in %PARAMETERS.

See the Prima::image-load section for details.

NB! When saving to streams on win32, mind binmode.

62

Prima::Image events

Prima::Image-specific events occur only from inside the load entry call, to report image
loading progress. Not all codecs (currently JPEG,PNG,TIFF only) are able to report the
progress to the caller. See Loading with progress indicator in Prima::image-load for details,
the watch load progress entry in the Prima::ImageViewer section and the load entry in the
Prima::ImageDialog section for suggested use.

HeaderReady

Called whenever image header is read, and image dimensions and pixel type is changed
accordingly to accomodate image data.

DataReady X, Y, WIDTH, HEIGHT

Called whenever image data that cover area designated by X,Y,WIDTH,HEIGHT is ac-
quired. Use load option eventDelay to limit the rate of DataReady event.

Prima::Icon methods

split

Returns two new Prima::Image objects of same dimension. Pixels in the first is are duplicated
from ::data storage, in the second - from ::mask storage.

combine DATA, MASK

Copies information from DATA and MASK images into ::data and ::mask property. DATA
and MASK are expected to be images of same dimension.

Prima::DeviceBitmap methods

icon

Returns a newly created Prima::Icon object instance, with the pixel information copied from
the object.

image

Returns a newly created Prima::Image object instance, with the pixel information copied
from the object.

get handle

Returns a system handle for a system bitmap object.

63

3.6 Prima::image-load

Using image subsystem

Description

Details on image subsystem - image loading, saving, and codec managements

Loading

Simple loading

Simplest case, loading a single image would look like:

my $x = Prima::Image-> load(’filename.duf’);

die "$@" unless $x;

Image functions can work being either invoked from package, or from existing Prima::Image
object, in latter case the caller object itself is changing. The code above could be also written as

my $x = Prima::Image-> create;

die "$@" unless $x-> load(’filename.duf’);

In both cases $x contains image data upon success. Error is returned into $@ variable (see
perldoc perlvar for more info).

Loading from stream

Prima::Image can also load image by reading from a stream:

open FILE, ’a.jpeg’ or die "Cannot open:$!";

binmode FILE;

my $x = Prima::Image-> load(*FILE);

die "$@" unless $x;

Multiframe loading

Multiframe load call can be also issued in two ways:

my @x = Prima::Image-> load(’filename.duf’, loadAll => 1);

die "$@" unless $x[-1];

my $x = Prima::Image-> create;

my @x = $x-> load(’filename.duf’, loadAll => 1);

die "$@" unless $x[-1];

In second case, the content of the first frame comes to $x and $x[0]. Sufficient check for error
is whether last item of a returned array is defined. This check works also if an empty array is
returned. Only this last item can be an undefined value, others are guaranteed to be valid objects.

Multiframe syntax is expressed in a set of extra hash keys. These keys are:

loadAll

Request for loading all frames that can be read from a file. Example:

loadAll => 1

64

index

If present, returns a single frame with index given. Example:

index => 8

map

Contains an anonymous array of frame indices to load. Valid indices are above zero, negative
ones can’t be counted in a way perl array indices are. Example:

map => [0, 10, 15..20]

Querying extra information

By default Prima loads image data and palette only. For any other information that can be loaded,
anonymous hash ’extras’ can be defined. To notify a codec that this extra information is desired,
loadExtras boolean value is used. Example:

my $x = Prima::Image-> load($f, loadExtras => 1);

die "$@" unless $x;

for (keys %{$x-> {extras}}) {

print " $_ : $x->{extras}->{$_}\n";

}

The code above loads and prints extra information read from a file. Typical output, for
example, from a gif codec based on libungif would look like:

codecID : 1

transparentColorIndex : 1

comment : created by GIMP

frames : 18

’codecID’ is a Prima-defined extra field, which is an index of the codec which have loaded the
file. This field’s value is useful for explicit indication of codec on the save request.

’frames’ is also a Prima-defined extra field, with integer value set to a number of frames in the
image. It might be set to -1, signaling that codec is incapable of quick reading of the frame count.
If, however, it is necessary to get actual frame count, a ’wantFrames’ profile boolean value should
be set to 1 - then frames is guaranteed to be set to a 0 or positive value, but the request may take
longer time, especially on a large file with sequential access. Real life example is a gif file with
more than thousand frames. ’wantFrames’ is useful in null load requests.

Multiprofile loading requests

The parameters that are accepted by load, are divided into several categories - first, those that
apply to all loading process and those who apply only to a particular frame. Those who are defined
by Prima, are enumerated above - loadExtras, loadAll etc. Only loadExtras, noImageData and
iconUnmask are applicable to a frame, other govern the loading process. A codec may as well
define its own parameters, however it is not possible to tell what parameter belongs to what group
- this information is to be found in codec documentation;

The parameters that applicable to any frame, can be specified separately to every desirable
frame in single call. For that purpose, parameter ’profiles’ is defined. ’profiles’ is expected to be
an anonymous array of hashes, each hash where corresponds to a request number. Example:

$x-> load($f, loadAll => 1, profiles => [

{loadExtras => 0},

{loadExtras => 1},

]);

65

First hash there applies to frame index 0, second - to frame index 1. Note that in code

$x-> load($f,

map => [5, 10],

profiles => [

{loadExtras => 0},

{loadExtras => 1},

]);

first hash applies to frame index 5, and second - to frame index 10.

Null load requests

If it is desired to peek into image, reading type and dimensions only, one should set ’noImageData’
boolean value to 1. Using ’noImageData’, empty objects with read type are returned, and with
extras ’width’ and ’height’ set to image dimensions. Example:

$x-> load($f, noImageData => 1);

die "$@" unless $x;

print $x-> {extras}-> {width} , ’x’ , $x-> {extras}-> {height}, ’x’,

$x-> type & im::BPP, "\n";

Some information about image can be loaded even without frame loading - if the codec provides
such a functionality. This is the only request that cannot be issued on a package:

$x-> load($f, map => [], loadExtras => 1);

Since no frames are required to load, an empty array is returned upon success and an array
with one undefined value on failure.

Using Prima::Image descendants

If Prima needs to create a storage object, it is by default Prima::Image, or a class name of an
caller object, or a package the request was issued on. This behavior can be altered using parameter
’className’, which defines the class to be used for the frame.

my @x = Prima::Image-> load($f,

map => [1..3],

className => ’Prima::Icon’,

profiles => [

{},

{ className => ’Prima::Image’ },

{}

],

In this example @x will be (Icon, Image, Icon) upon success.
When loading to an Icon object, the default toolkit action is to build the transparency mask

based on image data. When it is not the desired behavior, e.g., there is no explicit knowledge
of image, but the image may or may not contain transparency information, iconUnmask boolean
option can be used. When set to a true value, and the object is Prima::Icon descendant,
Prima::Icon::autoMasking is set to am::None prior to the file loading. By default this options
is turned off.

66

Loading with progress indicator

Some codecs (PNG,TIFF,JPEG) can notify the caller as they read image data. For this purpose,
Prima::Image has two events, onHeaderReady and onDataReady. If either (or both) are present
on image object that is issuing load call, and the codec supports progressive loading, these events
are called. onHeaderReady is called when image header data is acquired, and empty image with
the dimensions and pixel type is allocated. onDataReady is called whenever a part of image is
ready and is loaded in the memory of the object; the position and dimensions of the loaded area
is reported also. The format of the events is:

onHeaderReady $OBJECT

onDataReady $OBJECT, $X, $Y, $WIDTH, $HEIGHT

onHeaderReady is called only once, but onDataReady is called as soon as new image data is
available. To reduce frequency of these calls, that otherwise would be issued on every scanline
loaded, load has parameter eventDelay, a number of seconds, which limits event rate. The default
eventDelay is 0.1 .

The handling on onDataReady must be performed with care. First, the image must be accessed
read-only, which means no transformations with image size and type are allowed. Currently there
is no protection for such actions (because codec must perform these), so a crash will most surely
issue. Second, loading and saving of images is not in general reentrant, and although some codecs
are reentrant, loading and saving images inside image events is not recommended.

There are two techniques to display partial image as it loads. All of these share overloading of
onHeaderReady and onDataReady. The simpler is to call put image from inside onDataReady:

$i = Prima::Image-> new(

onDataReady => sub {

$progress_widget-> put_image(0, 0, $i);

},

);

but that will most probably loads heavily underlying OS-dependent conversion of image data
to native display bitmap data. A more smarter, but more complex solution is to copy loaded (and
only loaded) bits to a preexisting device bitmap:

$i = Prima::Image-> new(

onHeaderReady => sub {

$bitmap = Prima::DeviceBitmap-> new(

width => $i-> width,

height => $i-> height,

));

},

onDataReady => sub {

my ($i, $x, $y, $w, $h) = @_;

$bitmap-> put_image($x, $y, $i-> extract($x, $y, $w, $h));

},

);

The latter technique is used by Prima::ImageViewer when it is setup to monitor image loading
progress. See the watch load progress entry in the Prima::ImageViewer section for details.

Saving

Simple saving

Typical saving code will be:

67

die "$@" unless $x-> save(’filename.duf’);

Upon a single-frame invocation save returns 1 upon success an 0 on failure. Save requests also
can be performed with package syntax:

die "$@" unless Prima::Image-> save(’filename.duf’,

images => [$x]);

Saving to a stream

Saving to a stream requires explicit codecID to be supplied. When an image is loaded with
loadExtras, this field is always present on the image object, and is an integer that selects image
encoding format.

my @png_id =

map { $_-> {codecID} }

grep { $_-> {fileShortType} =~ /^png$/i }

@{ Prima::Image-> codecs };

die "No png codec installed" unless @png_id;

open FILE, "> a.png" or die "Cannot save:$!";

binmode FILE;

$image-> save(*FILE, codecID => $png_id[0])

or die "Cannot save:$@";

Multiframe saving

In multiframe invocation save returns number of successfully saved frames. File is erased though,
if error occurred, even after some successfully written frames.

die "$@" if scalar(@images) > Prima::Image-> save($f,

images => \@images);

Saving extras information

All information, that is found in object hash reference ’extras’, is assumed to be saved as an extra
information. It is a codec’s own business how it reacts on invalid and/or inacceptable information
- but typical behavior is that keys that were not recognized by the codec just get ignored, and
invalid values raise an error.

$x-> {extras}-> {comments} = ’Created by Prima’;

$x-> save($f);

Selecting a codec

Extras field ’codecID’, the same one that is defined after load requests, selects explicitly a codec
for an image to handle. If the codec selected is incapable of saving an error is returned. Selecting
a codec is only possible with the object-driven syntax, and this information is never extracted
from objects but passed to ’images’ array instead.

$x-> {extras}-> {codecID} = 1;

$x-> save($f);

Actual correspondence between codecs and their indices is described latter.
NB - if codecID is not given, codec is selected by the file extension.

68

Type conversion

Codecs usually are incapable of saving images in all formats, so Prima either converts an image
to an appropriate format or signals an error. This behavior is governed by profile key ’autoCon-
vert’, which is 1 by default. ’autoConvert’ can be present in image ’extras’ structures. With
autoConvert set it is guaranteed that image will be saved, but original image information may
be lost. With autoConvert unset, no information will be lost, but Prima may signal an er-
ror. Therefore general-purpose save routines should be planned carefully. As an example the
Prima::ImageDialog::SaveImageDialog code might be useful.

When the conversion takes place, Image property ’conversion’ is used for selection of an error
distribution algorithm, if down-sampling is required.

Appending frames to an existing file

This functionality is under design, but the common outlines are already set. Profile key ’append’
(0 by default) triggers this behavior - if it is set, then an append attempt is made.

Managing codecs

Prima provides single function, Prima::Image-> codecs, which returns an anonymous array of
hashes, where every hash entry corresponds to a registered codec. ’codecID’ parameter on load
and save requests is actually an index in this array. Indexes for a codecs registered once never
change, so it is safe to manipulate these numbers within single program run.

Codec information that is contained in these hashes is divided into following parameters:

codecID

Unique integer value for a codec, same as index of the codec entry in results of
Prima::Image->codecs;

name

codec full name, string

vendor

codec vendor, string

versionMajor and versionMinor

usually underlying library versions, integers

fileExtensions

array of strings, with file extensions that are typical to a codec. example: [’tif’, ’tiff’]

fileType

Description of a type of a file, that codec is designed to work with. String.

fileShortType

Short description of a type of a file, that codec is designed to work with. (short means 3-4
characters). String.

featuresSupported

Array of strings, with some features description that a codec supports - usually codecs
implement only a part of file format specification, so it is always interesting to know, what
part it is.

69

module and package

Specify a perl module, usually inside Prima/Image directory into Prima distribu-
tion, and a package inside the module. The package contains some specific func-
tions for work with codec-specific parameters. Current implementation defines only
::save dialog() function, that returns a dialog that allows to change these parameters. See
Prima::ImageDialog::SaveImageDialog for details. Strings, undefined if empty.

canLoad

1 if a codec can load images, 0 if not

canLoadStream

1 if a codec can load images from streams, 0 otherwise

canLoadMultiple

1 if a codec can handle multiframe load requests and load frames with index more than zero.
0 if not.

canSave

1 if a codec can save images, 0 if not.

canSaveStream

1 if a codec can save images to streams, 0 otherwise

canSaveMultiple

1 if codec can save and/or append more that one frame. 0 if not.

types

Array of integers - each is a combination of im:: flags, an image type, which a codec is
capable of saving. First type in list is a default one; if image type that to be saved is not in
that list, the image will be converted to this default type.

loadInput

Hash, where keys are those that are accepted by Prima::Image-> load, and values are default
values for these keys.

loadOutput

Array of strings, each of those is a name of extra information entry in ’extras’ hash.

saveInput

Hash, where keys are those that are accepted by Prima::Image-> save, and values are default
values for these keys.

70

3.7 Prima::Widget

Window management

Synopsis

create a widget

my $widget = Prima::Widget-> new(

size => [200, 200],

color => cl::Green,

visible => 0,

onPaint => sub {

my ($self,$canvas) = @_;

$canvas-> clear;

$canvas-> text_out("Hello world!", 10, 10);

},

);

manipulate the widget

$widget-> origin(10, 10);

$widget-> show;

Description

Prima::Widget is a descendant of Prima::Component, a class, especially crafted to reflect and
govern properties of a system-dependent window, such as its position, hierarchy, outlook etc.
Prima::Widget is mapped into the screen space as a rectangular area, with distinct boundaries,
pointer and sometimes cursor, and a user-selectable input focus.

Usage

Prima::Widget class and its descendants are used widely throughout the toolkit, and, indeed
provide almost all its user interaction and input-output. The notification system, explained in
the Prima::Object section, is employed in Prima::Widget heavily, providing the programmer with
unified access to the system-generated events, that occur when the user moves windows, clicks the
mouse, types the keyboard, etc. Descendants of Prima::Widget use the internal, the direct method
of overriding the notifications, whereas end programs tend to use the toolkit widgets equipped with
anonymous subroutines (see the Prima::Object section for the details).

The class functionality is much more extensive comparing to the other built-in classes, and
therefore the explanations are grouped in several topics.

Creation and destruction

The widget creation syntax is the same as for the other Prima objects:

Prima::Widget-> create(

name => ’Widget’,

size => [20, 10],

onMouseClick => sub { print "click\n"; },

owner => $owner,

);

In the real life, a widget must be almost always explicitly told about its owner. The owner
object is either a Prima::Widget descendant, in which case the widget is drawn inside its inferior,
or the application object, and in the latter case a widget becomes top-level. This is the reason

71

why the insert syntax is much more often used, as it is more illustrative and is more convenient
for creating several widgets in one call (see the Prima::Object section).

$owner-> insert(’Prima::Widget’,

name => ’Widget’,

size => [20, 10],

onMouseClick => sub { print "click\n"; },

);

These two examples produce identical results.
As a descendant of Prima::Component, Prima::Widget sends Create notification when created

(more precisely, after its init stage is finished. See the Prima::Object section for details). This
notification is called and processed within create() call. In addition, another notification Setup

is sent after the widget is created. This message is posted, so it is called within create() but
processed in the application event loop. This means that the execution time of Setup is uncertain,
as it is with all posted messages; its delivery time is system-dependent, so its use must be considered
with care.

After a widget is created, it is usually asked to render its content, provided that the widget is
visible. This request is delivered by means of Paint notification.

When the life time of a widget is over, its method destroy() is called, often implicitly. If a
widget gets destroyed because its owner also does, it is guaranteed that the children widgets will
be destroyed first, and the owner afterwards. In such situation, widget can operate with a limited
functionality both on itself and its owners (see the Prima::Object section, Creation section).

Graphic content

A widget can use two different ways for representing its graphic content to the user. The first
method is event-driven, when the Paint notification arrives, notifying the widget that it must
re-paint itself. The second is the ’direct’ method, when the widget generates graphic output
unconditionally.

Event-driven rendering

A notification responsible for widget repainting is Paint. It provides a single (besides the widget
itself) parameter, an object, where the drawing is performed. In an event-driven call, it is always
equals to the widget. However, if a custom mechanism should be used that directly calls, for
example,

$widget-> notify(’Paint’, $some_other_widget);

for whatever purpose, it is recommended (not required, though), to use this parameter, not
the widget itself for painting and drawing calls.

The example of Paint callback is quite simple:

Prima::Widget-> create(

...

onPaint => sub {

my ($self, $canvas) = @_;

$canvas-> clear;

$canvas-> text_out("Clicked $self->{clicked} times", 10, 10);

},

onMouseClick => sub {

$_[0]-> {clicked}++;

$_[0]-> repaint;

},

);

72

The example uses several important features of the event-driven mechanism. First, no
begin paint()/end paint() brackets are used within the callback. These are called implic-
itly. Second, when the custom refresh of the widget’s graphic content is needed, no code like
notify(q(Paint)) is used - repaint() method is used instead. It must be noted, that the actual
execution of Paint callbacks might or might not occur inside the repaint() call. This behav-
ior is governed by the ::syncPaint property. repaint() marks the whole widget’s area to be
refreshed, or invalidates the area. For the finer gradation of the area that should be repainted,
invalidate rect() and validate rect() pair of functions is used. Thus,

$x-> repaint()

code is a mere alias to

$x-> invalidate_rect(0, 0, $x-> size);

call. It must be realized, that the area, passed to invalidate rect() only in its ideal (but
a quite often) execution case will be pertained as a clipping rectangle when a widget executes
its Paint notification. The user and system interactions can result in exposition of other parts
of a widget (like, moving windows over a widget), and the resulting clipping rectangle can be
different from the one that was passed to invalidate rect(). Moreover, the clipping rectangle
can become empty as the result of these influences, and the notification will not be called at all.

Invalid rectangle is presented differently inside and outside the drawing mode. The first,
returned by ::clipRect, employs inclusive-inclusive coordinates, whereas invalidate rect(),
validate rect() and get invalid rect() - inclusive-exclusive coordinates. The ideal case ex-
emplifies the above said:

$x-> onPaint(sub {

my @c = $_[0]-> clipRect;

print "clip rect:@c\n";

});

$x-> invalidate_rect(10, 10, 20, 20);

...

clip rect: 10 10 19 19

As noted above, ::clipRect property is set to the clipping rectangle of the widget area that
is needed to be refreshed, and an event handler code can take advantage of this information,
increasing the efficiency of the painting procedure.

Further assignments of ::clipRect property do not make possible over-painting on the screen
area that lies outside the original clipping region. This is also valid for all paint operations,
however since the original clipping rectangle is the full area of a canvas, this rule is implicit and
unnecessary, because whatever large the clipping rectangle is, drawing and painting cannot be
performed outside the physical boundaries of the canvas.

Direct rendering

The direct rendering, contrary to the event-driven, is initiated by the program, not by the system.
If a programmer wishes to paint over a widget immediately, then begin paint() is called, and, if
successful, the part of the screen occupied by the widget is accessible to the drawing and painting
routines.

This method is useful, for example, for graphic demonstration programs, that draw con-
tinuously without any input. Another field is the screen drawing, which is performed with
Prima::Application class, that does not have Paint notification. Application’s graphic canvas
represents the whole screen, allowing over-drawing the graphic content of other programs.

The event-driven rendering method adds implicit begin paint()/end paint() brackets (plus
some system-dependent actions) and is a convenience version of the direct rendering. Sometimes,

73

however, the changes needed to be made to a widget’s graphic context are so insignificant, so
the direct rendering method is preferable, because of the cleaner and terser code. As an example
might serve a simple progress bar, that draws a simple colored bar. The event-driven code would
be (in short, omitting many details) as such:

$bar = Widget-> create(

width => 100,

onPaint => sub {

my ($self, $canvas) = @_;

$canvas-> color(cl::Blue);

$canvas-> bar(0, 0, $self-> {progress}, $self-> height);

$canvas-> color(cl::Back);

$canvas-> bar($self-> {progress}, 0, $self-> size);

},

);

...

$bar-> {progress} += 10;

$bar-> repaint;

or, more efficiently, (but clumsier)

$bar-> invalidate_rect($bar->{progress}-10, 0,

$bar->{progress}, $bar-> height);

And the direct driven:

$bar = Widget-> create(width => 100);

...

$bar-> begin_paint;

$bar-> color(cl::Blue);

$bar-> bar($progress, 0, $progress + 10, $bar-> height);

$bar-> end_paint;

$progress += 10;

The pros and contras are obvious: the event-driven rendered widget correctly represents the
status after an eventual repaint, for example when the user sweeps a window over the progress bar
widget. The direct method cannot be that smart, but if the status bar is an insignificant part of
the program, the trade-off of the functionality in favor to the code simplicity might be preferred.

Both methods can be effectively disabled using the paint locking mechanism. The lock()

and unlock() methods can be called several times, stacking the requests. This feature is useful
because many properties implicitly call repaint(), and if several of these properties activate in
a row, the unnecessary redrawing of the widget can be avoided. The drawback is that the last
unlock() call triggers repaint() unconditionally.

Geometry

Basic properties

A widget always has its position and size determined, even if it is not visible on the screen.
Prima::Widget provides several properties with overlapping functionality, that govern the geometry
of a widget. The base properties are ::origin and ::size, and the derived are ::left, ::bottom,
::right, ::top, ::width, ::height and ::rect. ::origin and ::size operate with two integers,
::rect with four, others with one integer value.

As the Prima toolkit coordinate space begins in the lower bottom corner, the combination of
::left and ::bottom is same as ::origin, and combination of ::left, ::bottom, ::right and
::top - same as ::rect.

74

When a widget is moved or resized, correspondingly two notifications occur: Move and Size.
The parameters to both are old and new position and size. The notifications occur irrespectable
to whether the geometry change was issued by the program itself or by the user.

Implicit size regulations

Concerning the size of a widget, two additional two-integer properties exist, ::sizeMin and
::sizeMax, that constrain the extension of a widget in their boundaries. The direct call that
assigns values to the size properties that lie outside ::sizeMin and ::sizeMax boundaries, will
fail - the widget extension will be adjusted to the boundary values, not to the specified ones.

Change to widget’s position and size can occur not only by an explicit call to one of the
geometry properties. The toolkit contains implicit rules, that can move and resize a widget
corresponding to the flags, given to the ::growMode property. The exact meaning of the gm::XXX

flags is not given here (see description to ::growMode in API section), but in short, it is possible
with simple means to maintain widget’s size and position regarding its owner, when the latter
is resized. By default, and the default behavior corresponds to ::growMode 0, widget does not
change neither its size nor position when its owner is resized. It stays always in ’the left bottom
corner’. When, for example, a widget is expected to stay in ’the right bottom corner’, or ’the left
top corner’, the gm::GrowLoX and gm::GrowLoY values must be used, correspondingly. When a
widget is expected to cover, for example, its owner’s lower part and change its width in accord
with the owner’s, (a horizontal scroll bar in an editor window is the example), the gm::GrowHiX

value must be used.
When this implicit size change does occur, the ::sizeMin and ::sizeMax do take their part

as well - they still do not allow the widget’s size excess their boundaries. However, this algorithm
derives a problem, that is illustrated by the following setup. Imagine a widget with size-dependent
::growMode (with gm::GrowHiX or gm::GrowHiY bits set) that must maintain certain relation
between the owner’s size and its own. If the implicit size change would be dependent on the actual
widget size, derived as a result from the previous implicit size action, then its size (and probably
position) will be incorrect after an attempt is made to change the widget’s size to values outside
the size boundaries.

Example: child widget has width 100, growMode set to gm::GrowHiX and sizeMin set to (95,
95). Its owner has width 200. If the owner widget changes gradually its width from 200 to 190
and then back, the following width table emerges:

Owner Child

Initial state 200 100

Shrink 195 -5 95

Shrink 190 -5 95 - as it can not be less than 95.

Grow 195 +5 100

Grow 200 +5 105

That effect would exist if the differential-size algorithm would be implemented, - the owner
changes width by 5, and the child does the same. The situation is fixed by introducing the virtual
size term. The ::size property is derived from virtual size, and as ::size cannot exceed the size
boundaries, virtual size can. It can even accept the negative values. With this intermediate stage
added, the correct picture occurs:

Owner Child’s Child’s

virtual width width

Initial state 200 100 100

Shrink 195 -5 95 95

Shrink 190 -5 90 95

Grow 195 +5 95 95

Grow 200 +5 100 100

75

Strictly speaking, the virtual size must be declared a read-only property, but currently it is
implemented as a get virtual size() function, and it is planned to fix this discrepancy between
the document and the implementation in favor of the property syntax.

Geometry managers

The concept of geometry managers is imported from Tk, which in turn is a port of Tcl-Tk. The
idea behind it is that a widget size and position is governed by one of the managers, which operate
depending on the specific options given to the widget. The selection is operated by ::geometry

property, and is one of gt::XXX constants. The native (and the default) geometry manager
is the described above grow-mode algorithm (gt::GrowMode). The currently implemented Tk
managers are packer (gt::Pack) and placer (gt::Place). Each has its own set of options and
methods, and their manuals are provided separately in the Prima::Widget::pack section and the
Prima::Widget::place section (the manpages are also imported from Tk).

Another concept that comes along with geometry managers is the ’geometry request size’. It
is realized as a two-integer property ::geomSize, which reflects the size selected by some intrinsic
widget knowledge, and the idea is that ::geomSize it is merely a request to a geometry manager,
whereas the latter changes ::size accordingly. For example, a button might set its ’intrinsic’
width in accord with the width of text string displayed in it. If the default width for such a button
is not overridden, it is assigned with such a width. By default, under gt::GrowMode geometry
manager, setting ::geomSize (and its two semi-alias properties ::geomWidth and ::geomHeight

) also changes the actual widget size.Moreover, when the size is passed to the Widget initialization
code, ::size properties are used to initialize ::geomSize. Such design minimizes the confusion
between the two properties, and also minimizes the direct usage of ::geomSize, limiting it for
selecting advisory size in widget internal code.

The geometry request size is useless under gt::GrowMode geometry manager, but Tk managers
use it extensively.

Relative coordinates

Another geometry issue, or rather a programming technique must be mentioned - the relative
coordinates. It is the well-known problem, when a dialog window, developed with one font looks
garbled on another system with another font. The relative coordinates solve the problem; the
solution provides the ::designScale two-integer property, the width and height of the font, that
was used when the dialog window was designed. With this property supplied, the position and size
supplied when a widget is actually created, are transformed in proportion between the designed
and the actual font metrics.

The relative coordinates can be used only when passing the geometry properties values, and
only before the creation stage, before a widget is created, because the scaling calculations perform
in Prima::Widget::profile check in() method.

In order to employ the relative coordinates scheme, the owner (or the dialog) widget must
set its ::designScale to the font metrics and ::scaleChildren property to 1. Widgets, created
with owner that meets these requirements, participate in the relative coordinates scheme. If a
widget must be excluded from the relative geometry applications, either the owner’s property
::scaleChildren must be set to 0, or the widget’s ::designScale must be set to undef. As the
default ::designScale value is undef, no default implicit relative geometry schemes are applied.

The ::designScale property is auto-inherited; its value is copied to the children widgets,
unless the explicit ::designScale was given during the widget’s creation. This is used when such
a child widget serves as an owner for some other grand-children widgets; the inheritance scheme
allows the grand- (grand- etc) children to participate in the relative geometry scheme.

Note: it is advised to test such applications with the Prima::Stress module, which assigns a
random font as the default, so the testing phase does not involve tweaking of the system settings.

76

Z-order

In case when two widgets overlap, one of these is drawn in full, whereas the another only partly.
Prima::Widget provides management of the Z-axis ordering, but since Z-ordering paradigm can
hardly be fit into the properties scheme, the toolkit uses methods instead.

A widget can use four query methods: first(), last(), next(), and prev(). These return,
correspondingly, the first and the last widgets in Z-order stack, and the direct neighbors of a
widget ($widget-> next-> prev always equals to the $widget itself, given that $widget-> next
exists).

The last widget is the topmost one, the one that is drawn fully. The first is the most obscured
one, given that all the widgets overlap.

Z-order can also be changed at runtime (but not during widget’s creation). There are
three methods: bring to front(), that sets the widget last in the order, making it topmost,
send to back(), that does the reverse, and insert behind(), that sets a widget behind the
another widget, passed as an argument.

Changes to Z-order trigger ZOrderChanged notification.

Parent-child relationship

By default, if a widget is a child to a widget or window, it maintains two features: it is clipped by
its owner’s boundaries and is moved together as the owner widget moves. It is said also that a child
is inferior to its parent. However, a widget without a parent still does have a valid owner. Instead
of implementing parent property, the ::clipOwner property was devised. It is 1 by default, and if
it is 1, then owner of a widget is its parent, at the same time. However, when it is 0, many things
change. The widget is neither clipped nor moved together with its parent. The widget become
parentless, or, more strictly speaking, the screen becomes its parent. Moreover, the widget’s origin
offset is calculated then not from the owner’s coordinates but from the screen, and mouse events
in the widget do not transgress implicitly to the owner’s top-level window eventual decorations.

The same results are produced if a widget is inserted in the application object, which does
not have screen visualization. A widget that belongs to the application object, can not reset its
::clipOwner value to 1.

The ::clipOwner property opens a possibility for the toolkit widgets to live inside other pro-
grams’ windows. If the ::parentHandle is changed from its default undef value to a valid system
window handle, the widget becomes child to this window, which can belong to any application
residing on the same display. This option is dangerous, however: normally widgets never get
destroyed by no reason. A top-level window is never destroyed before its Close notification grants
the destruction. The case with ::parentHandle is special, because a widget, inserted into an
alien application, must be prepared to be destroyed at any moment. It is recommended to use
prior knowledge about such the application, and, even better, use one or another inter-process
communication scheme to interact with it.

A widget does not need to undertake anything special to become an ’owner’. Any wid-
get, that was set in ::owner property on any other widget, becomes owner automatically. Its
get widgets() method returns non-empty widget list. get widgets() serves same purpose as
Prima::Component::get components(), but returns only Prima::Widget descendants.

A widget can change its owner at any moment. The ::owner property is both readable and
writable, and if a widget is visible during the owner change, it is immediately appeared under
different coordinates and different clipping condition after the property change, given that its
::clipOwner is set to 1.

Visibility

A widget is visible by default. Visible means that it is shown on the screen if it is not shadowed
by other widgets or windows. The visibility is governed by the ::visible property, and its two
convenience aliases, show() and hide().

77

When a widget is invisible, its geometry is not discarded; the widget pertains its position and
size, and is subject to all previously discussed implicit sizing issues. When change to ::visible

property is made, the screen is not updated immediately, but in the next event loop invocation,
because uncovering of the underlying area of a hidden widget, and repainting of a new-shown
widget both depend onto the event-driven rendering functionality. If the graphic content must be
updated, update view() must be called, but there’s a problem. It is obvious that if a widget is
shown, the only content to be updated is its own. When a widget becomes hidden, it may uncover
more than one widget, depending on the geometry, so it is unclear what widgets must be updated.
For the practical reasons, it is enough to get one event loop passed, by calling yield() method of
the $::application object. The other notifications may pass here as well, however.

There are other kinds of visibility. A widget might be visible, but one of its owners might
not. Or, a widget and its owners might be visible, but they might be over-shadowed by the other
windows. These conditions are returned by showing() and exposed() functions. These return
boolean values corresponding to the condition described. So, if a widget is ’exposed’, it is ’showing’
and ’visible’; exposed() returns always 0 if a widget is either not ’showing’ or not ’visible’. If a
widget is ’showing’, then it is always ’visible’. showing() returns always 0 if a widget is invisible.

Visibility changes trigger Hide and Show notifications.

Focus

One of the key points of any GUI is that only one window at a time can possess a focus. The
widget is focused, if the user’s keyboard input is directed to it. The toolkit adds another layer
in the focusing scheme, as often window managers do, highlighting the decorations of a top-level
window over a window with the input focus.

Prima::Widget property ::focused governs the focused state of a widget. It is sometimes too
powerful to be used. Its more often substitutes, ::selected and ::current properties provide
more respect to widget hierarchy.

::selected property sets focus to a widget if it is allowed to be focused, by the usage of the
::selectable property. With this granted, the focus is passed to the widget or to the one of its
(grand-) children. So to say, when ’selecting’ a window with a text field by clicking on a window,
one does not expect the window to be focused, but the text field. To achieve this goal and reduce
unnecessary coding, the ::current property is introduced. With all equal conditions, a widget
that is ’current’ gets precedence in getting selected over widgets that are not ’current’.

De-selecting, in its turn, leaves the system in such a state when no window has input focus.
There are two convenience shortcuts select() and deselect() defined, aliased to selected(1) and
selected(0), correspondingly.

As within the GUI space, there can be only one ’focused’ widget, so within the single widget
space, there can be only one ’current’ widget. A widget can be marked as a current by calling
::current (or, identically, ::currentWidget on the owner widget). The reassignments are
performed automatically when a widget is focused. The reverse is also true: if a widget is explicitly
marked as ’current’, and belongs to the widget tree with the focus in one of its widgets, then the
focus passed to the ’current’ widget, or down to hierarchy if it is not selectable.

These relations between current widget pointer and focus allow the toolkit easily implement
the focusing hierarchy. The focused widget is always on the top of the chain of its owner widgets,
each of whose is a ’current’ widget. If, for example, a window that contains a widget that contains
a focused button, become un-focused, and then user selects the window again, then the button
will become focused automatically.

Changes to focus produce Enter and Leave notifications.
Below discussed mouse- and keyboard- driven focusing schemes. Note that all of these work

via ::selected, and do not focus the widgets with ::selectable property set to 0.

78

Mouse-aided focusing

Typically, when the user clicks the left mouse button on a widget, the latter becomes focused. One
can note that not all widgets become focused after the mouse click - scroll bars are the examples.
Another kind of behavior is the described above window with the text field - clicking mouse on a
window focuses a text field.

Prima::Widget has the ::selectingButtons property, a combination of mb::XXX (mouse
buttons) flags. If the bits corresponding to the buttons are set, then click of this button will
automatically call ::selected(1) (not ::focused(1)).

Another boolean property, ::firstClick determines the behavior when the mouse button
action is up to focus a widget, but the widget’s top-level window is not active. The default value
of ::firstClick is 1, but if set otherwise, the user must click twice to a widget to get it focused.
The property does not influence anything if the top-level window was already active when the
click event occured.

Due to some vendor-specific GUI designs, it is hardly possibly to force selection of one top-
level window when the click was on the another. The window manager or the OS can interfere,
although this does not always happen, and produce different results on different platforms. Since
the primary goal of the toolkit is portability, such functionality must be considered with care.
Moreover, when the user selects a window by clicking not on the toolkit-created widgets, but on
the top-level window decorations, it is not possible to discern the case from any other kind of
focusing.

Keyboard focusing

The native way to navigate between the toolkit widgets are tab- and arrow- navigation. The
tab (and its reverse, shift-tab) key combinations circulate the focus between the widgets in
same top-level group (but not inside the same owner widget group). The arrow keys, if the
focused widget is not interested in these keystrokes, move the focus in the specified direction, if
it is possible. The methods that provide the navigations are available and called next tab() and
next positional(), correspondingly (see API for the details).

When next positional() operates with the geometry of the widgets, next tab() uses the
::tabStop and ::tabOrder properties. ::tabStop, the boolean property, set to 1 by default,
tells if a widget is willing to participate in tab-aided focus circulation. If it doesn’t, next tab()

never uses it in its iterations. ::tabOrder value is an integer, unique within the sibling widgets (
sharing same owner) list, and is used as simple tag when the next tab-focus candidate is picked
up. The default ::tabOrder value is -1, which changes automatically after widget creation to a
unique value.

User input

The toolkit responds to the two basic means of the user input - the keyboard and the mouse. Below
described three aspects of the input handling - the event-driven, the polling and the simulated
input issues. The event-driven input is the more or less natural way of communicating with the
user, so when the user presses the key or moves the mouse, a system event occurs and triggers
the notification in one or more widgets. Polling methods provide the immediate state of the input
devices; the polling is rarely employed, primarily because of its limited usability, and because the
information it provides is passed to the notification callbacks anyway. The simulated input is little
more than notify() call with specifically crafted parameters. It interacts with the system, so the
emulation can gain the higher level of similarity to the user actions. The simulated input functions
allow the notifications to be called right away, or post it, delaying the notification until the next
event loop invocation.

Keyboard

Event-driven

79

Keyboard input generates several notifications, where the most important are KeyDown and
KeyUp. Both have almost the same list of parameters (see API), that contain the key code,
its modifiers (if any) that were pressed and an eventual character code. The algorithms
that extract the meaning of the key, for example, discretion between character and functional
keys etc are not described here. The reader is advised to look at Prima::KeySelector module,
which provides convenience functions for keyboard input values transformations, and to the
Prima::Edit and Prima::InputLine modules, the classes that use extensively the keyboard
input. But in short, the key code is one of the kb::XXX (like, kb::F10, kb::Esc) constants,
and the modifier value is a combination of the km::XXX (km::Ctrl, km::Shift) constants. The
notable exception is kb::None value, which hints that the character code is of value. Some
other kb::XXX-marked keys have the character code as well, and it is up to a programmer
how to treat these combinations. It is advised, however, to look at the key code first, and
then to the character code.

KeyDown event has also the repeat integer parameter, that shows the repetitive count how
many times the key was pressed. Usually it is 1, but if a widget was not able to get its
portion of events between the key presses, its value can be higher. If a code doesn’t check for
this parameter, some keyboard input may be lost. If the code will be too much complicated
by introducing the repeat-value, one may consider setting the ::briefKeys property to 0.
::briefKeys, the boolean property, is 1 by default. If set to 0, it guarantees that the repeat
value will always be 1, but with the price of certain under-optimization. If the core KeyDown

processing code sees repeat value greater than 1, it simply calls the notification again.

Along with these two notifications, the TranslateAccel event is generated after KeyDown, if
the focused widget is not interested in the key event. Its usage covers the needs of the other
widgets that are willing to read the user input, even being out of focus. A notable example
can be a button with a hot key, that reacts on the key press when the focus is elsewhere
within its top-level window. TranslateAccel has same parameters as KeyDown, except the
REPEAT parameter.

Such out-of-focus input is also used with built-in menu keys translations. If a descendant of
Prima::AbstractMenu is in the reach of the widget tree hierarchy, then it is checked whether
it contains some hot keys that match the user input. See the Prima::Menu section for the
details. In particular, Prima::Widget has ::accelTable property, a mere slot for an object
that contains a table of hot keys mappings to custom subroutines.

Polling

The polling function for the keyboard is limited to the modifier keys only.
get shift state() method returns the press state of the modifier keys, a combination
of km::XXX constants.

Simulated input

There are two methods, corresponding to the major notifications - key up() and key down(),
that accept the same parameters as the KeyUp and KeyDown notifications do, plus the POST
boolean flag. See the API entry for details.

These methods are convenience wrappers for key event() method, which is never used
directly.

Mouse

Event-driven

Mouse notifications are send in response when the user moves the mouse, or presses and
releases mouse buttons. The notifications are logically grouped in two sets, the first con-
tains MouseDown, MouseUp, MouseClick, and MouseWheel, and the second - MouseMove,
MouseEnter, end MouseLeave.

80

The first set deals with button actions. Pressing, de-pressing, clicking (and double-clicking
), the turn of mouse wheel correspond to the four notifications. The notifications are sent
together with the mouse pointer coordinates, the button that was touched, and the eventual
modifier keys that were pressed. In addition, MouseClick provides the boolean flag if the
click was single or double, and MouseWheel - the Z-range of the wheel turn. These notifica-
tions occur when the mouse event occurs within the geometrical bounds of a widget, with
one notable exception, when a widget is in capture mode. If the ::capture is set to 1, then
these events are sent to the widget even if the mouse pointer is outside, and not sent to the
widgets and windows that reside under the pointer.

The second set deals with the pointer movements. When the pointer passes over a widget,
it receives first MouseEnter, then series of MouseMove, and finally MouseLeave. MouseMove

and MouseEnter notifications provide X,Y-coordinates and modificator keys; MouseLeave

passes no parameters.

Polling

The mouse input polling procedures are get mouse state() method, that returns combi-
nation of mb::XXX constants, and the ::pointerPos two-integer property that reports the
current position of the mouse pointer.

Simulated input

There are five methods, corresponding to the mouse events - mouse up(), mouse down(),
mouse click(), mouse wheel() and mouse move(), that accept the same parameters as
their event counterparts do, plus the POST boolean flag. See the API entry for details.

These methods are convenience wrappers for mouse event() method, which is never used
directly.

Color schemes

Prima::Drawable deals only with such color values, that can be unambiguously decomposed to
their red, green and blue components. Prima::Widget extends the range of the values acceptable
by its color properties, introducing the color schemes. The color can be set indirectly, without
prior knowledge of what is its RGB value. There are several constants defined in cl:: name
space, that correspond to the default values of different color properties of a widget.

Prima::Widget revises the usage of ::color and ::backColor, the properties inherited from
Prima::Drawable. Their values are widget’s ’foreground’ and ’background’ colors, in addition
to their function as template values. Moreover, their dynamic change induces the repainting of
a widget, and they can be inherited from the owner. The inheritance is governed by proper-
ties ::ownerColor and ::ownerBackColor. While these are true, changes to owner ::color or
::backColor copied automatically to a widget. Once the widget’s ::color or ::backColor are
explicitly set, the owner link breaks automatically by setting ::ownerColor or ::ownerBackColor
to 0.

In addition to these two color properties, Prima::Widget introduces six others.
These are ::disabledColor, ::disabledBackColor, ::hiliteColor, ::hiliteBackColor,
::light3DColor, and ::dark3DColor. The ’disabled’ color pair contains the values that are
expected to be used as foreground and background when a widget is in the disabled state (see
API, ::enabled property). The ’hilite’ values serve as the colors for representation of selection
inside a widget. Selection may be of any kind, and some widgets do not provide any. But for those
that do, the ’hilite’ color values provide distinct alternative colors. Examples are selections in the
text widgets, or in the list boxes. The last pair, ::light3DColor and ::dark3DColor is used
for drawing 3D-looking outlines of a widget. The purpose of all these properties is the adequate
usage of the color settings, selected by the user using system-specific tools, so the program written
with the toolkit would look not such different, and more or less conformant to the user’s color
preferences.

81

The additional cl:: constants, mentioned above, represent these eight color properties. These
named correspondingly, cl::NormalText, cl::Normal, cl::HiliteText, cl::Hilite, cl::DisabledText,
cl::Disabled, cl::Light3DColor and cl::Dark3DColor. cl::NormalText is alias to cl::Fore, and
cl::Normal - to cl::Back. Another constant set, ci:: can be used with the ::colorIndex property,
a multiplexer for all eight color properties. ci:: constants mimic their non-RGB cl:: counter-
parts, so the call hiliteBackColor(cl::Red) is equal to colorIndex(ci::Hilite, cl::Red).

Mapping from these constants to the RGB color representation is used with map color()

method. These cl:: constants alone are sufficient for acquiring the default values, but the toolkit
provides wider functionality than this. The cl:: constants can be combined with the wc::

constants, that represent standard widget class. The widget class is implicitly used when single
cl:: constant is used; its value is read from the ::widgetClass property, unless one of wc::

constants is combined with the non-RGB cl:: value. wc:: constants are described in the API
entry; their usage can make call of, for example, backColor(cl::Back) on a button and on
an input line result in different colors, because the cl::Back is translated in the first case into
cl::Back|wc::Button, and in another - cl::Back|wc::InputLine.

Dynamic change of the color properties result in the ColorChanged notification.

Fonts

Prima::Widget does not change the handling of fonts - the font selection inside and out-
side begin paint()/end paint() is not different at all. A matter of difference is how does
Prima::Widget select the default font.

First, if the ::ownerFont property is set to 1, then font of the owner is copied to the widget,
and is maintained all the time while the property is true. If it is not, the default font values read
from the system.

The default font metrics for a widget returned by get default font() method, that often deals
with system-dependent and user-selected preferences (see the Additional resources entry). Be-
cause a widget can host an eventual Prima::Popup object, it contains get default popup font()

method, that returns the default font for the popup objects. The dynamic popup font settings
governed, naturally, by the ::popupFont property. Prima::Window extends the functionality to
get default menu font() and the ::menuFont property.

Dynamic change of the font property results in the FontChanged notification.

Additional resources

The resources, operated via Prima::Widget class but not that strictly bound to the widget concept,
are gathered in this section. The section includes overview of pointer, cursor, hint, menu objects
and user-specified resources.

Pointer

The mouse pointer is the shared resource, that can change its visual representation when it hovers
over different kinds of widgets. It is usually a good practice for a text field, for example, set the
pointer icon to a jagged vertical line, or indicate a moving window with a cross-arrowed pointer.

A widget can select either one of the predefined system pointers, mapped by the cr::XXX

constant set, or supply its own pointer icon of an arbitrary size and color depth.
NB: Not all systems allow the colored pointer icons. System value under sv::ColorPointer index

containing a boolean value, whether the colored icons are allowed or not.
In general, the ::pointer property is enough for these actions. It discerns whether it has an

icon or a constant passed, and sets the appropriate properties. These properties are also accessible
separately, although their usage is not encouraged, primarily because of the tangled relationship
between them. These properties are: ::pointerType, ::pointerIcon, and ::pointerHotSpot.
See their details in the the API entry sections.

82

Another property, which is present only in Prima::Application name space is called
::pointerVisible, and governs the visibility of the pointer - but for all widget instances at
once.

Cursor

The cursor is a blinking rectangular area, indicating the availability of the input focus in a widget.
There can be only one active cursor per a GUI space, or none at all. Prima::Widget provides
several cursor properties: ::cursorVisible, ::cursorPos, and ::cursorSize. There are also
two methods, show cursor() and hide cursor(), which are not the convenience shortcuts but
the functions accounting the cursor hide count. If hide cursor() was called three times, then
show cursor() must be called three times as well for the cursor to become visible.

Hint

::hint is a text string, that usually describes the widget’s purpose to the user in a brief
manner. If the mouse pointer is hovered over the widget longer than some timeout (see
Prima::Application::hintPause), then a label appears with the hint text, until the pointer is
drawn away. The hint behavior is governed by Prima::Application, but a widget can do two addi-
tional things about hint: it can enable and disable it by calling ::showHint property, and it can
inherit the owner’s ::hint and ::showHint properties using ::ownerHint and ::ownerShowHint

properties. If, for example, ::ownerHint is set to 1, then ::hint value is automatically copied
from the widget’s owner, when it changes. If, however, the widget’s ::hint or ::showHint are
explicitly set, the owner link breaks automatically by setting ::ownerHint or ::ownerShowHint

to 0.
The widget can also operate the ::hintVisible property, that shows or hides the hint label

immediately, if the mouse pointer is inside the widget’s boundaries.

Menu objects

The default functionality of Prima::Widget coexists with two kinds of the Prima::AbstractMenu
descendants - Prima::AccelTable and Prima::Popup (Prima::Window is also equipped with
Prima::Menu reference). The ::items property of these objects are accessible through
::accelItems and ::popupItems, whereas the objects themselves - through ::accelTable and
::popup, correspondingly. As mentioned in the User input entry, these objects hook the user key-
board input and call the programmer-defined callback subroutine if the key stroke equals to one of
their table values. As for ::accelTable, its function ends here. ::popup provides access to a con-
text pop-up menu, which can be invoked by either right-clicking or pressing a system-dependent
key combination. As a little customization, the ::popupColorIndex and ::popupFont properties
are introduced. (::popupColorIndex is multiplexed to ::popupColor, ::popupHiliteColor,
::popupHiliteBackColor, etc etc properties exactly like the ::colorIndex property).

The font and color of a menu object might not always be writable. The underlying system
capabilities in this area range from total inability for a program to manage the menu fonts and
colors in Win32, to a sport in interactive changing menu fonts and colors in OS/2.

The Prima::Window class provides equivalent methods for the menu bar, introducing ::menu,
::menuItems, ::menuColorIndex (with multiplexing) and ::menuFont properties.

User-specified resources

It is considered a good idea to incorporate the user preferences into the toolkit look-and-feel.
Prima::Widget relies to the system-specific code that tries to map these preferences as close as
possible to the toolkit paradigm.

Unix version employs XRDB (X resource database), which is the natural way for the user to
tell the preferences with fine granularity. Win32 and OS/2 read the setting that the user has to set
interactively, using system tools. Nevertheless, the toolkit can not emulate all user settings that

83

are available on the supported platforms; it rather takes a ’least common denominator’, which is
colors and fonts. fetch resource() method is capable of returning any of such settings, provided
it’s format is font, color or a string. The method is rarely called directly.

The appealing idea of making every widget property adjustable via the user-specified resources
is not implemented in full. It can be accomplished up to a certain degree using fetch resource()

existing functionality, but it is believed that calling up the method for the every property for the
every widget created is prohibitively expensive.

API

Properties

accelItems [ITEM LIST]

Manages items of a Prima::AccelTable object associated with a widget. The ITEM LIST
format is same as Prima::AbstractMenu::items and is described in the Prima::Menu sec-
tion.

See also: accelTable

accelTable OBJECT

Manages a Prima::AccelTable object associated with a widget. The sole purpose of the
accelTable object is to provide convenience mapping of key combinations to anonymous
subroutines. Instead of writing an interface specifically for Prima::Widget, the existing
interface of Prima::AbstractMenu was taken.

The accelTable object can be destroyed safely; its cancellation can be done either via
accelTable(undef) or destroy() call.

Default value: undef

See also: accelItems

autoEnableChildren BOOLEAN

If TRUE, all immediate children widgets maintain the same enabled state as the widget.
This property is useful for the group-like widgets (ComboBox, SpinEdit etc), that employ
their children for visual representation.

Default value: 0

backColor COLOR

In widget paint state, reflects background color in the graphic context. In widget normal
state, manages the basic background color. If changed, initiates ColorChanged notification
and repaints the widget.

See also: color, colorIndex, ColorChanged

bottom INTEGER

Maintains the lower boundary of a widget. If changed, does not affect the widget height;
but does so, if called in set() together with ::top.

See also: left, right, top, origin, rect, growMode, Move

briefKeys BOOLEAN

If 1, contracts the repetitive key press events into one notification, increasing REPEAT
parameter of KeyDown callbacks. If 0, REPEAT parameter is always 1.

Default value: 1

See also: KeyDown

84

buffered BOOLEAN

If 1, a widget Paint callback draws not on the screen, but on the off-screen memory instead.
The memory content is copied to the screen then. Used when complex drawing methods are
used, or if output smoothness is desired.

This behavior can not be always granted, however. If there is not enough memory, then
widget draws in the usual manner.

Default value: 0

See also: Paint

capture BOOLEAN, CLIP OBJECT = undef

Manipulates capturing of the mouse events. If 1, the mouse events are not passed to the
widget the mouse pointer is over, but are redirected to the caller widget. The call for capture
might not be always granted due the race conditions between programs.

If CLIP OBJECT widget is defined in set-mode call, the pointer movements are confined to
CLIP OBJECT inferior.

See also: MouseDown, MouseUp, MouseMove, MouseWheel, MouseClick.

centered BOOLEAN

A write-only property. Once set, widget is centered by X and Y axis relative to its owner.

See also: x centered, y centered, growMode, origin, Move.

clipOwner BOOLEAN

If 1, a widget is clipped by its owner boundaries. It is the default and expected behavior. If
clipOwner is 0, a widget behaves differently: it does not clipped by the owner, it is not moved
together with the parent, the origin offset is calculated not from the owner’s coordinates but
from the screen, and mouse events in a widget do not transgress to the top-level window
decorations. In short, it itself becomes a top-level window, that, contrary to the one created
from Prima::Window class, does not have any interference with system-dependent window
stacking and positioning (and any other) policy, and is not ornamented by the window
manager decorations.

Default value: 1

See the Parent-child relationship entry

See also: Prima::Object owner section, parentHandle

color COLOR

In widget paint state, reflects foreground color in the graphic context. In widget normal
state, manages the basic foreground color. If changed, initiates ColorChanged notification
and repaints the widget.

See also: backColor, colorIndex, ColorChanged

colorIndex INDEX, COLOR

Manages the basic color properties indirectly, by accessing via ci::XXX constant.
Is a complete alias for ::color, ::backColor, ::hiliteColor, ::hiliteBackColor,
::disabledColor, ::disabledBackColor, ::light3DColor, and ::dark3DColor proper-
ties. The ci::XXX constants are:

ci::NormalText or ci::Fore

ci::Normal or ci::Back

ci::HiliteText

ci::Hilite

85

ci::DisabledText

ci::Disabled

ci::Light3DColor

ci::Dark3DColor

The non-RGB cl:: constants, specific to the Prima::Widget color usage are identical to
their ci:: counterparts:

cl::NormalText or cl::Fore

cl::Normal or cl::Back

cl::HiliteText

cl::Hilite

cl::DisabledText

cl::Disabled

cl::Light3DColor

cl::Dark3DColor

See also: color, backColor, ColorChanged

current BOOLEAN

If 1, a widget (or one of its children) is marked as the one to be focused (or selected) when
the owner widget receives select() call. Within children widgets, only one or none at all
can be marked as a current.

See also: currentWidget, selectable, selected, selectedWidget, focused

currentWidget OBJECT

Points to a children widget, that is to be focused (or selected) when the owner widget
receives select() call.

See also: current, selectable, selected, selectedWidget, focused

cursorPos X OFFSET Y OFFSET

Specifies the lower left corner of the cursor

See also: cursorSize, cursorVisible

cursorSize WIDTH HEIGHT

Specifies width and height of the cursor

See also: cursorPos, cursorVisible

cursorVisible BOOLEAN

Specifies cursor visibility flag. Default value is 0.

See also: cursorSize, cursorPos

dark3DColor COLOR

The color used to draw dark shades.

See also: light3DColor, colorIndex, ColorChanged

designScale X SCALE Y SCALE

The width and height of a font, that was used when a widget (usually a dialog or a grouping
widget) was designed.

See also: scaleChildren, width, height, size, font

86

disabledBackColor COLOR

The color used to substitute ::backColor when a widget is in its disabled state.

See also: disabledColor, colorIndex, ColorChanged

disabledColor COLOR

The color used to substitute ::color when a widget is in its disabled state.

See also: disabledBackColor, colorIndex, ColorChanged

enabled BOOLEAN

Specifies if a widget can accept focus, keyboard and mouse events. Default value is 1,
however, being ’enabled’ does not automatically allow the widget become focused. Only the
reverse is true - if enabled is 0, focusing can never happen.

See also: responsive, visible, Enable, Disable

font %FONT

Manages font context. Same syntax as in Prima::Drawable. If changed, initiates
FontChanged notification and repaints the widget.

See also: designScale, FontChanged, ColorChanged

geometry INTEGER

Selects one of the available geometry managers. The corresponding integer constants are:

gt::GrowMode, gt::Default - the default grow-mode algorithm

gt::Pack - Tk packer

gt::Place - Tk placer

See growMode, the Prima::Widget::pack section, the Prima::Widget::place section.

growMode MODE

Specifies widget behavior, when its owner is resized or moved. MODE can be 0 (default)
or a combination of the following constants:

Basic constants

gm::GrowLoX widget’s left side is kept in constant

distance from owner’s right side

gm::GrowLoY widget’s bottom side is kept in constant

distance from owner’s top side

gm::GrowHiX widget’s right side is kept in constant

distance from owner’s right side

gm::GrowHiY widget’s top side is kept in constant

distance from owner’s top side

gm::XCenter widget is kept in center on its owner’s

horizontal axis

gm::YCenter widget is kept in center on its owner’s

vertical axis

gm::DontCare widgets origin is maintained constant relative

to the screen

Derived or aliased constants

87

gm::GrowAll gm::GrowLoX|gm::GrowLoY|gm::GrowHiX|gm::GrowHiY

gm::Center gm::XCenter|gm::YCenter

gm::Client gm::GrowHiX|gm::GrowHiY

gm::Right gm::GrowLoX|gm::GrowHiY

gm::Left gm::GrowHiY

gm::Floor gm::GrowHiX

See also: Move, origin

firstClick BOOLEAN

If 0, a widget bypasses first mouse click on it, if the top-level window it belongs to was not
activated, so selecting such a widget it takes two mouse clicks.

Default value is 1

See also: MouseDown, selectable, selected, focused, selectingButtons

focused BOOLEAN

Specifies whether a widget possesses the input focus or not. Disregards ::selectable

property on set-call.

See also: selectable, selected, selectedWidget, KeyDown

geomWidth, geomHeight, geomSize

Three properties that select geometry request size. Writing and reading to ::geomWidth and
::geomHeight is equivalent to ::geomSize. The properies are run-time only, and behave
differently under different circumstances:

• As the properties are run-time only, they can not be set in the profile, and their initial
value is fetched from ::size property. Thus, setting the explicit size is aditionally sets
the advised size in case the widget is to be used with the Tk geometry managers.

• Setting the properties under the gt::GrowMode geometry manager also sets the corre-
sponding ::width, ::height, or ::size. When the properties are read, though, the
real size properties are not read; the values are kept separately.

• Setting the properties under Tk geometry managers cause widgets size and position
changed according to the geometry manager policy.

height

Maintains the height of a widget.

See also: width, growMode, Move, Size, get virtual size, sizeMax, sizeMin

helpContext STRING

A string that binds a widget, a logical part it plays with the application and an interactive
help topic. STRING format is defined as POD link (see perlpod) - ”manpage/section”,
where ’manpage’ is the file with POD content and ’section’ is the topic inside the manpage.

See also: help

hiliteBackColor COLOR

The color used to draw alternate background areas with high contrast.

See also: hiliteColor, colorIndex, ColorChanged

hiliteColor COLOR

The color used to draw alternate foreground areas with high contrast.

See also: hiliteBackColor, colorIndex, ColorChanged

88

hint TEXT

A text, shown under mouse pointer if it is hovered over a widget longer than
Prima::Application::hintPause timeout. The text shows only if the ::showHint is 1.

See also: hintVisible, showHint, ownerHint, ownerShowHint

hintVisible BOOLEAN

If called in get-form, returns whether the hint label is shown or not. If in set-form, imme-
diately turns on or off the hint label, disregarding the timeouts. It does regard the mouse
pointer location, however, and does not turn on the hint label if the pointer is away.

See also: hint, showHint, ownerHint, ownerShowHint

left INTEGER

Maintains the left boundary of a widget. If changed, does not affect the widget width; but
does so, if called in set() together with ::right.

See also: bottom, right, top, origin, rect, growMode, Move

light3DColor COLOR

The color used to draw light shades.

See also: dark3DColor, colorIndex, ColorChanged

ownerBackColor BOOLEAN

If 1, the background color is synchronized with the owner’s. Automatically set to 0 if
::backColor property is explicitly set.

See also: ownerColor, backColor, colorIndex

ownerColor BOOLEAN

If 1, the foreground color is synchronized with the owner’s. Automatically set to 0 if ::color
property is explicitly set.

See also: ownerBackColor, color, colorIndex

ownerFont BOOLEAN

If 1, the font is synchronized with the owner’s. Automatically set to 0 if ::font property is
explicitly set.

See also: font, FontChanged

ownerHint BOOLEAN

If 1, the hint is synchronized with the owner’s. Automatically set to 0 if ::hint property is
explicitly set.

See also: hint, showHint, hintVisible, ownerShowHint

ownerShowHint BOOLEAN

If 1, the show hint flag is synchronized with the owner’s. Automatically set to 0 if ::showHint
property is explicitly set.

See also: hint, showHint, hintVisible, ownerHint

ownerPalette BOOLEAN

If 1, the palette array is synchronized with the owner’s. Automatically set to 0 if ::palette
property is explicitly set.

See also: palette

89

origin X Y

Maintains the left and bottom boundaries of a widget relative to its owner (or to the screen
if ::clipOwner is set to 0).

See also: bottom, right, top, left, rect, growMode, Move

packInfo %OPTIONS

See the Prima::Widget::pack section

palette [@PALETTE]

Specifies array of colors, that are desired to be present into the system palette, as close to
the PALETTE as possible. This property works only if the graphic device allows palette
operations. See the palette entry in the Prima::Drawable section.

See also: ownerPalette

parentHandle SYSTEM WINDOW

If SYSTEM WINDOW is a valid system-dependent window handle, then a widget becomes
the child of the window specified, given the widget’s ::clipOwner is 0. The parent window
can belong to another application.

Default value is undef.

See also: clipOwner

placeInfo %OPTIONS

See the Prima::Widget::place section

pointer cr::XXX or ICON

Specifies the pointer icon; discerns between cr::XXX constants and an icon. If an icon
contains a hash variable pointerHotSpot with an array of two integers, these integers will
be treated as the pointer hot spot. In get-mode call, this variable is automatically assigned
to an icon, if the result is an icon object.

See also: pointerHotSpot, pointerIcon, pointerType

pointerHotSpot X OFFSET Y OFFSET

Specifies the hot spot coordinates of a pointer icon, associated with a widget.

See also: pointer, pointerIcon, pointerType

pointerIcon ICON

Specifies the pointer icon, associated with a widget.

See also: pointerHotSpot, pointer, pointerType

pointerPos X OFFSET Y OFFSET

Specifies the mouse pointer coordinates relative to widget’s coordinates.

See also: get mouse state, screen to client, client to screen

pointerType TYPE

Specifies the type of the pointer, associated with the widget. TYPE can accept one constant
of cr::XXX set:

cr::Default same pointer type as owner’s

cr::Arrow arrow pointer

cr::Text text entry cursor-like pointer

cr::Wait hourglass

90

cr::Size general size action pointer

cr::Move general move action pointer

cr::SizeWest, cr::SizeW right-move action pointer

cr::SizeEast, cr::SizeE left-move action pointer

cr::SizeWE general horizontal-move action pointer

cr::SizeNorth, cr::SizeN up-move action pointer

cr::SizeSouth, cr::SizeS down-move action pointer

cr::SizeNS general vertical-move action pointer

cr::SizeNW up-right move action pointer

cr::SizeSE down-left move action pointer

cr::SizeNE up-left move action pointer

cr::SizeSW down-right move action pointer

cr::Invalid invalid action pointer

cr::User user-defined icon

All constants except cr::User and cr::Default present a system-defined pointers, their
icons and hot spot offsets. cr::User is a sign that an icon object was specified explicitly
via ::pointerIcon property. cr::Default is a way to tell that a widget inherits its owner
pointer type, no matter is it a system-defined pointer or a custom icon.

See also: pointerHotSpot, pointerIcon, pointer

popup OBJECT

Manages a Prima::Popup object associated with a widget. The purpose of the popup object
is to show a context menu when the user right-clicks or selects the corresponding keyboard
combination. Prima::Widget can host many children objects, Prima::Popup as well. But
only the one that is set in ::popup property will be activated automatically.

The popup object can be destroyed safely; its cancellation can be done either via
popup(undef) or destroy() call.

See also: Prima::Menu, Popup, Menu, popupItems, popupColorIndex, popupFont

popupColorIndex INDEX, COLOR

Maintains eight color properties of a pop-up context menu, associated with a widget. INDEX
must be one of ci::XXX constants (see ::colorIndex property).

See also: popupItems, popupFont, popup

popupColor COLOR

Basic foreground in a popup context menu color.

See also: popupItems, popupColorIndex, popupFont, popup

popupBackColor COLOR

Basic background in a popup context menu color.

See also: popupItems, popupColorIndex, popupFont, popup

popupDark3DColor COLOR

Color for drawing dark shadings in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupDisabledColor COLOR

Foreground color for disabled items in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

91

popupDisabledBackColor COLOR

Background color for disabled items in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupFont %FONT

Maintains the font of a pop-up context menu, associated with a widget.

See also: popupItems, popupColorIndex, popup

popupHiliteColor COLOR

Foreground color for selected items in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupHiliteBackColor COLOR

Background color for selected items in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

popupItems [ITEM LIST]

Manages items of a Prima::Popup object associated with a widget. The ITEM LIST format
is same as Prima::AbstractMenu::items and is described in the Prima::Menu section.

See also: popup, popupColorIndex, popupFont

popupLight3DColor COLOR

Color for drawing light shadings in a popup context menu.

See also: popupItems, popupColorIndex, popupFont, popup

rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Maintains the rectangular boundaries of a widget relative to its owner (or to the screen if
::clipOwner is set to 0).

See also: bottom, right, top, left, origin, width, height, size growMode, Move, Size,
get virtual size, sizeMax, sizeMin

right INTEGER

Maintains the right boundary of a widget. If changed, does not affect the widget width; but
does so, if called in set() together with ::left.

See also: left, bottom, top, origin, rect, growMode, Move

scaleChildren BOOLEAN

If a widget has ::scaleChildren set to 1, then the newly-created children widgets in-
serted in it will be scaled corresponding to the owner’s ::designScale, given that widget’s
::designScale is not undef and the owner’s is not [0,0].

Default is 1.

See also: designScale

selectable BOOLEAN

If 1, a widget can be granted focus implicitly, or by means of the user actions. select()

regards this property, and does not focus a widget that has ::selectable set to 0.

Default value is 0

See also: current, currentWidget, selected, selectedWidget, focused

92

selected BOOLEAN

If called in get-mode, returns whether a widget or one of its (grand-) children is focused. If
in set-mode, either simply turns the system with no-focus state (if 0), or sends input focus
to itself or one of the widgets tracked down by ::currentWidget chain.

See also: current, currentWidget, selectable, selectedWidget, focused

selectedWidget OBJECT

Points to a child widget, that has property ::selected set to 1.

See also: current, currentWidget, selectable, selected, focused

selectingButtons FLAGS

FLAGS is a combination of mb::XXX (mouse button) flags. If a widget receives a click with
a mouse button, that has the corresponding bit set in ::selectingButtons, then select()

is called.

See also: MouseDown, firstClick, selectable, selected, focused

shape IMAGE

Maintains the non-rectangular shape of a widget. IMAGE is monochrome Prima::Image,
with 0 bits treated as transparent pixels, and 1 bits as opaque pixels.

Successive only if sv::ShapeExtension value is true.

showHint BOOLEAN

If 1, the toolkit is allowed to show the hint label over a widget. If 0, the display of the hint
is forbidden. The ::hint property must contain non-empty string as well, if the hint label
must be shown.

Default value is 1.

See also: hint, ownerShowHint, hintVisible, ownerHint

size WIDTH HEIGHT

Maintains the width and height of a widget.

See also: width, height growMode, Move, Size, get virtual size, sizeMax, sizeMin

sizeMax WIDTH HEIGHT

Specifies the maximal size for a widget that it is allowed to accept.

See also: width, height, size growMode, Move, Size, get virtual size, sizeMin

sizeMin WIDTH HEIGHT

Specifies the minimal size for a widget that it is allowed to accept.

See also: width, height, size growMode, Move, Size, get virtual size, sizeMax

syncPaint BOOLEAN

If 0, the Paint request notifications are stacked until the event loop is called. If 1, every
time the widget surface gets invalidated, the Paint notification is called.

Default value is 0.

See also: invalidate rect, repaint, validate rect, Paint

tabOrder INTEGER

Maintains the order in which tab- and shift-tab- key navigation algorithms select the sibling
widgets. INTEGER is unique among the sibling widgets. In set mode, if INTEGER value
is already taken, the occupier is assigned another unique value, but without destruction of

93

a queue - widgets with ::tabOrder greater than of the widget, receive their new values too.
Special value -1 is accepted as ’the end of list’ indicator; the negative value is never returned.

See also: tabStop, next tab, selectable, selected, focused

tabStop BOOLEAN

Specifies whether a widget is interested in tab- and shift-tab- key navigation or not.

Default value is 1.

See also: tabOrder, next tab, selectable, selected, focused

text TEXT

A text string for generic purpose. Many Prima::Widget descendants use this property heavily
- buttons, labels, input lines etc, but Prima::Widget itself does not.

top INTEGER

Maintains the upper boundary of a widget. If changed, does not affect the widget height;
but does so, if called in set() together with ::bottom.

See also: left, right, bottom, origin, rect, growMode, Move

transparent BOOLEAN

Specifies whether the background of a widget before it starts painting is of any importance.
If 1, a widget can gain certain transparency look if it does not clear the background during
Paint event.

Default value is 0

See also: Paint, buffered.

visible BOOLEAN

Specifies whether a widget is visible or not. See the Visibility entry.

See also: Show, Hide, showing, exposed

widgetClass CLASS

Maintains the integer value, designating the color class that is defined by the system and is
associated with Prima::Widget eight basic color properties. CLASS can be one of wc::XXX
constants:

wc::Undef

wc::Button

wc::CheckBox

wc::Combo

wc::Dialog

wc::Edit

wc::InputLine

wc::Label

wc::ListBox

wc::Menu

wc::Popup

wc::Radio

wc::ScrollBar

wc::Slider

wc::Widget or wc::Custom

wc::Window

wc::Application

94

These constants are not associated with the toolkit classes; any class can use any of these
constants in ::widgetClass.

See also: map color, colorIndex

widgets @WIDGETS

In get-mode, returns list of immediate children widgets (identical to get widgets). In set-
mode accepts set of widget profiles, as insert does, as a list or an array. This way it is
possible to create widget hierarchy in a single call.

width WIDTH

Maintains the width of a widget.

See also: height growMode, Move, Size, get virtual size, sizeMax, sizeMin

x centered BOOLEAN

A write-only property. Once set, widget is centered by the horizontal axis relative to its
owner.

See also: centered, y centered, growMode, origin, Move.

y centered BOOLEAN

A write-only property. Once set, widget is centered by the vertical axis relative to its owner.

See also: x centered, centered, growMode, origin, Move.

Methods

bring to front

Sends a widget on top of all other siblings widgets

See also: insert behind, send to back, ZOrderChanged ,first, next, prev, last

can close

Sends Close message, and returns its boolean exit state.

See also: Close, close

client to screen @OFFSETS

Maps array of X and Y integer offsets from widget to screen coordinates. Returns the
mapped OFFSETS.

See also: screen to client, clipOwner

close

Calls can close(), and if successful, destroys a widget. Returns the can close() result.

See also: can close, Close

defocus

Alias for focused(0) call

See also: focus, focused, Enter, Leave

deselect

Alias for selected(0) call

See also: select, selected, Enter, Leave

95

exposed

Returns a boolean value, indicating whether a widget is at least partly visible on the screen.
Never returns 1 if a widget has ::visible set to 0.

See also: visible, showing, Show, Hide

fetch resource CLASS NAME, NAME, CLASS RESOURCE, RESOURCE,
OWNER, RESOURCE TYPE = fr::String

Returns a system-defined scalar of resource, defined by the widget hierarchy, its class, name
and owner. RESOURCE TYPE can be one of type qualificators:

fr::Color - color resource

fr::Font - font resource

fs::String - text string resource

Such a number of the parameters is used because the method can be called before a widget is
created. CLASS NAME is widget class string, NAME is widget name. CLASS RESOURCE
is class of resource, and RESOURCE is the resource name.

For example, resources ’color’ and ’disabledColor’ belong to the resource class ’Foreground’.

first

Returns the first (from bottom) sibling widget in Z-order.

See also: last, next, prev

focus

Alias for focused(1) call

See also: defocus, focused, Enter, Leave

hide

Sets widget ::visible to 0.

See also: hide, visible, Show, Hide, showing, exposed

hide cursor

Hides the cursor. As many times hide cursor() was called, as many time its counterpart
show cursor() must be called to reach the cursor’s initial state.

See also: show cursor, cursorVisible

help

Starts an interactive help viewer opened on ::helpContext string value.

The string value is combined from the widget’s owner ::helpContext strings if the latter is
empty or begins with a slash. A special meaning is assigned to an empty string ” ” - the help()
call fails when such value is found to be the section component. This feature can be useful
when a window or a dialog presents a standalone functionality in a separate module, and the
documentation is related more to the module than to an embedding program. In such case,
the grouping widget holds ::helpContext as a pod manpage name with a trailing slash,
and its children widgets are assigned ::helpContext to the topics without the manpage but
the leading slash instead. If the grouping widget has an empty string ” ” as ::helpContext
then the help is forced to be unavailable for all the children widgets.

See also: helpContext

96

insert CLASS, %PROFILE [[CLASS, %PROFILE], ...]

Creates one or more widgets with owner property set to the caller widget, and returns the
list of references to the newly created widgets.

Has two calling formats:

Single widget

$parent-> insert(’Child::Class’,

name => ’child’,

....

);

Multiple widgets

$parent-> insert(

[

’Child::Class1’,

name => ’child1’,

....

],

[

’Child::Class2’,

name => ’child2’,

....

],

);

insert behind OBJECT

Sends a widget behind the OBJECT on Z-axis, given that the OBJECT is a sibling to the
widget.

See also: bring to front, send to back, ZOrderChanged ,first, next, prev, last

invalidate rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Marks the rectangular area of a widget as ’invalid’, so re-painting of the area happens. See
the Graphic content entry.

See also: validate rect, get invalid rect, repaint, Paint, syncPaint, update view

key down CODE, KEY = kb::NoKey, MOD = 0, REPEAT = 1, POST = 0

The method sends or posts (POST flag) simulated KeyDown event to the system. CODE,
KEY, MOD and REPEAT are the parameters to be passed to the notification callbacks.

See also: key up, key event, KeyDown

key event COMMAND, CODE, KEY = kb::NoKey, MOD = 0, REPEAT = 1,
POST = 0

The method sends or posts (POST flag) simulated keyboard event to the system. CODE,
KEY, MOD and REPEAT are the parameters to be passed to an eventual KeyDown or KeyUp
notifications. COMMAND is allowed to be either cm::KeyDown or cm::KeyUp.

See also: key down, key up, KeyDown, KeyUp

key up CODE, KEY = kb::NoKey, MOD = 0, POST = 0

The method sends or posts (POST flag) simulated KeyUp event to the system. CODE,
KEY and MOD are the parameters to be passed to the notification callbacks.

See also: key down, key event, KeyUp

97

last

Returns the last (the topmost) sibling widget in Z-order.

See also: first, next, prev

lock

Turns off the ability of a widget to re-paint itself. As many times lock() was called, as
may times its counterpart, unlock() must be called to enable re-painting again. Returns a
boolean success flag.

See also: unlock, repaint, Paint, get locked

map color COLOR

Transforms cl::XXX and ci::XXX combinations into RGB color representation and returns
the result. If COLOR is already in RGB format, no changes are made.

See also: colorIndex

mouse click BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, DBL CLICK = 0,
POST = 0

The method sends or posts (POST flag) simulated MouseClick event to the system. BUT-
TON, MOD, X, Y, and DBL CLICK are the parameters to be passed to the notification
callbacks.

See also: MouseDown, MouseUp, MouseWheel, MouseMove, MouseEnter, MouseLeave

mouse down BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) simulated MouseDown event to the system. BUT-
TON, MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter, MouseLeave

mouse enter MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) simulated MouseEnter event to the system. MOD,
X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseLeave

mouse event COMMAND = cm::MouseDown, BUTTON = mb::Left, MOD = 0, X
= 0, Y = 0, DBL CLICK = 0, POST = 0

The method sends or posts (POST flag) simulated mouse event to the system. BUTTON,
MOD, X, Y and DBL CLICK are the parameters to be passed to an eventual mouse notifica-
tions. COMMAND is allowed to be one of cm::MouseDown, cm::MouseUp, cm::MouseWheel,
cm::MouseClick, cm::MouseMove, cm::MouseEnter, cm::MouseLeave constants.

See also: mouse down, mouse up, mouse wheel, mouse click, mouse move, mouse enter,
mouse leave, MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter,
MouseLeave

mouse leave

The method sends or posts (POST flag) simulated MouseLeave event to the system.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseMove, MouseEnter,
MouseLeave

mouse move MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) simulated MouseMove event to the system. MOD,
X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseWheel, MouseClick, MouseEnter, MouseLeave

98

mouse up BUTTON = mb::Left, MOD = 0, X = 0, Y = 0, POST = 0

The method sends or posts (POST flag) simulated MouseUp event to the system. BUTTON,
MOD, X, and Y are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseWheel, MouseClick, MouseMove, MouseEnter, MouseLeave

mouse wheel MOD = 0, X = 0, Y = 0, Z = 0, POST = 0

The method sends or posts (POST flag) simulated MouseUp event to the system. MOD,
X, Y and Z are the parameters to be passed to the notification callbacks.

See also: MouseDown, MouseUp, MouseClick, MouseMove, MouseEnter, MouseLeave

next

Returns the neighbor sibling widget, next (above) in Z-order. If none found, undef is
returned.

See also: first, last, prev

next tab FORWARD = 1

Returns the next widget in the sorted by ::tabOrder list of sibling widgets. FORWARD is a
boolean lookup direction flag. If none found, the first (or the last, depending on FORWARD
flag) widget is returned. Only widgets with ::tabStop set to 1 participate.

Also used by the internal keyboard navigation code.

See also: next positional, tabOrder, tabStop, selectable

next positional DELTA X DELTA Y

Returns a sibling, (grand-)child of a sibling or (grand-)child widget, that matched best the
direction specified by DELTA X and DELTA Y. At one time, only one of these parameters
can be zero; another parameter must be either 1 or -1.

Also used by the internal keyboard navigation code.

See also: next tab, origin

pack, packForget, packSlaves

See the Prima::Widget::pack section

place, placeForget, placeSlaves

See the Prima::Widget::place section

prev

Returns the neighbor sibling widget, previous (below) in Z-order. If none found, undef is
returned.

See also: first, last, next

repaint

Marks the whole widget area as ’invalid’, so re-painting of the area happens. See the Graphic
content entry.

See also: validate rect, get invalid rect, invalidate rect, Paint, update view,
syncPaint

responsive

Returns a boolean flag, indicating whether a widget and its owners have all ::enabled 1 or
not. Useful for fast check if a widget should respond to the user actions.

See also: enabled

99

screen to client @OFFSETS

Maps array of X and Y integer offsets from screen to widget coordinates. Returns the
mapped OFFSETS.

See also: client to screen

scroll DELTA X DELTA Y %OPTIONS

Scrolls the graphic context area by DELTA X and DELTA Y pixels. OPTIONS is hash,
that contains optional parameters to the scrolling procedure:

clipRect [X1, Y1, X2, Y2]

The clipping area is confined by X1, Y1, X2, Y2 rectangular area. If not specified, the
clipping area covers the whole widget. Only the bits, covered by clipRect are affected.
Bits scrolled from the outside of the rectangle to the inside are painted; bits scrolled
from the inside of the rectangle to the outside are not painted.

confineRect [X1, Y1, X2, Y2]

The scrolling area is confined by X1, Y1, X2, Y2 rectangular area. If not specified, the
scrolling area covers the whole widget.

withChildren BOOLEAN

If 1, the scrolling performs with the eventual children widgets change their positions to
DELTA X and DELTA Y as well.

Cannot be used inside paint state.

See also: Paint, get invalid rect

select

Alias for selected(1) call

See also: deselect, selected, Enter, Leave

send to back

Sends a widget at bottom of all other siblings widgets

See also: insert behind, bring to front, ZOrderChanged ,first, next, prev, last

show

Sets widget ::visible to 1.

See also: hide, visible, Show, Hide, showing, exposed

show cursor

Shows the cursor. As many times hide cursor() was called, as many time its counterpart
show cursor() must be called to reach the cursor’s initial state.

See also: hide cursor, cursorVisible

showing

Returns a boolean value, indicating whether the widget and its owners have all ::visible
1 or not.

unlock

Turns on the ability of a widget to re-paint itself. As many times lock() was called, as
may times its counterpart, unlock() must be called to enable re-painting again. When last
unlock() is called, an implicit repaint() call is made. Returns a boolean success flag.

See also: lock, repaint, Paint, get locked

100

update view

If any parts of a widget were marked as ’invalid’ by either invalidate rect() or repaint()
calls or the exposure caused by window movements (or any other), then Paint notification
is immediately called. If no parts are invalid, no action is performed. If a widget has
::syncPaint set to 1, update view() is always a no-operation call.

See also: invalidate rect, get invalid rect, repaint, Paint, syncPaint, update view

validate rect X LEFT OFFSET Y BOTTOM OFFSET X RIGHT OFFSET
Y TOP OFFSET

Reverses the effect of invalidate rect(), restoring the original, ’valid’ state of widget area
covered by the rectangular area passed. If a widget with previously invalid areas was wholly
validated by this method, no Paint notifications occur.

See also: invalidate rect, get invalid rect, repaint, Paint, syncPaint, update view

Get-methods

get default font

Returns the default font for a Prima::Widget class.

See also: font

get default popup font

Returns the default font for a Prima::Popup class.

See also: font

get invalid rect

Returns the result of successive calls invalidate rect(), validate rect() and repaint(),
as a rectangular area (four integers) that cover all invalid regions in a widget. If none found,
(0,0,0,0) is returned.

See also: validate rect, invalidate rect, repaint, Paint, syncPaint, update view

get handle

Returns a system handle for a widget

See also: get parent handle

get locked

Returns 1 if a widget is in lock() - initiated repaint-blocked state.

See also: lock, unlock

get mouse state

Returns a combination of mb::XXX constants, reflecting the currently pressed mouse buttons.

See also: pointerPos, get shift state

get parent

Returns the owner widget that clips the widget boundaries, or application object if a widget
is top-level.

See also: clipOwner

get parent handle

Returns a system handle for a parent of a widget, a window that belongs to another program.
Returns 0 if the widget’s owner and parent are in the same application and process space.

See also: get handle, clipOwner

101

get pointer size

Returns two integers, width and height of a icon, that the system accepts as valid for a
pointer. If the icon is supplied that is more or less than these values, it is truncated or
padded with transparency bits, but is not stretched. Can be called with class syntax.

get shift state

Returns a combination of km::XXX constants, reflecting the currently pressed keyboard mod-
ificator buttons.

See also: get shift state

get virtual size

Returns virtual width and height of a widget. See the Geometry entry, Implicit size regula-
tions.

See also: width, height, size growMode, Move, Size, sizeMax, sizeMin

get widgets

Returns list of children widgets.

Events

Change

Generic notification, used for Prima::Widget descendants; Prima::Widget itself neither calls
not uses the event. Designed to be called when an arbitrary major state of a widget is
changed.

Click

Generic notification, used for Prima::Widget descendants; Prima::Widget itself neither calls
not uses the event. Designed to be called when an arbitrary major action for a widget is
called.

Close

Triggered by can close() and close() functions. If the event flag is cleared during execu-
tion, these functions fail.

See also: close, can close

ColorChanged INDEX

Called when one of widget’s color properties is changed, either by direct property change or
by the system. INDEX is one of ci::XXX constants.

See also: colorIndex

Disable

Triggered by a successive enabled(0) call

See also: Enable, enabled, responsive

DragDrop X Y

Design in progress. Supposed to be triggered when a drag-and-drop session started by the
widget. X and Y are mouse pointer coordinates on the session start.

See also: DragOver, EndDrag

102

DragOver X Y STATE

Design in progress. Supposed to be called when a mouse pointer is passed over a widget dur-
ing a drag-and-drop session. X and Y are mouse pointer coordinates, identical to MouseMove

X Y parameters. STATE value is undefined.

See also: DragDrop, EndDrag

Enable

Triggered by a successive enabled(1) call

See also: Disable, enabled, responsive

EndDrag X Y

Design in progress. Supposed to be called when a drag-and-drop session is finished success-
fully over a widget. X and Y are mouse pointer coordinates on the session end.

See also: DragDrop, DragOver

Enter

Called when a widget receives the input focus.

See also: Leave, focused, selected

FontChanged

Called when a widget font is changed either by direct property change or by the system.

See also: font, ColorChanged

Hide

Triggered by a successive visible(0) call

See also: Show, visible, showing, exposed

Hint SHOW FLAG

Called when the hint label is about to show or hide, depending on SHOW FLAG. The hint
show or hide action fails, if the event flag is cleared during execution.

See also: showHint, ownerShowHint, hintVisible, ownerHint

KeyDown CODE, KEY, MOD, REPEAT

Sent to the focused widget when the user presses a key. CODE contains an eventual character
code, KEY is one of kb::XXX constants, MOD is a combination of the modificator keys
pressed when the event occurred (km::XXX). REPEAT is how many times the key was
pressed; usually it is 1. (see ::briefKeys).

The valid km:: constants are:

km::Shift

km::Ctrl

km::Alt

km::KeyPad

km::DeadKey

The valid kb:: constants are grouped in several sets. Some codes are aliased, like, kb::PgDn
and kb::PageDown.

Modificator keys

103

kb::ShiftL kb::ShiftR kb::CtrlL kb::CtrlR

kb::AltL kb::AltR kb::MetaL kb::MetaR

kb::SuperL kb::SuperR kb::HyperL kb::HyperR

kb::CapsLock kb::NumLock kb::ScrollLock kb::ShiftLock

Keys with character code defined

kb::Backspace kb::Tab kb::Linefeed kb::Enter

kb::Return kb::Escape kb::Esc kb::Space

Function keys

kb::F1 .. kb::F30

kb::L1 .. kb::L10

kb::R1 .. kb::R10

Other

kb::Clear kb::Pause kb::SysRq kb::SysReq

kb::Delete kb::Home kb::Left kb::Up

kb::Right kb::Down kb::PgUp kb::Prior

kb::PageUp kb::PgDn kb::Next kb::PageDown

kb::End kb::Begin kb::Select kb::Print

kb::PrintScr kb::Execute kb::Insert kb::Undo

kb::Redo kb::Menu kb::Find kb::Cancel

kb::Help kb::Break kb::BackTab

See also: KeyUp, briefKeys, key down, help, popup, tabOrder, tabStop, accelTable

KeyUp CODE, KEY, MOD

Sent to the focused widget when the user releases a key. CODE contains an eventual charac-
ter code, KEY is one of kb::XXX constants, MOD is a combination of the modificator keys
pressed when the event occurred (km::XXX).

See also: KeyDown, key up

Leave

Called when the input focus is removed from a widget

See also: Enter, focused, selected

Menu MENU VAR NAME

Called before the user-navigated menu (pop-up or pull-down) is about to show another
level of submenu on the screen. MENU is Prima::AbstractMenu descendant, that children
to a widget, and VAR NAME is the name of the menu item that is about to be shown.

Used for making changes in the menu structures dynamically.

See also: popupItems

MouseClick BUTTON, MOD, X, Y, DOUBLE CLICK

Called when a mouse click (button is pressed, and then released within system-defined
interval of time) is happened in the widget area. BUTTON is one of mb::XXX constants,
MOD is a combination of km::XXX constants, reflecting pressed modificator keys during the
event, X and Y are the mouse pointer coordinates. DOUBLE CLICK is a boolean flag, set
to 1 if it was a double click, 0 if a single.

mb::XXX constants are:

104

mb::b1 or mb::Left

mb::b2 or mb::Middle

mb::b3 or mb::Right

mb::b4

mb::b5

mb::b6

mb::b7

mb::b8

See also: MouseDown, MouseUp, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseDown BUTTON, MOD, X, Y

Occurs when the user presses mouse button on a widget. BUTTON is one of mb::XXX

constants, MOD is a combination of km::XXX constants, reflecting the pressed modificator
keys during the event, X and Y are the mouse pointer coordinates.

See also: MouseUp, MouseClick, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseEnter MOD, X, Y

Occurs when the mouse pointer is entered the area occupied by a widget (without mouse
button pressed). MOD is a combination of km::XXX constants, reflecting the pressed mod-
ificator keys during the event, X and Y are the mouse pointer coordinates.

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseMove, MouseLeave

MouseLeave

Occurs when the mouse pointer is driven off the area occupied by a widget (without mouse
button pressed).

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseMove, MouseEnter

MouseMove MOD, X, Y

Occurs when the mouse pointer is transported over a widget. MOD is a combination of
km::XXX constants, reflecting the pressed modificator keys during the event, X and Y are
the mouse pointer coordinates.

See also: MouseDown, MouseUp, MouseClick, MouseWheel, MouseEnter, MouseLeave

MouseUp BUTTON, MOD, X, Y

Occurs when the user depresses mouse button on a widget. BUTTON is one of mb::XXX

constants, MOD is a combination of km::XXX constants, reflecting the pressed modificator
keys during the event, X and Y are the mouse pointer coordinates.

See also: MouseDown, MouseClick, MouseWheel, MouseMove, MouseEnter, MouseLeave

MouseWheel MOD, X, Y, Z

Occurs when the user rotates mouse wheel on a widget. MOD is a combination of km::XXX
constants, reflecting the pressed modificator keys during the event, X and Y are the mouse
pointer coordinates. Z is the virtual coordinate of a wheel. Typical (2001 A.D.) mouse
produces Z 120-fold values.

See also: MouseDown, MouseUp, MouseClick, MouseMove, MouseEnter, MouseLeave

Move OLD X, OLD Y, NEW X, NEW Y

Triggered when widget changes its position relative to its parent, either by Prima::Widget
methods or by the user. OLD X and OLD Y are the old coordinates of a widget, NEW X
and NEW Y are the new ones.

See also: Size, origin, growMode, centered, clipOwner

105

Paint CANVAS

Caused when the system calls for the refresh of a graphic context, associated with a widget.
CANVAS is the widget itself, however its usage instead of widget is recommended (see the
Graphic content entry).

See also: repaint, syncPaint, get invalid rect, scroll, colorIndex, font

Popup BY MOUSE, X, Y

Called by the system when the user presses a key or mouse combination defined for a context
pop-up menu execution. By default executes the associated Prima::Popup object, if it is
present. If the event flag is cleared during the execution of callbacks, the pop-up menu is
not shown.

See also: popup

Setup

This message is posted right after Create notification, and comes first from the event loop.
Prima::Widget does not use it.

Show

Triggered by a successive visible(1) call

See also: Show, visible, showing, exposed

Size OLD WIDTH, OLD HEIGHT, NEW WIDTH, NEW HEIGHT

Triggered when widget changes its size, either by Prima::Widget methods or by the user.
OLD WIDTH and OLD HEIGHT are the old extensions of a widget, NEW WIDTH and
NEW HEIGHT are the new ones.

See also: Move, origin, size, growMode, sizeMax, sizeMin, rect, clipOwner

TranslateAccel CODE, KEY, MOD

A distributed KeyDown event. Traverses all the object tree that the widget which received
original KeyDown event belongs to. Once the event flag is cleared, the iteration stops.

Used for tracking keyboard events by out-of-focus widgets.

See also: KeyDown

ZOrderChanged

Triggered when a widget changes its stacking order, or Z-order among its siblings, either by
Prima::Widget methods or by the user.

See also: bring to front, insert behind, send to back

106

3.8 Prima::Widget::pack

Geometry manager that packs around edges of cavity

Synopsis

$widget-> pack(args);

$widget-> packInfo(args);

$widget-> geometry(gt::Pack);

Description

The pack method is used to communicate with the packer, a geometry manager that arranges the
children of a owner by packing them in order around the edges of the owner.

In this port of Tk::pack it is normal to pack widgets one-at-a-time using the widget object
to be packed to invoke a method call. This is a slight distortion of the original Tcl-Tk interface
(which can handle lists of windows to one pack method call) but Tk reports that it has proven
effective in practice.

The pack method can have any of several forms, depending on Option:

pack %OPTIONS

The options consist of pairs of arguments that specify how to manage the slave. See the The
packer algorithm entry below for details on how the options are used by the packer. The
following options are supported:

after => $other

$other must be another window. Use its master as the master for the slave, and insert
the slave just after $other in the packing order.

anchor => anchor

Anchor must be a valid anchor position such as n or sw; it specifies where to position
each slave in its parcel. Defaults to center.

before => $other

$other must be another window. Use its master as the master for the slave, and insert
the slave just before $other in the packing order.

expand => boolean

Specifies whether the slave should be expanded to consume extra space in their master.
Boolean may have any proper boolean value, such as 1 or no. Defaults to 0.

fill => style

If a slave’s parcel is larger than its requested dimensions, this option may be used to
stretch the slave. Style must have one of the following values:

none
Give the slave its requested dimensions plus any internal padding requested with
-ipadx or -ipady. This is the default.

x
Stretch the slave horizontally to fill the entire width of its parcel (except leave
external padding as specified by -padx).

y
Stretch the slave vertically to fill the entire height of its parcel (except leave external
padding as specified by -pady).

both
Stretch the slave both horizontally and vertically.

107

in => $master

Insert the slave(s) at the end of the packing order for the master window given by
$master. Currently, only the immediate owner can be accepted as master.

ipadx => amount

Amount specifies how much horizontal internal padding to leave on each side of the
slave(s). Amount must be a valid screen distance, such as 2 or .5c. It defaults to 0.

ipady => amount

Amount specifies how much vertical internal padding to leave on each side of the
slave(s). Amount defaults to 0.

padx => amount

Amount specifies how much horizontal external padding to leave on each side of the
slave(s). Amount defaults to 0.

pady => amount

Amount specifies how much vertical external padding to leave on each side of the
slave(s). Amount defaults to 0.

side => side

Specifies which side of the master the slave(s) will be packed against. Must be left,
right, top, or bottom. Defaults to top.

If no in, after or before option is specified then slave will be inserted at the end of the packing
list for its owner unless it is already managed by the packer (in which case it will be left where
it is). If one of these options is specified then slave will be inserted at the specified point. If the
slave are already managed by the geometry manager then any unspecified options for them retain
their previous values rather than receiving default values.

packForget

Removes slave from the packing order for its master and unmaps its window. The slave will
no longer be managed by the packer.

packInfo [%OPTIONS]

In get-mode, returns a list whose elements are the current configuration state of the slave
given by $slave. The first two elements of the list are “in=>$master” where $master is the
slave’s master.

In set-mode, sets all pack parameters, but does not set widget geometry property to
gt::Pack.

packPropagate BOOLEAN

If boolean has a true boolean value then propagation is enabled for $master, (see the Ge-
ometry propagation entry below). If boolean has a false boolean value then propagation
is disabled for $master. If boolean is omitted then the method returns 0 or 1 to indicate
whether propagation is currently enabled for $master.

Propagation is enabled by default.

packSlaves

Returns a list of all of the slaves in the packing order for $master. The order of the slaves
in the list is the same as their order in the packing order. If $master has no slaves then an
empty list/string is returned in array/scalar context, respectively

108

The packer algorithm

For each master the packer maintains an ordered list of slaves called the packing list. The in,
after, and before configuration options are used to specify the master for each slave and the
slave’s position in the packing list. If none of these options is given for a slave then the slave is
added to the end of the packing list for its owner.

The packer arranges the slaves for a master by scanning the packing list in order. At the time
it processes each slave, a rectangular area within the master is still unallocated. This area is called
the cavity ; for the first slave it is the entire area of the master.

For each slave the packer carries out the following steps:

• The packer allocates a rectangular parcel for the slave along the side of the cavity given by
the slave’s side option. If the side is top or bottom then the width of the parcel is the width
of the cavity and its height is the requested height of the slave plus the ipady and pady
options. For the left or right side the height of the parcel is the height of the cavity and the
width is the requested width of the slave plus the ipadx and padx options. The parcel may
be enlarged further because of the expand option (see the Expansion entry below)

• The packer chooses the dimensions of the slave. The width will normally be the slave’s
requested width plus twice its ipadx option and the height will normally be the slave’s
requested height plus twice its ipady option. However, if the fill option is x or both then
the width of the slave is expanded to fill the width of the parcel, minus twice the padx
option. If the fill option is y or both then the height of the slave is expanded to fill the
width of the parcel, minus twice the pady option.

• The packer positions the slave over its parcel. If the slave is smaller than the parcel then the
-anchor option determines where in the parcel the slave will be placed. If padx or pady
is non-zero, then the given amount of external padding will always be left between the slave
and the edges of the parcel.

Once a given slave has been packed, the area of its parcel is subtracted from the cavity,
leaving a smaller rectangular cavity for the next slave. If a slave doesn’t use all of its parcel,
the unused space in the parcel will not be used by subsequent slaves. If the cavity should
become too small to meet the needs of a slave then the slave will be given whatever space is
left in the cavity. If the cavity shrinks to zero size, then all remaining slaves on the packing
list will be unmapped from the screen until the master window becomes large enough to
hold them again.

Expansion

If a master window is so large that there will be extra space left over after all of its slaves have
been packed, then the extra space is distributed uniformly among all of the slaves for which the
expand option is set. Extra horizontal space is distributed among the expandable slaves whose
side is left or right, and extra vertical space is distributed among the expandable slaves whose
side is top or bottom.

Geometry propagation

The packer normally computes how large a master must be to just exactly meet the needs of its
slaves, and it sets the requested width and height of the master to these dimensions. This causes
geometry information to propagate up through a window hierarchy to a top-level window so that
the entire sub-tree sizes itself to fit the needs of the leaf windows. However, the geometryProp-
agate method may be used to turn off propagation for one or more masters. If propagation is
disabled then the packer will not set the requested width and height of the packer. This may be
useful if, for example, you wish for a master window to have a fixed size that you specify.

109

Restrictions on master windows

The master for each slave must not be a child of the slave, and must not be present in any other
list of slaves that directly or indirectly refers to the slave.

Packing order

If the master for a slave is not its owner then you must make sure that the slave is higher in the
stacking order than the master. Otherwise the master will obscure the slave and it will appear as
if the slave hasn’t been packed correctly. The easiest way to make sure the slave is higher than
the master is to create the master window first: the most recently created window will be highest
in the stacking order. Or, you can use the bring to front and send to back methods to change
the stacking order of either the master or the slave.

110

3.9 Prima::Widget::place

Geometry manager for fixed or rubber-sheet placement

Synopsis

$widget->place(option=>value?, option=>value, ...)

$widget->placeForget;

$widget->placeInfo(option=>value?, option=>value, ...);

$widget->geometry(gt::Place);

$master->placeSlaves

Description

The placer is a geometry manager from Tk. It provides simple fixed placement of windows, where
you specify the exact size and location of one window, called the slave, within another window,
called the $master. The placer also provides rubber-sheet placement, where you specify the size
and location of the slave in terms of the dimensions of the master, so that the slave changes size
and location in response to changes in the size of the master. Lastly, the placer allows you to
mix these styles of placement so that, for example, the slave has a fixed width and height but is
centered inside the master.

place %OPTIONS

The place method arranges for the placer to manage the geometry of $slave. The remaining
arguments consist of one or more option=>value pairs that specify the way in which $slave’s
geometry is managed. If the placer is already managing $slave, then the option=>value pairs
modify the configuration for $slave. The place method returns an empty string as result.
The following option=>value pairs are supported:

in => $master

$master is the reference to the window relative to which $slave is to be placed. $master
must neither be $slave’s child nor be present in a slaves list that directly or indirectly
refers to the $slave.

If this option isn’t specified then the master defaults to $slave’s owner.

x => location

Location specifies the x-coordinate within the master window of the anchor point for
$slave widget.

relx => location

Location specifies the x-coordinate within the master window of the anchor point for
$slave widget. In this case the location is specified in a relative fashion as a floating-
point number: 0.0 corresponds to the left edge of the master and 1.0 corresponds to
the right edge of the master. Location need not be in the range 0.0-1.0. If both x and
relx are specified for a slave then their values are summed. For example, ”relx=>0.5,
x=-2” positions the left edge of the slave 2 pixels to the left of the center of its master.

y => location

Location specifies the y-coordinate within the master window of the anchor point for
$slave widget.

111

rely => location

Location specifies the y-coordinate within the master window of the anchor point for
$slave widget. In this case the value is specified in a relative fashion as a floating-point
number: 0.0 corresponds to the top edge of the master and 1.0 corresponds to the
bottom edge of the master. Location need not be in the range 0.0-1.0. If both y and
rely are specified for a slave then their values are summed. For example, rely=>0.5,
x=>3 positions the top edge of the slave 3 pixels below the center of its master.

anchor => where

Where specifies which point of $slave is to be positioned at the (x,y) location selected
by the x, y, relx, and rely options. Thus if where is se then the lower-right corner
of $slave’s border will appear at the given (x,y) location in the master. The anchor
position defaults to nw.

width => size

Size specifies the width for $slave. If size is an empty string, or if no width or relwidth
option is specified, then the width requested internally by the window will be used.

relwidth => size

Size specifies the width for $slave. In this case the width is specified as a floating-point
number relative to the width of the master: 0.5 means $slave will be half as wide as the
master, 1.0 means $slave will have the same width as the master, and so on. If both
width and relwidth are specified for a slave, their values are summed. For example,
relwidth=>1.0, width=>5 makes the slave 5 pixels wider than the master.

height => size

Size specifies the height for $slave. If size is an empty string, or if no height or
relheight option is specified, then the height requested internally by the window will
be used.

relheight => size

Size specifies the height for $slave. In this case the height is specified as a floating-point
number relative to the height of the master: 0.5 means $slave will be half as high as the
master, 1.0 means $slave will have the same height as the master, and so on. If both
height and relheight are specified for a slave, their values are summed. For example,
relheight=>1.0, height=>-2 makes the slave 2 pixels shorter than the master.

placeSlaves

The placeSlaves method returns a list of all the slave windows for which $master is the
master. If there are no slaves for $master then an empty list is returned.

placeForget

The placeForget method causes the placer to stop managing the geometry of $slave. If
$slave isn’t currently managed by the placer then the method call has no effect.

placeInfo %OPTIONS

In get-mode the placeInfo method returns a list giving the current configuration of $slave.
The list consists of option=>value pairs in exactly the same form as might be specified to
the place method. If the configuration of a window has been retrieved with placeInfo,
that configuration can be restored later by first using placeInfo in set-mode and setting
geometry to gt::Place, which is equivalent to a direct call to place.

Fine points

It is not necessary for the master window to be the owner of the slave window. This feature is
useful in at least two situations. First, for complex window layouts it means you can create a

112

hierarchy of subwindows whose only purpose is to assist in the layout of the owner. The “real
children” of the owner (i.e. the windows that are significant for the application’s user interface) can
be children of the owner yet be placed inside the windows of the geometry-management hierarchy.
This means that the path names of the “real children” don’t reflect the geometry-management
hierarchy and users can specify options for the real children without being aware of the structure
of the geometry-management hierarchy.

A second reason for having a master different than the slave’s owner is to tie two siblings
together. For example, the placer can be used to force a window always to be positioned centered
just below one of its siblings by specifying the configuration

in=>$sibling, relx=>0.5, rely=>1.0, anchor=>’n’
Whenever the $sibling widget is repositioned in the future, the slave will be repositioned as

well.
Unlike the other geometry managers (such as the packer) the placer does not make any attempt

to manipulate the geometry of the master windows or the owners of slave windows (i.e. it doesn’t
set their requested sizes).

113

3.10 Prima::Window

Top-level window management

Synopsis

use Prima;

use Prima::Application;

this window, when closed, terminated the application

my $main = Prima::MainWindow-> new(text => ’Hello world’);

this is a modal window

my $dialog = Prima::Dialog->create(size => [100, 100]);

my $result = $dialog-> execute;

$dialog-> destroy;

run Prima;

Description

Prima::Window is a descendant of Prima::Widget class. It deals with top-level windows, the
windows that are specially treated by the system. Its major difference from Prima::Widget is that
instances of Prima::Window can only be inferior by the screen, not the other windows, and that
the system or window manager add decorations to these - usually menus, buttons and title bars.
Prima::Window provides methods that communicate with the system and hint these decorations.

Usage

A typical program communicates with the user with aid of widgets, collected upon one or more
top-level windows. Prima::Widget already has all functionality required for these child-parent
operations, so Prima::Window is not special in respect of widget grouping and relationship. Its
usage therefore is straightforward:

my $w = Prima::Window-> create(

size => [300,300],

text => ’Startup window’,

);

There are more about Prima::Window in areas, that it is specifically designed to - the system
window management and the dialog execution.

System window management

As noted before, top-level windows are special for the system, not only in their ’look’, but also
in ’feel’: the system adds specific functions to the windows, aiding the user to navigate through
the desktop. The system ofter dictates the size and position for windows, and some times these
rules are hard or even impossible to circumvent. This document will be long if it would venture
to describe the features of different window management systems, and the task would be never
accomplished - brand new window managers emerge every month, and the old change their behav-
ior in an unpredictable way. The only golden rule is to never rely on the behavior of one window
manager, and test programs with at least two.

The Prima toolkit provides simple access to buttons, title bar and borders of a window. Buttons
and title bar are managed by the ::borderIcons property, and borders by the ::borderStyle

property. These operate with set of predefined constants, bi::XXX and bs::XXX, correspondingly.

114

The button constants can be combined with each other, but not all combinations may be granted
by the system. The same is valid also for the border constant, except that they can not be
combined - the value of ::borderStyle is one of the integer constants.

There are other hints that the toolkit can set for a window manager. The system can be
supplied with an icon that a window is bound to; the icon dimensions are much different, and
although can be requested via sv::XIcon and sv::YIcon system values, the ::icon property
scales the image automatically to the closest system-recognizable dimension. The window icon is
not shown by the toolkit, it is usually resides in the window decorations and sometimes on a task
bar, along with the window’s name. The system can be hinted to not reflect the window on the
task bar, by setting the ::taskListed property to 0.

Another issue is the window positioning. Usually, if no explicit position was given, the window
is positioned automatically by the system. The same is valid for the size. But some window
managers bend it to the extreme - for example, default CDE setup force the user to set newly
created windows’ positions explicitly. However, there is at least one point of certainty. Typically,
when the initial size and/or position of a top-level window are expected to be set by the system,
the ::originDontCare and ::sizeDontCare properties can be set to 1 during window creation.
If these set, the system is asked to size/position a window regarding its own windowing policy.
The reverse is not always true, unfortunately. Either if these properties set to 0, or explicit size
or positions are given, the system is hinted to use these values instead, but this does not always
happen. Actually, this behavior is expected by the user and often does not get even noticed as
something special. Therefore it is a good practice to test a top-level windowing code with several
window managers.

There are different policies about window positioning and sizing; some window managers be-
have best when the position is given to the window with the system-dependent decorations. It
is hardly can be called a good policy, since it is not possible to calculate the derived window
coordinates with certainty. This problem results in that it is impossible to be sure about window
position and size before these are set explicitly. The only, not much efficient help the toolkit can
provide is the property pair ::frameOrigin and ::frameSize, which along with ::origin and
::size reflect the position and size of a window, but taking into account the system-dependent
decorations.

Dialog execution

Method of Prima::Window, execute() brings a window in a modal state on top of other toolkit
windows, and returns after the window is dismissed in one or another way. This method is special
as it is an implicit event loop, similar to

run Prima;

code. The event flow is not disrupted, but the windows and widgets that do not belong to
the currently executed, the ’modal’ window group can not be activated. There can be many
modal windows on top of each other, but only one is accessible. As an example a message box
can be depicted, a window that prevents the user to work with the application windows until
dismissed. There can be other message boxes on top of each other, preventing the windows below
from operation as well. This scheme is called the ’exclusive’ modality.

The toolkit also provides the shared modality scheme, where there can be several stacks of
modal windows, not interfering with each other. Each window stack is distinct and contains its
own windows. An example analogy is when several independent applications run with modal
message boxes being activated. This scheme, however, can not be achieved with single execute()-
like call without creating interlocking conditions. The shared model call, execute shared(),
inserts the window into the shared modal stack, activates the window and returns immediately.

The both kinds of modal windows can coexist, but the exclusive windows prevents the shared
from operation; while there are exclusive windows, the shared have same rights as the usual
windows.

115

The stacking order for these two models is slightly different. A window after execute() call
is set on top of the last exclusive modal window, or, in other words, is added to the exclusive
window stack. There can be only one exclusive window stack, but many shared window stacks;
a window after execute shared() call is added to a shared window stack, to the one the window’s
owner belongs to. The shared window stacks are rooted in so-called modal horizons, windows with
boolean property ::modalHorizon set to true. The default horizon is ::application.

A window in modal state can return to the normal (non-modal) state by calling end modal()

method. The window is then hidden and disabled, and the windows below are accessible to
the user. If the window was in the exclusive modal state, the execute() call is finished and
returns the exit code, the value of ::modalResult property. There two shortuct methods that
end modal state, setting ::modalResult to the basic ’ok’ and ’not ok’ code, correspondingly
ok() and cancel() methods. Behavior of cancel() is identical to when the user closes the modal
window by clicking the system close button, pressing Escape key, or otherwise cancelling the dialog
execution. ok() sets ::modalResult to mb::OK, cancel() to mb::Cancel, correspondingly. There
are more mb::XXX constants, but these have no special meaning, any integer value can be passed.
For example, Prima::MsgBox::message method uses these constants so the message window can
return up to four different mb codes.

Menu

A top-level window can be equipped with a menu bar. Its outlook is system-dependent, but can
be controlled by the toolkit up to a certain level. The ::menuItems property, that manages the
menu items of a ::menu object of the Prima::Menu section class, arrange the layout of the menu.
The syntax of the items-derived properties is described in the Prima::Menu section, but it must
be reiterated that menu items contain only hints, not requests for their exact representation. The
same is valid for the color and font properties, ::menuColorIndex and ::menuFont.

Only one menu at a time can be displayed in a top-level window, although a window can be an
owner for many menu objects. The key property is Prima::Menu::selected - if a menu object
is selected on a widget or a window object, it refers to the default menu actions, which, in case of
Prima::Window is being displayed as menu bar.

NB: A window can be an owner for several menu objects and still do not have a menu bar
displayed, if no menu objects are marked as selected.

Prima::Dialog

Prima::Dialog, a descendant from Prima::Window, introduces no new functionality. It has its
default values adjusted so the colors use more appropriate system colors, and hints the system
that the outlook of a window is to be different, to resemble the system dialogs on systems where
such are provided.

Prima::MainWindow

The class is a simple descendant of Prima::Window, which overloads on destroy notification and
calls $application->close inside it. The purpose of declaration of a separate class for such
a trifle difference is that many programs are designed under a paradigm where these is a main
window, which is most ’important’ to the user. As such consruct is used more often than any
other, it is considered an optimization to write

Prima::MainWindow-> create(...)

rather than

Prima::Window-> create(..., onDestroy => sub { $::application-> close })

, although these lines are equivalent.

116

API

Properties

borderIcons INTEGER

Hints the system about window’s decorations, by selecting the combination of bi::XXX

constants. The constants are:

bi::SystemMenu - system menu button and/or close button

(usually with icon) is shown

bi::Minimize - minimize button

bi::Maximize - maximize (and eventual restore)

bi::TitleBar - window title

bi::All - all of the above

Not all systems respect these hints, and many systems provide more navigating decoration
controls than these.

borderStyle STYLE

Hints the system about window’s border style, by selecting one of bs::XXX constants. The
constants are:

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - thick border with interactive resize capabilities

bs::Sizeable is an unique window mode. If selected, the user can resize the window, not
only by dragging the window borders with the mouse but by other system-dependent means.
The other border styles disallow interactive resizing.

Not all systems recognize all these hints, although many recognize interactive resizing flag.

frameHeight HEIGHT

Maintains the height of a window, including the window decorations.

frameOrigin X OFFSET, Y OFFSET

Maintains the left X and bottom Y boundaries of a window’s decorations relative to the
screen.

frameSize WIDTH, HEIGHT

Maintains the width and height of a window, including the window decorations.

frameWidth WIDTH

Maintains the width of a window, including the window decorations.

icon OBJECT

Hints the system about an icon, associated with a window. If OBJECT is undef, the system-
default icon is assumed.

See also: ownerIcon

menu OBJECT

Manages a Prima::Menu object associated with a window. Prima::Window can host many
Prima::Menu objects, but only the one that is set in ::menu property will be seen as a menu
bar.

See also: Prima::Menu, menuItems

117

menuColorIndex INDEX, COLOR

Maintains eight color properties of a menu, associated with a window. INDEX must be one
of ci::XXX constants (see the Prima::Widget section, colorIndex section).

See also: menuItems, menuFont, menu

menuColor COLOR

Basic foreground menu color.

See also: menuItems, menuColorIndex, menuFont, menu

menuBackColor COLOR

Basic background menu color.

See also: menuItems, menuColorIndex, menuFont, menu

menuDark3DColor COLOR

Color for drawing dark shadings in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuDisabledColor COLOR

Foreground color for disabled items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuDisabledBackColor COLOR

Background color for disabled items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuFont %FONT

Maintains the font of a menu, associated with a window.

See also: menuItems, menuColorIndex, menu

menuHiliteColor COLOR

Foreground color for selected items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuHiliteBackColor COLOR

Background color for selected items in menus.

See also: menuItems, menuColorIndex, menuFont, menu

menuItems [ITEM LIST]

Manages items of a Prima::Menu object associated with a window. The ITEM LIST format
is same as Prima::AbstractMenu::items and is described in the Prima::Menu section.

See also: menu, menuColorIndex, menuFont

menuLight3DColor COLOR

Color for drawing light shadings in menus.

See also: menuItems, menuColorIndex, menuFont, menu

118

modalHorizon BOOLEAN

Reflects if a window serves as root to the shared modal window stack. A window with
::modalHorizon set to 1 in shared modal state groups its children windows in a window
stack, separate from other shared modal stacks. The ::modalHorizon is therefore useful
only when several shared modal window stacks are needed.

The property also serves as an additional grouping factor for widgets and windows. For
example, default keyboard navigation by tab and arrow keys is limited to the windows and
widgets of a single window stack.

modalResult INTEGER

Maintains a custom integer value, returned by execute(). Historically it is one of mb::XXX
constants, but any integer value can be used. The most useful mb:: constants are:

mb::OK, mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

NB: These constants are defined so they can be bitwise-or’ed, and Prima::MsgBox package
uses this feature, where one of its functions parameters is a combination of mb:: constants.

onTop BOOLEAN

If set, the window is hinted to stay on top of all other windows.

Default value: 0

ownerIcon BOOLEAN

If 1, the icon is synchronized with the owner’s. Automatically set to 0 if ::icon property
is explicitly set. Default value is 1, so assigning an icon to $::application spawns the icon to
all windows.

taskListed BOOLEAN

If set to 0, hints the system against reflecting existence of a window into a system task bar,
or a top-level window list, or otherwise lower the window’s value before the other windows.
If 1, does not hint anything.

Default value: 1

windowState STATE

A three-state property, that governs the state of a window. STATE can be one of three
ws::XXX constants:

ws::Normal

ws::Minimized

ws::Maximized

There can be more or less, or other window states provided by the system, but these three
were chosen as a ’least common denominator’. The property can be changed either by
explicit set-mode call or by the user. In either case, a WindowState notification is triggered.

The property has three convenience wrappers: maximize(), minimize() and restore().

See also: WindowState

119

Methods

cancel

A standard method to dismiss a modal window with mb::Cancel result. The effect of calling
this method is equal to when the user selects a ’close window’ action with system-provided
menu, button or other tool.

See also: ok, modalResult, execute, execute shared

end modal

If a window is in modal state, the EndModal notification is activated. Then the window is
returned from the modal state, gets hidden and disabled. If the window was on top in the
exclusive modal state, the last called execute() function finishes. If the window was not
on top in the exclusive modal state, the corresponding execute() function finishes after all
subsequent execute() calls are finished.

execute INSERT BEFORE = undef

A window is turned to the exclusive modal state and is put on top of non-modal and shared-
modal windows. By default, if INSERT BEFORE object is undef, the window is also put on
top of other exclusive-modal windows; if INSERT BEFORE is one of the exclusive-modal
windows the window is placed in queue before the INSERT BEFORE window. The window
is showed and enabled, if necessary, and Execute notification is triggered.

The function is returned when a window is dismissed, or if the system-dependent ’exit’-event
is triggered by the user (the latter case falls through all execute() calls and terminates run
Prima; call, exiting gracefully).

execute shared INSERT BEFORE = undef

A window is turned to the shared modal state and is put on top of non-modal windows in
the stack of its ::modalHorizon. A window with ::modalHorizon set to 1 starts its own
stack, independent of all other window stacks.

By default, if INSERT BEFORE object is undef, the window is also put on top of other
shared-modal windows in its stack. If INSERT BEFORE is one of the shared-modal windows
in its stack, the window is placed in queue before the INSERT BEFORE window.

The window is showed and enabled, if necessary, and Execute notification is triggered.

The function is returned immediately.

get default menu font

Returns the default font for a Prima::Menu class.

get modal

Returns one of three constants, reflecting the modal state of a window:

mt::None

mt::Shared

mt::Exclusive

Value of mt::None is 0, so result of get modal() can be also treated as a boolean value, if
only the fact of modality is needed to check.

get modal window MODALITY TYPE = mt::Exclusive, NEXT = 1

Returns a modal window, that is next to the given window in the modality chain. MODAL-
ITY TYPE selects the chain, and can be either mt::Exclusive or mt::Shared. NEXT is
a boolean flag, selecting the lookup direction; if it is 1, the ’upper’ window is returned, if

120

0, the ’lower’ one (in a simple case when window A is made modal (executed) after modal
window B, the A window is the ’upper’ one).

If a window has no immediate modal relations, undef is returned.

maximize

Maximizes window. A shortcut for windowState(ws::Maximized).

minimize

Minimizes window. A shortcut for windowState(ws::Minimized).

ok

A standard method to dismiss a modal window with mb::OK result. Typically the effect
of calling this method is equal to when the user presses the enter key of a modal window,
signaling that the default action is to be taken.

See also: cancel, modalResult, execute, execute shared

restore

Restores window to normal state from minimized or maximized state. A shortcut for
windowState(ws::Normal).

Events

Activate

Triggered when a window is activated by the user. Activation mark is usually resides on a
window that contains keyboard focus, and is usually reflected by highlighted system deco-
rations.

The toolkit does not provide standalone activation functions; select() call is used instead.

Deactivate

Triggered when a window is deactivated by the user. Window is usually marked inactive,
when it contains no keyboard focus.

The toolkit does not provide standalone de-activation functions; deselect() call is used
instead.

EndModal

Called before a window leaves modal state.

Execute

Called after a window enters modal state.

WindowState STATE

Triggered when window state is changed, either by an explicit windowState() call, or by
the user. STATE is the new window state, one of three ws::XXX constants.

121

3.11 Prima::Clipboard

GUI interprocess data exchange

Description

Prima::Clipboard class is a descendant of Prima::Component. It serves as an interface to the
specific data storage, called clipboard, visible to all clients of one GUI space. The system clipboard
is intended for the exchange of information of an arbitrary type between graphic applications.

Synopsis

my $c = $::application-> Clipboard;

paste data

my $string = $c-> text;

my $image = $c-> image;

my $other = $c-> fetch(’Other type’);

copy datum

$c-> text($string);

copy data

$c-> open;

$c-> text($string);

$c-> image($image);

$c-> store($image);

$c-> close;

clear

$c-> clear;

Usage

Prima::Clipboard provides access to the system clipboard data storage. For the easier communi-
cation, the system clipboard has one ’format’ field, that is stored along with the data. This field is
used to distinguish between data formats. Moreover, a clipboard can hold simultaneously several
data instances, of different data formats. Since the primary usage of a clipboard is ’copying’ and
’pasting’, an application can store copied information in several formats, increasing possibility
that the receiving application recognizes the data.

Different systems provide spectrum of predefined data types, but the toolkit uses only three of
these - ascii text, utf8 text, and image. It does not limit, however, the data format being one of
these three types - an application is free to register its own formats. Both predefined and newly
defined data formats are described by a string, and the three predefined formats are represented
by ’Text’, ’UTF8’, and ’Image’ string constants.

The most frequent usage of Prima::Clipboard is to preform two tasks - copying and pasting.
Both can be exemplified by the following:

my $c = $::application-> Clipboard;

paste

my $string = $c-> text;

copy

$c-> text($string);

122

This simplistic code hides other aspects of Prima::Clipboard class.
First, the default clipboard is accessible by an implicit name call, as an object named ’Clip-

board’. This scheme makes it easily overridable. A more important point is, that the default
clipboard object might be accompanied by other clipboard objects. This is the case with X11 en-
vironment, which defines also ’Primary’ and ’Secondary’ system clipboards. Their functionality is
identical to the default clipboard, however. get standard clipboards() method returns strings
for the clipboards, provided by the system.

Second, code for fetching and storing multi-format data is somewhat different. Clipboard is
viewed as a shared system resource, and have to be ’opened’, before a process can grab it, so other
processes can access the clipboard data only after the clipboard is ’closed’ (Note: It is not so
under X11, where there the clipboard locking is advisory, and any process can grab clipboard at
any time) .

fetch() and store() implicitly call open() and close(), but these functions must be called
explicitly for the multi-format data handling. The code below illustrates the said:

copy text and image

if ($c-> open) {

$c-> clear;

$c-> store(’Text’, $string);

$c-> store(’Image’, $image);

$c-> close;

}

check present formats and paste

if ($c-> open) {

if ($c-> format_exists(’Text’)) {

$string = $c-> fetch(’Text’);

}

or, check the desired format alternatively

my %formats = map { $_ => 1 } $c-> get_formats;

if ($formats{’Image’}) {

$image = $c-> fetch(’Image’);

}

$c-> close;

}

The clear() call in the copying code is necessary so the newly written data will not mix with
the old.

At last, the newly registered formats can be accessed by a program:

my $myformat = ’Very Special Old Pale Data Format’;

if ($c-> register_format($myformat)) {

$c-> open;

$c-> clear;

$c-> store(’Text’, ’sample text’);

$c-> store($myformat’, ’sample ## text’);

$c-> close;

}

Custom formats

Once registered, all processes in a GUI space can access the data by this format. The registration
must take place also if a Prima-driven program needs to read data in a format, defined by an
another program. In either case, the duplicate registration is a valid event. When no longer

123

needed, a format can be de-registered. It is not a mandatory action, however - the toolkit cleans
up before exit. Moreover, the system maintains a reference counter on the custom-registered
formats; de-registering does not mean deletion, thus. If two processes use a custom format, and
one exits and re-starts, it still can access the data in the same format, registered by its previous
incarnation.

Unicode

In real life, application often interchange text in both ascii and utf8, leaving the choice to reader
programs. While it is possible to access both at the same time, by fetch’ing content of Text

and UTF8 clipboard slots, widgets implement their own pasting scheme. To avoid hacking widget
code, usage of text property is advised instead of indicating ’Text’ and ’UTF8’ constants. This
method is used in standard widgets, and is implemented so the programmer can reprogram its
default action by overloading PasteText notification of Prima::Application (see the PasteText
entry in the Prima::Application section).

The default action of PasteText is to query first if ’Text’ format is available, and if so,
return the ascii text scalar. If Prima::Application::wantUnicodeInput is set, ’UTF8’ format
is checked before resorting to ’Text’. It is clear that this scheme is not the only possibly needed,
for example, an application may want to ignore ASCII text, or, ignore UTF8 text but have
Prima::Application::wantUnicodeInput set, etc.

API

Properties

image OBJECT

Provides access to an image, stored in the system clipboard. In get-mode call, return undef

if no image is stored.

text STRING

Provides access to text stored in the system clipboard. In get-mode call, return undef if no
text information is present.

Methods

clear

Deletes all data from clipboard.

close

Closes the open/close brackets. open() and close() can be called recursively; only the last
close() removes the actual clipboard locking, so other processes can use it as well.

deregister format FORMAT STRING

De-registers a previously registered data format. Called implicitly for all not de-registered
format before a clipboard object is destroyed.

fetch FORMAT STRING

Returns the data of FORMAT STRING data format, if present in the clipboard. Depending
on FORMAT STRING, data is either text string for ’Text’ format, Prima::Image object
for ’Image’ format and a binary scalar value for all custom formats.

format exists FORMAT STRING

Returns a boolean flag, showing whether FORMAT STRING format data is present in the
clipboard or not.

124

get handle

Returns a system handle for a clipboard object.

get formats

Returns array of strings, where each is a format ID, reflecting the formats present in the
clipboard.

Only the predefined formats, and the formats registered via register format() are re-
turned. There is no way to see if a format, not registered before, is present.

get registered formats

Returns array of strings, each representing a registered format. Text and Image are returned
also.

get standard clipboards

Returns array of strings, each representing a system clipboard. The default Clipboard is
always present. Other clipboards are optional. As an example, this function returns only
Clipboard under win32, but also Primary and Secondary under X11. The code, specific to
these clipboards must refer to this function first.

open

Opens a system clipboard and locks it for the process single use; returns a success flag.
Subsequent open calls are possible, and always return 1. Each open() must correspond to
close(), otherwise the clipboard will stay locked until the blocking process is finished.

register format FORMAT STRING

Registers a data format under FORMAT STRING string ID, returns a success flag. If a
format is already registered, 1 is returned. All formats, registered via register format()

are de-registered with deregister format() when a program is finished.

store FORMAT STRING, SCALAR

Stores SCALAR value into the clipboard in FORMAT STRING data format. Depending of
FORMAT STRING, SCALAR is treated as follows:

FORMAT_STRING SCALAR

Text text string in ASCII

UTF8 text string in UTF8

Image Prima::Image object

other formats binary scalar value

NB. All custom formats treated as a binary data. In case when the data are transferred
between hosts with different byte orders no implicit conversions are made. It is up to the
programmer whether to convert the data in a portable format, or leave it as is. The former
option is of course preferable. As far as the author knows, the Storable module from CPAN
collection provides the system-independent conversion routines.

125

3.12 Prima::Menu

Pull-down and pop-up menu objects

Synopsis

use Prima;

use Prima::Application;

my $window = Prima::Window-> new(

menuItems => [

[’~File’ => [

[’~Open’, ’Ctrl+O’, ’^O’, \&open_file],

[’-save_file’, ’~Save’, km::Ctrl | ord(’S’), sub { save_file() }],

[],

[’~Exit’, ’Alt+X’, ’@X’, sub { exit }],

]],

[’~Options’ => [

[’*option1’ => ’Checkable option’ => sub { $_[0]-> menu-> toggle($_[1]) }],

]],

[],

[’~Help’ => [

[’Show help’ => sub { $::application-> open_help($0); }],

]],

],

);

sub open_file

{

enable ’save’ menu item

$window-> menu-> save_file-> enable;

}

$window-> popupItems($window-> menuItems);

Description

The document describes interfaces of Prima::AbstractMenu class, and its three descen-
dants - Prima::Menu, Prima::Popup, and Prima::AccelTable, all aimed at different targets.
Prima::AbstractMenu is a descendant of Prima::Component class, and its specialization is handling
of menu items, held in a tree-like structure. Descendants of Prima::AbstractMenu are designed
to be attached to widgets and windows, to serve as hints for the system-dependent pop-up and
pull-down menus.

Usage

Menu items

The central point of functionality in Prima::AbstractMenu-derived classes and their object in-
stances (further referred as ’menu classes’ and ’menu objects’), is handling of a complex structure,
contained in ::items property. This property is special in that its structure is a tree-like array of
scalars, each of whose is either a description of a menu item or a reference to an array.

Parameters of an array must follow a special syntax, so the property input can be parsed and
assigned correctly. In general, the syntax is

126

$menu-> items([

[menu item description],

[menu item description],

...

]);

where ’menu item description’ is an array of scalars, that can hold from 0 up to 6 elements.
Each menu item has six fields, that qualify a full description of a menu item; the shorter arrays
are shortcuts, that imply default or special cases. These base six fields are:

Menu item name

A string identifier. Menu items can be accessed individually by their names, and the following
fields can be managed by calling elemental properties, that require an item name. If not
given, or empty, item name is assigned a string in a form ’#ID’ where ID is the unique
integer value within the menu object.

IDs are set for each menu item, disregarding whether they have names or not. Any menu
item can be uniquely identifed by its ID value, by supplying the ’#ID’ string, in the same
fashion as named menu items. When creating or copying menu items, names in format ’#ID’
are not accepted, and treated as if an empty string is passed. When copying menu items to
another menu object, all menu items to be copied change their IDs, but explicitly set names
are preserved. Since the anonymous menu items do not have name, their auto-generated
names change also.

If the name is prepended by ’-’ or ’*’ characters, or both, these are not treated as part of the
name but as indicator that the item is disabled (’-’ character) or checked (’*’ character
). This syntax is valid only for ::items and insert() functions, not for set variable()

method.

Menu text / menu image

A non-separator menu item can be visualized either as a text string or an image. These
options are exclusive to each other, and therefore occupy same field. Menu text is an arbitrary
string, with with ~ (tilde) quoting for a shortcut character, that the system uses as a hot key
during menu navigation. Menu image is a the Prima::Image section object of no particular
color space and dimensions.

Menu text in menu item is accessible via the ::text property, and menu image via the
::image property. These can not accept or return sensible arguments simultaneously.

Accelerator text

An alternate text string, appearing together with a menu item or a menu image, usually
serving as a description to the hot key, associated with a menu item. For example, if a hot
key to a menu item is combination of ’enter’ and ’control’ keys, then usually accelerator text
is ’Ctrl+Enter’ string.

Accelerator text in menu item is accessible via ::accel property.

NB: There is Prima::KeySelector::describe function, that converts a key value to a string
in human-readable format.

Hot key

An integer value, combined from either kb::XXX constant or a character index with
modificator key values (km::XXX constant). This representation format is not that
informative as three-integer key event format (CODE,KEY,MOD), described in the
Prima::Widget section. However, these formats are easily converted to each other:
CODE,KEY,MOD is translated to INTEGER format by translate key() method. The
reverse operation is not needed for Prima::AbstractMenu functionality and is performed by
Prima::KeySelector::translate codes method.

127

The integer value can be given in a some more readable format when submitting to ::items.
Character and F-keys (from F1 to F16) can be used literally, without kb:: prepending, and
the modificator keys can be hinted as prefix characters: km::Shift as ’#’, km::Ctrl as ’ˆ’ and
km::Alt as ’@’. This way, combination of ’control’ and ’G’ keys can be expressed as ’^G’

literal, and ’control’+’shift’+’F10’ - as ’^#F10’.

Hot key in menu item is accessible via ::key property. The property does accept literal key
format, described above.

A literal key string can be converted to an integer value by translate shortcut method.

When the user presses the key combination, that matches to hot key entry in a menu item,
its action is triggered.

Action

Every non-separator and non-submenu item is destined to perform an action. The action
can be set either as an anonymous sub, or as string with name of a method on the owner of
a menu object. Both have their niche of usage, and both are supplied with three parameters,
when called - the owner of a menu object, the menu object itself and the name of a menu
item, that triggered the action.

Action scalar in menu item is accessible via ::action property.

User data

At last, a non-separator and non-submenu menu item can hold an arbitrary scalar value, the
’user data’ field. The toolkit does not use this field, leaving that to the programmer.

User data scalar in menu item is accessible via ::data property.

Syntax of ::items does not provide ’disabled’ and ’checked’ states for a menu item as separate
fields. These states can be set by using ’-’ and ’*’ prefix characters, as described above, in the
Menu item name entry. They also can be assigned on per-item basis via ::enabled and ::checked

properties.
All these fields qualify a most common menu item, that has text, shortcut key and an action -

a ’text item’. However, there are also two other types of menu items - a sub-menu and separator.
The type of a menu items can not be changed except by full menu item tree change functions (
::items, remove(), insert().

Sub-menu item can hold same references as text menu item does, except the action field.
Instead, the action field is used for a sub-menu reference scalar, pointing to another set of menu
item description arrays. From that point of view, syntax of ::items can be more elaborated and
shown as

$menu-> items([

[text menu item description],

[sub-menu item description [

[text menu item description],

[sub-menu item description [

[text menu item description],

...

]

[text menu item description],

...

]],

...

]);

128

Separator items do not hold any fields, except name. Their purpose is to hint a logical division
of menu items by the system, which visualizes them usually as non-selectable horizontal lines.

In menu bars, the first separator item met by parser is treated differently. It serves as a
hint, that the following items must be shown in the right corner of a menu bar, contrary to the
left-adjacent default layout. Subsequent separator items in a menu bar declaration can be either
shown as a vertical division bars, or ignored.

With these menu items types and fields, it is possible to construct the described above menu
description arrays. An item description array can hold from 0 to 6 scalars, and each combination
is treated differently.

six - [NAME, TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU, DATA]

Six-scalar array is a fully qualified text-item description. All fields correspond to the de-
scribed above scalars.

five [NAME, TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU]

Same as six-scalar syntax, but without DATA field. If DATA is skipped it is undef by
default.

four [TEXT/IMAGE, ACCEL, KEY, ACTION/SUBMENU]

Same as five-scalar syntax, but without NAME field. When NAME is skipped it is assigned
to an unique string within menu object.

three [NAME, TEXT/IMAGE, ACTION/SUBMENU]

Same as five-scalar syntax, but without ACCEL and KEY fields. KEY is kb::NoKey by
default, so no keyboard combination is bound to the item. Default ACCEL value is an
empty string.

two [TEXT/IMAGE, ACTION/SUBMENU]

Same as three-scalar syntax, but without NAME field.

one and zero []

Both empty and 1-scalar arrays indicate a separator menu item. In case of 1-scalar syntax,
the scalar value is ignored.

As an example of all above said, a real-life piece of code is exemplified:

$img = Prima::Image-> create(...);

...

$menu-> items([

["~File" => [

["Anonymous" => "Ctrl+D" => ’^d’ => sub { print "sub\n";}], # anonymous sub

[$img => sub {

my $img = $_[0]-> menu-> image($_[1]);

my @r = @{$img-> palette};

$img-> palette([reverse @r]);

$_[0]->menu->image($_[1], $img);

}], # image

[], # division line

["E~xit" => "Exit"] # calling named function of menu owner

]],

[ef => "~Edit" => [# example of system commands usage

...

["Pa~ste" => sub { $_[0]->foc_action(’paste’)}],

...

129

["~Duplicate menu"=>sub{ TestWindow->create(menu=>$_[0]->menu)}],

]],

...

[], # divisor in main menu opens

["~Clusters" => [# right-adjacent part

["*".checker => "Checking Item" => "Check"],

[],

["-".slave => "Disabled state" => "PrintText"],

...

]]

]);

The code is stripped from ’menu.pl’ from ’examples’ directory in the toolkit installation. The
reader is advised to run the example and learn the menu mechanics.

Prima::MenuItem

As described above, text and sub-menu items can be managed by elemental properties - ::accel,
::text, ::image, ::checked, ::enabled, ::action, ::data. All these, plus some other methods
can be called in an alternative way, resembling name-based component calls of the Prima::Object
section. A code

$menu-> checked(’CheckerMenuItem’, 1);

can be re-written as

$menu-> CheckerMenuItem-> checked(1);

Name-based call substitutes Prima::MenuItem object, created on the fly. Prima::MenuItem
class shares same functions of Prima::AbstractMenu, that handle individual menu items.

Prima::Menu

Objects, derived from Prima::Menu class are used to tandem Prima::Window objects, and their
items to be shown as menu bar on top of the window.

Prima::Menu is special in that its top-level items visualized horizontally, and in behavior of
the top-level separator items (see above, the Menu items entry).

If ::selected is set to 1, then a menu object is visualized in a window, otherwise it is not. This
behavior allows window to host multiple menu objects without clashing. When a Prima::Menu
object gets ’selected’, it displaces the previous ’selected’ menu Prima::Menu object, and its items
are installed into the visible menu bar. Prima::Window property ::menu then points to the menu
object, and ::menuItems is an alias for ::items menu class property. Prima::Window’s properties
::menuFont and ::menuColorIndex are used as visualization hints.

Prima::Menu provide no new methods or properties.

Prima::Popup

Objects, derived from Prima::Popup class are used together with Prima::Widget objects. Menu
items are visualized when the user pressed the pop-up key or mouse buttons combination, in
response to Prima::Widget’s Popup notification.

If ::selected is set to 1, then a menu object is visualized in the system pop-up menu, otherwise
it is not. This behavior allows widget to host multiple menu objects without clashing. When a
Prima::Popup object gets ’selected’, it displaces the previous ’selected’ menu Prima::Popup object.
Prima::Widget property ::popup then points to the menu object, and ::popupItems is an alias for
::items menu class property. Prima::Widget’s properties ::popupFont and ::popupColorIndex

are used as visualization hints.

130

A Prima::Popup object can be visualized explicitly, by means of popup method. The implicit
visualization by the user is happened only if the ::autoPopup property is set to 1.

Prima::Popup provides new popup method and new ::autoPopup property.

Prima::AccelTable

This class is destined for a more limited functionality than Prima::Menu and Prima::Popup, pri-
marily for mapping key strokes to predefined actions. Prima::AccelTable objects are never visual-
ized, and consume no system resources, although full menu item management syntax is supported.

If ::selected is set to 1, then it displaces the previous ’selected’ menu Prima::AccelTable
object. Prima::Widget property ::accelTable then points to the menu object, and ::accelItems

is an alias for ::items menu class property.
Prima::AccelTable provide no new methods or properties.

API

Properties

accel NAME, STRING / Prima::MenuItem::accel STRING

Manages accelerator text for a menu item. NAME is name of the menu item.

action NAME, SCALAR / Prima::MenuItem::action SCALAR.

Manages action for a menu item. NAME is name of the menu item. SCALAR can be either
an anonymous sub or a method name, defined in the menu object owner’s name space. Both
called with three parameters - the owner of a menu object, the menu object itself and the
name of the menu item.

autoPopup BOOLEAN

Only in Prima::Popup

If set to 1 in selected state, calls popup() action in response to Popup notification, when the
user presses the default key or mouse button combination.

If 0, the pop-up menu can not be executed implicitly.

Default value: 1

checked NAME, BOOLEAN / Prima::MenuItem::checked BOOLEAN

Manages ’checked’ state of a menu item. If ’checked’, a menu item visualized with a distinct
check-mark near the menu item text or image. Its usage with sub-menu items is possible,
although discouraged.

NAME is name of the menu item.

data NAME, SCALAR / Prima::MenuItem::data SCALAR

Manages the user data scalar.

NAME is name of the menu item. SCALAR can be any scalar value, the toolkit does not
use this property internally.

enabled NAME, BOOLEAN / Prima::MenuItem::enabled BOOLEAN

Manages ’enabled’ state of a menu item. If ’enabled’ is 0, a menu item visualized with
grayed or otherwise dimmed color palette. If a sub-menu item is disabled, whole sub-menu
is inaccessible.

NAME is name of the menu item.

131

image NAME, OBJECT / Prima::MenuItem::image OBJECT

Manages the image, bound with a menu item. OBJECT is a non-null Prima::Image object
reference, with no particular color space or dimensions (because of dimensions, its usage in
top-level Prima::Menu items is discouraged).

::image and ::text are mutually exclusive menu item properties, and can not be set to-
gether, but a menu item can change between image and text representation at run time by
calling these properties.

NAME is name of the menu item.

items SCALAR

Manages the whole menu items tree. SCALAR is a multi-level anonymous array structure,
with syntax described in the Menu items entry.

::items is an ultimate tool for reading and writing the menu items tree, but often it is
too powerful, so there are elemental properties ::accel, ::text, ::image, ::checked,
::enabled, ::action, ::data declared, that handle menu items individually.

key NAME, KEY / Prima::MenuItem::key KEY

Manages the hot key combination, bound with a menu item. Internally KEY is kept as an
integer value, and get-mode call returns integers only, but set-mode accepts the literal key
format - like, ’ˆC’, ’F5’ strings.

NAME is name of the menu item, KEY is an integer value.

selected BOOLEAN

If set to 1, menu object is granted extra functionality from a window or widget owner
object. Different Prima::AbstractMenu descendant provided with different extra function-
alities. In Usage section, see the Prima::Menu section, the Prima::Popup section and the
Prima::AccelTable section.

Within each menu class, only one menu object can be selected for its owner.

If set to 0, the only actions performed are implicit hot-key lookup when on KeyDown event.

Default value: 1

text NAME, STRING / Prima::MenuItem::text STRING

Manages the text, bound with a menu item. STRING is an arbitrary string, with ’~’ (
tilde) quotation of a hot key character. The hot key character is only used when keyboard
navigation of a pop-up or a pull-down menu is performed; it has no influence outside menu
sessions.

::text and ::image are mutually exclusive menu item properties, and can not be set to-
gether, but a menu item can change between image and text representation at run time by
calling these properties.

Methods

check NAME / Prima::MenuItem::check

Alias for checked(1). Sets menu item in checked state.

disable NAME / Prima::MenuItem::disable

Alias for enabled(0). Sets menu item in disabled state.

enabled NAME / Prima::MenuItem::enabled

Alias for enabled(1). Sets menu item in enabled state.

132

get handle

Returns a system-dependent menu handle.

NB: Prima::AccelTable use no system resources, and this method returns its object handle
instead.

has item NAME

Returns boolean value, whether the menu object has a menu item with name NAME.

insert ITEMS, ROOT NAME, INDEX

Inserts menu item inside existing item tree. ITEMS has same syntax as ::items.
ROOT NAME is the name of a menu item, where the insertion must take place; if
ROOT NAME is an empty string, the insertion is performed to the top level items. IN-
DEX is an offset, which the newly inserted items would possess after the insertion. INDEX
0 indicates the beginning, thus.

Returns no value.

popup X OFFSET, Y OFFSET, [LEFT = 0, BOTTOM = 0, RIGHT = 0, TOP =
0]

Only in Prima::Popup

Executes the system-driven pop-up menu, in location near (X OFFSET,Y OFFSET) pixel
on the screen, with items from ::items tree. The pop-up menu is hinted to be positioned
so that the rectangle, defined by (LEFT,BOTTOM) - (RIGHT,TOP) coordinates is not
covered by the first-level menu. This is useful when a pop-up menu is triggered by a button
widget, for example.

If during the execution the user selects a menu item, then its associated action is executed
(see action).

The method returns immediately and returns no value.

remove NAME / Prima::MenuItem::remove

Deletes a menu item from the items tree, and its sub-menus if the item is a sub-menu item.

select

Alias for selected(1). Sets menu object in selected state.

set command KEY, ENABLED

Disables or enables menu items, associated with key combinations KEY.

set variable NAME, NEW NAME

Changes the name of a menu item with NAME to NEW NAME. NEW NAME must not be
an empty string and must not be in a ’#integer’ form.

toggle NAME / Prima::MenuItem::toggle

Toggles the checked state of a menu item and returns the new state.

translate accel TEXT

Locates a ’~’ (tilde) - escaped character in a TEXT string and returns its index (as
ord(lc())), or 0 if no escaped characters were found.

The method can be called with no object.

133

translate key CODE, KEY, MOD

Translates three-integer key representation into the one-integer format and returns the
integer value. The three-integer format is used in KeyDown and KeyUp notifications for
Prima::Widget.

See the Prima::Widget section

The method can be called with no object.

translate shortcut KEY

Converts literal-represented KEY string into the integer format and returns the integer value.

The method can be called with no object.

uncheck NAME / Prima::MenuItem::uncheck

Alias for checked(0). Sets menu item in unchecked state.

134

3.13 Prima::Timer

Programmable periodical events

Synopsis

my $timer = Prima::Timer-> create(

timeout => 1000, # milliseconds

onTick => sub {

print "tick!\n";

},

);

$timer-> start;

Description

Prima::Timer arranges periodical notifications to be delivered in certain time intervals. The no-
tifications are triggered by the system, and are seen as Tick events. There can be many active
Timer objects at one time, spawning events simultaneously.

Usage

Prima::Timer is a descendant of Prima::Component. Objects of Prima::Timer class are created in
standard fashion:

my $t = Prima::Timer-> create(

timeout => 1000,

onTick => sub { print "tick\n"; },

);

$t-> start;

If no ‘owner‘ is given, $::application is assumed.
Timer objects are created in inactive state; no events are spawned. To start spawning events,

<start()> method must be explicitly called. Time interval value is assigned using the <::timeout>
property in milliseconds.

When the system generates timer event, no callback is called immediately, - an event is pushed
into stack instead, to be delivered during next event loop. Therefore, timeout value is not held
accurately, and events may take longer time to pass. More accurate timing scheme, as well as
timing with precision less than a millisecond, is not supported by the toolkit.

API

Properties

timeout MILLISECONDS

Manages time interval between Tick events. In set-mode call, if the timer is in active state
(see get active(), the new timeout value is applied immediately.

Methods

get active

Returns a boolean flag, whether object is in active state or not. In the active state Tick

events are spawned after ::timeout time intervals.

135

get handle

Returns a system-dependent handle of object

start

Sets object in active state. If succeed, or if the object is already in active state, returns 1.
If the system was unable to create a system timer instance, 0 is returned.

stop

Sets object in inactive state.

Events

Tick

A system generated event, spawned every ::timeout milliseconds if object is in active state.

136

3.14 Prima::Application

Root of widget objects hierarchy

Description

Prima::Application class serves as a hierarchy root for all objects with child-owner relationship.
All toolkit objects, existing with non-null owner property, belong by their top-level parental rela-
tionship to Prima::Application object. There can be only one instance of Prima::Application class
at a time.

Synopsis

use Prima;

use Prima::Application;

or

use Prima qw(Application);

Prima::MainWindow-> create();

run Prima;

Usage

Prima::Application class, and its only instance are treated specially throughout the toolkit. The
object instance is contained in

$::application

scalar, defined in Prima.pm module. The application instance must be created whenever
widget and window, or event loop functionality is desired. Usually

use Prima::Application;

code is enough, but $::application can also be assigned explicitly. The ’use’ syntax has advan-
tage as more resistant to eventual changes in the toolkit design. It can also be used in conjunction
with custom parameters hash, alike the general create() syntax:

use Prima::Application name => ’Test application’, icon => $icon;

In addition to this functionality Prima::Application is also a wrapper to a set of system func-
tions, not directly related to object classes. This functionality is generally explained in the API
entry.

Inherited functionality

Prima::Application is a descendant of Prima::Widget, but it is designed so because their func-
tional outliers are closest to each other. Prima::Application does not strictly conform (in OO
sense) to any of the built-in classes. It has methods copied from both Prima::Widget and
Prima::Window at one time, and the inherited Prima::Widget methods and properties func-
tion differently. For example, ::origin, a property from Prima::Widget, is also implemented
in Prima::Application, but returns always (0,0), an expected but not much usable result. ::size,
on the contrary, returns the extent of the screen in pixels. There are few properties, inherited from
Prima::Widget, which return actual, but uninformative results, - ::origin is one of those, but

137

same are ::buffered, ::clipOwner, ::enabled, ::growMode, ::owner and owner-inheritance
properties, ::selectable, ::shape, ::syncPaint, ::tabOrder, ::tabStop, ::transparent,
::visible. To this group also belongs ::modalHorizon, Prima::Window class property, but
defined for consistency and returning always 1. Other methods and properties, like ::size, that
provide different functionality are described in the API entry.

Global functionality

Prima::Application is a wrapper to functionality, that is not related to one or another class clearly.
A notable example, paint mode, which is derived from Prima::Drawable class, allows painting
on the screen, overwriting the graphic information created by the other programs. Although
being subject to begin paint()/end paint() brackets, this functionality can not be attached to
a class-shared API, an therefore is considered global. All such functionality is gathered in the
Prima::Application class.

These topics enumerated below, related to the global scope, but occupying more than one
method or property - such functions described in the API entry.

Painting

As stated above, Prima::Application provides interface to the on-screen painting. This
mode is triggered by begin paint()/end paint() methods pair, and the other pair, be-
gin paint info()/end paint info() triggers the information mode. This three-state paint func-
tionality is more thoroughly described in the Prima::Drawable section.

Hint

$::application hosts a special Prima::HintWidget class object, accessible via
get hint widget(), but with color and font functions aliased (::hintColor,
::hintBackColor, ::hintFont).

This widget serves as a hint label, floating over widgets if the mouse pointer hovers longer
than ::hintPause milliseconds.

Prima::Application internally manages all hint functionality. The hint widget itself, however,
can be replaced before application object is created, using ::hintClass create-only property.

Printer

Result of the get printer entry method points to an automatically created printer ob-
ject, responsible for the system-driven printing. Depending on the operating system,
it is either Prima::Printer, if the system provides GUI printing capabilities, or generic
Prima::PS::Printer, the PostScript document interface.

See the Prima::Printer section for details.

Clipboard

$::application hosts set of Prima::Clipboard objects, created automatically to reflect the
system-provided clipboard IPC functionality. Their number depends on the system, - under
X11 environment there is three clipboard objects, and only one under Win32 and OS/2.

These are no methods to access these clipboard objects, except fetch() (or, the indirect
name calling) - the clipboard objects are named after the system clipboard names, which
are returned by Prima::Clipboard::get standard clipboards.

The default clipboard is named Clipboard, and is accessible via

my $clipboard = $::application-> Clipboard;

code.

See the Prima::Clipboard section for details.

138

Help subsystem

The toolkit has a built-in help viewer, that understands perl’s native POD (plain old
documentation) format. Whereas the viewer functionality itself is part of the toolkit, and
resides in Prima::HelpViewer module, any custom help viewing module can be assigned.
Create-only Prima::Application properties ::helpClass and ::helpModule can be used
to set these options.

Prima::Application provides two methods for communicating with the help viewer window:
open help() opens a selected topic in the help window, and close help() closes the window.

System-dependent information

A complex program will need eventually more information than the toolkit provides.
Or, knowing the toolkit boundaries in some platforms, the program changes its behav-
ior accordingly. Both these topics are facilitated by extra system information, returned
by Prima::Application methods. get system value returns a system value for one of
sv::XXX constants, so the program can read the system-specific information. As well as
get system info method, that returns the short description of the system, it is the portable
call. To the contrary, sys action method is a wrapper to system-dependent functionality,
called in non-portable way. This method is never used within the toolkit, and its usage is
discouraged, primarily because its options do not serve the toolkit design, are subject to
changes and cannot be relied upon.

API

Properties

autoClose BOOLEAN

If set to 1, issues close() after the last top-level window is destroyed. Does not influence
anything if set to 0.

This feature is designed to help with general ’one main window’ application layouts.

Default value: 0

icon OBJECT

Holds the icon object, associated with the application. If undef, a system-provided default
icon is assumed. Prima::Window object instances inherit the application icon by default.

insertMode BOOLEAN

A system boolean flag, showing whether text widgets through the system should insert (1
) or overwrite (0) text on user input. Not all systems provide the global state of the flag.

helpClass STRING

Specifies a class of object, used as a help viewing package. The default value is
Prima::HelpViewer.

Run-time changes to the property do not affect the help subsystem until close help call is
made.

helpModule STRING

Specifies a perl module, loaded indirectly when a help viewing call is made via open help.
Used when ::helpClass property is overridden and the new class is contained in a third-
party module.

Run-time changes to the property do not affect the help subsystem until close help call is
made.

139

hintClass STRING

Create-only property.

Specifies a class of widget, used as the hint label.

Default value: Prima::HintWidget

hintColor COLOR

An alias to foreground color property for the hint label widget.

hintBackColor COLOR

An alias to background color property for the hint label widget.

hintFont %FONT

An alias to font property for the hint label widget.

hintPause TIMEOUT

Selects the timeout in milliseconds before the hint label is shown when the mouse pointer
hovers over a widget.

modalHorizon BOOLEAN

A read-only property. Used as a landmark for the lowest-level modal horizon. Always returns
1.

palette [@PALETTE]

Used only within paint and information modes. Selects solid colors in a system palette, as
many as possible. PALETTE is an array of integer triplets, where each is red, green, and
blue component, with intensity range from 0 to 255.

printerClass STRING

Create-only property.

Specifies a class of object, used as a printer. The default value is system-dependent, but is
either Prima::Printer or Prima::PS::Printer.

printerModule STRING

Create-only property.

Specifies a perl module, loaded indirectly before a printer object of ::printerClass class is
created. Used when ::printerClass property is overridden and the new class is contained
in a third-party module.

pointerVisible BOOLEAN

Governs the system pointer visibility. If 0, hides the pointer so it is not visible in all system
windows. Therefore this property usage must be considered with care.

size WIDTH, HEIGHT

A read-only property.

Returns two integers, width and height of the screen.

showHint BOOLEAN

If 1, the toolkit is allowed to show the hint label over a widget. If 0, the display of the
hint is forbidden. In addition to functionality of ::showHint property in Prima::Widget,
Prima::Application::showHint is another layer of hint visibility control - if it is 0, all hint
actions are disabled, disregarding ::showHint value in widgets.

140

wantUnicodeInput BOOLEAN

Selects if the system is allowed to generate key codes in unicode. Returns the effective state
of the unicode input flag, which cannot be changed if perl or operating system do not support
UTF8.

If 1, Prima::Clipboard::text property may return UTF8 text from system clipboards is
available.

Default value: 0

Events

PasteText $CLIPBOARD, $$TEXT REF

The notification queries $CLIPBOARD for text content and stores in $$TEXT REF. Default
action is that ’Text’ format is queried if wantUnicodeInput is unset. Otherwise, ’UTF8’
format is queried beforehand.

The PasteText mechanism is devised to ease defining text unicode/ascii conversion between
clipboard and standard widgets, in a standard way.

Methods

add startup notification @CALLBACK

CALLBACK is an array of anonymous subs, which is executed when Prima::Application
object is created. If the application object is already created during the call, CALLBACKs
called immediately.

Useful for add-on packages initialization.

begin paint

Enters the enabled (active paint) state, returns success flag. Once the object is in enabled
state, painting and drawing methods can perform write operations on the whole screen.

begin paint info

Enters the information state, returns success flag. The object information state is same
as enabled state (see begin paint()), except that painting and drawing methods are not
permitted to change the screen.

close

Issues a system termination call, resulting in calling close for all top-level windows. The
call can be interrupted by these, and thus canceled. If not canceled, stops the application
event loop.

close help

Closes the help viewer window.

end paint

Quits the enabled state and returns application object to the normal state.

end paint info

Quits the information state and returns application object to the normal state.

font encodings

Returns array of encodings, represented by strings, that are recognized by the system and
available for at least one font. Each system provides different sets of encoding strings; the
font encodings are not portable.

141

fonts NAME = ”, ENCODING = ”

Returns hash of font hashes (see the Fonts entry in the Prima::Drawable section) describing
fonts of NAME font family and of ENCODING. If NAME is ” or undef, returns one fonts
hash for each of the font families that match the ENCODING string. If ENCODING is
” or undef, no encoding match is performed. If ENCODING is not valid (not present in
font encodings result), it is treated as if it was ” or undef.

In the special case, when both NAME and ENCODING are ” or undef, each font metric
hash contains element encodings, that points to array of the font encodings, available for
the fonts of NAME font family.

get active window

Returns object reference to a currently active window, if any, that belongs to the program.
If no such window exists, undef is returned.

The exact definition of ’active window’ is system-dependent, but it is generally believed that
an active window is the one that has keyboard focus on one of its children widgets.

get caption font

Returns a title font, that the system uses to draw top-level window captions. The method
can be called with a class string instead of an object instance.

get default cursor width

Returns width of the system cursor in pixels. The method can be called with a class string
instead of an object instance.

get default font

Returns the default system font. The method can be called with a class string instead of an
object instance.

get default scrollbar metrics

Returns dimensions of the system scrollbars - width of the standard vertical scrollbar and
height of the standard horizon scrollbar. The method can be called with a class string instead
of an object instance.

get default window borders BORDER STYLE = bs::Sizeable

Returns width and height of standard system window border decorations for one of bs::XXX
constants. The method can be called with a class string instead of an object instance.

get focused widget

Returns object reference to a currently focused widget, if any, that belongs to the program.
If no such widget exists, undef is returned.

get hint widget

Returns the hint label widget, attached automatically to Prima::Application object during
startup. The widget is of ::hintClass class, Prima::HintWidget by default.

get image X OFFSET, Y OFFSET, WIDTH, HEIGHT

Returns Prima::Image object with WIDTH and HEIGHT dimensions filled with graphic
content of the screen, copied from X OFFSET and Y OFFSET coordinates. If WIDTH and
HEIGHT extend beyond the screen dimensions, they are adjusted. If the offsets are outside
screen boundaries, or WIDTH and HEIGHT are zero or negative, undef is returned.

142

get indents

Returns 4 integers that corresponds to extensions of eventual desktop decorations that the
windowing system may present on the left, bottom, right, and top edges of the screen. For
example, for win32 this reports the size of the part of the scraan that windows taskbar may
occupies, if any.

get printer

Returns the printer object, attached automatically to Prima::Application object. The object
is of ::printerClass class.

get message font

Returns the font the system uses to draw the message text. The method can be called with
a class string instead of an object instance.

get modal window MODALITY TYPE = mt::Exclusive, TOPMOST = 1

Returns the modal window, that resides on an end of a modality chain. MODALITY TYPE
selects the chain, and can be either mt::Exclusive or mt::Shared. TOPMOST is a boolean
flag, selecting the lookup direction; if it is 1, the ’topmost’ window is returned, if 0, the
’lowest’ one (in a simple case when window A is made modal (executed) after modal window
B, the A window is the ’topmost’ one).

If a chain is empty undef is returned. In case when a chain consists of just one window,
TOPMOST value is apparently irrelevant.

get scroll rate

Returns two integer values of two system-specific scrolling timeouts. The first is the initial
timeout, that is applied when the user drags the mouse from a scrollable widget (a text
field, for example), and the widget is about to scroll, but the actual scroll is performed after
the timeout is expired. The second is the repetitive timeout, - if the dragging condition did
not change, the scrolling performs automatically after this timeout. The timeout values are
in milliseconds.

get system info

Returns a hash with information about the system. The hash result contains the following
keys:

apc

One of apc::XXX constants, reflecting the platform. Currently, the list of the supported
platforms is:

apc::Os2

apc::Win32

apc::Unix

gui

One of gui::XXX constants, reflecting the graphic user interface used in the system:

gui::Default

gui::PM

gui::Windows

gui::XLib

gui::GTK2

guiDescription

Description of graphic user interface, returned as an arbitrary string.

143

system

An arbitrary string, representing the operating system software.

release

An arbitrary string, reflecting the OS version information.

vendor

The OS vendor string

architecture

The machine architecture string

The method can be called with a class string instead of an object instance.

get system value

Returns the system integer value, associated with one of sv::XXX constants. The constants
are:

sv::YMenu - height of menu bar in top-level windows

sv::YTitleBar - height of title bar in top-level windows

sv::XIcon - width and height of main icon dimensions,

sv::YIcon acceptable by the system

sv::XSmallIcon - width and height of alternate icon dimensions,

sv::YSmallIcon acceptable by the system

sv::XPointer - width and height of mouse pointer icon

sv::YPointer acceptable by the system

sv::XScrollbar - width of the default vertical scrollbar

sv::YScrollbar - height of the default horizontal scrollbar

(see get_default_scrollbar_metrics()

sv::XCursor - width of the system cursor

(see get_default_cursor_width()

sv::AutoScrollFirst - the initial and the repetitive

sv::AutoScrollNext scroll timeouts

(see get_scroll_rate())

sv::InsertMode - the system insert mode

(see insertMode)

sv::XbsNone - widths and heights of the top-level window

sv::YbsNone decorations, correspondingly, with borderStyle

sv::XbsSizeable bs::None, bs::Sizeable, bs::Single, and

sv::YbsSizeable bs::Dialog.

sv::XbsSingle (see get_default_window_borders())

sv::YbsSingle

sv::XbsDialog

sv::YbsDialog

sv::MousePresent - 1 if the mouse is present, 0 otherwise

sv::MouseButtons - number of the mouse buttons

sv::WheelPresent - 1 if the mouse wheel is present, 0 otherwise

sv::SubmenuDelay - timeout (in ms) before a sub-menu shows on

an implicit selection

sv::FullDrag - 1 if the top-level windows are dragged dynamically,

0 - with marquee mode

sv::DblClickDelay - mouse double-click timeout in milliseconds

sv::ShapeExtension - 1 if Prima::Widget::shape functionality is supported,

0 otherwise

sv::ColorPointer - 1 if system accepts color pointer icons.

144

sv::CanUTF8_Input - 1 if system can generate key codes in unicode

sv::CanUTF8_Output - 1 if system can output utf8 text

The method can be called with a class string instead of an object instance.

get widget from handle HANDLE

HANDLE is an integer value of a toolkit widget. It is usually passed to the program by other
IPC means, so it returns the associated widget. If no widget is associated with HANDLE,
undef is returned.

get widget from point X OFFSET, Y OFFSET

Returns the widget that occupies screen area under (X OFFSET,Y OFFSET) coordinates.
If no toolkit widget are found, undef is returned.

go

The main event loop. Called by

run Prima;

standard code. Returns when the program is about to terminate, or if the exception was
signaled. In the latter case, the loop can be safely re-started.

lock

Effectively blocks the graphic output for all widgets. The output can be restored with
unlock().

open help TOPIC

Opens the help viewer window with TOPIC string in link POD format (see perlpod) - the
string is treated as ”manpage/section”, where ’manpage’ is the file with POD content and
’section’ is the topic inside the manpage.

sys action CALL

CALL is an arbitrary string of the system service name and the parameters to it. This
functionality is non-portable, and its usage should be avoided. The system services provided
are not documented and subject to change. The actual services can be looked in the toolkit
source code under apc system action tag.

unlock

Unblocks the graphic output for all widgets, previously locked with lock().

yield

An event dispatcher, called from within the event loop. If the event loop can be schematized,
then in

while (application not closed) {

yield

}

draft yield() is the only function, called repeatedly within the event loop. yield() cannot
be used to organize event loops, but it can be employed to process stacked system events
explicitly, to increase responsiveness of a program, for example, inside a long calculation
cycle.

The method can be called with a class string instead of an object instance; however, the
$::application object must be initialized.

145

3.15 Prima::Printer

System printing services

Synopsis

my $printer = $::application-> get_printer;

print "printing to ", $printer->printer, "...\n";

$p-> options(Orientation => ’Landscape’, PaperSize => ’A4’);

if ($p-> begin_doc) {

$p-> bar(0, 0, 100, 100);

print "another page...\n";

$p-> new_page;

$p-> ellipse(100, 100, 200, 200);

(time % 1) ? # depending on the moon phase, print it or cancel out

$p-> end_doc :

$p-> abort_doc;

} else {

print "failed\n";

}

Description

Prima::Printer is a descendant of Prima::Drawable class. It provides access to the system printing
services, where available. If the system provides no graphics printing, the default PostScript (tm)
interface module Prima::PS::Printer is used instead.

Usage

Prima::Printer objects are never created directly. During the life of a program, there exists only
one instance of a printer object, created automatically by Prima::Application. Prima::Printer
object is created only when the system provides graphic printing capabilities - drawing and painting
procedures on a graphic device. If there are no such API, Prima::Application creates an instance
of Prima::PS::Printer instead, which emulates a graphic device, producing PostScript output.
The discretion between Prima::Printer and Prima::PS::Printer is transparent for both the user
and the programmer, unless printer device specific adjustments desired.

A printing session is started by begin doc(), which switches the object into the painting state.
If finished by end doc(), the document is delivered to a printer device. Alternative finishing
method, abort doc(), terminates the printing session with no information printed, unless the
document is multi-paged and pages were sent to the printer via new page().

A printer object (that means, both Prima::Printer and Prima::PS::Printer) provides selection
of the printer mechanism. printers() method returns array of hashes, each describing a printer
device; get default printer() returns a default printer string identifier. A printer device can
be selected via the ::printer property.

The capabilities of the selected printer can be adjusted via setup dialog() method, that
invokes a system-provided (or, in case of Prima::PS::Printer, toolkit-provided) printer setup
dialog, so the user can adjust settings of a printer device. It depends on the system, whether the
setup changes only the instance settings, or the default behavior of a printer driver is affected for
all programs.

Some printer capabilities can be queried by the ::size() property, that reports the dimension
of the page, the ::resolution() property, that reports the DPI resolution selected by a printer
driver and font list (by fonts() method), available for usage.

Typical code that prints the document looks like

146

my $p = $::application-> get_printer;

if ($p-> begin_doc) {

... draw ...

$p-> end_doc;

}

In addition, a standard package Prima::PrintDialog can be recommended so the user can select
a printer device and adjust its setup interactively.

API

Properties

printer STRING

Selects a printer device, specified by its STRING identifier. Can not select a device if a
printing session is started.

resolution X, Y

A read-only property; returns a DPI horizontal and vertical resolution, currently selected for
a printer device. The user can change this, if the printer device supports several resolutions,
inside setup dialog().

size WIDTH, HEIGHT

A read-only property; returns dimensions of a printer device page. The user can change this,
if the printer device supports several resolutions or page formats, inside setup dialog().

Methods

abort doc

Stops the printing session, returns the object to the disabled painting state. Since the
document can be passed to the system spooler, parts of it could have been sent to a printing
device when abort doc() is called, so some information could still been printed.

begin doc DOCUMENT NAME = ””

Initiates the printing session, and triggers the object into the enabled painting state. The
document is assigned DOCUMENT NAME string identifier.

begin paint

Identical to begin doc("") call.

begin paint info

Triggers the object into the information painting state. In this state, all graphic functions
can be accessed, but no data is printed. Neither new page() and abort doc() methods
work. The information mode is exited via end paint info() method.

end doc

Quits the printing session and delivers the document to a printer device. Does not report
eventual errors, occurred during the spooling process - the system is expected to take care
about such situations.

end paint

Identical to abort doc().

147

end paint info

Quits the information painting mode, initiated by begin paint info() and returns the
object into the disabled painting state.

font encodings

Returns array of encodings, represented by strings, that are recognized by the system and
available in at least one font. Each system provides different sets of encoding strings; the
font encodings are not portable.

fonts NAME = ”, ENCODING = ”

Returns hash of font hashes (see the Prima::Drawable section, Fonts section) describing
fonts of NAME font family and of ENCODING. If NAME is ” or undef, returns one fonts
hash for each of the font families that match the ENCODING string. If ENCODING is
” or undef, no encoding match is performed. If ENCODING is not valid (not present in
font encodings result), it is treated as if it was ” or undef.

In the special case, when both NAME and ENCODING are ” or undef, each font metric
hash contains element encodings, that points to array of the font encodings, available for
the fonts of NAME font family.

new page

Finalizes the current page and starts a new blank page.

options [OPTION, [VALUE, [...]]]

Queries and sets printer-specific setup options, such as orientation, paper size, etc. If called
without parameters, returns list of options the printer supports. If called with one parameter,
treats is as the option name and return the corresponsing value. Otherwise, treats parameters
as a list of key-value pairs, and sets the printer options. Returns number of options that
were successfully set.

The compatibility between options and values used by differ-
ent OSes is low here. The only fully compatible options are
Orientation[Portrait|Landscape], Color[Color|Monochrome], Copies[integer], and
PaperSize[Ainteger |Binteger |Executive|Folio|Ledger|Legal|Letter|Tabloid]. The
other options are OS-dependant. For win32, consult Microsoft manual on DEVMODE
structure the http:msdn.microsoft.comlibraryen-usgdiprntspol 8nle.asp entry; for Prima’s
own PostScript printer, consult the Prima::PS::Printer section.

printers

Returns array of hashes, where each entry describes a printer device. The hash consists of
the following entries:

name

A printer device name

device

A physical device name, that the printer is connected to

defaultPrinter

A boolean flag, 1 if the printer is default, 0 otherwise.

setup dialog

Invokes the system-provided printer device setup dialog. In this setup, the user can adjust
the capabilities of the printer, such as page setup, resolution, color, etc etc.

get default printer

Returns a string, identifying a default printer device.

148

get handle

Returns a system handle for a printer object.

149

3.16 Prima::File

Asynchronous stream I/O.

Synopsis

use strict;

use Prima qw(Application);

create pipe and autoflush the writer end

pipe(READ, WRITE) or die "pipe():$!\n";

select WRITE;

$|=1;

select STDOUT;

create Prima listener on the reader end

my $read = Prima::File-> new(

file => *READ,

mask => fe::Read,

onRead => sub {

$_ = <READ>;

print "read:$_\n";

},

);

print WRITE "line\n";

run Prima;

Description

Prima::File provides access to the I/O stream events, that are called when a file handle becomes
readable, writable or if an exception occurred. Registering file handles to Prima::File objects
makes possible the stream operations coexist with the event loop.

Usage

Prima::File is a descendant of Prima::Component. Objects of Prima::File class must be binded to
a valid file handle object, before the associated events can occur:

my $f = Prima::File-> create();

$f-> file(*STDIN);

When a file handle, binded via the ::file property becomes readable, writable or when an
exception signaled, one of three correspondent events called - Read, Write or Exception. When a
handle is always readable, or always writable, or, some of these events are desired to be blocked,
the file event mask can be set via the ::mask property:

$f-> mask(fe::Read | fe::Exception);

NB. Due to different system implementations, the only handles, currently supported on all
systems, are socket handle and disk file handles. Pipes only work on unix platforms. The example
file socket.pl elucidates the use of sockets together with Prima::File.

When a file handle is not needed anymore, it is expected to be detached from an object
explicitly:

$f-> file(undef);

150

However, if the system detects that a file handle is no longer valid, it is automatically detached.
It is possible to check, if a file handle is still valid by calling the is active() method.

Prima::File events are basically the same I/O callbacks, provided by a system select() call.
See documentation of your system’s select() for the implementation details.

API

Properties

file HANDLE

Selects a file handle, that is to be monitored for stream I/O events. If HANDLE is undef,
object is returned to a passive state, and the previously binded file handle is de-selected.

mask EVENT MASK

Selects a event mask, that is a combination of fe::XXX integer constants, each representing
an event:

fe::Read

fe::Write

fe::Exception

The omitted events are effectively excluded from the system file event multiplexing mecha-
nism.

Methods

get handle

Returns sprintf("0x%08x", fileno(file)) string. If ::file is undef, -1 is used in-
stead fileno() result.

is active AUTODETACH = 0

Returns a boolean flag, indicating if a file handle is valid. If AUTODETACH is 1, and the
file handle is not valid, file(undef) is called.

Events

Read

Called when a file handle becomes readable. The callback procedure is expected to call a
non-blocking read() on the file handle.

Write

Called when a file handle becomes writable. The callback procedure is expected to call a
non-blocking write() on the file handle.

Exception

Called when an exception is signaled on a file handle. The exceptions are specific to handle
type and the operating system. For example, a unix socket signals Exception when a control
status data for a pseudo terminal or an out-of-band data arrives.

151

4 Widget library

4.1 Prima::Buttons

Button widgets and grouping widgets.

Synopsis

use Prima qw(Application Buttons StdBitmap);

my $window = Prima::MainWindow-> create;

Prima::Button-> new(

owner => $window,

text => ’Simple button’,

pack => {},

);

$window-> insert(’Prima::SpeedButton’ ,

pack => {},

image => Prima::StdBitmap::icon(0),

);

run Prima;

Description

Prima::Buttons provides two separate sets of classes: the button widgets and the grouping widgets.
The button widgets include push buttons, check-boxes and radio buttons. The grouping widgets
are designed for usage as containers for the check-boxes and radio buttons, however, any widget
can be inserted in a grouping widget.

The module provides the following classes:

*Prima::AbstractButton (derived from Prima::Widget and Prima::MouseScroller)

Prima::Button

Prima::SpeedButton

*Prima::Cluster

Prima::CheckBox

Prima::Radio

Prima::GroupBox (derived from Prima::Widget)

Prima::RadioGroup (obsolete)

Prima::CheckBoxGroup (obsolete)

Note: * - marked classes are abstract.

152

Usage

use Prima::Buttons;

my $button = $widget-> insert(’Prima::Button’,

text => ’Push button’,

onClick => sub { print "hey!\n" },

);

$button-> flat(1);

my $group = $widget-> insert(’Prima::GroupBox’,

onRadioClick => sub { print $_[1]-> text, "\n"; }

);

$group-> insert(’Prima::Radio’, text => ’Selection 1’);

$group-> insert(’Prima::Radio’, text => ’Selection 2’, pressed => 1);

$group-> index(0);

Prima::AbstractButton

Prima::AbstractButton realizes common functionality of buttons. It provides reaction on mouse
and keyboard events, and calls the Click entry notification when the user activates the button.
The mouse activation is performed either by mouse double click or successive mouse down and
mouse up events within the button boundaries. The keyboard activation is performed on the
following conditions:

• The spacebar key is pressed

• {default} (see the default entry property) boolean variable is set and enter key is pressed.
This condition holds even if the button is out of focus.

• {accel} character variable is assigned and the corresponding character key is pressed.
{accel} variable is extracted automatically from the text string passed to the text entry
property. This condition holds even if the button is out of focus.

Events

Check

Abstract callback event.

Click

Called whenever the user presses the button.

Properties

pressed BOOLEAN

Represents the state of button widget, whether it is pressed or not.

Default value: 0

text STRING

The text that is drawn in the button. If STRING contains ~ (tilde) character, the following
character is treated as a hot key, and the character is underlined. If the user presses the
corresponding character key then the Click entry event is called. This is true even when the
button is out of focus.

153

Methods

draw veil CANVAS, X1, Y1, X2, Y2

Draws a rectangular veil shape over CANVAS in given boundaries. This is the default
method of drawing the button in the disabled state.

draw caption CANVAS, X, Y

Draws single line of text, stored in the text entry property on CANVAS at X, Y coordinates.
Performs underlining of eventual tilde-escaped character, and draws the text with dimmed
colors if the button is disabled. If the button is focused, draws a dotted line around the text.

caption box [CANVAS = self]

Calculates geometrical extensions of text string, stored in the text entry property in pixels.
Returns two integers, the width and the height of the string for the font selected on CANVAS.
If CANVAS is undefined, the widget itself is used as a graphic device.

Prima::Button

A push button class, that extends Prima::AbstractButton functionality by allowing an image to
be drawn together with the text.

Properties

autoHeight BOOLEAN

If 1, the button height is automatically changed as text extensions change.

Default value: 1

autoRepeat BOOLEAN

If set, the button behaves like a keyboard button - after the first the Click entry event, a
timeout is set, after which is expired and the button still pressed, the Click entry event is
repeatedly called until the button is released. Useful for emulating the marginal scroll-bar
buttons.

Default value: 0

autoWidth BOOLEAN

If 1, the button width is automatically changed as text extensions change.

Default value: 1

borderWidth INTEGER

Width of 3d-shade border around the button.

Default value: 2

checkable BOOLEAN

Selects if the button toggles the checked entry state when the user presses it.

Default value: 0

checked BOOLEAN

Selects whether the button is checked or not. Only actual when the checkable entry property
is set. See also the holdGlyph entry.

Default value: 0

154

default BOOLEAN

Defines if the button should react when the user presses the enter button. If set, the button
is drawn with the black border, indicating that it executes the ’default’ action. Useful for
OK-buttons in dialogs.

Default value: 0

defaultGlyph INTEGER

Selects index of the default sub-image.

Default value: 0

disabledGlyph INTEGER

Selects index of the sub-image for the disabled button state. If image does not contain such
sub-image, the defaultGlyph sub-image is drawn, and is dimmed over with the draw veil
entry method.

Default value: 1

flat BOOLEAN

Selects special ’flat’ mode, when a button is painted without a border when the mouse
pointer is outside the button boundaries. This mode is useful for the toolbar buttons. See
also the hiliteGlyph entry.

Default value: 0

glyphs INTEGER

If a button is to be drawn with the image, it can be passed in the the image entry property.
If, however, the button must be drawn with several different images, there are no several
image-holding properties. Instead, the the image entry object can be logically split vertically
into several equal sub-images. This allows the button resource to contain all button states
into one image file. The glyphs property assigns how many such sub-images the image
object contains.

The sub-image indices can be assigned for rendition of the different states. These indices are
selected by the following integer properties: the defaultGlyph entry, the hiliteGlyph entry,
the disabledGlyph entry, the pressedGlyph entry, the holdGlyph entry.

Default value: 1

hiliteGlyph INTEGER

Selects index of the sub-image for the state when the mouse pointer is over the button.
This image is used only when the flat entry property is set. If image does not contain such
sub-image, the defaultGlyph sub-image is drawn.

Default value: 0

holdGlyph INTEGER

Selects index of the sub-image for the state when the button is the checked entry. This
image is used only when the checkable entry property is set. If image does not contain such
sub-image, the defaultGlyph sub-image is drawn.

Default value: 3

image OBJECT

If set, the image object is drawn next with the button text, over or left to it (see the vertical
entry property). If OBJECT contains several sub-images, then the corresponding sub-image
is drawn for each button state. See the glyphs entry property.

Default value: undef

155

imageFile FILENAME

Alternative to image selection by loading an image from the file. During the creation state,
if set together with the image entry property, is superseded by the latter.

To allow easy multiframe image access, FILENAME string is checked if it contains a number
after a colon in the string end. Such, imageFile(’image.gif:3’) call would load the fourth
frame in image.gif file.

imageScale SCALE

Contains zoom factor for the the image entry.

Default value: 1

modalResult INTEGER

Contains a custom integer value, preferably one of mb::XXX constants. If a button with
non-zero modalResult is owned by a currently executing modal window, and is pressed, its
modalResult value is copied to the modalResult property of the owner window, and the
latter is closed. This scheme is helpful for the dialog design:

$dialog-> insert(’Prima::Button’, modalResult => mb::OK,

text => ’~Ok’, default => 1);

$dialog-> insert(’Prima::Button’, modalResult => mb::Cancel,

text => ’Cancel);

return if $dialog-> execute != mb::OK.

The toolkit defines the following constants for modalResult use:

mb::OK or mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

However, any other integer value can be safely used.

Default value: 0

pressedGlyph INTEGER

Selects index of the sub-image for the pressed state of the button. If image does not contain
such sub-image, the defaultGlyph sub-image is drawn.

transparent BOOLEAN

See the transparent entry in the Prima::Widget section. If set, the background is not
painted.

vertical BOOLEAN

Determines the position of image next to the text string. If 1, the image is drawn above the
text; left to the text if 0. In a special case when the text entry is an empty string, image is
centered.

Prima::SpeedButton

A convenience class, same as the Prima::Button section but with default square shape and text
property set to an empty string.

156

Prima::Cluster

An abstract class with common functionality of the Prima::CheckBox section and the
Prima::RadioButton section. Reassigns default actions on tab and back-tab keys, so the sib-
ling cluster widgets are not selected. Has ownerBackColor property set to 1, to prevent usage of
background color from wc::Button palette.

Properties

auto BOOLEAN

If set, the button is automatically checked when the button is in focus. This functionality
allows arrow key walking by the radio buttons without pressing spacebar key. It is also has a
drawback, that if a radio button gets focused without user intervention, or indirectly, it also
gets checked, so that behavior might cause confusion. The said can be exemplified when an
unchecked radio button in a notebook widget gets active by turning the notebook page.

Although this property is present on the the Prima::CheckBox section, it is not used in
there.

Methods

check

Alias to checked(1)

uncheck

Alias to checked(0)

toggle

Reverts the checked state of the button and returns the new state.

Prima::Radio

Represents a standard radio button, that can be either in checked, or in unchecked state. When
checked, delivers the RadioClick entry event to the owner (if the latter provides one).

The button uses the standard toolkit images with sbmp::RadioXXX indices. If the images can
not be loaded, the button is drawn with the graphic primitives.

Events

Check

Called when a button is checked.

Prima::CheckBox

Represents a standard check box button, that can be either in checked, or in unchecked state.
The button uses the standard toolkit images with sbmp::CheckBoxXXX indices. If the images

can not be loaded, the button is drawn with graphic primitives.

Prima::GroupBox

The class to be used as a container of radio and check-box buttons. It can, however, contain any
other widgets.

The widget draws a 3d-shaded box on its boundaries and a text string in its upper left corner.
Uses transparent property to determine if it needs to paint its background.

157

The class does not provide a method to calculate the extension of the inner rectangle. However,
it can be safely assumed that all offsets except the upper are 5 pixels. The upper offset is dependent
on a font, and constitutes the half of the font height.

Events

RadioClick BUTTON

Called whenever one of children radio buttons is checked. BUTTON parameter contains the
newly checked button.

The default action of the class is that all checked buttons, except BUTTON, are unchecked.
Since the flow type of RadioClick event is nt::PrivateFirst, on radioclick method must
be directly overloaded to disable this functionality.

Properties

index INTEGER

Checks the child radio button with index. The indexing is based on the index in the widget
list, returned by Prima::Widget::widgets method.

value BITFIELD

BITFIELD is an unsigned integer, where each bit corresponds to the checked state of a
child check-box button. The indexing is based on the index in the widget list, returned by
Prima::Widget::widgets method.

Prima::RadioGroup

This class is obsolete and is same as Prima::GroupBox.

Prima::CheckBoxGroup

This class is obsolete and is same as Prima::GroupBox.

Bugs

The push button is not capable of drawing anything other than single line of text and single image.
If an extended functionality is needed, instead of fully rewriting the painting procedure, it might
be reasonable to overload put image indirect method of Prima::Button, and perform custom
output there.

Tilde escaping in text is not realized, but is planned to. There currently is no way to avoid
tilde underscoring.

Radio buttons can get unexpectedly checked when used in notebooks. See the auto entry.
Prima::GroupBox::value parameter is an integer, which size is architecture-dependent. Shift

towards a vector is considered a good idea.

158

4.2 Prima::Calendar

Standard calendar widget

Synopsis

use Prima::Calendar;

my $cal = Prima::Calendar-> create(

useLocale => 1,

onChange => sub {

print $_[0]-> date_as_string, "\n";

},

);

$cal-> date_from_time(localtime);

$cal-> month(5);

Description

Provides interactive selection of date between 1900 and 2099 years. The main property, the date
entry, is a three-integer array, day, month, and year, in the format of perl localtime (see localtime

in perlfunc) - day can be in range from 1 to 31,month from 0 to 11, year from 0 to 199.

API

Events

Change

Called when the the date entry property is changed.

Properties

date DAY, MONTH, YEAR

Accepts three integers in format of localtime. DAY can be from 1 to 31, MONTH from 0
to 11, YEAR from 0 to 199.

Default value: today’s date.

day INTEGER

Selects the day in month.

firstDayOfWeek INTEGER

Selects the first day of week, an integer between 0 and 6, where 0 is Sunday is the first day,
1 is Monday etc.

Default value: 0

month

Selects the month.

useLocale BOOLEAN

If 1, the locale-specific names of months and days of week are used. These are read by
calling POSIX::strftime. If invocation of POSIX module fails, the property is automatically
assigned to 0.

If 0, the English names of months and days of week are used.

Default value: 1

See also: the date as string entry

159

year

Selects the year.

Methods

can use locale

Returns boolean value, whether the locale information can be retrieved by calling strftime.

month2str MONTH

Returns MONTH name according to the useLocale entry value.

make months

Returns array of 12 month names according to the useLocale entry value.

day of week DAY, MONTH, YEAR, [USE FIRST DAY OF WEEK = 1]

Returns integer value, from 0 to 6, of the day of week on DAY, MONTH, YEAR date.
If boolean USE FIRST DAY OF WEEK is set, the value of firstDayOfWeek property is
taken into the account, so 0 is a Sunday shifted forward by firstDayOfWeek days.

The switch from Julian to Gregorian calendar is ignored.

date as string [DAY, MONTH, YEAR]

Returns string representation of date on DAY, MONTH, YEAR according to the useLocale
entry property value.

date from time SEC, MIN, HOUR, M DAY, MONTH, YEAR, ...

Copies the date entry from localtime or gmtime result. This helper method allows the
following syntax:

$calendar-> date_from_time(localtime(time));

160

4.3 Prima::ComboBox

Standard combo box widget

Synopsis

use Prima::ComboBox;

my $combo = Prima::ComboBox-> create(style => cs::DropDown, items => [1 .. 10]);

$combo-> style(cs::DropDownList);

print $combo-> text;

Description

Provides a combo box widget which consists of an input line, list box of possible selections and
eventual drop-down button. The combo box can be either in form with a drop-down selection list,
that is shown by the command of the user, or in form when the selection list is always visible.

The combo box is a grouping widget, and contains neither painting nor user-input code.
All such functionality is delegated into the children widgets: input line, list box and but-
ton. Prima::ComboBox exports a fixed list of methods and properties from namespaces of the
Prima::InputLine section and the Prima::ListBox section. Since, however, it is possible to tweak
the Prima::ComboBox (using its the editClass entry and the listClass entry create-only proper-
ties) so the input line and list box would be other classes, it is not necessarily that all default
functionality would work. The list of exported names is stored in package variables %listProps,
%editProps and %listDynas. These also described in the Exported names entry section.

The module defines cs:: package for the constants used by the style entry property.

API

Properties

buttonClass STRING

Assigns a drop-down button class.

Create-only property.

Default value: Prima::Widget

buttonDelegations ARRAY

Assigns a drop-down button list of delegated notifications.

Create-only property.

buttonProfile HASH

Assigns hash of properties, passed to the drop-down button during the creation.

Create-only property.

caseSensitive BOOLEAN

Selects whether the user input is case-sensitive or not, when a value is picked from the
selection list.

Default value: 0

editClass STRING

Assigns an input line class.

Create-only property.

Default value: Prima::InputLine

161

editProfile HASH

Assigns hash of properties, passed to the input line during the creation.

Create-only property.

editDelegations ARRAY

Assigns an input line list of delegated notifications.

Create-only property.

editHeight INTEGER

Selects height of an input line.

items ARRAY

Mapped onto the list widget’s items property. See the Prima::Lists section for details.

listClass STRING

Assigns a listbox class.

Create-only property.

Default value: Prima::ListBox

listHeight INTEGER

Selects height of the listbox widget.

Default value: 100

listVisible BOOLEAN

Sets whether the listbox is visible or not. Not writable when the style entry is cs::Simple.

listProfile HASH

Assigns hash of properties, passed to the listbox during the creation.

Create-only property.

listDelegations ARRAY

Assigns a selection listbox list of delegated notifications.

Create-only property.

literal BOOLEAN

Selects whether the combo box user input routine assume that the listbox contains literal
strings, that can be fetched via get item text (see the Prima::Lists section). As an
example when this property is set to 0 is Prima::ColorComboBox from the Prima::ComboBox
section package.

Default value: 1

style INTEGER

Selected one of three styles:

cs::Simple

The listbox is always visible, and the drop-down button is not.

cs::DropDown

The listbox is not visible, but the drop-down button is. When the use presses the
drop-down button, the listbox is shown; when the list-box is defocused, it gets hidden.

162

cs::DropDownList

Same as cs::DropDown, but the user is restricted in the selection: the input line can
only accept user input that is contained in listbox. If the literal entry set to 1, the auto
completion feature is provided.

text STRING

Mapped onto the edit widget’s text property.

Exported names

%editProps

alignment autoScroll text text

charOffset maxLen insertMode firstChar

selection selStart selEnd writeOnly

copy cut delete paste

wordDelimiters readOnly passwordChar focus

select_all

%listProps

autoHeight focusedItem hScroll

integralHeight items itemHeight

topItem vScroll gridColor

multiColumn offset

%listDynas

onDrawItem

onSelectItem

163

4.4 Prima::DetailedList

A multi-column list viewer with controlling header widget.

Synopsis

use Prima::DetailedList;

my $l = $w-> insert(’Prima::DetailedList’,

columns => 2,

headers => [’Column 1’, ’Column 2’],

items => [

[’Row 1, Col 1’, ’Row 1, Col 2’],

[’Row 2, Col 1’, ’Row 2, Col 2’]

],

);

$l-> sort(1);

Description

Prima::DetailedList is a descendant of Prima::ListViewer, and as such provides a certain level
of abstraction. It overloads format of the items entry in order to support multi-column (2D)
cell span. It also inserts the Prima::Header section widget on top of the list, so the user can
interactively move, resize and sort the content of the list. The sorting mechanism is realized inside
the package; it is activated by the mouse click on a header tab.

Since the class inherits Prima::ListViewer, some functionality, like ’item search by key’, or
get item text method can not operate on 2D lists. Therefore, the mainColumn entry property
is introduced, that selects the column representing all the data.

API

Events

Sort COLUMN, DIRECTION

Called inside the sort entry method, to facilitate custom algorithms of sorting. If the callback
procedure is willing to sort by COLUMN index, then it must call clear event, to signal the
event flow stop. The DIRECTION is a boolean flag, specifying whether the sorting must be
performed is ascending (1) or descending (0) order.

The callback procedure must operate on the internal storage of {items}, which is an array
of arrays of scalars.

The default action is the literal sorting algorithm, where precedence is arbitrated by cmp

operator (see Equality Operators in perlop) .

Properties

columns INTEGER

Governs the number of columns in the items entry. If set-called, and the new number is
different from the old number, both the items entry and the headers entry are restructured.

Default value: 0

headerClass

Assigns a header class.

Create-only property.

164

Default value: Prima::Header

headerProfile HASH

Assigns hash of properties, passed to the header widget during the creation.

Create-only property.

headerDelegations ARRAY

Assigns a header widget list of delegated notifications.

Create-only property.

headers ARRAY

Array of strings, passed to the header widget as column titles.

items ARRAY

Array of arrays of scalars, of arbitrary kind. The default behavior, however, assumes that
the scalars are strings. The data direction is from left to right and from top to bottom.

mainColumn INTEGER

Selects the column, responsible for representation of all the data. As the user clicks the
header tab, mainColumn is automatically changed to the corresponding column.

Default value: 0

Methods

sort [COLUMN]

Sorts items by the COLUMN index in ascending order. If COLUMN is not specified, sorts
by the last specified column, or by #0 if it is the first sort invocation.

If COLUMN was specified, and the last specified column equals to COLUMN, the sort
direction is reversed.

The method does not perform sorting itself, but invokes the Sort entry notification, so the
sorting algorithms can be overloaded, or be applied differently to the columns.

165

4.5 Prima::DetailedOutline

A multi-column outline viewer with controlling header widget.

Synopsis

use Prima::DetailedOutline;

my $l = $w-> insert(’Prima::DetailedList’,

columns => 2,

headers => [’Column 1’, ’Column 2’],

items => [

[[’Item 1, Col 1’, ’Item 1, Col 2’], [

[[’Item 1-1, Col 1’, ’Item 1-1, Col 2’]],

[[’Item 1-2, Col 1’, ’Item 1-2, Col 2’], [

[[’Item 1-2-1, Col 1’, ’Item 1-2-1, Col 2’]],

]],

]],

[[’Item 2, Col 1’, ’Item 2, Col 2’], [

[[’Item 2-1, Col 1’, ’Item 2-1, Col 2’]],

]],

],

);

$l-> sort(1);

Description

Prima::DetailedOutline combines the functionality of Prima::OutlineViewer and
Prima::DetailedList.

API

This class inherits all the properties, methods, and events of Prima::OutlineViewer (primary an-
cestor) and Prima::DetailedList (secondary ancestor). One new property is introduced, and one
property is different enough to warrant mention.

Methods

items ARRAY

Each item is represented by an arrayref with either one or two elements. The first element
is the item data, an arrayref of text strings to display. The second element, if present, is an
arrayref of child items.

When using the node functionality inherited from Prima::OutlineViewer, the item data (that
is, the arrayref of text strings) is the first element of the node.

autoRecalc BOOLEAN

If this is set to a true value, the column widths will be automatically recalculated (via
autowidths) whenever a node is expanded or collapsed.

166

4.6 Prima::DockManager

Advanced dockable widgets

Description

Prima::DockManager contains classes that implement additional functionality within the dockable
widgets paradigm.

The module introduces two new dockable widget classes: Prima::DockManager::Panelbar,
a general purpose dockable container for variable-sized widgets; and
Prima::DockManager::Toolbar, a dockable container for fixed-size command widgets, mostly
push buttons. The command widgets, nested in a toolbar, can also be docked.

Prima::DockManager class is an application-oriented class in a way that (mostly) the only
instance of it is needed in the program. It is derived from Prima::Component and therefore is never
visualized. The class instance is stored in instance property of all module classes to serve as a
docking hierarchy root. Through the document, instance term is referred to Prima::DockManager

class instance.
The module by itself is not enough to make a docking-aware application work effectively. The

reader is urged to look at examples/dock.pl example code, which demonstrates the usage and
capabilities of the module.

Prima::DockManager::Toolbar

A toolbar widget class. The toolbar has a dual nature; it can dock and accept docking widgets
simultaneously. In the scope of Prima::DockManager, the toolbar hosts command widget, mostly
push buttons.

The toolbar consists of two widgets. The external dockable widget is implemented in
Prima::DockManager::Toolbar, and the internal dock in Prima::DockManager::ToolbarDocker

classes.

Properties

autoClose BOOLEAN

Selects the behavior of a toolbar when all of its command widgets are undocked. If 1, the
toolbar is automatically destroyed. If 0 it calls visible(0).

childDocker WIDGET

Pointer to Prima::DockManager::ToolbarDocker instance.

See also Prima::DockManager::ToolbarDocker::parentDocker.

instance INSTANCE

Prima::DockManager instance, the docking hierarchy root.

Prima::DockManager::ToolbarDocker

Internal class, implements a dock widget for command widgets, while serves as a client in a
dockable toolbar, which is a Prima::LinearDockerShuttle descendant. When its size is changed
due an eventual rearrange of its docked widgets, also resizes the toolbar.

Properties

instance INSTANCE

Prima::DockManager instance, the docking hierarchy root.

167

parentDocker WIDGET

Pointer to Prima::DockManager::Toolbar instance. When in the docked state,
parentDocker value is always equals to owner.

See also Prima::DockManager::Toolbar::childDocker.

Methods

get extent

Calculates the minimal rectangle that encloses all docked widgets and returns its extensions.

update size

Called when size is changed to resizes the owner widget. If it is in the docked state, the size
change might result in change of position or docking state.

Prima::DockManager::Panelbar

The class is derived from Prima::LinearDockerShuttle, and is different only in that instance

property is introduced, and the external shuttle can be resized interactively.
The class is to be used as a simple host to sizeable widgets. The user can dispose of the panel

bar by clicking close button on the external shuttle.

Properties

instance INSTANCE

Prima::DockManager instance, the docking hierarchy root.

Prima::DockManager

A binder class, contains set of functions that groups toolbars, panels, and command widgets
together under the docking hierarchy.

The manager servers several purposes. First, it is a command state holder: the command
widgets, mostly buttons, usually are in enabled or disabled state in different life stages of a
program. The manager maintains the enabled/disabled state by assigning each command an
unique scalar value (farther and in the code referred as CLSID). The toolbars can be created
with set of command widgets, referred via these CLSIDs. The same is valid for the panels -
although they do not host command widgets, the widgets that they do host can also be created
indirectly via CLSID identifier. In addition to CLSID, the commands can be grouped by sections.
Both CLSID and group descriptor scalars are defined by the programmer.

Second, create manager method presents a standard configuration widget, that allows rear-
ranging of normally non-dockable command widgets, by presenting a full set of available commands
to the user as icons. Dragging the icons to toolbars, dock widgets or merely outside the configura-
tion widget automatically creates the corresponding command widget. The notable moment here
is that the command widgets are not required to know anything about dragging and docking; any
Prima::Widget descendant can be used as a command widget.

Third, it helps maintaining the toolbars and panels visibility when the main window is hidden
or restored. windowState method hides or shows the toolbars and panels effectively.

Fourth, it serves as a docking hierarchy root. All docking sessions begin from
Prima::DockManager object, which although does not provide docking capabilities itself (it is
Prima::Component descendant), redirects the docking requests to the lower-level dock widgets.

Fifth, it provides number of helper methods and notifications, and enforces use or fingerprint
property by all dockable widgets. This property has default value of 0xFFFF (defined in
Prima::Docks). The module contains the fingerprint dmfp::XXX constants with value greater
than this, so the toolbars and panels are not docked to a dock widget with the default configura-
tion. The base constant set is:

168

fdmp::Tools (0x0F000) - dock the command widgets

fdmp::Toolbar (0x10000) - dock the toolbars

fdmp::LaunchPad (0x20000) - allows widgets recycling

All this functionality is demonstrated in examples/dock.pl example.

Properties

commands HASH

A hash of boolean values, with keys of CLSID scalars. If value is 1, the command is available.
If 0, the command is disabled. Changes to this property are reflected in the visible command
widgets, which are enabled or disabled immediately. Also, CommandChange notification is
triggered.

fingerprint INTEGER

The property is read-only, and always returns 0xFFFFFFFF, to allow landing for all dockable
widgets. In case when a finer granulation is needed, the default fingerprint values of
toolbars and panels can be reset.

interactiveDrag BOOLEAN

If 1, the command widgets can be interactively dragged, created and destroyed. This prop-
erty is usually operated together with create manager widget. If 0, the command widgets
cannot be dragged.

Default value: 0

Methods

activate

Brings to front all toolbars and panels. To be used inside a callback code of a main window,
that has the toolbars and panels attached to:

onActivate => sub { $dock_manager-> activate }

auto toolbar name

Returns an unique name for an automatically created toolbar, like Toolbar1, Toolbar2 etc.

commands enable BOOLEAN, @CLSIDs

Enabled or disables commands from CLSIDs array. The changes are reflected in the vis-
ible command widgets, which are enabled or disabled immediately. Also, CommandChange
notification is triggered.

create manager OWNER, %PROFILE

Inserts two widgets into OWNER with PROFILE parameters: a listbox with command
section groups, displayed as items, that usually correspond to the predefined toolbar names,
and a notebook that displays the command icons. The notebook pages are interactively
selected by the listbox navigation.

The icons, dragged from the notebook, behave as dockable widgets: they can be landed
upon a toolbar, or any other dock widget, given it matches the fingerprint (by default
dmfp::LaunchPad|dmfp::Toolbar|dmfp::Tools). dmfp::LaunchPad constant allows the re-
cycling; if a widget is dragged back onto the notebook, it is destroyed.

Returns two widgets, the listbox and the notebook.

PROFILE recognizes the following keys:

169

origin X, Y

Position where the widgets are to be inserted. Default value is 0,0.

size X, Y

Size of the widget insertion area. By default the widgets occupy all OWNER interior.

listboxProfile PROFILE

Custom parameters, passed to the listbox.

dockerProfile PROFILE

Custom parameteres, passed to the notebook.

create panel CLSID, %PROFILE

Creates a dockable panel of a previously registered CLSID by register panel. PROFILE
recognizes the following keys:

profile HASH

Hash of parameters, passed to create() of the panel widget class. Before passing it is
merged with the set of parameters, registered by register panel. The profile hash
takes the precedence.

dockerProfile HASH

Constains extra options, passed to Prima::DockManager::Panelbar widget. Before
the usage it is merged with the set of parameters, registered by register panel.

NB: The dock key here contains a reference to a desired dock widget. If dock set to
undef, the panel is created in the non-docked state.

Example:

$dock_manager-> create_panel($CLSID,

dockerProfile => { dock => $main_window }},

profile => { backColor => cl::Green });

create tool OWNER, CLSID, X1, Y1, X2, Y2

Inserts a command widget, previously registered with CLSID by register tool, into
OWNER widget with X1 - Y2 coordinates. For automatic maintenance of enable/disable
state of command widgets OWNER is expected to be a toolbar. If it is not, the maintenance
must be performed separately, for example, by CommandChange event.

create toolbar %PROFILE

Creates a new toolbar of Prima::DockManager::Toolbar class. The following PROFILE
options are recognized:

autoClose BOOLEAN

Sets autoClose property of the toolbar.

Default value is 1 if name options is set, 0 otherwise.

dock DOCK

Contain a reference to a desired DOCK widget. If undef, the toolbar is created in the
non-docked state.

dockerProfile HASH

Parameters passed to Prima::DockManager::Toolbar as creation properties.

NB: The dock key here contains a reference to a desired dock widget. If dock set to
undef, the panel is created in the non-docked state.

170

rect X1, Y1, X2, Y2

Selects rectangle of the Prima::DockManager::ToolbarDocker instance in the dock
widget (if docked) or the screen (if non-docked) coordinates.

toolbarProfile HASH

Parameters passed to Prima::DockManager::ToolbarDocker as creation properties.

vertical BOOLEAN

Sets vertical property of the toolbar.

visible BOOLEAN

Selects visibility state of the toolbar.

get class CLSID

Returns class record hash, registered under CLSID, or undef if the class is not registered.
The hash format contains the following keys:

class STRING

Widget class

profile HASH

Creation parameters passed to create when the widget is created.

tool BOOLEAN

If 1, the class belongs to a control widget. If 0, the class represents a panel client widget.

lastUsedDock DOCK

Saved value of the last used dock widget

lastUsedRect X1, Y1, X2, Y2

Saved coordinates of the widget

panel by id CLSID

Return reference to a panel widget represented by CLSID scalar, or undef if none found.

panel menuitems CALLBACK

A helper function; maps all panel names into a structure, ready to feed into
Prima::AbstractMenu::items property (see the Prima::Menu section). The action mem-
ber of the menu item record is set to CALLBACK scalar.

panel visible CLSID, BOOLEAN

Sets the visibility of a panel, referred by CLSID scalar. If VISIBLE is 0, a panel is destroyed;
if 1, new panel instance is created.

panels

Returns all visible panel widgets in an array.

predefined panels CLSID, DOCK, [CLSID, DOCK, ...]

Accepts pairs of scalars, where each first item is a panel CLSID and second is the default
dock widget. Checks for panel visibility, and creates the panels that are not visible.

The method is useful in program startup, when some panels have to be visible from the
beginning.

predefined toolbars @PROFILES

Accepts array of hashes, where each array item describes a toolbar and a default set of
command widgets. Checks for toolbar visibility, and creates the toolbars that are not visible.

The method recognizes the following PROFILES options:

171

dock DOCK

The default dock widget.

list ARRAY

Array of CLSIDs corresponding to the command widgets to be inserted into the toolbar.

name STRING

Selects toolbar name.

origin X, Y

Selects the toolbar position relative to the dock (if dock is specified) or to the screen
(if dock is not specified).

The method is useful in program startup, when some panels have to be visible from the
beginning.

register panel CLSID, PROFILE

Registers a panel client class and set of parameters to be associated with CLSID scalar.
PROFILE must contain the following keys:

class STRING

Client widget class

text STRING

String, displayed in the panel title bar

dockerProfile HASH

Hash of parameters, passed to Prima::DockManager::Panelbar.

profile

Hash of parameters, passed to the client widget.

register tool CLSID, PROFILE

Registers a control widget class and set of parameters to be associated with CLSID scalar.
PROFILE must be set the following keys:

class STRING

Client widget class

profile HASH

Hash of parameters, passed to the control widget.

toolbar by name NAME

Returns a pointer to a toolbar of NAME, or undef if none found.

toolbar menuitems CALLBACK

A helper function; maps all toolbar names into a structure, ready to feed into
Prima::AbstractMenu::items property (see the Prima::Menu section). The action mem-
ber of the menu item record is set to CALLBACK scalar.

toolbar visible TOOLBAR, BOOLEAN

Sets the visibility of a TOOLBAR. If VISIBLE is 0, the toolbar is hidden; if 1, it is shown.

toolbars

Returns all toolbar widgets in an array.

172

windowState INTEGER

Mimics interface of Prima::Window::windowState, and maintains visibility of toolbars and
panels. If the parameter is ws::Minimized, the toolbars and panels are hidden. On any
other parameter these are shown.

To be used inside a callback code of a main window, that has the toolbars and panels attached
to:

onWindowState => sub { $dock_manager-> windowState($_[1]) }

Events

Command CLSID

A generic event, triggered by a command widget when the user activates it. It can also be
called by other means.

CLSID is the widget identifier.

CommandChange

Called when commands property changes or commands enable method is invoked.

PanelChange

Triggered when a panel is created or destroyed by the user.

ToolbarChange

Triggered when a toolbar is created, shown, hidden, or destroyed by the user.

Prima::DockManager::S::SpeedButton

The package simplifies creation of Prima::SpeedButton command widgets.

Methods

class IMAGE, CLSID, %PROFILE

Builds a hash with parameters, ready to feed Prima::DockManager::register tool for
registering a Prima::SpeedButton class instance with PROFILE parameters.

IMAGE is a path to a image file, loaded and stored in the registration hash. IMAGE provides
an extended syntax for indicating a frame index, if the image file is multiframed: the frame
index is appended to the path name with : character prefix.

CLSID scalar is not used; it is returned so the method result can directly be passed into
register tool method.

Returns two scalars: CLSID and the registration hash.

Example:

$dock_manager-> register_tool(

Prima::DockManager::S::SpeedButton::class("myicon.gif:2",

q(CLSID::Logo), hint => ’Logo image’));

173

4.7 Prima::Docks

Dockable widgets

Description

The module contains a set of classes and an implementation of dockable widgets interface. The
interface assumes two parties, the dockable widget and the dock widget; the generic methods for
the dock widget class are contained in Prima::AbstractDocker::Interface package.

Usage

A dockable widget is required to take particular steps before it can dock to a dock widget. It needs
to talk to the dock and find out if it is allowed to land, or if the dock contains lower-level dock
widgets that might suit better for docking. If there’s more than one dock widget in the program,
the dockable widget can select between the targets; this is especially actual when a dockable widget
is dragged by mouse and the arbitration is performed on geometrical distance basis.

The interface implies that there exists at least one tree-like hierarchy of dock widgets, linked up
to a root dock widget. The hierarchy is not required to follow parent-child relationships, although
this is the default behavior. All dockable widgets are expected to know explicitly what hierarchy
tree they wish to dock to. Prima::InternalDockerShuttle introduces dockingRoot property for
this purpose.

The conversation between parties starts when a dockable widget calls open session method of
the dock. The dockable widget passes set of parameters signaling if the widget is ready to change
its size in case the dock widget requires so, and how. open session method can either refuse or
accept the widget. In case of the positive answer from open session, the dockable widget calls
query method, which either returns a new rectangle, or another dock widget. In the latter case,
the caller can enumerate all available dock widgets by repetitive calls to next docker method.
The session is closed by close session call; after that, the widget is allowed to dock by setting
its owner to the dock widget, the rect property to the negotiated position and size, and calling
dock method.

open session/close session brackets are used to cache all necessary calculations once, mak-
ing query call as light as possible. This design allows a dockable widget, when dragged, repeatedly
ask all reachable docks in an optimized way. The docking sessions are kept open until the drag
session is finished.

The conversation can be schematized in the following code:

my $dock = $self-> dockingRoot;

my $session_id = $dock-> open_session({ self => $self });

return unless $session_id;

my @result = $dock-> query($session_id, $self-> rect);

if (4 == scalar @result) { # new rectangle is returned

if (..... is new rectangle acceptable ? ...) {

$dock-> close_session($session_id);

$dock-> dock($self);

return;

}

} elsif (1 == scalar @result) { # another dock returned

my $next = $result[0];

while ($next) {

if (... is new docker acceptable?) {

$dock-> close_session($session_id);

$next-> dock($self);

return;

174

}

$next = $dock-> next_docker($session_id, $self-> origin);

}

}

$dock-> close_session($session_id);

Since even the simplified code is quite cumbersome, direct calls to open session are rare.
Instead, Prima::InternalDockerShuttle implements find docking method which performs the
arbitration automatically and returns the appropriate dock widget.

Prima::InternalDockerShuttle is a class that implements dockable widget functionality. It
also employs a top-level window-like wrapper widget for the dockable widget when it is not docked.
By default, Prima::ExternalDockerShuttle is used as the wrapper widget class.

It is not required, however, to use neither Prima::InternalDockerShuttle nor
Prima::AbstractDocker::Interface to implement a dockable widget; the only requirements
to one is to respect open session/close session protocol.

Prima::InternalDockerShuttle initiates a class hierarchy of dockable widgets. Its descen-
dants are Prima::LinearWidgetDocker and, in turn, Prima::SingleLinearWidgetDocker.
Prima::SimpleWidgetDocker and Prima::LinearWidgetDocker, derived from
Prima::AbstractDocker::Interface, begin hierarchy of dock widgets. The full hierarchy
is as follows:

Prima::AbstractDocker::Interface

Prima::SimpleWidgetDocker

Prima::ClientWidgetDocker

Prima::LinearWidgetDocker

Prima::FourPartDocker

Prima::InternalDockerShuttle

Prima::LinearDockerShuttle

Prima::SingleLinearWidgetDocker

Prima::ExternalDockerShuttle

All docker widget classes are derived from Prima::AbstractDocker::Interface. Depending
on the specialization, they employ more or less sophisticated schemes for arranging dockable
widgets inside. The most complicated scheme is implemented in Prima::LinearWidgetDocker; it
does not allow children overlapping and is able to rearrange with children and resize itself when a
widget is docked or undocked.

The package provides only basic functionality. Module Prima::DockManager provides common
dockable controls, - toolbars, panels, speed buttons etc. based on Prima::Docks module. See the
Prima::DockManager section.

Prima::AbstractDocker::Interface

Implements generic functionality of a docket widget. The class is not derived from Prima::Widget;
is used as a secondary ascendant class for dock widget classes.

Properties

Since the class is not Prima::Object descendant, it provides only run-time implementation of its
properties. It is up to the descendant object whether the properties are recognized on the creation
stage or not.

fingerprint INTEGER

175

A custom bit mask, to be used by docking widgets to reject inappropriate dock widgets on
early stage. The fingerprint property is not part of the protocol, and is not required to
be present in a dockable widget implementation.

Default value: 0x0000FFFF

dockup DOCK WIDGET

Selects the upper link in dock widgets hierarchy tree. The upper link is required to be a
dock widget, but is not required to be a direct or an indirect parent. In this case, however,
the maintenance of the link must be implemented separately, for example:

$self-> dockup($upper_dock_not_parent);

$upper_dock_not_parent-> add_notification(’Destroy’, sub {

return unless $_[0] == $self-> dockup;

undef $self-> {dockup_event_id};

$self-> dockup(undef);

}, $self);

$self-> {destroy_id} = $self-> add_notification(’Destroy’, sub {

$self-> dockup(undef);

} unless $self-> {destroy_id};

Methods

add subdocker SUBDOCK

Appends SUBDOCK to the list of lower-level docker widgets. The items of the list are
returned by next docker method.

check session SESSION

Debugging procedure; checks SESSION hash, warns if its members are invalid or incomplete.
Returns 1 if no fatal errors were encountered; 0 otherwise.

close session SESSION

Closes docking SESSION and frees the associated resources.

dock WIDGET

Called after WIDGET is successfully finished negotiation with the dock widget and changed
its owner property. The method adapts the dock widget layout and lists WIDGET into list
of docked widgets. The method does not change owner property of WIDGET.

The method must not be called directly.

dock bunch @WIDGETS

Effectively docks set of WIDGETS by updating internal structures and calling rearrange.

docklings

Returns array of docked widgets.

next docker SESSION, [X, Y]

Enumerates lower-level docker widgets within SESSION; returns one docker widget at a
time. After the last widget returns undef.

The enumeration pointer is reset by query call.

X and Y are coordinates of the point of interest.

176

open session PROFILE

Opens docking session with parameters stored in PROFILE and returns session ID scalar in
case of success, or undef otherwise. The following keys must be set in PROFILE:

position ARRAY

Contains two integer coordinates of the desired position of a widget in (X,Y) format in
screen coordinate system.

self WIDGET

Widget that is about to dock.

sizeable ARRAY

Contains two boolean flags, representing if the widget can be resized to an arbitrary
size, horizontally and vertically. The arbitrary resize option used as last resort if sizes
key does not contain the desired size.

sizeMin ARRAY

Two integers; minimal size that the widget can accept.

sizes ARRAY

Contains arrays of points in (X,Y) format; each point represents an acceptable size of
the widget. If sizeable flags are set to 0, and none of sizes can be accepted by the
dock widget, open session fails.

query SESSION [X1, Y1, X2, Y2]

Checks if a dockable widget can be landed into the dock. If it can, returns a rectangle that
the widget must be set to. If coordinates (X1 .. Y2) are specified, returns the rectangle
closest to these. If sizes or sizeable keys of open session profile were set, the returned
size might be different from the current docking widget size.

Once the caller finds the result appropriate, it is allowed to change its owner to the dock;
after that, it must change its origin and size correspondingly to the result, and then call
dock.

If the dock cannot accept the widget, but contains lower-lever dock widgets, returns the first
lower-lever widget. The caller can use subsequent calls to next docker to enumerate all
lower-level dock widgets. A call to query resets the internal enumeration pointer.

If the widget cannot be landed, an empty array is returned.

rearrange

Effectively re-docks all the docked widgets. The effect is as same as of

$self-> redock_widget($_) for $self-> docklings;

but usually rearrange is faster.

redock widget WIDGET

Effectively re-docks the docked WIDGET. If WIDGET has redock method in its namespace,
it is called instead.

remove subdocker SUBDOCK

Removes SUBDOCK from the list of lower-level docker widgets. See also the add subdocker
entry.

replace FROM, TO

Assigns widget TO same owner and rectangle as FROM. The FROM widget must be a
docked widget.

177

undock WIDGET

Removes WIDGET from list of docked widgets. The layout of the dock widget can be
changed after execution of this method. The method does not change owner property of
WIDGET.

The method must not be called directly.

Prima::SimpleWidgetDocker

A simple dock widget; accepts any widget that geometrically fits into. Allows overlapping of the
docked widgets.

Prima::ClientWidgetDocker

A simple dock widget; accepts any widget that can be fit to cover all dock’s interior.

Prima::LinearWidgetDocker

A toolbar-like docking widget class. The implementation does not allow tiling, and can reshape
the dock widget and rearrange the docked widgets if necessary.

Prima::LinearWidgetDocker is orientation-dependent; its main axis, governed by vertical

property, is used to align docked widgets in ’lines’, which in turn are aligned by the opposite axis
(’major’ and ’minor’ terms are used in the code for the axes).

Properties

growable INTEGER

A combination of grow::XXX constants, that describes how the dock widget can be resized.
The constants are divided in two sets, direct and indirect, or, vertical property independent
and dependent.

The first set contains explicitly named constants:

grow::Left grow::ForwardLeft grow::BackLeft

grow::Down grow::ForwardDown grow::BackDown

grow::Right grow::ForwardRight grow::BackRight

grow::Up grow::ForwardUp grow::BackUp

that select if the widget can be grown to the direction shown. These do not change meaning
when vertical changes, though they do change the dock widget behavior. The second set
does not affect dock widget behavior when vertical changes, however the names are not
that illustrative:

grow::MajorLess grow::ForwardMajorLess grow::BackMajorLess

grow::MajorMore grow::ForwardMajorMore grow::BackMajorMore

grow::MinorLess grow::ForwardMinorLess grow::BackMinorLess

grow::MinorMore grow::ForwardMinorMore grow::BackMinorMore

Forward and Back prefixes select if the dock widget can be respectively expanded or shrunk
in the given direction. Less and More are equivalent to Left and Right when vertical is
0, and to Up and Down otherwise.

The use of constants from the second set is preferred.

Default value: 0

178

hasPocket BOOLEAN

A boolean flag, affects the possibility of a docked widget to reside outside the dock widget
inferior. If 1, a docked wigdet is allowed to stay docked (or dock into a position) further
on the major axis (to the right when vertical is 0, up otherwise), as if there’s a ’pocket’.
If 0, a widget is neither allowed to dock outside the inferior, nor is allowed to stay docked
(and is undocked automatically) when the dock widget shrinks so that the docked widget
cannot stay in the dock boundaries.

Default value: 1

vertical BOOLEAN

Selects the major axis of the dock widget. If 1, it is vertical, horizontal otherwise.

Default value: 0

Events

Dock

Called when dock is successfully finished.

DockError WIDGET

Called when dock is unsuccessfully finished. This only happens if WIDGET does not follow
the docking protocol, and inserts itself into a non-approved area.

Undock

Called when undock is finished.

Prima::SingleLinearWidgetDocker

Descendant of Prima::LinearWidgetDocker. In addition to the constraints, introduced by the
ascendant class, Prima::SingleLinearWidgetDocker allows only one line (or row, depending on
vertical property value) of docked widgets.

Prima::FourPartDocker

Implementation of a docking widget, with its four sides acting as ’rubber’ docking areas.

Properties

indents ARRAY

Contains four integers, specifying the breadth of offset for each side. The first integer is
width of the left side, the second - height of the bottom side, the third - width of the right
side, the fourth - height of the top side.

dockerClassLeft STRING

Assigns class of left-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassRight STRING

Assigns class of right-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassTop STRING

Assigns class of top-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

179

dockerClassBottom STRING

Assigns class of bottom-side dock window.

Default value: Prima::LinearWidgetDocker. Create-only property.

dockerClassClient STRING

Assigns class of center dock window.

Default value: Prima::ClientWidgetDocker. Create-only property.

dockerProfileLeft HASH

Assigns hash of properties, passed to the left-side dock widget during the creation.

Create-only property.

dockerProfileRight HASH

Assigns hash of properties, passed to the right-side dock widget during the creation.

Create-only property.

dockerProfileTop HASH

Assigns hash of properties, passed to the top-side dock widget during the creation.

Create-only property.

dockerProfileBottom HASH

Assigns hash of properties, passed to the bottom-side dock widget during the creation.

Create-only property.

dockerProfileClient HASH

Assigns hash of properties, passed to the center dock widget during the creation.

Create-only property.

dockerDelegationsLeft ARRAY

Assigns the left-side dock list of delegated notifications.

Create-only property.

dockerDelegationsRight ARRAY

Assigns the right-side dock list of delegated notifications.

Create-only property.

dockerDelegationsTop ARRAY

Assigns the top-side dock list of delegated notifications.

Create-only property.

dockerDelegationsBottom ARRAY

Assigns the bottom-side dock list of delegated notifications.

Create-only property.

dockerDelegationsClient ARRAY

Assigns the center dock list of delegated notifications.

Create-only property.

dockerCommonProfile HASH

Assigns hash of properties, passed to all five dock widgets during the creation.

Create-only property.

180

Prima::InternalDockerShuttle

The class provides a container, or a ’shuttle’, for a client widget, while is docked to an
Prima::AbstractDocker::Interface descendant instance. The functionality includes commu-
nicating with dock widgets, the user interface for dragging and interactive dock selection, and
a client widget container for non-docked state. The latter is implemented by reparenting of the
client widget to an external shuttle widget, selected by externalDockerClass property. Both
user interfaces for the docked and the non-docked shuttle states are minimal.

The class implements dockable widget functionality, served by
Prima::AbstractDocker::Interface, while itself it is derived from Prima::Widget only.

See also: the Prima::ExternalDockerShuttle section.

Properties

client WIDGET

Provides access to the client widget, which always resides either in the internal or the external
shuttle. By default there is no client, and any widget capable of changing its parent can be
set as one. After a widget is assigned as a client, its owner and clipOwner properties must
not be used.

Run-time only property.

dock WIDGET

Selects the dock widget that the shuttle is landed on. If undef, the shuttle is in the non-
docked state.

Default value: undef

dockingRoot WIDGET

Selects the root of dock widgets hierarchy. If undef, the shuttle can only exist in the non-
docked state.

Default value: undef

See the Usage entry for reference.

externalDockerClass STRING

Assigns class of external shuttle widget.

Default value: Prima::ExternalDockerShuttle

externalDockerModule STRING

Assigns module that contains the external shuttle widget class.

Default value: Prima::MDI (Prima::ExternalDockerShuttle is derived from Prima::MDI

).

externalDockerProfile HASH

Assigns hash of properties, passed to the external shuttle widget during the creation.

fingerprint INTEGER

A custom bit mask, used to reject inappropriate dock widgets on early stage.

Default value: 0x0000FFFF

indents ARRAY

Contains four integers, specifying the breadth of offset in pixels for each widget side in the
docked state.

Default value: 5,5,5,5.

181

snapDistance INTEGER

A maximum offset, in pixels, between the actual shuttle coordinates and the coordinates
proposed by the dock widget, where the shuttle is allowed to land. In other words, it is the
distance between the dock and the shuttle when the latter ’snaps’ to the dock during the
dragging session.

Default value: 10

x sizeable BOOLEAN

Selects whether the shuttle can change its width in case the dock widget suggests so.

Default value: 0

y sizeable BOOLEAN

Selects whether the shuttle can change its height in case the dock widget suggests so.

Default value: 0

Methods

client2frame X1, Y1, X2, Y2

Returns a rectangle that the shuttle would occupy if its client rectangle is assigned to X1,
Y1, X2, Y2 rectangle.

dock back

Docks to the recent dock widget, if it is still available.

drag STATE, RECT, ANCHOR X, ANCHOR Y

Initiates or aborts the dragging session, depending on STATE boolean flag.

If it is 1, RECT is an array with the coordinates of the shuttle rectangle before the drag
has started; ANCHOR X and ANCHOR Y are coordinates of the aperture point where the
mouse event occurred that has initiated the drag. Depending on how the drag session ended,
the shuttle can be relocated to another dock, undocked, or left intact. Also, Dock, Undock,
or FailDock notifications can be triggered.

If STATE is 0, RECT, ANCHOR X ,and ANCHOR Y parameters are not used.

find docking DOCK, [POSITION]

Opens a session with DOCK, unless it is already opened, and negotiates about the possibility
of landing (at particular POSITION, if this parameter is present).

find docking caches the dock widget sessions, and provides a possibility to select different
parameters passed to open session for different dock widgets. To achieve this, GetCaps
request notification is triggered, which fills the parameters. The default action sets sizeable
options according to x sizeable and y sizeable properties.

In case an appropriate landing area is found, Landing notification is triggered with the
proposed dock widget and the target rectangle. The area can be rejected on this stage if
Landing returns negative answer.

On success, returns a dock widget found and the target rectangle; the widget is never docked
though. On failure returns an empty array.

This method is used by the dragging routine to provide a visual feedback to the user, to
indicate that a shuttle may or may not land in a particular area.

frame2client X1, Y1, X2, Y2

Returns a rectangle that the client would occupy if the shuttle rectangle is assigned to X1,
Y1, X2, Y2 rectangle.

182

redock

If docked, undocks form the dock widget and docks back. If not docked, does not perform
anything.

Events

Dock

Called when shuttle is docked.

EDSClose

Triggered when the user presses close button or otherwise activates the close function of the
EDS (external docker shuttle). To cancel the closing, clear event must be called inside
the event handler.

FailDock X, Y

Called after the dragging session in the non-docked stage is finished, but did not result in
docking. X and Y are the coordinates of the new external shuttle position.

GetCaps DOCK, PROFILE

Called before the shuttle opens a docking session with DOCK widget. PROFILE is a hash
reference, which is to be filled inside the event handler. After that PROFILE is passed to
open session call.

The default action sets sizeable options according to x sizeable and y sizeable proper-
ties.

Landing DOCK, X1, Y1, X2, Y2

Called inside the docking session, after an appropriate dock widget is selected and the land-
ing area is defined as X1, Y1, X2, Y2. To reject the landing on either DOCK or area,
clear event must be called.

Undock

Called when shuttle is switched to the non-docked state.

Prima::ExternalDockerShuttle

A shuttle class, used to host a client of Prima::InternalDockerShuttle widget when it is in the
non-docked state. The class represents an emulation of a top-level window, which can be moved,
resized (this feature is not on by default though), and closed.

Prima::ExternalDockerShuttle is inherited from Prima::MDI class, and its window emulat-
ing functionality is a subset of its ascendant. See also the Prima::MDI section.

Properties

shuttle WIDGET

Contains reference to the dockable WIDGET

Prima::LinearDockerShuttle

A simple descendant of Prima::InternalDockerShuttle, used for toolbars. Introduces orienta-
tion and draws a tiny header along the minor shuttle axis. All its properties concern only the way
the shuttle draws itself.

183

Properties

headerBreadth INTEGER

Breadth of the header in pixels.

Default value: 8

indent INTEGER

Provides a wrapper to indents property; besides the space for the header, all indents are
assigned to indent property value.

vertical BOOLEAN

If 1, the shuttle is drawn as a vertical bar. If 0, the shuttle is drawn as a horizontal bar.

Default value: 0

184

4.8 Prima::Edit

Standard text editing widget

Synopsis

use Prima::Edit;

my $e = Prima::Edit-> create(

text => ’Hello $world’,

syntaxHilite => 1,

);

$e-> selection(1, 1, 1, 2);

Description

The class provides text editing capabilities, three types of selection, text wrapping, syntax high-
lighting, auto indenting, undo and redo function, search and replace methods.

The module declares bt:: package, that contains integer constants for selection block type,
used by the blockType entry property.

Usage

The class addresses the text space by (X,Y)-coordinates, where X is character offset and Y is line
number. The addressing can be ’physical’ and ’logical’, - in logical case Y is number of line of
text. The difference can be observed if the wordWrap entry property is set to 1, when a single
text string can be shown as several sub-strings, called chunks.

The text is stored line-wise in {lines} array; to access it use the get line entry method. To
access the text chunk-wise, use the get chunk entry method.

All keyboard events, except the character input and tab key handling, are processed by the
accelerator table (see the Prima::Menu section). The default accelItems table defines names,
keyboard combinations, and the corresponding actions to the class functions. The class does not
provide functionality to change these mappings. To do so, consult the Prima::AccelTable entry
in the Prima::Menu section.

API

Events

ParseSyntax TEXT, RESULT ARRAY REF

Called when syntax highlighting is requires - TEXT is a string to be parsed, and the parsing
results to be stored in RESULT ARRAY REF, which is a reference to an array of integer
pairs, each representing a single-colored text chunk. The first integer in the pairs is the
length of a chunk, the second - color value (cl::XXX constants).

Properties

autoIndent BOOLEAN

Selects if the auto indenting feature is on.

Default value: 1

blockType INTEGER

Defines type of selection block. Can be one of the following constants:

185

bt::CUA

Normal block, where the first and the last line of the selection can be partial, and the
lines between occupy the whole line. CUA stands for ’common user access’.

Default keys: Shift + arrow keys

See also: the cursor shift key entry

bt::Vertical

Rectangular block, where all selected lines are of same offsets and lengths.

Default key: Alt+B

See also: the mark vertical entry

bt::Horizontal

Rectangular block, where the selection occupies the whole line.

Default key: Alt+L

See also: the mark horizontal entry

cursor X, Y

Selects physical position of the cursor

cursorX X

Selects physical horizontal position of the cursor

cursorY Y

Selects physical vertical position of the cursor

cursorWrap BOOLEAN

Selects cursor behavior when moved horizontally outside the line. If 0, the cursor is not
moved. If 1, the cursor moved to the adjacent line.

See also: the cursor left entry, the cursor right entry, the word left entry, the word right
entry.

insertMode BOOLEAN

Governs the typing mode - if 1, the typed text is inserted, if 0, the text overwrites the old
text. When insertMode is 0, the cursor shape is thick and covers the whole character; when
1, it is of default width.

Default toggle key: Insert

hiliteNumbers COLOR

Selects the color for number highlighting

hiliteQStrings COLOR

Selects the color for highlighting the single-quoted strings

hiliteQQStrings COLOR

Selects the color for highlighting the double-quoted strings

hiliteIDs ARRAY

Array of scalar pairs, that define words to be highlighted. The first item in the pair is an
array of words; the second item is a color value.

hiliteChars ARRAY

Array of scalar pairs, that define characters to be highlighted. The first item in the pair is
a string of characters; the second item is a color value.

186

hiliteREs ARRAY

Array of scalar pairs, that define character patterns to be highlighted. The first item in the
pair is a perl regular expression; the second item is a color value.

mark MARK [BLOCK TYPE]

Selects block marking state. If MARK is 1, starts the block marking, if 0 - stops the block
marking. When MARK is 1, BLOCK TYPE can be used to set the selection type (bt::XXX
constants). If BLOCK TYPE is unset the value of the blockType entry is used.

markers ARRAY

Array of arrays with integer pairs, X and Y, where each represents a physical coordinates in
text. Used as anchor storage for fast navigation.

See also: the add marker entry, the delete marker entry

modified BOOLEAN

A boolean flag that shows if the text was modified. Can be used externally, to check if the
text is to be saved to a file, for example.

offset INTEGER

Horizontal offset of text lines in pixels.

persistentBlock BOOLEAN

Selects whether the selection is cancelled as soon as the cursor is moved (0) or it persists
until the selection is explicitly changed (1).

Default value: 0

readOnly BOOLEAN

If 1, no user input is accepted.

selection X1, Y1, X2, Y2

Accepts two pair of coordinates, (X1,Y1) the beginning and (X2,Y2) the end of new
selection, and sets the block according to the blockType entry property.

The selection is null if X1 equals to X2 and Y1 equals to Y2. the has selection entry method
returns 1 if the selection is non-null.

selStart X, Y

Manages the selection start. See the selection entry, X1 and Y1.

selEnd X, Y

Manages the selection end. See the selection entry, X2 and Y2.

syntaxHilite BOOLEAN

Governs the syntax highlighting. Is not implemented for word wrapping mode.

tabIndent INTEGER

Maps tab (\t) key to tabIndent amount of space characters.

text TEXT

Provides access to all the text data. The lines are separated by the new line (\n) character.

See also: the textRef entry.

187

textRef TEXT PTR

Provides access to all the text data. The lines are separated by the new line (\n) character.
TEXT PTR is a pointer to text string.

The property is more efficient than the text entry with the large text, because the copying
of the text scalar to the stack stage is eliminated.

See also: the text entry.

topLine INTEGER

Selects the first line of the text drawn.

undoLimit INTEGER

Sets limit on number of stored atomic undo operations. If 0, undo is disabled.

Default value: 1000

wantTabs BOOLEAN

Selects the way the tab (\t) character is recognized in the user input. If 1, it is recognized
by the Tab key; however, this disallows the toolkit widget tab-driven navigation. If 0, the
tab character can be entered by pressing Ctrl+Tab key combination.

Default value: 0

wantReturns BOOLEAN

Selects the way the new line (\n) character is recognized in the user input. If 1, it is
recognized by the Enter key; however, this disallows the toolkit default button activation.
If 0, the new line character can be entered by pressing Ctrl+Enter key combination.

Default value: 1

wordDelimiters STRING

Contains string of character that are used for locating a word break. Default STRING value
consists of punctuation marks, space and tab characters, and \xff character.

See also: the word left entry, the word right entry

wordWrap BOOLEAN

Selects whether the long lines are wrapped, or can be positioned outside the horizontal widget
inferior borders. If 1, the syntaxHilite entry is not used. A line of text can be represented
by more than one line of screen text (chunk) . To access the text chunk-wise, use the
get chunk entry method.

Methods

add marker X, Y

Adds physical coordinated X,Y to the markers entry property.

back char [REPEAT = 1]

Removes REPEAT times a character left to the cursor. If the cursor is on 0 x-position,
removes the new-line character and concatenates the lines.

Default key: Backspace

begin undo group

Opens bracket for group of actions, undone as single operation. The bracket is closed by
calling end undo group.

188

cancel block

Removes the selection block

Default key: Alt+U

change locked

Returns 1 if the logical locking is on, 0 if it is off.

See also the lock change entry.

copy

Copies the selected text, if any, to the clipboard.

Default key: Ctrl+Insert

copy block

Copies the selected text and inserts it into the cursor position, according to the the blockType
entry value.

Default key: Alt+C

cursor cend

Moves cursor to the bottom line

Default key: Ctrl+End

cursor chome

Moves cursor to the top line

Default key: Ctrl+Home

cursor cpgdn

Default key: Ctrl+PageDown

Moves cursor to the end of text.

cursor cpgup

Moves cursor to the beginning of text.

Default key: Ctrl+PageUp

cursor down [REPEAT = 1]

Moves cursor REPEAT times down

Default key: Down

cursor end

Moves cursor to the end of the line

Default key: End

cursor home

Moves cursor to the beginning of the line

Default key: Home

cursor left [REPEAT = 1]

Moves cursor REPEAT times left

Default key: Left

189

cursor right [REPEAT = 1]

Moves cursor REPEAT times right

Default key: Right

cursor up [REPEAT = 1]

Moves cursor REPEAT times up

Default key: Up

cursor pgdn [REPEAT = 1]

Moves cursor REPEAT pages down

Default key: PageDown

cursor pgup [REPEAT = 1]

Moves cursor REPEAT pages up

Default key: PageUp

cursor shift key [ACCEL TABLE ITEM]

Performs action of the cursor movement, bound to ACCEL TABLE ITEM action (defined
in accelTable or accelItems property), and extends the selection block along the cursor
movement. Not called directly.

cut

Cuts the selected text into the clipboard.

Default key: Shift+Delete

delete block

Removes the selected text.

Default key: Alt+D

delete char [REPEAT = 1]

Delete REPEAT characters from the cursor position

Default key: Delete

delete line LINE ID, [LINES = 1]

Removes LINES of text at LINE ID.

delete current chunk

Removes the chunk (or line, if the wordWrap entry is 0) at the cursor.

Default key: Ctrl+Y

delete chunk CHUNK ID, [CHUNKS = 1]

Removes CHUNKS (or lines, if the wordWrap entry is 0) of text at CHUNK ID

delete marker INDEX

Removes marker INDEX in the markers entry list.

delete to end

Removes text to the end of the chunk.

Default key: Ctrl+E

190

delete text X, Y, TEXT LENGTH

Removes TEXT LENGTH characters at X,Y physical coordinates

draw colorchunk CANVAS, TEXT, LINE ID, X, Y, COLOR

Paints the syntax-highlighted chunk of TEXT, taken from LINE ID line index, at X, Y.
COLOR is used if the syntax highlighting information contains cl::Fore as color reference.

end block

Stops the block selection session.

end undo group

Closes bracket for group of actions, opened by begin undo group.

find SEARCH STRING, [X = 0, Y = 0, REPLACE LINE = ”, OPTIONS]

Tries to find (and, if REPLACE LINE is defined, to replace with it) SEARCH STRING
from (X,Y) physical coordinates. OPTIONS is an integer that consists of the fdo:: con-
stants; the same constants are used in the Prima::EditDialog section, which provides graphic
interface to the find and replace facilities of the Prima::Edit section.

fdo::MatchCase

If set, the search is case-sensitive.

fdo::WordsOnly

If set, SEARCH STRING must constitute the whole word.

fdo::RegularExpression

If set, SEARCH STRING is a regular expression.

fdo::BackwardSearch

If set, the search direction is backwards.

fdo::ReplacePrompt

Not used in the class, however, used in the Prima::EditDialog section.

get chunk CHUNK ID

Returns chunk of text, located at CHUNK ID. Returns empty string if chunk is nonexistent.

get chunk end CHUNK ID

Returns the index of chunk at CHUNK ID, corresponding to the last chunk of same line.

get chunk org CHUNK ID

Returns the index of chunk at CHUNK ID, corresponding to the first chunk of same line.

get chunk width TEXT, FROM, LENGTH, [RETURN TEXT PTR]

Returns the width in pixels of substr(TEXT, FROM, LENGTH). If FROM is larger than
length of TEXT, TEXT is padded with space characters. Tab character in TEXT replaced
to the tabIndent entry times space character. If RETURN TEXT PTR pointer is specified,
the converted TEXT is stored there.

get line INDEX

Returns line of text, located at INDEX. Returns empty string if line is nonexistent.

get line dimension INDEX

Returns two integers, representing the line at INDEX in the wordWrap entry mode: the first
value is the corresponding chunk index, the second is how many chunks represent the line.

See also: the make logical entry.

191

get line ext CHUNK ID

Returns the line, corresponding to the chunk index.

has selection

Returns boolean value, indicating if the selection block is active.

insert empty line LINE ID, [REPEAT = 1]

Inserts REPEAT empty lines at LINE ID.

insert line LINE ID, @TEXT

Inserts @TEXT strings at LINE ID

insert text TEXT, [HIGHLIGHT = 0]

Inserts TEXT at the cursor position. If HIGHLIGHT is set to 1, the selection block is
cancelled and the newly inserted text is selected.

lock change BOOLEAN

Increments (1) or decrements (0) lock count. Used to defer change notification in multi-
change calls. When internal lock count hits zero, Change notification is called.

make logical X, Y

Maps logical X,Y coordinates to the physical and returns the integer pair. Returns same
values when the wordWrap entry is 0.

make physical X, Y

Maps physical X,Y coordinates to the logical and returns the integer pair.

Returns same values when the wordWrap entry is 0.

mark horizontal

Starts block marking session with bt::Horizontal block type.

Default key: Alt+L

mark vertical

Starts block marking session with bt::Vertical block type.

Default key: Alt+B

overtype block

Copies the selected text and overwrites the text next to the cursor position, according to
the the blockType entry value.

Default key: Alt+O

paste

Copies text from the clipboard and inserts it in the cursor position.

Default key: Shift+Insert

realize panning

Performs deferred widget panning, activated by setting {delayPanning} to 1. The deferred
operations are those performed by the offset entry and the topLine entry.

redo

Re-applies changes, formerly rolled back by undo.

192

set line LINE ID, TEXT, [OPERATION, FROM, LENGTH]

Changes line at LINE ID to new TEXT. Hint scalars OPERATION, FROM and LENGTH
used to maintain selection and marking data. OPERATION is an arbitrary string, the ones
that are recognized are ’overtype’, ’add’, and ’delete’. FROM and LENGTH define
the range of the change; FROM is a character offset and LENGTH is a length of changed
text.

split line

Splits a line in two at the cursor position.

Default key: Enter (or Ctrl+Enter if the wantReturns entry is 0)

select all

Selects all text

start block [BLOCK TYPE]

Begins the block selection session. The block type if BLOCK TYPE, if it is specified, or the
blockType entry property value otherwise.

undo

Rolls back changes into internal array, which size cannot extend undoLimit value. In case
undoLimit is 0, no undo actions can be made.

update block

Adjusts the selection inside the block session, extending of shrinking it to the current cursor
position.

word left [REPEAT = 1]

Moves cursor REPEAT words to the left.

word right [REPEAT = 1]

Moves cursor REPEAT words to the right.

193

4.9 Prima::ExtLists

Extended functionality for list boxes

Synopsis

use Prima::ExtLists;

my $vec = ’’;

vec($vec, 0, 8) = 0x55;

Prima::CheckList-> new(

items => [1..10],

vector => $vec,

);

Description

The module is intended to be a collection of list boxes with particular enhancements. Currently
the only package is contained is Prima::CheckList class.

Prima::CheckList

Provides a list box, where each item is equipped with a check box. The check box state can
interactively be toggled by the enter key; also the list box reacts differently by click and double
click.

Properties

button INDEX, STATE

Runtime only. Sets INDEXth button STATE to 0 or 1. If STATE is -1, the button state is
toggled.

Returns the new state of the button.

vector VEC

VEC is a vector scalar, where each bit corresponds to the check state of each list box item.

See also: vec in perlfunc.

Methods

clear all buttons

Sets all buttons to state 0

set all buttons

Sets all buttons to state 1

194

4.10 Prima::FrameSet

Standard frameset widget

Synopsis

use Prima::FrameSet;

my $frame = Prima::FrameSet->create(

frameSizes => [qw(211 20% 123 10% * 45% *)],

opaqueResize => 0,

frameProfiles => [0,0, { minFrameWidth => 123, maxFrameWidth => 123 }],

);

$frame->insert_to_frame(

0,

Button =>

text => ’~Ok’,

);

Description

Provides standard means of framesets manipulations. It includes sharing of common workspace
among several widget groups; redistribution of space, occupied by frames; isolation of different
frames from each other.

This module defines fra:: and frr:: packages for constants, used by the arrangement entry
and the resizeMethod entry properties, respectively.

Two additional auxiliary packages are defined within this module: the Prima::FrameSet::Frame
section and the Prima::FrameSet::Slider section.

195

4.11 Prima::Grids

Grid widgets

Synopsis

use Prima::Grids;

$grid = Prima::Grid-> create(

cells => [

[qw(1.First 1.Second 1.Third)],

[qw(2.First 2.Second 2.Third)],

[qw(3.First 3.Second 3.Third)],

],

onClick => sub {

print $_[0]-> get_cell_text($_[0]-> focusedCell), " is selected\n";

}

);

Description

The module provides classes for several abstraction layers of grid representation. The classes
hierarchy is as follows:

AbstractGridViewer

AbstractGrid

GridViewer

Grid

The root class, Prima::AbstractGridViewer, provides common interface, while by itself it is
not directly usable. The main differences between classes are centered around the way the cell data
are stored. The simplest organization of a text-only cell, provided by Prima::Grid, stores data as
a two-dimensional array of text scalars. More elaborated storage and representation types are not
realized, and the programmer is urged to use the more abstract classes to derive own mechanisms.
To organize an item storage, different from Prima::Grid, it is usually enough to overload either
the Stringify, Measure, and DrawCell events, or their method counterparts: get cell text,
columnWidth, rowHeight, and draw items.

The grid widget is designed to contain cells of variable extents, of two types, normal and
indent. The indent rows and columns are displayed in grid margins, and their cell are drawn
with distinguished colors. An example use for a bottom indent row is a sum row in a spreadsheet
application; the top indent row can be used for displaying columns’ headers. The normal cells
can be selected by the user, scrolled, and selected. The cell selection can only contain rectangular
areas, and therefore is operated with two integer pairs with the beginning and the end of the
selection.

The widget operates in two visual scrolling modes; when the space allows, the scrollbars affect
the leftmost and the topmost cell. When the widget is not large enough to accommodate at least
one cell and all indent cells, the layout is scrolled pixel-wise. These modes are named ’cell’ and
’pixel’, after the scrolling units.

The widget allows the interactive changing of cell widths and heights by dragging the grid lines
between the cells.

Prima::AbstractGridViewer

Prima::AbstractGridViewer, the base for all grid widgets in the module, provides interface to
generic grid browsing functionality, plus functionality for text-oriented grids. The class is not
usable directly.

196

Prima::AbstractGridViewer is a descendant of Prima::GroupScroller, and some properties
are not described here. See the Prima::GroupScroller entry in the Prima::IntUtils section.

Properties

allowChangeCellHeight BOOLEAN

If 1, the user is allowed to change vertical extents of cells by dragging the horizontal grid
lines. Prerequisites to the options are: the lines must be set visible via drawHGrid property,
constantCellHeight property set to 0, and the changes to the vertical extents can be
recorded via SetExtent notification.

Default value: 0

allowChangeCellWidth BOOLEAN

If 1, the user is allowed to change horizontal extents of cells by dragging the horizontal grid
lines. Prerequisites to the options are: the lines must be set visible via drawVGrid property,
constantCellWidth property set to 0, and the changes to the horizontal extents can be
recorded via SetExtent notification.

Default value: 0

cellIndents X1, Y1, X2, Y2

Marks the marginal rows and columns as ’indent’ cells. The indent cells are drawn with
another color pair (see the indentCellColor entry, the indentCellBackColor entry), cannot
be selected and scrolled. X1 and X2 correspond to amount of indent columns, and Y1 and
Y2, - to the indent rows.

leftCell and topCell do not count the indent cells as the leftmost or topmost visible cell;
in other words, X1 and Y1 are minimal values for leftCell and topCell properties.

Default value: 0,0,0,0

clipCells INTEGER

A three-state integer property, that governs the way clipping is applied when cells are drawn.
Depending on kind of graphic in cells, the clipping may be necessary, or unnecessary.

If the value is 1, the clipping is applied for every column drawn, as the default drawing
routines proceed column-wise. If the value is 2, the clipping as applied for every cell. This
setting reduces the drawing speed significantly. If the value is 0, no clipping is applied.

This property is destined for custom-drawn grid widgets, when it is the developer’s task to
decide what kind of clipping suits better. Text grid widgets, Prima::AbstractGrid and
Prima::Grid, are safe with clipCells set to 1.

Default value: 1

columns INTEGER

Sets number of columns, including the indent columns. The number of columns must be
larger than the number of indent columns.

Default value: 0.

columnWidth COLUMN [WIDTH]

A run-time property, selects width of a column. To acquire or set the width, Measure and
SetExtent notifications can be invoked. Result of Measure may be cached internally using
cache geometry requests method.

The width does not include widths of eventual vertical grid lines.

If constantCellWidth is defined, the property is used as its alias.

197

constantCellHeight HEIGHT

If defined, all rows have equal height, HEIGHT pixels. If undef, rows have different heights.

Default value: undef

constantCellWidth WIDTH

If defined, all rows have equal width, WIDTH pixels. If undef, columns have different
widths.

Default value: undef

drawHGrid BOOLEAN

If 1, horizontal grid lines between cells are drawn with gridColor.

Default value: 1

drawVGrid

If 1, vertical grid lines between cells are drawn with gridColor.

Default value: 1

dx INTEGER

A run-time property. Selects horizontal offset in pixels of grid layout in pixel mode.

dy INTEGER

A run-time property. Selects vertical offset in pixels of grid layout in pixel mode.

focusedCell X, Y

Selects coordinates or the focused cell.

gridColor COLOR

Selects the color of grid lines.

Default value: cl::Black .

gridGravity INTEGER

The property selects the breadth of area around the grid lines, that reacts on grid-dragging
mouse events. The minimal value, 0, marks only grid lines as the drag area, but makes
the dragging operation inconvenient for the user. Larger values make the dragging more
convenient, but increase the chance that the user will not be able to select too narrow cells
with the mouse.

Default value: 3

indentCellBackColor COLOR

Selects the background color of indent cells.

Default value: cl::Gray .

indentCellColor

Selects the foreground color of indent cells.

Default value: cl::Gray .

leftCell INTEGER

Selects index of the leftmost visible normal cell.

198

multiSelect BOOLEAN

If 1, the normal cells in an arbitrary rectangular area can be marked as selected (see the
selection entry). If 0, only one cell at a time can be selected.

Default value: 0

rows INTEGER

Sets number of rows, including the indent rows. The number of rows must be larger than
the number of indent rows.

Default value: 0.

topCell

Selects index of the topmost visible normal cell.

rowHeight INTEGER

A run-time property, selects height of a row. To acquire or set the height, Measure and
SetExtent notifications can be invoked. Result of Measure may be cached internally using
cache geometry requests method.

The height does not include widths of eventual horizontal grid lines.

If constantCellHeight is defined, the property is used as its alias.

selection X1, Y1, X2, Y2

If multiSelect is 1, governs the extents of a rectangular area, that contains selected cells.
If no such area is present, selection is (-1,-1,-1,-1), and has selection returns 0 .

If multiSelect is 0, in get-mode returns the focused cell, and discards the parameters in
the set-mode.

Methods

cache geometry requests CACHE

If CACHE is 1, starts caching results of Measure notification, thus lighting the subsequent
columnWidth and rowHeight calls; if CACHE is 0, flushes the cache.

If a significant geometry change was during the caching, the cache is not updated, so it is
the caller’s responsibility to flush the cache.

deselect all

Nullifies the selection, if multiSelect is 1.

draw cells CANVAS, COLUMNS, ROWS, AREA

A bulk draw routine, called from onPaint to draw cells. AREA is an array of four integers
with inclusive-inclusive coordinates of the widget inferior without borders and scrollbars (
result of get active area(2) call; see the get active area entry in the Prima::IntUtils
section).

COLUMNS and ROWS are structures that reflect the columns and rows of the cells to be
drawn. Each item in these corresponds to a column or row, and is an array with the following
layout:

0: column or row index

1: type; 0 - normal cell, 1 - indent cell

2: visible cell breadth

3: visible cell start

4: visible cell end

5: real cell start

6: real cell end

199

The coordinates are in inclusive-inclusive coordinate system, and do not include eventual
grid space, nor gaps between indent and normal cells. By default, internal arrays {colsDraw}
and {rowsDraw} are passed as COLUMNS and ROWS parameters.

In Prima::AbstractGrid and Prima::Grid classes <draw cells> is overloaded to transfer
the call to std draw text cells, the text-oriented optimized routine.

draw text cells SCREEN RECTANGLES, CELL RECTANGLES,
CELL INDECES, FONT HEIGHT

A bulk routine for drawing text cells, called from std draw text cells .

SCREEN RECTANGLES and CELL RECTANGLES are arrays, where each item is a rect-
angle with exterior of a cell. SCREEN RECTANGLES contains rectangles that cover the
cell visible area; CELL RECTANGLES contains rectangles that span the cell extents dis-
regarding its eventual partial visibility. For example, a 100-pixel cell with only its left half
visible, would contain corresponding arrays [150,150,200,250] in SCREEN RECTANGLES,
and [150,150,250,250] in CELL RECTANGLES.

CELL INDECES contains arrays of the cell coordinates; each array item is an array of
integer pair where item 0 is column, and item 1 is row of the cell.

FONT HEIGHT is a current font height value, cached since draw text cells is often used
for text operations and may require vertical text justification.

get cell area [WIDTH, HEIGHT]

Returns screen area in inclusive-inclusive pixel coordinates, that is used to display normal
cells. The extensions are related to the current size of a widget, however, can be overridden
by specifying WIDTH and HEIGHT.

get cell text COLUMN, ROW

Returns text string assigned to cell in COLUMN and ROW. Since the class does not assume
the item storage organization, the text is queried via Stringify notification.

get range AXIS, INDEX

Returns a pair of integers, minimal and maximal breadth of INDEXth column or row in
pixels. If AXIS is 1, the rows are queried; if 0, the columns.

The method calls GetRange notification.

get screen cell info COLUMN, ROW

Returns information about a cell in COLUMN and ROW, if it is currently visible. The
returned parameters are indexed by gsci::XXX constants, and explained below:

gsci::COL_INDEX - visual column number where the cell displayed

gsci::ROW_INDEX - visual row number where the cell displayed

gsci::V_FULL - cell is fully visible

gsci::V_LEFT - inclusive-inclusive rectangle of the visible

gsci::V_BOTTOM part of the cell. These four indices are grouped

gsci::V_RIGHT under list constant, gsci::V_RECT.

gsci::V_TOP

gsci::LEFT - inclusive-inclusive rectangle of the cell, as if

gsci::BOTTOM it is fully visible. These four indices are grouped

gsci::RIGHT under list constant, gsci::RECT. If gsci::V_FULL

gsci::TOP is 1, these values are identical to these in gsci::V_RECT.

200

If the cell is not visible, returns empty array.

has selection

Returns a boolean value, indicating whether the grid contains a selection (1) or not (0).

point2cell X, Y, [OMIT GRID = 0]

Return information about point X, Y in widget coordinates. The method returns two inte-
gers, CX and CY, with cell coordinates, and eventual HINTS hash, with more information
about pixe localtion. If OMIT GRID is set to 1 and the pixel belongs to a grid, the pixels
is treated a part of adjacent cell. The call syntax:

($CX, $CY, %HINTS) = $self->point2cell($X, $Y);

If the pixel lies within cell boundaries by either coordinate, CX and/or CY are correspond-
ingly set to cell column and/or row. When the pixel is outside cell space, CX and/or CY
are set to -1.

HINTS may contain the following values:

x and y

If 0, the coordinate lies within boundaries of a cell.

If -1, the coordinate is on the left/top to the cell body.

If +1, the coordinate is on the right/bottom to the cell body, but within the widget.

If +2, the coordinate is on the right/bottom to the cell body, but outside the widget.

x type and y type

Present when x or y values are 0.

If 0, the cell is a normal cell.

If -1, the cell is left/top indent cell.

If +1, the cell is right/bottom indent cell.

x grid and y grid

If 1, the point is over a grid line. This case can only happen when OMIT GRID
is 0. If allowChangeCellHeight and/or allowChangeCellWidth are set, treats also
gridGravity-broad pixels strips on both sides of the line as the grid area.

Also values of x left/x right or y bottom/y top might be set.

x left/x right and y bottom/y top

Present together with x grid or y grid. Select indices of cells adjacent to the grid line.

x gap and y gap

If 1, the point is within a gap between the last normal cell and the first right/bottom
indent cell.

normal

If 1, the point lies within the boundaries of a normal cell.

indent

If 1, the point lies within the boundaries of an indent cell.

grid

If 1, the point is over a grid line.

exterior

If 1, the point is in inoperable area or outside the widget boundaries.

redraw cell X, Y

Repaints cell with coordinates X and Y.

201

reset

Recalculates internal geometry variables.

select all

Marks all cells as selected, if multiSelect is 1.

std draw text cells CANVAS, COLUMNS, ROWS, AREA

An optimized bulk routine for text-oriented grid widgets. The optimization is achieved
under assumption that each cell is drawn with two colors only, so the color switching can be
reduced.

The routine itself paints the cells background, and calls draw text cells to draw text
and/or otherwise draw the cell content.

For explanation of COLUMNS, ROWS, and AREA parameters see the draw cells entry .

Events

DrawCell CANVAS, COLUMN, ROW, INDENT, @SCREEN RECT,
@CELL RECT, SELECTED, FOCUSED

Called when a cell with COLUMN and ROW coordinates is to be drawn on CANVAS.
SCREEN RECT is a cell rectangle in widget coordinates, where the item is to be drawn.
CELL RECT is same as SCREEN RECT, but calculated as if the cell is fully visible.

SELECTED and FOCUSED are boolean flags, if the cell must be drawn correspondingly in
selected and focused states.

GetRange AXIS, INDEX, MIN, MAX

Puts minimal and maximal breadth of INDEXth column (AXIS = 0) or row (AXIS = 1)
in corresponding MIN and MAX scalar references.

Measure AXIS, INDEX, BREADTH

Puts breadth in pixels of INDEXth column (AXIS = 0) or row (AXIS = 1) into BREADTH
scalar reference.

This notification by default may be called from within begin paint info/end paint info

brackets. To disable this feature set internal flag {NoBulkPaintInfo} to 1.

SelectCell COLUMN, ROW

Called when a cell with COLUMN and ROW coordinates is focused.

SetExtent AXIS, INDEX, BREADTH

Reports breadth in pixels of INDEXth column (AXIS = 0) or row (AXIS = 1), as a
response to columnWidth and rowHeight calls.

Stringify COLUMN, ROW, TEXT REF

Puts text string, assigned to cell with COLUMN and ROW coordinates, into TEXT REF
scalar reference.

Prima::AbstractGrid

Exactly the same as its ascendant, Prima::AbstractGridViewer, except that it does not propa-
gate DrawItem message, assuming that the items must be drawn as text.

202

Prima::GridViewer

The class implements cells data and geometry storage mechanism, but leaves the cell data format
to the programmer. The cells are accessible via cells property and several other helper routines.

The cell data are stored in an array, where each item corresponds to a row, and contains
array of scalars, where each corresponds to a column. All data managing routines, that accept
two-dimensional arrays, assume that the columns arrays are of the same widths.

For example, [[1,2,3]]] is a valid one-row, three-column structure, and
[[1,2],[2,3],[3,4]] is a valid three-row, two-column structure. The structure
[[1],[2,3],[3,4]] is invalid, since its first row has one column, while the others have
two.

Prima::GridViewer is derived from Prima::AbstractGridViewer.

Properties

allowChangeCellHeight

Default value: 1

allowChangeCellWidth

Default value: 1

cell COLUMN, ROW, [DATA]

Run-time property. Selects the data in cell with COLUMN and ROW coordinates.

cells [ARRAY]

The property accepts or returns all cells as a two-dimensional rectangular array or scalars.

columns INDEX

A read-only property; returns number of columns.

rows INDEX

A read-only property; returns number of rows.

Methods

add column CELLS

Inserts one-dimensional array of scalars to the end of columns.

add columns CELLS

Inserts two-dimensional array of scalars to the end of columns.

add row CELLS

Inserts one-dimensional array of scalars to the end of rows.

add rows CELLS

Inserts two-dimensional array of scalars to the end of rows.

delete columns OFFSET, LENGTH

Removes LENGTH columns starting from OFFSET. Negative values are accepted.

delete rows OFFSET, LENGTH

Removes LENGTH rows starting from OFFSET. Negative values are accepted.

insert column OFFSET, CELLS

Inserts one-dimensional array of scalars as column OFFSET. Negative values are accepted.

203

insert columns OFFSET, CELLS

Inserts two-dimensional array of scalars in column OFFSET. Negative values are accepted.

insert row

Inserts one-dimensional array of scalars as row OFFSET. Negative values are accepted.

insert rows

Inserts two-dimensional array of scalars in row OFFSET. Negative values are accepted.

Prima::Grid

Descendant of Prima::GridViewer, declares format of cells as a single text string. Incorporating
all functionality of its ascendants, provides a standard text grid widget.

Methods

get cell text COLUMN, ROW

Returns text string assigned to cell in COLUMN and ROW. Since the item storage organi-
zation is implemented, does so without calling Stringify notification.

204

4.12 Prima::Header

A multi-tabbed header widget.

Description

The widget class provides functionality of several button-like caption tabs, that can be moved and
resized by the user. The class was implemented with a view to serve as a table header for list and
grid widgets.

API

Events

Click INDEX

Called when the user clicks on the tab, positioned at INDEX.

DrawItem CANVAS, INDEX, X1, Y1, X2, Y2, TEXT BASELINE

A callback used to draw the tabs. CANVAS is the output object; INDEX is the index of a tab.
X1,Y2,X2,Y2 are the coordinates of the boundaries of the tab rectangle; TEXT BASELINE
is a pre-calculated vertical position for eventual centered text output.

MeasureItem INDEX, RESULT

Stores in scalar, referenced by RESULT, the width or height (depending on the vertical
entry property value) of the tab in pixels.

MoveItem OLD INDEX, NEW INDEX

Called when the user moves a tab from its old location, specified by OLD INDEX, to the
NEW INDEX position. By the time of call, all internal structures are updated.

SizeItem INDEX, OLD EXTENT, NEW EXTENT

Called when the user resizes a tab in INDEX position. OLD EXTENT and NEW EXTENT
are either width or height of the tab, depending on the vertical entry property value.

SizeItems

Called when more than one tab has changed its extent. This might happen as a result of
user action, as well as an effect of set-calling to some properties.

Properties

clickable BOOLEAN

Selects if the user is allowed to click the tabs.

Default value: 1

dragable BOOLEAN

Selects if the user is allowed to move of the tabs.

Default value: 1

items ARRAY

Array of scalars, representing the internal data of the tabs. By default the scalars are treated
as text strings.

205

minTabWidth INTEGER

A minimal extent in pixels a tab must occupy.

Default value: 2

offset INTEGER

An offset on the major axis (depends on the vertical entry property value) that the widget is
drawn with. Used for the conjunction with list widgets (see the Prima::DetailedList section
), when the list is horizontally or vertically scrolled.

Default value: 0

pressed INTEGER

Contains the index of the currently pressed tab. A -1 value is selected when no tabs are
pressed.

Default value: -1

scalable BOOLEAN

Selects if the user is allowed to resize the tabs.

Default value: 1

vertical BOOLEAN

If 1, the tabs are aligned vertically; the the offset entry, the widths entry property and extent
parameters of the callback notification assume heights of the tabs.

If 0, the tabs are aligned horizontally, and the extent properties and parameters assume tab
widths.

widths ARRAY

Array of integer values, corresponding to the extents of the tabs. The extents are widths (
vertical is 0) or heights (vertical is 1).

Methods

tab2offset INDEX

Returns offset of the INDEXth tab (without regard to the offset entry property value).

tab2rect INDEX

Returns four integers, representing the rectangle area, occupied by the INDEXth tab (
without regard to the offset entry property value).

206

4.13 Prima::HelpViewer

The built-in pod file browser

Usage

The module presents two packages, Prima::HelpViewer and Prima::PodViewWindow. Their sole
purpose is to serve as a mediator between Prima::PodView package, the toolkit help interface and
the user. Prima::PodViewWindow includes all the user functionality, including (but not limited
to :) text search, color and font setup, printing etc. Prima::HelpViewer provides two methods -
open and close, used by Prima::Application for help viewer invocation.

Help

The browser can be used to view and print POD (plain old documentation) files. See the
command overview below for more detailed description:

File

Open

Presents a file selection dialog, when the user can select a file to browse in the viewer.
The file must contain POD content, otherwise a warning is displayed.

Goto

Asks for a manpage, that is searched in PATH and the installation directories.

New window

Opens the new viewer window with the same context.

Run

Commands in this group call external processes

p-class
p-class is Prima utility for displaying the widget class hierachies. The command
asks for Prima class to display the hierachy information for.

Print

Provides a dialog, when the user can select the appropriate printer device and its
options.

Prints the current topic to the selected printer.

If the Full text view entry menu item is checked, prints the whole manpage.

Close window

Closes the window.

Close all windows

Closes all help viewer windows.

View

Increase font

Increases the currently selected font by 2 points.

Decrease font

Decreases the currently selected font by 2 points.

Full text view

If checked, the whole manpage is displayed. Otherwise, its content is presented as a set
of topic, and only one topic is displayed.

207

Find

Presents a find dialog, where the user can select the text to search and the search
options - the search direction, scope, and others.

Find again

Starts search for the text, entered in the last find dialog, with the same search options.

Fast find

The following commands provide a simple vi-style text search functionality - character
keys ?,/,n,N bound to the commands below:

Forward
Presents an input line where a text can be entered; the text search is performed
parallel to the input.

Backward
Same as the Forward entry option, except that the serach direction is backwards.

Repeat forward
Repeat the search in the same direction as the initial search was being invoked.

Repeat backward
Repeat the search in the reverse direction as the initial search was being invoked.

Setup

Presents a setup dialog, where the user can select appropriate fonts and colors.

Go

Back

Displays the previously visited manpage (or topic)

Forward

Displays the previously visited manpage (or topic), that was left via the Back entry
command.

Up

Displays the upper level topic within a manpage.

Previous

Moves to the previous topic within a manpage.

Next

Moves to the next topic within a manpage.

Help

About

Displays the information about the help viewer.

Help

Displays the information about the usage of the help viewer

208

4.14 Prima::Image::TransparencyControl

Standard dialog for transparent color index selection.

Description

The module contains two classes - Prima::Image::BasicTransparencyDialog and
Prima::Image::TransparencyControl. The former provides a dialog, used by image codec-
specific save options dialogs to select a transparent color index when saving an image to a file.
Prima::Image::TransparencyControl is a widget class that displays the image palette and
allow color rather than index selection.

Prima::Image::TransparencyControl

Properties

index INTEGER

Selects the palette index.

image IMAGE

Selects image which palette is displayed, and the color index can be selected from.

Events

Change

Triggered when the user changes index property.

Prima::Image::BasicTransparencyDialog

Methods

transparent BOOLEAN

If 1, the transparent selection widgets are enabled, and the user can select the palette index.
If 0, the widgets are disabled; the image file is saved with no transparent color index.

The property can be toggled interactively by a checkbox.

209

4.15 Prima::ImageViewer

Standard image, icon, and bitmap viewer class.

Description

The module contains Prima::ImageViewer class, which provides image displaying functionality,
including different zoom levels.

Prima::ImageViewer is a descendant of Prima::ScrollWidget and inherits its document
scrolling behavior and programming interface. See the Prima::ScrollWidget section for details.

API

Properties

alignment INTEGER

One of the following ta::XXX constants:

ta::Left

ta::Center

ta::Right

Selects the horizontal image alignment.

Default value: ta::Left

image OBJECT

Selects the image object to be displayed. OBJECT can be an instance of Prima::Image,
Prima::Icon, or Prima::DeviceBitmap class.

imageFile FILE

Set the image FILE to be loaded and displayed. Is rarely used since does not return a loading
success flag.

quality BOOLEAN

A boolean flag, selecting if the palette of image is to be copied into the widget palette,
providing higher visual quality on paletted displays. See also the palette entry in the
Prima::Widget section.

Default value: 1

valignment INTEGER

One of the following ta::XXX constants:

ta::Top

ta::Middle or ta::Center

ta::Bottom

Selects the vertical image alignment.

NB: ta::Middle value is not equal to ta::Center’s, however the both constants produce
equal effect here.

Default value: ta::Bottom

210

zoom FLOAT

Selects zoom level for image display. The acceptable value range is between 0.01 and 100.
The zoom value is rounded to the closest value divisible by 1/zoomPrecision. For example,
is zoomPrecision is 100, the zoom values will be rounded to the precision of hundredth - to
fiftieth and twentieth fractional values - .02, .04, .05, .06, .08, and 0.1 . When zoomPrecision

is 1000, the precision is one thousandth, and so on.

Default value: 1

zoomPrecision INTEGER

Zoom precision of zoom property. Minimal acceptable value is 10, where zoom will be
rounded to 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 .

The reason behind this arithmetics is that when image of arbitrary zoom factor is requested
to be displayed, the image sometimes must begin to be drawn from partial pixel - for example,
10x zoomed image shifted 3 pixels left, must be displayed so the first image pixel from the
left occupies 3 screen pixels, and the next ones - 10 screen pixels. That means, that the
correct image display routine must ask the system to draw the image ot offset -7 screen
pixels. In case of a large image, such negative offsets become large, and the system will
behave ineffectively trying to access all image pixels in system memory, slowing the drawing
significantly, or in the worst case, failing the request. A workaround is to pre-calculate the
zoom factor so that whatever image offset is requested, the negative screen offset will be
fixed, and will impose fixed penalty on the system image scaling routine. For example, the
default zoomPrecision value 100 means that for any given image offset, the screen offset
will not exceed 100 pixels, and thus whatever the zoom factor is, the system will internally
scale max. screen size / zoom factor + 100 pixels.

These considerations make sense for zoom factors greater than one only, but are applied also
to those less than one for the consistency sake.

Default value: 100

Methods

screen2point X, Y, [X, Y, ...]

Performs translation of integer pairs integers as (X,Y)-points from widget coordinates to
pixel offset in image coordinates. Takes in account zoom level, image alignments, and offsets.
Returns array of same length as the input.

Useful for determining correspondence, for example, of a mouse event to a image point.

The reverse function is point2screen.

point2screen X, Y, [X, Y, ...]

Performs translation of integer pairs as (X,Y)-points from image pixel offset to widget image
coordinates. Takes in account zoom level, image alignments, and offsets. Returns array of
same length as the input.

Useful for determining a screen location of an image point.

The reverse function is screen2point.

watch load progress IMAGE

When called, image viewer watches as the IMAGE is loaded (see the load entry in the
Prima::Image section) and displays the progress. As soon IMAGE begins to load, it replaces
the existing image property. Example:

211

$i = Prima::Image-> new;

$viewer-> watch_load_progress($i);

$i-> load(’huge.jpg’);

$viewer-> unwatch_load_progress($i);

Similar functionality is present in the Prima::ImageDialog section.

unwatch load progress CLEAR IMAGE=1

Stops monitoring of image loading progress. If CLEAR IMAGE is 0, the leftovers of the
incremental loading stay intact in image propery. Otherwise, image is set to undef.

zoom round ZOOM

Rounds the zoom factor to zoomPrecision precision, returns the rounded zoom value. The
algorithm is the same as used internally in zoom property.

212

4.16 Prima::InputLine

Standard input line widget

Description

The class provides basic functionality of an input line, including hidden input, read-only state,
selection, and clipboard operations. The input line text data is contained in the text entry property.

API

Events

Change

The notification is called when the the text entry property is changed, either interactively
or as a result of direct call.

Properties

alignment INTEGER

One of the following ta:: constants, defining the text alignment:

ta::Left

ta::Right

ta::Center

Default value: ta::Left

autoHeight BOOLEAN

If 1, adjusts the height of the widget automatically when its font changes.

Default value: 1

autoSelect BOOLEAN

If 1, all the text is selected when the widget becomes focused.

Default value: 1

autoTab BOOLEAN

If 1, the keyboard kb::Left and kb::Right commands, if received when the cursor is at
the beginning or at the end of text, and cannot be mover farther, not processed. The result
of this is that the default handler moves focus to a neighbor widget, in a way as if the Tab
key was pressed.

Default value: 0

borderWidth INTEGER

Width of 3d-shade border around the widget.

Default value: 2

charOffset INTEGER

Selects the position of the cursor in characters starting from the beginning of text.

firstChar

Selects the first visible character of text

213

insertMode BOOLEAN

Governs the typing mode - if 1, the typed text is inserted, if 0, the text overwrites the old
text. When insertMode is 0, the cursor shape is thick and covers the whole character; when
1, it is of default width.

Default toggle key: Insert

maxLen INTEGER

The maximal length of the text, that can be stored into the text entry or typed by the user.

Default value: 256

passwordChar CHARACTER

A character to be shown instead of the text letters when the writeOnly entry property value
is 1.

Default value: ’*’

readOnly BOOLEAN

If 1, the text cannot be edited by the user.

Default value: 0

selection START, END

Two integers, specifying the beginning and the end of the selected text. A case with no
selection is when START equals END.

selStart INTEGER

Selects the start of text selection.

selEnd INTEGER

Selects the end of text selection.

textRef SCALAR REF

If not undef, contains reference to the scalar that holds the text of the input line. All changes
to ::text property are reflected there. The direct write access to the scalar is not recommended
because it leaves internal structures inconsistent, and the only way to synchronize structures
is to set-call either ::textRef or ::text after every such change.

If undef, the internal text container is used.

Default value: undef

wordDelimiters STRING

Contains string of character that are used for locating a word break. Default STRING value
consists of punctuation marks, space and tab characters, and \xff character.

writeOnly BOOLEAN

If 1, the input is not shown but mapped to the passwordChar entry characters. Useful for a
password entry.

Default value: 0

214

Methods

copy

Copies the selected text, if any, to the clipboard.

Default key: Ctrl+Insert

cut

Cuts the selected text into the clipboard.

Default key: Shift+Delete

delete

Removes the selected text.

Default key: Delete

paste

Copies text from the clipboard and inserts it in the cursor position.

Default key: Shift+Insert

select all

Selects all text

215

4.17 Prima::KeySelector

Key combination widget and routines

Description

The module provides a standard widget for selecting a user-defined key combination. The widget
class allows import, export, and modification of key combinations.

The module provides a set of routines, useful for conversion of a key combination between
representations.

Synopsis

my $ks = Prima::KeySelector-> create();

$ks-> key(km::Alt | ord(’X’));

print Prima::KeySelector::describe($ks-> key);

API

Properties

key INTEGER

Selects a key combination in integer format. The format is described in the Hot key entry
in the Prima::Menu section, and is a combination of km::XXX key modifiers and either a
kb::XXX virtual key, or a character code value.

The property allows almost, but not all possible combinations of key constants. Only
km::Ctrl, km::Alt, and km::Shift modifiers are allowed.

Methods

All methods here can (and must) be called without the object syntax; - the first parameter must
not be neither package nor widget.

describe KEY

Accepts KEY in integer format, and returns string description of the key combination in
human readable format. Useful for supplying an accelerator text to a menu.

print describe(km::Shift|km::Ctrl|km::F10);

Ctrl+Shift+F10

export KEY

Accepts KEY in integer format, and returns string with a perl-evaluable expression, which
after evaluation resolves to the original KEY value. Useful for storing a key into text config
files, where value must be both human readable and easily passed to a program.

print export(km::Shift|km::Ctrl|km::F10);

km::Shift|km::Ctrl|km::F10

shortcut KEY

Converts KEY from integer format to a string, acceptable by Prima::AbstractMenu input
methods.

216

print shortcut(km::Ctrl|ord(’X’));

^X

translate codes KEY, [USE CTRL = 0]

Converts KEY in integer format to three integers in the format accepted by the KeyDown
entry in the Prima::Widget section event: code, key, and modifier. USE CTRL is only
relevant when KEY first byte (KEY & 0xFF) is between 1 and 26, what means that the
key is a combination of an alpha key with the control key. If USE CTRL is 1, code result is
unaltered, and is in range 1 - 26. Otherwise, code result is converted to the character code
(1 to ord(’A’), 2 to ord(’B’) etc).

217

4.18 Prima::Label

Static text widget

Description

The class is designed for display of text, and assumes no user interaction. The text output
capabilities include wrapping, horizontal and vertical alignment, and automatic widget resizing to
match text extension. If text contains a tilde-escaped (hot) character, the label can explicitly
focus the specified widget upon press of the character key, what feature is useful for dialog design.

Synopsis

my $label = Prima::Label-> create(

text => ’Enter ~name:’,

focusLink => $name_inputline,

alignment => ta::Center,

);

API

Properties

alignment INTEGER

One of the following ta::XXX constants:

ta::Left

ta::Center

ta::Right

Selects the horizontal text alignment.

Default value: ta::Left

autoHeight BOOLEAN

If 1, the widget height is automatically changed as text extensions change.

Default value: 0

autoWidth BOOLEAN

If 1, the widget width is automatically changed as text extensions change.

Default value: 1

focusLink WIDGET

Points to a widget, which is explicitly focused when the user presses the combination of a
hot key with the Alt key.

Prima::Label does not provide a separate property to access the hot key value, however it
can be read from the {accel} variable.

Default value: undef.

showAccelChar BOOLEAN

If 0, the tilde (~) character is collapsed from the text, and the hot character is underlined.
When the user presses combination of the escaped character with the Alt key, the focusLink
widget is explicitly focused.

218

If 1, the text is showed as is, and no hot character is underlined. Key combinations with
Alt key are not recognized.

Default value: 0

showPartial BOOLEAN

Used to determine if the last line of text should be drawn if it can not be vertically fit in the
widget interior. If 1, the last line is shown even if not visible in full. If 0, only full lines are
drawn.

Default value: 1

wordWrap BOOLEAN

If 1, the text is wrapped if it can not be horizontally fit in the widget interior.

If 0, the text is not wrapped unless new line characters are present in the text.

New line characters signal line wrapping with no respect to wordWrap property value.

Default value: 0

valignment INTEGER

One of the following ta::XXX constants:

ta::Top

ta::Middle or ta::Center

ta::Bottom

Selects the vertical text alignment.

NB: ta::Middle value is not equal to ta::Center’s, however the both constants produce
equal effect here.

Default value: ta::Top

219

4.19 Prima::Lists

User-selectable item list widgets

Description

The module provides classes for several abstraction layers of item representation. The hierarchy
of classes is as follows:

AbstractListViewer

AbstractListBox

ListViewer

ProtectedListBox

ListBox

The root class, Prima::AbstractListViewer, provides common interface, while by itself
it is not directly usable. The main differences between classes are centered around the way
the item list is stored. The simplest organization of a text-only item list, provided by
Prima::ListBox, stores an array of text scalars in a widget. More elaborated storage and
representation types are not realized, and the programmer is urged to use the more abstract
classes to derive own mechanisms. For example, for a list of items that contain text strings
and icons see the Prima::DirectoryListBox entry in the Prima::FileDialog section. To orga-
nize an item storage, different from Prima::ListBox, it is usually enough to overload either the
Stringify, MeasureItem, and DrawItem events, or their method counterparts: get item text,
get item width, and draw items.

Prima::AbstractListViewer

Prima::AbstractListViewer is a descendant of Prima::GroupScroller, and some properties
are not described here. See the Prima::GroupScroller entry in the Prima::IntUtils section.

The class provides interface to generic list browsing functionality, plus functionality for text-
oriented lists. The class is not usable directly.

Properties

autoHeight BOOLEAN

If 1, the item height is changed automatically when the widget font is changed; this is useful
for text items. If 0, item height is not changed; this is useful for non-text items.

Default value: 1

count INTEGER

An integer property, destined to reflect number of items in the list. Since it is tied to the
item storage organization, and hence, to possibility of changing the number of items, this
property is often declared as read-only in descendants of Prima::AbstractListViewer.

dragable BOOLEAN

If 1, allows the items to be dragged interactively by pressing control key together with left
mouse button. If 0, item dragging is disabled.

Default value: 1

drawGrid BOOLEAN

If 1, vertical grid lines between columns are drawn with gridColor. Actual only in multi-
column mode.

Default value: 1

220

extendedSelect BOOLEAN

Regards the way the user selects multiple items and is only actual when multiSelect is 1.
If 0, the user must click each item in order to mark as selected. If 1, the user can drag mouse
or use Shift key plus arrow keys to perform range selection; the Control key can be used
to select individual items.

Default value: 0

focusedItem INDEX

Selects the focused item index. If -1, no item is focused. It is mostly a run-time property,
however, it can be set during the widget creation stage given that the item list is accessible
on this stage as well.

Default value: -1

gridColor COLOR

Color, used for drawing vertical divider lines for multi-column list widgets. The list classes
support also the indirect way of setting the grid color, as well as widget does, via the
colorIndex property. To achieve this, ci::Grid constant is declared (for more detail see
the colorIndex entry in the Prima::Widget section).

Default value: cl::Black.

integralHeight BOOLEAN

If 1, only the items that fit vertically in the widget interiors are drawn. If 0, the items that
are partially visible are drawn also.

Default value: 0

integralWidth BOOLEAN

If 1, only the items that fit horizontally in the widget interiors are drawn. If 0, the items
that are partially visible are drawn also. Actual only in multi-column mode.

Default value: 0

itemHeight INTEGER

Selects the height of the items in pixels. Since the list classes do not support items with
different dimensions, changes to this property affect all items.

Default value: default font height

itemWidth INTEGER

Selects the width of the items in pixels. Since the list classes do not support items with
different dimensions, changes to this property affect all items.

Default value: default widget width

multiSelect BOOLEAN

If 0, the user can only select one item, and it is reported by the focusedItem property. If 1,
the user can select more than one item. In this case, focusedItem’th item is not necessarily
selected. To access selected item list, use selectedItems property.

Default value: 0

multiColumn BOOLEAN

If 0, the items are arrayed vertically in one column, and the main scroll bar is vertical. If
1, the items are arrayed in several columns, itemWidth pixels wide each. In this case, the
main scroll bar is horizontal.

221

offset INTEGER

Horizontal offset of an item list in pixels.

topItem INTEGER

Selects the first item drawn.

selectedCount INTEGER

A read-only property. Returns number of selected items.

selectedItems ARRAY

ARRAY is an array of integer indices of selected items.

vertical BOOLEAN

Sets seneral direction of items in multi-column mode. If 1, items increase down-to-right.
Otherwise, right-to-down.

Doesn’t have any effect in single-column mode. Default value: 1.

Methods

add selection ARRAY, FLAG

Sets item indices from ARRAY in selected or deselected state, depending on FLAG value,
correspondingly 1 or 0.

Only for multi-select mode.

deselect all

Removes selection from all items.

Only for multi-select mode.

draw items CANVAS, ITEM DRAW DATA

Called from within Paint notification to draw items. The default behavior is to call DrawItem
notification for every item in ITEM DRAW DATA array. ITEM DRAW DATA is an array
or arrays, where each array consists of parameters, passed to DrawItem notification.

This method is overridden in some descendant classes, to increase the speed of drawing
routine. For example, std draw text items is the optimized routine for drawing unified
text-based items. It is used in Prima::ListBox class.

See the DrawItem entry for parameters description.

draw text items CANVAS, FIRST, LAST, STEP, X, Y, OFFSET, CLIP RECT

Called by std draw text items to draw sequence of text items with indices from FIRST to
LAST, by STEP, on CANVAS, starting at point X, Y, and incrementing the vertical position
with OFFSET. CLIP RECT is a reference to array of four integers with inclusive-inclusive
coordinates of the active clipping rectangle.

get item text INDEX

Returns text string assigned to INDEXth item. Since the class does not assume the item
storage organization, the text is queried via Stringify notification.

get item width INDEX

Returns width in pixels of INDEXth item. Since the class does not assume the item storage
organization, the value is queried via MeasureItem notification.

is selected INDEX

Returns 1 if INDEXth item is selected, 0 if it is not.

222

item2rect INDEX, [WIDTH, HEIGHT]

Calculates and returns four integers with rectangle coordinates of INDEXth item within the
widget. WIDTH and HEIGHT are optional parameters with pre-fetched dimension of the
widget; if not set, the dimensions are queried by calling size property. If set, however, the
size property is not called, thus some speed-up can be achieved.

point2item X, Y

Returns the index of an item that contains point (X,Y). If the point belongs to the item
outside the widget’s interior, returns the index of the first item outside the widget’s interior
in the direction of the point.

redraw items INDICES

Redraws all items in INDICES array.

select all

Selects all items.

Only for multi-select mode.

set item selected INDEX, FLAG

Sets selection flag of INDEXth item. If FLAG is 1, the item is selected. If 0, it is deselected.

Only for multi-select mode.

select item INDEX

Selects INDEXth item.

Only for multi-select mode.

std draw text items CANVAS, ITEM DRAW DATA

An optimized method, draws unified text-based items. It is fully compatible to draw items

interface, and is used in Prima::ListBox class.

The optimization is derived from the assumption that items maintain common background
and foreground colors, that differ in selected and non-selected states only. The routine
groups drawing requests for selected and non-selected items, and draws items with reduced
number of calls to color property. While the background is drawn by the routine itself,
the foreground (usually text) is delegated to the draw text items method, so the text
positioning and eventual decorations would not require full rewrite of code.

ITEM DRAW DATA is an array of arrays of scalars, where each array contains parameters
of DrawItem notification. See the DrawItem entry for parameters description.

toggle item INDEX

Toggles selection of INDEXth item.

Only for multi-select mode.

unselect item INDEX

Deselects INDEXth item.

Only for multi-select mode.

223

Events

Click

Called when the user presses return key or double-clicks on an item. The index of the item
is stored in focusedItem.

DragItem OLD INDEX, NEW INDEX

Called when the user finishes the drag of an item from OLD INDEX to NEW INDEX posi-
tion. The default action rearranges the item list in accord with the dragging action.

DrawItem CANVAS, INDEX, X1, Y1, X2, Y2, SELECTED, FOCUSED

Called when an INDEXth item is to be drawn on CANVAS. X1, Y1, X2, Y2 designate
the item rectangle in widget coordinates, where the item is to be drawn. SELECTED and
FOCUSED are boolean flags, if the item must be drawn correspondingly in selected and
focused states.

MeasureItem INDEX, REF

Puts width in pixels of INDEXth item into REF scalar reference. This notification must be
called from within begin paint info/end paint info block.

SelectItem INDEX, FLAG

Called when the item changed its selection state. INDEX is the index of the item, FLAG is
its new selection state: 1 if it is selected, 0 if it is not.

Stringify INDEX, TEXT REF

Puts text string, assigned to INDEXth item into TEXT REF scalar reference.

Prima::AbstractListBox

Exactly the same as its ascendant, Prima::AbstractListViewer, except that it does not propa-
gate DrawItem message, assuming that the items must be drawn as text.

Prima::ListViewer

The class implements items storage mechanism, but leaves the items format to the programmer.
The items are accessible via items property and several other helper routines.

The class also defines the user navigation, by accepting character keyboard input and jumping
to the items that have text assigned with the first letter that match the input.

Prima::ListViewer is derived from Prima::AbstractListViewer.

Properties

autoWidth BOOLEAN

Selects if the gross item width must be recalculated automatically when either the font
changes or item list is changed.

Default value: 1

count INTEGER

A read-only property; returns number of items.

items ARRAY

Accesses the storage array of items. The format of items is not defined, it is merely treated
as one scalar per index.

224

Methods

add items ITEMS

Appends array of ITEMS to the end of the list.

calibrate

Recalculates all item widths and adjusts itemWidth if autoWidth is set.

delete items INDICES

Deletes items from the list. INDICES can be either an array, or a reference to an array of
item indices.

get item width INDEX

Returns width in pixels of INDEXth item from internal cache.

get items INDICES

Returns array of items. INDICES can be either an array, or a reference to an array of item
indices. Depending on the caller context, the results are different: in array context the item
list is returned; in scalar - only the first item from the list. The semantic of the last call is
naturally usable only for single item retrieval.

insert items OFFSET, ITEMS

Inserts array of items at OFFSET index in the list. Offset must be a valid index; to insert
items at the end of the list use add items method.

ITEMS can be either an array, or a reference to an array of items.

replace items OFFSET, ITEMS

Replaces existing items at OFFSET index in the list. Offset must be a valid index.

ITEMS can be either an array, or a reference to an array of items.

Prima::ProtectedListBox

A semi-demonstrational class, derived from Prima::ListViewer, that applies certain protection
for every item drawing session. Assuming that several item drawing routines can be assembled
in one widget, Prima::ProtectedListBox provides a safety layer between these, so, for example,
one drawing routine that selects a font or a color and does not care to restore the old value back,
does not affect the outlook of the other items.

This functionality is implementing by overloading draw items method and also all graphic
properties.

Prima::ListBox

Descendant of Prima::ListViewer, declares format of items as a single text string. Incorporating
all of functionality of its predecessors, provides a standard listbox widget.

Synopsis

my $lb = Prima::ListBox-> create(

items => [qw(First Second Third)],

focusedItem => 2,

onClick => sub {

print $_[0]-> get_items($_[0]-> focusedItem), " is selected\n";

}

);

225

Methods

get item text INDEX

Returns text string assigned to INDEXth item. Since the item storage organization is im-
plemented, does so without calling Stringify notification.

226

4.20 Prima::MDI

Top-level windows emulation classes

Description

MDI stands for Multiple Document Interface, and is a Microsoft Windows user interface, that con-
sists of multiple non-toplevel windows belonging to an application window. The module contains
classes that provide similar functionality; sub-window widgets realize a set of operations, close to
those of the real top-level windows, - iconize, maximize, cascade etc.

The basic classes required to use the MDI are Prima::MDIOwner and Prima::MDI, which are,
correspondingly, sub-window owner class and sub-window class. Prima::MDIWindowOwner is ex-
actly the same as Prima::MDIOwner but is a Prima::Window descendant: the both owner classes
are different only in their first ascendants. Their second ascendant is Prima::MDIMethods package,
that contains all the owner class functionality.

Usage of Prima::MDI class extends beyond the multi-document paradigm.
Prima::DockManager module uses the class as a base of a dockable toolbar window class (
see the Prima::DockManager section.

Synopsis

use Prima::MDI;

my $owner = Prima::MDIWindowOwner-> create();

my $mdi = $owner-> insert(’Prima::MDI’);

$mdi-> client-> insert(’Prima::Button’ => centered => 1);

Prima::MDI

Implements MDI window functionality. A subwindow widget consists of a titlebar, titlebar buttons,
and a client widget. The latter must be used as an insertion target for all children widgets.

A subwindow can be moved and resized, both by mouse and keyboard. These functions, along
with maximize, minimize, and restore commands are accessible via the toolbar-anchored popup
menu. The default set of commands is as follows:

Close window - Ctrl+F4

Restore window - Ctrl+F5 or a double click on the titlebar

Maximize window - Ctrl+F10 or a double click on the titlebar

Go to next MDI window - Ctrl+Tab

Go to previous MDI window - Ctrl+Shift+Tab

Invoke popup menu - Ctrl+Space

The class mimics API of Prima::Window class, and in some extent the Prima::Window section
and this page share the same information.

Properties

borderIcons INTEGER

Selects window decorations, which are buttons on titlebar and the titlebar itself. Can be 0 or
a combination of the following mbi::XXX constants, which are supreset of bi::XXX constants
(see the borderIcons entry in the Prima::Window section) and are interchangeable.

mbi::SystemMenu - system menu button with icon is shown

mbi::Minimize - minimize button

227

mbi::Maximize - maximize (and eventual restore)

mbi::TitleBar - window title

mbi::Close - close button

mbi::All - all of the above

Default value: mbi::All

borderStyle INTEGER

One of bs::XXX constants, selecting the window border style. The constants are:

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - thick border with interactive resize capabilities

bs::Sizeable is an unique mode. If selected, the user can resize the window interactively.
The other border styles disallow resizing and affect the border width and design only.

Default value: bs::Sizeable

client OBJECT

Selects the client widget at runtime. When changing the client, the old client children are
not reparented to the new client. The property cannot be used to set the client during the
MDI window creation; use clientClass and clientProfile properties instead.

When setting new client object, note that is has to be named MDIClient and the window is
automatically destroyed after the client is destroyed.

clientClass STRING

Assigns client widget class.

Create-only property.

Default value: Prima::Widget

clientProfile HASH

Assigns hash of properties, passed to the client during the creation.

Create-only property.

dragMode SCALAR

A three-state variable, which governs the visual feedback style when the user moves or
resizes a window. If 1, the window is moved or resized simultaneously with the user mouse
or keyboard actions. If 0, a marquee rectangle is drawn, which is moved or resized as the user
sends the commands; the window is actually positioned and / or resized after the dragging
session is successfully finished. If undef, the system-dependant dragging style is used. (See
the get system value entry in the Prima::Application section).

The dragging session can be aborted by hitting Esc key or calling sizemove cancel method.

Default value: undef.

icon HANDLE

Selects a custom image to be drawn in the left corner of the toolbar. If 0, the default image
(menu button icon) is drawn.

Default value: 0

iconMin HANDLE

Selects minimized button image in normal state.

228

iconMax HANDLE

Selects maximized button image in normal state.

iconClose HANDLE

Selects close button image in normal state.

iconRestore HANDLE

Selects restore button image in normal state.

iconMinPressed HANDLE

Selects minimize button image in pressed state.

iconMaxPressed HANDLE

Selects maximize button image in pressed state.

iconClosePressed HANDLE

Selects close button image in pressed state.

iconRestorePressed HANDLE

Selects restore button image in pressed state.

tileable BOOLEAN

Selects whether the window is allowed to participate in cascading and tiling auto-
arrangements, performed correspondingly by cascade and tile methods. If 0, the window
is never positioned automatically.

Default value: 1

titleHeight INTEGER

Selects height of the title bar in pixels. If 0, the default system value is used.

Default value: 0

windowState STATE

A three-state property, that governs the state of a window. STATE can be one of three
ws::XXX constants:

ws::Normal

ws::Minimized

ws::Maximized

The property can be changed either by explicit set-mode call or by the user. In either case,
a WindowState notification is triggered.

The property has three convenience wrappers: maximize(), minimize() and restore().

Default value: ws::Normal

See also: WindowState

229

Methods

arrange icons

Arranges geometrically the minimized sibling MDI windows.

cascade

Arranges sibling MDI windows so they form a cascade-like structure: the lowest window is
expanded to the full owner window inferior rectangle, window next to the lowest occupies
the inferior rectangle of the lowest window, etc.

Only windows with tileable property set to 1 are processed.

client2frame X1, Y1, X2, Y2

Returns a rectangle that the window would occupy if its client rectangle is assigned to X1,
Y1, X2, Y2 rectangle.

frame2client X1, Y1, X2, Y2

Returns a rectangle that the window client would occupy if the window rectangle is assigned
to X1, Y1, X2, Y2 rectangle.

get client rect [WIDTH, HEIGHT]

Returns a rectangle in the window coordinate system that the client would occupy if the
window extensions are WIDTH and HEIGHT. If WIDTH and HEIGHT are undefined, the
current window size is used.

keyMove

Initiates window moving session, navigated by the keyboard.

keySize

Initiates window resizing session, navigated by the keyboard.

mdis

Returns array of sibling MDI windows.

maximize

Maximizes window. A shortcut for windowState(ws::Maximized).

minimize

Minimizes window. A shortcut for windowState(ws::Minimized).

post action STRING

Posts an action to the windows; the action is deferred and executed in the next message
loop. This is used to avoid unnecessary state checks when the action-executing code returns.
The current implementation accepts following string commands: min, max, restore, close.

repaint title [STRING = title]

Invalidates rectangle on the title bar, corresponding to STRING, which can be one of the
following:

left - redraw the menu button

right - redraw minimize, maximize, and close buttons

title - redraw the title

230

restore

Restores window to normal state from minimized or maximized state. A shortcut for
windowState(ws::Normal).

sizemove cancel

Cancels active window moving or resizing session and returns the window to the state before
the session.

tile

Arranges sibling MDI windows so they form a grid-like structure, where all windows occupy
equal space, if possible.

Only windows with tileable property set to 1 are processed.

xy2part X, Y

Maps a point in (X,Y) coordinates into a string, corresponding to a part of the window:
titlebar, button, or part of the border. The latter can be returned only if borderStyle is
set to bs::Sizeable. The possible return values are:

border - window border; the window is not sizeable

client - client widget

caption - titlebar; the window is not moveable

title - titlebar; the window is movable

close - close button

min - minimize button

max - maximize button

restore - restore button

menu - menu button

desktop - the point does not belong to the window

In addition, if the window is sizeable, the following constants can be returned, indicating
part of the border:

SizeN - upper side

SizeS - lower side

SizeW - left side

SizeE - right side

SizeSW - lower left corner

SizeNW - upper left corner

SizeSE - lower right corner

SizeNE - upper right corner

Events

Activate

Triggered when the user activates a window. Activation mark is usually resides on a window
that contains keyboard focus.

The module does not provide the activation function; select() call is used instead.

Deactivate

Triggered when the user deactivates a window. Window is usually marked inactive, when it
contains no keyboard focus.

The module does not provide the de-activation function; deselect() call is used instead.

231

WindowState STATE

Triggered when window state is changed, either by an explicit windowState() call, or by
the user. STATE is the new window state, one of three ws::XXX constants.

Prima::MDIMethods

Methods

The package contains several methods for a class that is to be used as a MDI windows owner.
It is enough to add class inheritance to Prima::MDIMethods to use the functionality. This step,
however, is not required for a widget to become a MDI windows owner; the package contains
helper functions only, which mostly mirror the arrangement functions of Prima::MDI class.

mdi activate

Repaints window title in all children MDI windows.

mdis

Returns array of children MDI windows.

arrange icons

Same as Prima::MDI::arrange icons.

cascade

Same as Prima::MDI::cascade.

tile

Same as Prima::MDI::tile.

Prima::MDIOwner

A predeclared descendant class of Prima::Widget and Prima::MDIMethods.

Prima::MDIWindowOwner

A pre-declared descendant class of Prima::Window and Prima::MDIMethods.

232

4.21 Prima::Notebooks

Multipage widgets

Description

The module contains several widgets useful for organizing multipage (notebook) containers.
Prima::Notebook provides basic functionality of a widget container. Prima::TabSet is a page
selector control, and Prima::TabbedNotebook combines these two into a ready-to-use multipage
control with interactive navigation.

Synopsis

my $nb = Prima::TabbedNotebook-> create(

tabs => [’First page’, ’Second page’, ’Second page’],

);

$nb-> insert_to_page(1, ’Prima::Button’);

$nb-> insert_to_page(2, [

[’Prima::Button’, bottom => 10],

[’Prima::Button’, bottom => 150],

]);

$nb-> Notebook-> backColor(cl::Green);

Prima::Notebook

Properties

Provides basic widget container functionality. Acts as merely a grouping widget, hiding and
showing the children widgets when pageIndex property is changed.

defaultInsertPage INTEGER

Selects the page where widgets, attached by insert call are assigned to. If set to undef, the
default page is the current page.

Default value: undef.

pageCount INTEGER

Selects number of pages. If the number of pages is reduced, the widgets that belong to the
rejected pages are removed from the notebook’s storage.

pageIndex INTEGER

Selects the index of the current page. Valid values are from 0 to pageCount - 1.

Methods

attach to page INDEX, @WIDGETS

Attaches list of WIDGETS to INDEXth page. The widgets are not necessarily must be
children of the notebook widget. If the page is not current, the widgets get hidden and
disabled; otherwise their state is not changed.

contains widget WIDGET

Searches for WIDGET in the attached widgets list. If found, returns two integers: location
page index and widget list index. Otherwise returns an empty list.

233

delete page [INDEX = -1, REMOVE CHILDREN = 1]

Deletes INDEXth page, and detaches the widgets associated with it. If RE-
MOVE CHILDREN is 1, the detached widgets are destroyed.

delete widget WIDGET

Detaches WIDGET from the widget list and destroys the widget.

detach from page WIDGET

Detaches WIDGET from the widget list.

insert CLASS, %PROFILE [[CLASS, %PROFILE], ...]

Creates one or more widgets with owner property set to the caller widget, and returns the
list of references to the newly created widgets.

See the insert entry in the Prima::Widget section for details.

insert page [INDEX = -1]

Inserts a new empty page at INDEX. Valid range is from 0 to pageCount; setting INDEX
equal to pageCount is equivalent to appending a page to the end of the page list.

insert to page INDEX, CLASS, %PROFILE, [[CLASS, %PROFILE], ...]

Inserts one ore more widgets to INDEXth page. The semantics of setting CLASS and
PROFILE, as well as the return values are fully equivalent to insert method.

See the insert entry in the Prima::Widget section for details.

insert transparent CLASS, %PROFILE, [[CLASS, %PROFILE], ...]

Inserts one or more widgets to the notebook widget, but does not add widgets to the widget
list, so the widgets are not flipped together with pages. Useful for setting omnipresent (or
transparent) widgets, visible on all pages.

The semantics of setting CLASS and PROFILE, as well as the return values are fully equiv-
alent to insert method.

See the insert entry in the Prima::Widget section for details.

move widget WIDGET, INDEX

Moves WIDGET from its old page to INDEXth page.

widget get WIDGET, PROPERTY

Returns PROPERTY value of WIDGET. If PROPERTY is affected by the page flipping
mechanism, the internal flag value is returned instead.

widget set WIDGET, %PROFILE

Calls set on WIDGET with PROFILE and updates the internal visible, enabled, current,
and geometry properties if these are present in PROFILE.

See the set entry in the Prima::Object section.

widgets from page INDEX

Returns list of widgets, associated with INDEXth page.

Events

Change OLD PAGE INDEX, NEW PAGE INDEX

Called when pageIndex value is changed from OLD PAGE INDEX to NEW PAGE INDEX.
Current implementation invokes this notification while the notebook widget is in locked state,
so no redraw requests are honored during the notification execution.

234

Bugs

Since the notebook operates directly on children widgets’ ::visible and ::enable properties,
there is a problem when a widget associated with a non-active page must be explicitly hidden
or disabled. As a result, such a widget would become visible and enabled anyway. This happens
because Prima API does not cache property requests. For example, after execution of the following
code

$notebook-> pageIndex(1);

my $widget = $notebook-> insert_to_page(0, ...);

$widget-> visible(0);

$notebook-> pageIndex(0);

$widget will still be visible. As a workaround, widget set method can be suggested, to be
called together with the explicit state calls. Changing

$widget-> visible(0);

code to

$notebook-> widget_set($widget, visible => 0);

solves the problem, but introduces an inconsistency in API.

Prima::TabSet

Prima::TabSet class implements functionality of an interactive page switcher. A widget is pre-
sented as a set of horizontal bookmark-styled tabs with text identifiers.

Properties

colored BOOLEAN

A boolean property, selects whether each tab uses unique color (OS/2 Warp 4 style), or all
tabs are drawn with backColor.

Default value: 1

firstTab INTEGER

Selects the first (leftmost) visible tab.

focusedTab INTEGER

Selects the currently focused tab. This property value is almost always equals to tabIndex,
except when the widget is navigated by arrow keys, and tab selection does not occur until
the user presses the return key.

topMost BOOLEAN

Selects the way the widget is oriented. If 1, the widget is drawn as if it resides on top of
another widget. If 0, it is drawn as if it is at bottom.

Default value: 1

tabIndex INDEX

Selects the INDEXth tab. When changed, Change notification is triggered.

tabs ARRAY

Anonymous array of text scalars. Each scalar corresponds to a tab and is displayed cor-
respondingly. The class supports single-line text strings only; newline characters are not
respected.

235

Methods

get item width INDEX

Returns width in pixels of INDEXth tab.

tab2firstTab INDEX

Returns the index of a tab, that will be drawn leftmost if INDEXth tab is to be displayed.

Events

Change

Triggered when tabIndex property is changed.

DrawTab CANVAS, INDEX, COLOR SET, POLYGON1, POLYGON2

Called when INDEXth tab is to be drawn on CANVAS. COLOR SET is an array reference,
and consists of the four cached color values: foreground, background, dark 3d color, and
light 3d color. POLYGON1 and POLYGON2 are array references, and contain four points
as integer pairs in (X,Y)-coordinates. POLYGON1 keeps coordinates of the larger polygon
of a tab, while POLYGON2 of the smaller. Text is displayed inside the larger polygon:

POLYGON1

[2,3] [4,5]

o..........o

. .

[0,1]. TAB_TEXT . [6,7]

o................o

POLYGON2

[0,1] [2,3]

o................o

[6,7]o..............o[4,5]

Depending on topMost property value, POLYGON1 and POLYGON2 change their mutual
vertical orientation.

The notification is always called from within begin paint/end paint block.

MeasureTab INDEX, REF

Puts width of INDEXth tab in pixels into REF scalar value. This notification must be called
from within begin paint info/end paint info block.

Prima::TabbedNotebook

The class combines functionality of Prima::TabSet and Prima::Notebook, providing the inter-
active multipage widget functionality. The page indexing scheme is two-leveled: the first level is
equivalent to the Prima::TabSet - provided tab scheme. Each first-level tab, in turn, contains one
or more second-level pages, which can be switched using native Prima::TabbedNotebook controls.

First-level tab is often referred as tab, and second-level as page.

236

Properties

defaultInsertPage INTEGER

Selects the page where widgets, attached by insert call are assigned to. If set to undef, the
default page is the current page.

Default value: undef.

notebookClass STRING

Assigns the notebook widget class.

Create-only property.

Default value: Prima::Notebook

notebookProfile HASH

Assigns hash of properties, passed to the notebook widget during the creation.

Create-only property.

notebookDelegations ARRAY

Assigns list of delegated notifications to the notebook widget.

Create-only property.

orientation INTEGER

Selects one of the following tno::XXX constants

tno::Top

The TabSet will be drawn at the top of the widget.

tno::Bottom

The TabSet will be drawn at the bottom of the widget.

Default value: tno::Top

pageIndex INTEGER

Selects the INDEXth page or a tabset widget (the second-level tab). When this property
is triggered, tabIndex can change its value, and Change notification is triggered.

style INTEGER

Selects one of the following tns::XXX constants

tns::Standard

The widget will have a raised border surrounding it and a +/- control at the top for
moving between pages.

tns::Simple

The widget will have no decorations (other than a standard border). It is recommended
to have only one second-level page per tab with this style.

Default value: tns::Standard

tabIndex INTEGER

Selects the INDEXth tab on a tabset widget using the first-level tab numeration.

tabs ARRAY

Governs number and names of notebook pages. ARRAY is an anonymous array of text
scalars, where each corresponds to a single first-level tab and a single notebook page, with
the following exception. To define second-level tabs, the same text string must be repeated
as many times as many second-level tabs are desired. For example, the code

237

$nb-> tabs(’1st’, (’2nd’) x 3);

results in creation of a notebook of four pages and two first-level tabs. The tab ’2nd’

contains three second-level pages.

The property implicitly operates the underlying notebook’s pageCount property. When
changed at run-time, its effect on the children widgets is therefore the same. See the page-
Count entry for more information.

tabsetClass STRING

Assigns the tab set widget class.

Create-only property.

Default value: Prima::TabSet

tabsetProfile HASH

Assigns hash of properties, passed to the tab set widget during the creation.

Create-only property.

tabsetDelegations ARRAY

Assigns list of delegated notifications to the tab set widget.

Create-only property.

Methods

The class forwards the following methods of Prima::Notebook, which are described in the
Prima::Notebook section: attach to page, insert to page, insert, insert transparent,
delete widget, detach from page, move widget, contains widget, widget get, widget set,
widgets from page.

tab2page INDEX

Returns second-level tab index, that corresponds to the INDEXth first-level tab.

page2tab INDEX

Returns first-level tab index, that corresponds to the INDEXth second-level tab.

Events

Change OLD PAGE INDEX, NEW PAGE INDEX

Triggered when pageIndex property is changes it s value from OLD PAGE INDEX to
NEW PAGE INDEX.

238

4.22 Prima::Outlines

Tree view widgets

Synopsis

use Prima::Outlines;

my $outline = Prima::StringOutline-> create(

items => [

[’Simple item’],

[[’Embedded item ’]],

[[’More embedded items’, [’#1’, ’#2’]]],

],

);

$outline-> expand_all;

Description

The module provides a set of widget classes, designed to display a tree-like hierarchy of items.
Prima::OutlineViewer presents a generic class that contains basic functionality and defines
the interface for the descendants, which are Prima::StringOutline, Prima::Outline, and
Prima::DirectoryOutline.

Prima::OutlineViewer

Presents a generic interface for browsing the tree-like lists. A node in a linked list represents each
item. The format of node is predefined, and is an anonymous array with the following definitions
of indices:

1. Item id with non-defined format. The simplest implementation, Prima::StringOutline,
treats the scalar as a text string. The more complex classes store references to arrays or
hashes here. See items article of a concrete class for the format of a node record.

2. Reference to a child node. undef if there is none.

3. A boolean flag, which selects if the node shown as expanded, e.g. all its immediate children
are visible.

4. Width of an item in pixels.

The indices above 3 should not be used, because eventual changes to the implementation of
the class may use these. It should be enough item 0 to store any value.

To support a custom format of node, it is sufficient to overload the following notifications:
DrawItem, MeasureItem, Stringify. Since DrawItem is called for every item, a gross method
draw items can be overloaded instead. See also the Prima::StringOutline section and the
Prima::Outline section.

The class employs two addressing methods, index-wise and item-wise. The index-wise counts
only the visible (non-expanded) items, and is represented by an integer index. The item-wise
addressing cannot be expressed by an integer index, and the full node structure is used as a
reference. It is important to use a valid reference here, since the class does not always perform
the check if the node belongs to internal node list due to the speed reasons.

Prima::OutlineViewer is a descendant of Prima::GroupScroller and
Prima::MouseScroller, so some properties and methods are not described here. See the
Prima::IntUtils section for these.

The class is not usable directly.

239

Properties

autoHeight INTEGER

If set to 1, changes itemHeight automatically according to the widget font height. If 0, does
not influence anything. When itemHeight is set explicitly, changes value to 0.

Default value: 1

dragable BOOLEAN

If 1, allows the items to be dragged interactively by pressing control key together with left
mouse button. If 0, item dragging is disabled.

Default value: 1

extendedSelect BOOLEAN

Regards the way the user selects multiple items and is only actual when multiSelect is 1.
If 0, the user must click each item in order to mark as selected. If 1, the user can drag mouse
or use Shift key plus arrow keys to perform range selection; the Control key can be used
to select individual items.

Default value: 0

focusedItem INTEGER

Selects the focused item index. If -1, no item is focused. It is mostly a run-time property,
however, it can be set during the widget creation stage given that the item list is accessible
on this stage as well.

indent INTEGER

Width in pixels of the indent between item levels.

Default value: 12

itemHeight INTEGER

Selects the height of the items in pixels. Since the outline classes do not support items with
different vertical dimensions, changes to this property affect all items.

Default value: default font height

items ARRAY

Provides access to the items as an anonymous array. The format of items is described in the
opening article (see the Prima::OutlineViewer section).

Default value: []

multiSelect BOOLEAN

If 0, the user can only select one item, and it is reported by the focusedItem property. If 1,
the user can select more than one item. In this case, focusedItem’th item is not necessarily
selected. To access selected item list, use selectedItems property.

Default value: 0

offset INTEGER

Horizontal offset of an item list in pixels.

selectedItems ARRAY

ARRAY is an array of integer indices of selected items. Note, that these are the items visible
on the screen only. The property doesn’t handle the selection status of the collapsed items.

240

The widget keeps the selection status on each node, visible and invisible (e.g. the node
is invisible if its parent node is collapsed). However, selectedItems accounts for the vis-
ible nodes only; to manipulate the node status or both visible and invisible nodes, use
select item, unselect item, toggle item methods.

showItemHint BOOLEAN

If 1, allows activation of a hint label when the mouse pointer is hovered above an item that
does not fit horizontally into the widget inferiors. If 0, the hint is never shown.

See also: the makehint entry.

Default value: 1

topItem INTEGER

Selects the first item drawn.

Methods

add selection ARRAY, FLAG

Sets item indices from ARRAY in selected or deselected state, depending on FLAG value,
correspondingly 1 or 0.

Note, that these are the items visible on the screen only. The method doesn’t handle the
selection status of the collapsed items.

Only for multi-select mode.

adjust INDEX, EXPAND

Performs expansion (1) or collapse (0) of INDEXth item, depending on EXPAND boolean
flag value.

calibrate

Recalculates the node tree and the item dimensions. Used internally.

delete items [NODE = undef, OFFSET = 0, LENGTH = undef]

Deletes LENGTH children items of NODE at OFFSET. If NODE is undef, the root node
is assumed. If LENGTH is undef, all items after OFFSET are deleted.

delete item NODE

Deletes NODE from the item list.

deselect all

Removes selection from all items.

Only for multi-select mode.

draw items CANVAS, PAINT DATA

Called from within Paint notification to draw items. The default behavior is to call DrawItem
notification for every visible item. PAINT DATA is an array of arrays, where each array
consists of parameters, passed to DrawItem notification.

This method is overridden in some descendant classes, to increase the speed of the drawing
routine.

See the DrawItem entry for PAINT DATA parameters description.

get index NODE

Traverses all items for NODE and finds if it is visible. If it is, returns two integers: the first
is item index and the second is item depth level. If it is not visible, -1, undef is returned.

241

get index text INDEX

Returns text string assigned to INDEXth item. Since the class does not assume the item
storage organization, the text is queried via Stringify notification.

get index width INDEX

Returns width in pixels of INDEXth item, which is a cached result of MeasureItem notifi-
cation, stored under index #3 in node.

get item INDEX

Returns two scalars corresponding to INDEXth item: node reference and its depth level. If
INDEX is outside the list boundaries, empty array is returned.

get item parent NODE

Returns two scalars, corresponding to NODE: its parent node reference and offset of NODE
in the parent’s immediate children list.

get item text NODE

Returns text string assigned to NODE. Since the class does not assume the item storage
organization, the text is queried via Stringify notification.

get item width NODE

Returns width in pixels of INDEXth item, which is a cached result of MeasureItem notifi-
cation, stored under index #3 in node.

expand all [NODE = undef].

Expands all nodes under NODE. If NODE is undef, the root node is assumed. If the tree is
large, the execution can take significant amount of time.

insert items NODE, OFFSET, @ITEMS

Inserts one or more ITEMS under NODE with OFFSET. If NODE is undef, the root node
is assumed.

iterate ACTION, FULL

Traverses the item tree and calls ACTION subroutine for each node. If FULL boolean flag
is 1, all nodes are traversed. If 0, only the expanded nodes are traversed.

ACTION subroutine is called with the following parameters:

1. Node reference

2. Parent node reference; if undef, the node is the root.

3. Node offset in parent item list.

4. Node index.

5. Node depth level. 0 means the root node.

6. A boolean flag, set to 1 if the node is the last child in parent node list, set to 0 otherwise.

7. Visibility index. When iterate is called with FULL = 1, the index is the item index
as seen of the screen. If the item is not visible, the index is undef.

When iterate is called with FULL = 1, the index is always the same as node index.

is selected INDEX, ITEM

Returns 1 if an item is selected, 0 if it is not.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position.

242

makehint SHOW, INDEX

Controls hint label upon INDEXth item. If a boolean flag SHOW is set to 1, and
showItemHint property is 1, and the item index does not fit horizontally in the widget
inferiors then the hint label is shown. By default the label is removed automatically as the
user moves the mouse pointer away from the item. If SHOW is set to 0, the hint label is
hidden immediately.

point2item Y, [HEIGHT]

Returns index of an item that contains horizontal axis at Y in the widget coordinates. If
HEIGHT is specified, it must be the widget height; if it is not, the value is fetched by calling
Prima::Widget::height. If the value is known, passing it to point2item thus achieves
some speed-up.

select all

Selects all items.

Only for multi-select mode.

set item selected INDEX, ITEM, FLAG

Sets selection flag of an item. If FLAG is 1, the item is selected. If 0, it is deselected.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position. Only for multi-select mode.

select item INDEX, ITEM

Selects an item.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position. Only for multi-select mode.

toggle item INDEX, ITEM

Toggles selection of an item.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position. Only for multi-select mode.

unselect item INDEX, ITEM

Deselects an item.

The method can address the item either directly (ITEM) or by its INDEX in the screen
position. Only for multi-select mode.

validate items ITEMS

Traverses the array of ITEMS and puts every node to the common format: cuts scalars
above index #3, if there are any, or adds default values to a node if it contains less than 3
scalars.

Events

Expand NODE, EXPAND

Called when NODE is expanded (1) or collapsed (0). The EXPAND boolean flag reflects
the action taken.

DragItem OLD INDEX, NEW INDEX

Called when the user finishes the drag of an item from OLD INDEX to NEW INDEX posi-
tion. The default action rearranges the item list in accord with the dragging action.

243

DrawItem CANVAS, NODE, X1, Y1, X2, Y2, INDEX, SELECTED, FOCUSED

Called when INDEXth item, contained in NODE is to be drawn on CANVAS. X1, Y1, X2,
Y2 coordinated define the exterior rectangle of the item in widget coordinates. SELECTED
and FOCUSED boolean flags are set to 1 if the item is selected or focused, respectively; 0
otherwise.

MeasureItem NODE, REF

Puts width of NODE item in pixels into REF scalar reference. This notification must be
called from within begin paint info/end paint info block.

SelectItem [[INDEX, ITEM, SELECTED], [INDEX, ITEM, SELECTED], ...]

Called when an item gets selected or deselected. The array passed contains set of arrays for
each items, where the item can be defined either as integer INDEX, or directly as ITEM, or
both. In case INDEX is undef, the item is invisible; if ITEM is undef, then the caller didn’t
bother to call get item for the speed reasons, and the received should call this function.
The SELECTED flag contains the new value of the item.

Stringify NODE, TEXT REF

Puts text string, assigned to NODE item into TEXT REF scalar reference.

Prima::StringOutline

Descendant of Prima::OutlineViewer class, provides standard single-text items widget. The
items can be set by merely supplying a text as the first scalar in node array structure:

$string outline-> items([’String’, [’Descendant’]]);

Prima::Outline

A variant of Prima::StringOutline, with the only difference that the text is stored not in the
first scalar in a node but as a first scalar in an anonymous array, which in turn is the first node
scalar. The class does not define neither format nor the amount of scalars in the array, and as
such presents a half-abstract class.

Prima::DirectoryOutline

Provides a standard widget with the item tree mapped to the directory structure, so each item is
mapped to a directory. Depending on the type of the host OS, there is either single root directory
(unix), or one or more disk drive root items (win32, os2).

The format of a node is defined as follows:

1. Directory name, string.

2. Parent path; an empty string for the root items.

3. Icon width in pixels, integer.

4. Drive icon; defined only for the root items under non-unix hosts in order to reflect the drive
type (hard, floppy, etc).

Properties

closedGlyphs INTEGER

Number of horizontal equal-width images, contained in closedIcon property.

Default value: 1

244

closedIcon ICON

Provides an icon representation for the collapsed items.

openedGlyphs INTEGER

Number of horizontal equal-width images, contained in openedIcon property.

Default value: 1

openedIcon OBJECT

Provides an icon representation for the expanded items.

path STRING

Runtime-only property. Selects current file system path.

showDotDirs BOOLEAN

Selects if the directories with the first dot character are shown the tree view. The treatment
of the dot-prefixed names as hidden is traditional to unix, and is of doubtful use under win32
and os2.

Default value: 0

Methods

files [FILE TYPE]

If FILE TYPE value is not specified, the list of all files in the current directory is returned.
If FILE TYPE is given, only the files of the types are returned. The FILE TYPE is a string,
one of those returned by Prima::Utils::getdir (see the getdir entry in the Prima::Utils
section).

get directory tree PATH

Reads the file structure under PATH and returns a newly created hierarchy structure in
the class node format. If showDotDirs property value is 0, the dot-prefixed names are not
included.

Used internally inside Expand notification.

245

4.23 Prima::PodView

POD browser widget

Synopsis

use Prima qw(Application);

use Prima::PodView;

my $window = Prima::MainWindow-> create;

my $podview = $window-> insert(’Prima::PodView’,

pack => { fill => ’both’, expand => 1 }

);

$podview-> open_read;

$podview-> read("=head1 NAME\n\nI’m also a pod!\n\n");

$podview-> close_read;

run Prima;

Description

Prima::PodView contains a formatter (in terms of perlpod) and viewer of POD content. It
heavily employs its ascendant class the Prima::TextView section, and is in turn base for the
toolkit’s default help viewer the Prima::HelpViewer section.

Usage

The package consists of the several logically separated parts. These include file locating and
loading, formatting and navigation.

Content methods

The basic access to the content is not bound to the file system. The POD content can be supplied
without any file to the viewer. Indeed, the file loading routine load file is a mere wrapper to
the content loading functions:

open read

Clears the current content and enters the reading mode. In this mode the content can be
appended by calling the read entry that pushes the raw POD content to the parser.

read TEXT

Supplies TEXT string to the parser. Manages basic indentation, but the main formatting is
performed inside the add entry and the add formatted entry

Must be called only within open read/close read brackets

add TEXT, STYLE, INDENT

Formats TEXT string of a given STYLE (one of STYLE XXX constants) with INDENT space.

Must be called only within open read/close read brackets.

add formatted Format, TEXT

Adds a pre-formatted TEXT with a given Format, supplied by =begin or =for POD di-
rectives. Prima::PodView understands ’text’ and ’podview’ FORMATs; the latter format is
for Prima::PodView itself and contains small number of commands, aimed at inclusion of
images into the document.

The ’podview’ commands are:

246

cut

Example:

=for podview <cut>

=for text just text-formatter info

....

text-only info

...

=for podview </cut>

The <cut<gt> clause skips all POD input until cancelled. It is used in conjunction
with the following command, the img entry, to allow a POD manpage provide both
graphic (’podview’, ’html’, etc) and text (’text’) content.

img src=”SRC” [width=”WIDTH”] [height=”HEIGHT”] [cut=”CUT”]
[frame=”FRAME”]

An image inclusion command, where src is a relative or an absolute path to an image
file. In case if scaling is required, width and height options can be set. When the
image is a multiframe image, the frame index can be set by frame option. Special
cut option, if set to a true value, activates the the cut entry behavior if (and only if
) the image load operation was unsuccessful. This make possible simultaneous use of
’podview’ and ’text’ :

=for podview

=begin text

y .

| .

|.

+----- x

=end text

=for podview </cut>

In the example above ’graphic.gif’ will be shown if it can be found and loaded, otherwise
the poor-man-drawings would be selected.

close read

Closes the reading mode and starts the text rendering by calling format. Returns undef if
there is no POD context, 1 otherwise.

Rendering

The rendering is started by format call, which returns (almost) immediately, initiating the
mechanism of delayed rendering, which is often time-consuming. format’s only parameter
KEEP OFFSET is a boolean flag, which, if set to 1, remembers the current location on a page,
and when the rendered text approaches the location, scrolls the document automatically.

The rendering is based an a document model, generated by open read/close read session. The
model is a set of same text blocks defined by the Prima::TextView section, except that the header
length is only three integers:

M_INDENT - the block X-axis indent

M_TEXT_OFFSET - same as BLK_TEXT_OFFSET

M_FONT_ID - 0 or 1, because PodView’s fontPalette contains only two fonts -

variable (0) and fixed (1).

247

The actual rendering is performed in format chunks, where model blocks are transformed to
the full text blocks, wrapped and pushed into TextView-provided storage. In parallel, links and
the corresponding event rectangles are calculated on this stage.

Topics

Prima::PodView provides the ::topicView property, which governs whether the man page is
viewed by topics or as a whole. When it is viewed as topics, {modelRange} array selects the model
blocks that include the topic. Thus, having a single model loaded, text blocks change dynamically.

Topics contained in {topics} array, each is an array with indices of T XXX constants:

T_MODEL_START - beginning of topic

T_MODEL_END - length of a topic

T_DESCRIPTION - topic name

T_STYLE - STYLE_XXX constant

T_ITEM_DEPTH - depth of =item recursion

T_LINK_OFFSET - offset in links array, started in the topic

Styles

::styles property provides access to the styles, applied to different pod text parts. These styles
are:

STYLE_CODE - style for pre-formatted text and C<>

STYLE_TEXT - normal text

STYLE_HEAD_1 - =head1

STYLE_HEAD_2 - =head2

STYLE_ITEM - =item

STYLE_LINK - style for L<> text

Each style is a hash with the following keys: fontId, fontSize, fontStyle, color, backColor,
fully analogous to the tb::BLK DATA XXX options. This functionality provides another layer of
accessibility to the pod formatter.

In addition to styles, Prima::PodView defined colormap entries for STYLE LINK and
STYLE CODE:

COLOR_LINK_FOREGROUND

COLOR_LINK_BACKGROUND

COLOR_CODE_FOREGROUND

COLOR_CODE_BACKGROUND

The default colors in the styles are mapped into these entries.

Link and navigation methods

Prima::PodView provides a hand-icon mouse pointer highlight for the link entries and as an in-
teractive part, the link documents or topics are loaded when the user presses the mouse button
on the link. The mechanics below that is as follows. {contents} of event rectangles, (see the
Prima::TextView section) is responsible for distinguishing whether a mouse is inside a link or
not. When the link is activated, link click is called, which, in turn, calls load link method. If
the page is loaded successfully, depending on ::topicView property value, either select topic

or select text offset method is called.
The family of file and link access functions consists of the following methods:

load file MANPAGE

Loads a manpage, if it can be found in the PATH or perl installation directories. If unsuc-
cessful, displays an error.

248

load link LINK

LINK is a text in format of perlpod L<> link: ”manpage/section”. Loads the manpage, if
necessary, and selects the section.

load bookmark BOOKMARK

Loads a bookmark string, prepared by the make bookmark entry function. Used internally.

load content CONTENT

Loads content into the viewer. Returns undef is there is no POD context, 1 otherwise.

make bookmark [WHERE]

Combines the information about the currently viewing manpage, topic and text offset into a
storable string. WHERE, an optional string parameter, can be either omitted, in such case
the current settings are used, or be one of ’up’, ’next’ or ’prev’ strings.

The ’up’ string returns a bookmark to the upper level of the manpage.

The ’next’ and ’prev’ return a bookmark to the next or the previous topics in a manpage.

If the location cannot be stored or defined, undef is returned.

249

4.24 Prima::ScrollBar

Standard scroll bars class

Description

The class Prima::ScrollBar implements both vertical and horizontal scrollbars in Prima. This is
a purely Perl class without any C-implemented parts except those inherited from Prima::Widget.

Synopsis

use Prima::ScrollBar;

my $sb = Prima::ScrollBar-> create(owner => $group, %rest_of_profile);

my $sb = $group-> insert(’ScrollBar’, %rest_of_profile);

my $isAutoTrack = $sb-> autoTrack;

$sb-> autoTrack($yesNo);

my $val = $sb-> value;

$sb-> value($value);

my $min = $sb-> min;

my $max = $sb-> max;

$sb-> min($min);

$sb-> max($max);

$sb-> set_bounds($min, $max);

my $step = $sb-> step;

my $pageStep = $sb-> pageStep;

$sb-> step($step);

$sb-> pageStep($pageStep);

my $partial = $sb-> partial;

my $whole = $sb-> whole;

$sb-> partial($partial);

$sb-> whole($whole);

$sb-> set_proportion($partial, $whole);

my $size = $sb-> minThumbSize;

$sb-> minThumbSize($size);

my $isVertical = $sb-> vertical;

$sb-> vertical($yesNo);

my ($width,$height) = $sb-> get_default_size;

API

Properties

autoTrack BOOLEAN

Tells the widget if it should send Change notification during mouse tracking events. Generally
it should only be set to 0 on very slow computers.

Default value is 1 (logical true).

250

growMode INTEGER

Default value is gm::GrowHiX, i.e. the scrollbar will try to maintain the constant distance
from its right edge to its owner’s right edge as the owner changes its size. This is useful for
horizontal scrollbars.

height INTEGER

Default value is $Prima::ScrollBar::stdMetrics[1], which is an operating system dependent
value determined with a call to Prima::Application-> get default scrollbar metrics.
The height is affected because by default the horizontal ScrollBar will be created.

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

minThumbSize INTEGER

A minimal thumb breadth in pixels. The thumb cannot have main dimension lesser than
this.

Default value: 21

pageStep INTEGER

This determines the increment/decrement to value during ”page”-related operations, for
example clicking the mouse on the strip outside the thumb, or pressing PgDn or PgUp.

Default value: 10

partial INTEGER

This tells the scrollbar how many of imaginary units the thumb should occupy. See whole

below.

Default value: 10

selectable BOOLEAN

Default value is 0 (logical false). If set to 1 the widget receives keyboard focus; when in
focus, the thumb is blinking.

step INTEGER

This determines the minimal increment/decrement to value during mouse/keyboard inter-
action.

Default value is 1.

value INTEGER

A basic scrollbar property; reflects the imaginary position between min and max, which
corresponds directly to the position of the thumb.

Default value is 0.

vertical BOOLEAN

Determines the main scrollbar style. Set this to 1 when the scrollbar style is vertical, 0 -
horizontal. The property can be changed at run-time, so the scrollbars can morph from
horizontal to vertical and vice versa.

Default value is 0 (logical false).

251

whole INTEGER

This tells the scrollbar how many of imaginary units correspond to the whole length of
the scrollbar. This value has nothing in common with min and max. You may think of the
combination of partial and whole as of the proportion between the visible size of something
(document, for example) and the whole size of that ”something”. Useful to struggle against
infamous ”bird” size of Windows scrollbar thumbs.

Default value is 100.

Methods

get default size

Returns two integers, the default platform dependant width of a vertical scrollbar and height
of a horizontal scrollbar.

Events

Change

The Change notification is sent whenever the thumb position of scrollbar is changed, subject
to a certain limitations when autoTrack is 0. The notification conforms the general Prima
rule: it is sent when appropriate, regardless to whether this was a result of user interaction,
or a side effect of some method programmer has called.

Track

If autoTrack is 0, called when the user changes the thumb position by the mouse instead of
Change.

Example

use Prima;

use Prima::Application name => ’ScrollBar test’;

use Prima::ScrollBar;

my $w = Prima::Window-> create(

text => ’ScrollBar test’,

size => [300,200]);

my $sb = $w-> insert(ScrollBar =>

width => 280,

left => 10,

bottom => 50,

onChange => sub {

$w-> text($_[0]-> value);

});

run Prima;

252

4.25 Prima::ScrollWidget

Scrollable generic document widget.

Description

Prima::ScrollWidget is a simple class that declares two pairs of properties, delta and limit for
vertical and horizontal axes, which define a a virtual document. limit is the document dimension,
and delta is the current offset.

Prima::ScrollWidget is a descendant of Prima::GroupScroller, and, as well as its ascen-
dant, provides same user navigation by two scrollbars. The scrollbars’ partial and whole prop-
erties are maintained if the document or widget extensions change.

API

Properties

deltas X, Y

Selects horizontal and vertical document offsets.

deltaX INTEGER

Selects horizontal document offset.

deltaY INTEGER

Selects vertical document offset.

limits X, Y

Selects horizontal and vertical document extensions.

limitX INTEGER

Selects horizontal document extension.

limitY INTEGER

Selects vertical document extension.

Events

Scroll DX, DY

Called whenever the client area is to be scrolled. The default action calls Widget::scroll .

253

4.26 Prima::Sliders

Sliding bars, spin buttons and input lines, dial widget etc.

Description

The module is a set of widget classes, with one common property; - all of these provide input and
/ or output of an integer value. This property unites the following set of class hierarchies:

Prima::AbstractSpinButton

Prima::SpinButton

Prima::AltSpinButton

Prima::SpinEdit

Prima::Gauge

Prima::AbstractSlider

Prima::Slider

Prima::CircularSlider

Prima::AbstractSpinButton

Provides a generic interface to spin-button class functionality, which includes range definition
properties and events. Neither Prima::AbstractSpinButton, nor its descendants store the in-
teger value. These provide a mere possibility for the user to send incrementing or decrementing
commands.

The class is not usable directly.

Properties

state INTEGER

Internal state, reflects widget modal state, for example, is set to non-zero when the user
performs a mouse drag action. The exact meaning of state is defined in the descendant
classes.

Events

Increment DELTA

Called when the user presses a part of a widget that is responsible for incrementing or
decrementing commands. DELTA is an integer value, indicating how the associated value
must be modified.

TrackEnd

Called when the user finished the mouse transaction.

Prima::SpinButton

A rectangular spin button, consists of three parts, divided horizontally. The upper and the lower
parts are push-buttons associated with singular increment and decrement commands. The middle
part, when dragged by mouse, fires Increment events with delta value, based on a vertical position
of the mouse pointer.

254

Prima::AltSpinButton

A rectangular spin button, consists of two push-buttons, associated with singular increment and
decrement command. Comparing to Prima::SpinButton, the class is less functional but has more
stylish look.

Prima::SpinEdit

The class is a numerical input line, paired with a spin button. The input line value can be change
three ways - either as a direct traditional keyboard input, or as spin button actions, or as mouse
wheel response. The class provides value storage and range selection properties.

Properties

circulate BOOLEAN

Selects the value modification rule when the increment or decrement action hits the range.
If 1, the value is changed to the opposite limit value (for example, if value is 100 in range
2-100, and the user clicks on ’increment’ button, the value is changed to 2).

If 0, the value does not change.

Default value: 0

editClass STRING

Assigns an input line class.

Create-only property.

Default value: Prima::InputLine

editDelegations ARRAY

Assigns the input line list of delegated notifications.

Create-only property.

editProfile HASH

Assigns hash of properties, passed to the input line during the creation.

Create-only property.

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

pageStep INTEGER

Determines the multiplication factor for incrementing/decrementing actions of the mouse
wheel.

Default value: 10

spinClass STRING

Assigns a spin-button class.

Create-only property.

Default value: Prima::AltSpinButton

255

spinProfile ARRAY

Assigns the spin-button list of delegated notifications.

Create-only property.

spinDelegations HASH

Assigns hash of properties, passed to the spin-button during the creation.

Create-only property.

step INTEGER

Determines the multiplication factor for incrementing/decrementing actions of the spin-
button.

Default value: 1

value INTEGER

Selects integer value in range from min to max, reflected in the input line.

Default value: 0.

Methods

set bounds MIN, MAX

Simultaneously sets both min and max values.

Events

Change

Called when value is changed.

Prima::Gauge

An output-only widget class, displays a progress bar and an eventual percentage string. Useful as
a progress indicator.

Properties

indent INTEGER

Selects width of a border around the widget.

Default value: 1

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

relief INTEGER

Selects the style of a border around the widget. Can be one of the following gr::XXX

constants:

256

gr::Sink - 3d sunken look

gr::Border - uniform black border

gr::Raise - 3d risen look

Default value: gr::Sink.

threshold INTEGER

Selects the threshold value used to determine if the changes to value are reflected immedi-
ately or deferred until the value is changed more significantly. When 0, all calls to value

result in an immediate repaint request.

Default value: 0

value INTEGER

Selects integer value between min and max, reflected in the progress bar and eventual text.

Default value: 0.

vertical BOOLEAN

If 1, the widget is drawn vertically, and the progress bar moves from bottom to top. If 0,
the widget is drawn horizontally, and the progress bar moves from left to right.

Default value: 0

Methods

set bounds MIN, MAX

Simultaneously sets both min and max values.

Events

Stringify VALUE, REF

Converts integer VALUE into a string format and puts into REF scalar reference. Default
stringifying conversion is identical to sprintf("%2d%%") one.

Prima::AbstractSlider

The class provides basic functionality of a sliding bar, equipped with tick marks. Tick marks are
supposed to be drawn alongside the main sliding axis or circle and provide visual feedback for the
user.

The class is not usable directly.

Properties

autoTrack BOOLEAN

A boolean flag, selects the way notifications execute when the user mouse-drags the sliding
bar. If 1, Change notification is executed as soon as value is changed. If 0, Change is
deferred until the user finished the mouse drag; instead, Track notification is executed when
the bar is moved.

This property can be used when the action, called on Change performs very slow, so the
eventual fast mouse interactions would not thrash down the program.

Default value: 1

257

increment INTEGER

A step range value, used in scheme for marking the key ticks. See the scheme entry for
details.

Default value: 10

max INTEGER

Sets the upper limit for value.

Default value: 100.

min INTEGER

Sets the lower limit for value.

Default value: 0

readOnly BOOLEAN

If 1, the use cannot change the value by moving the bar or otherwise.

Default value: 0

ticks ARRAY

Selects the tick marks representation along the sliding axis or circle. ARRAY consists of
hashes, each for one tick. The hash must contain at least value key, with integer value. The
two additional keys, height and text, select the height of a tick mark in pixels and the text
drawn near the mark, correspondingly.

If ARRAY is undef, no ticks are drawn.

scheme INTEGER

scheme is a write-only property, that creates a set of tick marks using one of the predefined
scale designs, selected by ss::XXX constants. Each constant produces different scale; some
make use of increment integer property, which selects a step by which the additional text
marks are drawn. As an example, ss::Thermometer design with default min, max, and
increment values would look like that:

0 10 20 100

| | | |

|||||||||||||||....|||

The module defines the following constants:

ss::Axis - 5 minor ticks per increment

ss::Gauge - 1 tick per increment

ss::StdMinMax - 2 ticks at the ends of the bar

ss::Thermometer - 10 minor ticks per increment, longer text ticks

snap BOOLEAN

If 1, value cannot accept values that are not on the tick scale. When set such a value, it
is rounded to the closest tick mark. If 0, value can accept any integer value in range from
min to max.

Default value: 0

step INTEGER

Integer delta for singular increment / decrement commands and a threshold for value when
snap value is 0.

Default value: 1

258

value INTEGER

Selects integer value between min and max and the corresponding sliding bar position.

Default value: 0.

Events

Change

Called when value value is changed, with one exception: if the user moves the sliding bar
while autoTrack is 0, Track notification is called instead.

Track

Called when the user moves the sliding bar while autoTrack value is 0; this notification is a
substitute to Change.

Prima::Slider

Presents a linear sliding bar, movable along a linear shaft.

Properties

ribbonStrip BOOLEAN

If 1, the parts of shaft are painted with different colors, to increase visual feedback. If 0, the
shaft is painted with single default background color.

Default value: 0

shaftBreadth INTEGER

Breadth of the shaft in pixels.

Default value: 6

tickAlign INTEGER

One of tka::XXX constants, that correspond to the situation of tick marks:

tka::Normal - ticks are drawn on the left or on the top of the shaft

tka::Alternative - ticks are drawn on the right or at the bottom of the shaft

tka::Dual - ticks are drawn both ways

The ticks orientation (left or top, right or bottom) is dependant on vertical property
value.

Default value: tka::Normal

vertical BOOLEAN

If 1, the widget is drawn vertically, and the slider moves from bottom to top. If 0, the widget
is drawn horizontally, and the slider moves from left to right.

Default value: 0

259

Methods

pos2info X, Y

Translates integer coordinates pair (X, Y) into the value corresponding to the scale, and
returns three scalars:

info INTEGER

If undef, the user-driven positioning is not possible (min equals to max).

If 1, the point is located on the slider.

If 0, the point is outside the slider.

value INTEGER

If info is 0 or 1, contains the corresponding value.

aperture INTEGER

Offset in pixels along the shaft axis.

Prima::CircularSlider

Presents a slider widget with the dial and two increment / decrement buttons. The tick marks
are drawn around the perimeter of the dial; current value is displayed in the center of the dial.

Properties

buttons BOOLEAN

If 1, the increment / decrement buttons are shown at the bottom of the dial, and the user
can change the value either by the dial or by the buttons. If 0, the buttons are not shown.

Default values: 0

stdPointer BOOLEAN

Determines the style of a value indicator (pointer) on the dial. If 1, it is drawn as a black
triangular mark. If 0, it is drawn as a small circular knob.

Default value: 0

Methods

offset2data VALUE

Converts integer value in range from min to max into the corresponding angle, and return
two real values: cosine and sine of the angle.

offset2pt X, Y, VALUE, RADIUS

Converts integer value in range from min to max into the point coordinates, with the RADIUS
and dial center coordinates X and Y. Return the calculated point coordinates as two integers
in (X,Y) format.

xy2val X, Y

Converts widget coordinates X and Y into value in range from min to max, and return two
scalars: the value and the boolean flag, which is set to 1 if the (X,Y) point is inside the dial
circle, and 0 otherwise.

260

Events

Stringify VALUE, REF

Converts integer VALUE into a string format and puts into REF scalar reference. The
resulting string is displayed in the center of the dial.

Default conversion routine simply copies VALUE to REF as is.

261

4.27 Prima::StartupWindow

A simplistic startup banner window

Description

The module, when imported by use call, creates a temporary window which appears with ’load-
ing...’ text while the modules required by a program are loading. The window parameters can
be modified by passing custom parameters after use Prima::StartupWindow statement, which
are passed to Prima::Window class as creation parameters. The window is discarded by explicit
unimporting of the module (see the Synopsis entry).

Synopsis

use Prima;

use Prima::Application;

use Prima::StartupWindow; # the window is created here

use Prima::Buttons;

.... # lots of ’use’ of other modules

no Prima::StartupWindow; # the window is discarded here

262

4.28 Prima::TextView

Rich text browser widget

Description

Prima::TextView accepts blocks of formatted text, and provides basic functionality - scrolling and
user selection. The text strings are stored as one large text chunk, available by the ::text and
::textRef properties. A block of a formatted text is an array with fixed-length header and the
following instructions.

A special package tb:: provides the block constants and simple functions for text block access.

Capabilities

Prima::TextView is mainly the text block functions and helpers. It provides function for wrapping
text block, calculating block dimensions, drawing and converting coordinates from (X,Y) to a
block position. Prima::TextView is centered around the text functionality, and although any
custom graphic of arbitrary complexity can be embedded in a text block, the internal coordinate
system is used (TEXT OFFSET, BLOCK), where TEXT OFFSET is a text offset from the
beginning of a block and BLOCK is an index of a block.

The functionality does not imply any text layout - this is up to the class descendants, they
must provide they own layout policy. The only policy Prima::TextView requires is that blocks’
BLK TEXT OFFSET field must be strictly increasing, and the block text chunks must not overlap.
The text gaps are allowed though.

A text block basic drawing function includes change of color, backColor and font, and the
painting of text strings. Other types of graphics can be achieved by supplying custom code.

Block header

A block’s fixed header consists of tb::BLK START - 1 integer scalars, each of those is accessible
via the corresponding tb::BLK XXX constant. The constants are separated into two logical groups:

BLK_FLAGS

BLK_WIDTH

BLK_HEIGHT

BLK_X

BLK_Y

BLK_APERTURE_X

BLK_APERTURE_Y

BLK_TEXT_OFFSET

and

BLK_FONT_ID

BLK_FONT_SIZE

BLK_FONT_STYLE

BLK_COLOR

BLK_BACKCOLOR

The second group is enclosed in tb::BLK DATA START - tb::BLK DATA END range, like the whole
header is contained in 0 - tb::BLK START - 1 range. This is done for the backward compatibility,
if the future development changes the length of the header.

The first group fields define the text block dimension, aperture position and text offset (
remember, the text is stored as one big chunk). The second defines the initial color and font
settings. Prima::TextView needs all fields of every block to be initialized before displaying. the
block wrap entry method can be used for automated assigning of these fields.

263

Block parameters

The scalars, beginning from tb::BLK START, represent the commands to the renderer. These
commands have their own parameters, that follow the command. The length of a command is
located in @oplen array, and must not be changed. The basic command set includes OP TEXT,
OP COLOR, OP FONT, OP TRANSPOSE, and OP CODE. The additional codes are OP WRAP and OP MARK,
not used in drawing but are special commands to the block wrap entry.

OP TEXT - TEXT OFFSET, TEXT LENGTH, TEXT WIDTH

OP TEXT commands to draw a string, from offset tb::BLK TEXT OFFSET + TEXT OFFSET, with
a length TEXT LENGTH. The third parameter TEXT WIDTH contains the width of the
text in pixels. Such the two-part offset scheme is made for simplification or an imaginary
code, that would alter (insert to, or delete part of) the big text chunk; the updating
procedure would not need to traverse all commands, but just the block headers.

Relative to: tb::BLK TEXT OFFSET.

OP COLOR - COLOR

OP COLOR sets foreground or background color. To set the background, COLOR must be
or-ed with tb::BACKCOLOR FLAG value. In addition to the two toolkit supported color values
(RRGGBB and system color index), COLOR can also be or-ed with tb::COLOR INDEX

flags, in such case it is an index in ::colormap property array.

Relative to: tb::BLK COLOR, tb::BLK BACKCOLOR.

OP FONT - KEY, VALUE

As the font is a complex property, that itself includes font name, size, direction, etc keys,
OP FONT KEY represents one of the three parameters - tb::F ID, tb::F SIZE, tb::F STYLE.
All three have different VALUE meaning.

Relative to: tb::BLK FONT ID, tb::BLK FONT SIZE, tb::BLK FONT STYLE.

F STYLE

Contains a combination of fs::XXX constants, such as fs::Bold, fs::Italic etc.

Default value: 0

F SIZE

Contains the relative font size. The size is relative to the current widget’s font size.
As such, 0 is a default value, and -2 is the widget’s default font decreased by 2 points.
Prima::TextView provides no range checking (but the toolkit does), so while it is o.k.
to set the negative F SIZE values larger than the default font size, one must be vary
when relying on the combined font size value .

If F SIZE value is added to a F HEIGHT constant, then it is treated as a font height
in pixels rather than font size in points. The macros for these opcodes are named
respectively tb::fontSize and tb::fontHeight, while the opcode is the same.

F ID

All other font properties are collected under an ’ID’. ID is a index in the ::fontPalette
property array, which contains font hashes with the other font keys initialized - name,
encoding, and pitch. These three are minimal required set, and the other font keys can
be also selected.

OP TRANSPOSE X, Y, FLAGS

Contains a mark for an empty space. The space is extended to the relative coordinates
(X,Y), so the block extension algorithms take this opcode in the account. If FLAGS does
not contain tb::X EXTEND, then in addition to the block expansion, current coordinate is also

264

moved to (X,Y). In this regard, (OP TRANSPOSE,0,0,0) and (OP TRANSPOSE,0,0,X EXTEND)

are identical and are empty operators.

There are formatting-only flags,in effect with the block wrap entry function.
X DIMENSION FONT HEIGHT indicates that (X,Y) values must be multiplied to the cur-
rent font height. Another flag X DIMENSION POINT does the same but multiplies by current
value of the resolution entry property divided by 72 (basically, treats X and Y not as pixel
but point values).

OP TRANSPOSE can be used for customized graphics, in conjunction with OP CODE to assign a
space, so the rendering algorithms do not need to be re-written every time the new graphic
is invented. As an example, see how the Prima::PodView section deals with the images.

OP CODE - SUB, PARAMETER

Contains a custom code pointer SUB with a parameter PARAMETER, passed when a block
is about to be drawn. SUB is called with the following format:

($widget, $canvas, $text_block, $font_and_color_state, $x, $y, $parameter);

$font and color state (or $state, through the code) contains the state of font and color
commands in effect, and is changed as the rendering algorithm advances through a block.
The format of the state is the same as of text block, so one may notice that for readability
F ID, F SIZE, F STYLE constants are paired to BLK FONT ID, BLK FONT SIZE and
BLK FONT STYLE.

The SUB code is executed only when the block is about to draw.

OP WRAP ON OFF

OP WRAP is only in effect in the block wrap entry method. ON OFF is a boolean flag, selecting
if the wrapping is turned on or off. the block wrap entry does not support stacking for the
wrap commands, so the (OP WRAP,1,OP WRAP,1,OP WRAP,0) has same effect as (OP WRAP,0).
If ON OFF is 1, wrapping is disabled - all following commands treated an non-wrapable until
(OP WRAP,0) is met.

OP MARK PARAMETER, X, Y

OP MARK is only in effect in the block wrap entry method and is a user command. the
block wrap entry only sets (!) X and Y to the current coordinates when the command is
met. Thus, OP MARK can be used for arbitrary reasons, easy marking the geometrical positions
that undergo the block wrapping.

As can be noticed, these opcodes are far not enough for the full-weight rich text viewer.
However, the new opcodes can be created using tb::opcode, that accepts the opcode length and
returns the new opcode value.

Rendering methods

block wrap

block wrap is the function, that is used to wrap a block into a given width. It returns one
or more text blocks with fully assigned headers. The returned blocks are located one below
another, providing an illusion that the text itself is wrapped. It does not only traverses the
opcodes and sees if the command fit or not in the given width; it also splits the text strings
if these do not fit.

By default the wrapping can occur either on a command boundary or by the spaces or
tab characters in the text strings. The unsolicited wrapping can be prevented by using
OP WRAP command brackets. The commands inside these brackets are not wrapped; OP WRAP

commands are removed from the output blocks.

265

In general, block wrap copies all commands and their parameters as is, (as it is supposed
to do), but some commands are treated especially:

- OP TEXT’s third parameter, TEXT WIDTH, is disregarded, and is recalculated for every
OP TEXT met.

- If OP TRANSPOSE’s third parameter, X FLAGS contains X DIMENSION FONT HEIGHT flag, the
command coordinates X and Y are multiplied to the current font height and the flag is
cleared in the output block.

- OP MARK’s second and third parameters assigned to the current (X,Y) coordinates.

- OP WRAP removed from the output.

block draw CANVAS, BLOCK, X, Y

The block draw draws BLOCK onto CANVAS in screen coordinates (X,Y). It can not only
be used for drawing inside begin paint/end paint brackets; CANVAS can be an arbitrary
Prima::Drawable descendant.

Coordinate system methods

Prima::TextView employs two its own coordinate systems: (X,Y)-document and
(TEXT OFFSET,BLOCK)-block.

The document coordinate system is isometric and measured in pixels. Its origin is located into
the imaginary point of the beginning of the document (not of the first block!), in the upper-left
point. X increases to the right, Y increases downwards. The block header values BLK X and
BLK Y are in document coordinates, and the widget’s pane extents (regulated by ::paneSize,
::paneWidth and ::paneHeight properties) are also in document coordinates.

The block coordinate system in an-isometric - its second axis, BLOCK, is an index of a text
block in the widget’s blocks storage, $self->{blocks}, and its first axis, TEXT OFFSET is a
text offset from the beginning of the block.

Below described different coordinate system converters

screen2point X, Y

Accepts (X,Y) in the screen coordinates (O is a lower left widget corner), returns (X,Y) in
document coordinates (O is upper left corner of a document).

xy2info X, Y

Accepts (X,Y) is document coordinates, returns (TEXT OFFSET,BLOCK) coordinates,
where TEXT OFFSET is text offset from the beginning of a block (not related to the big
text chunk) , and BLOCK is an index of a block.

info2xy TEXT OFFSET, BLOCK

Accepts (TEXT OFFSET,BLOCK) coordinates, and returns (X,Y) in document coordinates
of a block.

text2xoffset TEXT OFFSET, BLOCK

Returns X coordinate where TEXT OFFSET begins in a BLOCK index.

info2text offset

Accepts (TEXT OFFSET,BLOCK) coordinates and returns the text offset with regard to
the big text chunk.

text offset2info TEXT OFFSET

Accepts big text offset and returns (TEXT OFFSET,BLOCK) coordinates

text offset2block TEXT OFFSET

Accepts big text offset and returns BLOCK coordinate.

266

Text selection

The text selection is performed automatically when the user selects the region with a mouse.
The selection is stored in (TEXT OFFSET,BLOCK) coordinate pair, and is accessible via the
::selection property. If its value is assigned to (-1,-1,-1,-1) this indicates that there is no
selection. For convenience the has selection method is introduced.

Also, get selected text returns the text within the selection (or undef with no selection),
and copy copies automatically the selected text into the clipboard. The latter action is bound to
Ctrl+Insert key combination.

Event rectangles

Partly as an option for future development, partly as a hack a concept of ’event rectangles’ was
introduced. Currently, {contents} private variable points to an array of objects, equipped with
on mousedown, on mousemove, and on mouseup methods. These are called within the widget’s
mouse events, so the overloaded classes can define the interactive content without overloading the
actual mouse events (which is although easy but is dependent on Prima::TextView own mouse
reactions).

As an example the Prima::PodView section uses the event rectangles to catch the mouse events
over the document links. Theoretically, every ’content’ is to be bound with a separate logical layer;
when the concept was designed, a html-browser was in mind, so such layers can be thought as (
in the html world) links, image maps, layers, external widgets.

Currently, Prima::TextView::EventRectangles class is provided for such usage. Its property
::rectangles contains an array of rectangles, and the contains method returns an integer value,
whether the passed coordinates are inside one of its rectangles or not; in the first case it is the
rectangle index.

267

4.29 Prima::Themes

Object themes management

Description

Provides layer for theme registration in Prima. Themes are loosely grouped alternations of default
class properties and behavior, by default stored in Prima/themes subdirectory. The theme real-
ization is implemented as interception of object profile during its creation, inside ::profile add.
Various themes apply various alterations, one way only - once an object is applied a theme, it
cannot be neither changed nor revoked thereafter.

Theme configuration can be stored in an rc file, ~/.prima/themes, and is loaded automatically,
unless $Prima::Themes::load rc file explicitly set to 0 before loading the Prima::Themes mod-
ule. In effect, any Prima application not aware of themes can be coupled with themes in the rc
file by the following:

perl -MPrima::Themes program

Prima::Themes namespace provides registration and execution functionality.
Prima::Themes::Proxy is a class for overriding certain methods, for internal realization of
a theme.

For interactive theme selection use examples/theme.pl sample program.

Synopsis

register a theme file

use Prima::Themes qw(color);

or

use Prima::Themes; load(’color’);

list registered themes

print Prima::Themes::list;

install a theme

Prima::Themes::install(’cyan’);

list installed themes

print Prima::Themes::list_active;

create object with another theme while ’cyan’ is active

Class->create(theme => ’yellow’);

remove a theme

Prima::Themes::uninstall(’cyan’);

Prima::Themes

load @THEME MODULES

Load THEME MODULES from files via use clause, dies on error. Can be used instead of
explicit use.

A loaded theme file may register one or more themes.

register $FILE, $THEME, $MATCH, $CALLBACK, $INSTALLER

Registers a previously loaded theme. $THEME is a unique string identifier. $MATCH is
an array of pairs, where the first item is a class name, and the second is an arbitrary scalar
parameter. When a new object is created, its class is matched via isa to each given class
name, and if matched, the $CALLBACK routine is called with the following parameters:
object, default profile, user profile, second item of the matched pair.

268

If $CALLBACK is undef, the default the merger entry routine is called, which treats the
second items of the pairs as hashes of the same format as the default and user profiles.

The theme is inactive until install is called. If $INSTALLER subroutine is passed, it is
called during install and uninstall, with two parameters, the name of the theme and boolean
install/uninstall flag. When install flag is 1, the theme is about to be installed; the subroutine
is expected to return a boolean success flag. Otherwise, subroutine return value is not used.

$FILE is used to indicate the file in which the theme is stored.

deregister $THEME

Un-registers $THEME.

install @THEMES

Installs previosuly loaded and registered loaded THEMES; the installed themes are now used
to match new objects.

uninstall @THEMES

Uninstalls loaded THEMES.

list

Returns the list of registered themes.

list active

Returns the list of installed themes.

loaded $THEME

Return 1 if $THEME is registered, 0 otherwise.

active $THEME

Return 1 if $THEME is installed, 0 otherwise.

select @THEMES

Uninstalls all currently installed themes, and installs THEMES instead.

merger $OBJECT, $PROFILE DEFAULT, $PROFILE USER, $PROFILE THEME

Default profile merging routine, merges $PROFILE THEME into $PROFILE USER by keys
from $PROFILE DEFAULT.

load rc [$INSTALL = 1]

Reads data ~/.prima/themes and loads listed modules. If $INSTALL = 1, installs the themes
from the rc file.

save rc

Writes configuration of currently installed themes into rc file, returns success flag. If success
flag is 0, $! contains the error.

Prima::Themes::Proxy

An instance of Prima::Themes::Proxy, created as
Prima::Themes::Proxy-> new($OBJECT)
is a non-functional wrapper for any Perl object $OBJECT. All methods of $OBJECT, except

AUTOLOAD, DESTROY, and new, are forwarded to $OBJECT itself transparently. The class can be
used, for example, to deny all changes to lineWidth inside object’s painting routine:

269

package ConstLineWidth;

use vars qw(@ISA);

@ISA = qw(Prima::Themes::Proxy);

sub lineWidth { 1 } # line width is always 1 now!

Prima::Themes::register(’~/lib/constlinewidth.pm’, ’constlinewidth’,

[’Prima::Widget’ => {

onPaint => sub {

my ($object, $canvas) = @_;

$object-> on_paint(ConstLineWidth-> new($canvas));

},

}]

);

Files

~/.prima/themes

270

5 Standard dialogs

5.1 Prima::ColorDialog

Standard color selection facilities

Synopsis

use Prima qw(StdDlg Application);

my $p = Prima::ColorDialog-> create(

quality => 1,

);

printf "color: %06x", $p-> value if $p-> execute == mb::OK;

Description

The module contains two packages, Prima::ColorDialog and Prima::ColorComboBox, used as
standard tools for interactive color selection. Prima::ColorComboBox is a modified combo widget,
which provides selecting from predefined palette but also can invoke Prima::ColorDialog window.

Prima::ColorDialog

Properties

quality BOOLEAN

Used to increase visual quality of the dialog if run on paletted displays.

Default value: 0

value COLOR

Selects the color, represented by the color wheel and other dialog controls.

Default value: cl::White

Methods

hsv2rgb HUE, SATURATION, LUMINOSITY

Converts color from HSV to RGB format and returns three integer values, red, green, and
blue components.

rgb2hsv RED, GREEN, BLUE

Converts color from RGB to HSV format and returns three numerical values, hue, saturation,
and luminosity components.

271

rgb2value RED, GREEN, BLUE

Combines separate channels into single 24-bit RGB value and returns the result.

value2rgb COLOR

Splits 24-bit RGB value into three channels, red, green, and blue and returns three integer
values.

xy2hs X, Y, RADIUS

Maps X and Y coordinate values onto a color wheel with RADIUS in pixels. The code
uses RADIUS = 119 for mouse position coordinate mapping. Returns three values, - hue,
saturation and error flag. If error flag is set, the conversion has failed.

hs2xy HUE, SATURATION

Maps hue and saturation onto 256-pixel wide color wheel, and returns X and Y coordinates
of the corresponding point.

create wheel SHADES, BACK COLOR

Creates a color wheel with number of SHADES given, drawn on a BACK COLOR back-
ground, and returns a Prima::DeviceBitmap object.

create wheel shape SHADES

Creates a circular 1-bit mask, with radius derived from SHAPES. SHAPES must be same
as passed to the create wheel entry. Returns Prima::Image object.

Events

BeginDragColor $PROPERTY

Called when the user starts dragginh a color from the color wheel by with left mouse button
and combination of Alt, Ctrl, and Shift keys. $PROPERTY is one of Prima::Widget color
properties, and depends on combination of keys:

Alt backColor

Ctrl color

Alt+Shift hiliteBackColor

Ctrl+Shift hiliteColor

Ctrl+Alt disabledColor

Ctrl+Alt+Shift disabledBackColor

Default action reflects the property to be changes in the dialog title

Change

The notification is called when the the value entry property is changed, either interactively
or as a result of direct call.

EndDragColor $PROPERTY, $WIDGET

Called when the user releases the mouse drag over a Prima widget. Default action sets
$WIDGET->$PROPERTY to the current color value.

Variables

$colorWheel

Contains cached result of the create wheel entry call.

$colorWheelShape

Contains cached result of the create wheel shape entry call.

272

Prima::ColorComboBox

Events

Colorify INDEX, COLOR PTR

nt::Action callback, designed to map combo palette index into a RGB color. INDEX is an
integer from 0 to the colors entry - 1, COLOR PTR is a reference to a result scalar, where
the notification is expected to write the resulting color.

Properties

colors INTEGER

Defines amount of colors in the fixed palette of the combo box.

value COLOR

Contains the color selection as 24-bit integer value.

273

5.2 Prima::FindDialog, Prima::ReplaceDialog

Standard interface dialogs to find and replace options selection.

Synopsis

use Prima::StdDlg;

my $dlg = Prima::FindDialog-> create(findStyle => 0);

my $res = $dlg-> execute;

if ($res == mb::Ok) {

print $dlg-> findText, " is to be found\n";

} elsif ($res == mb::ChangeAll) {

print "all occurences of ", $dlg-> findText,

" is to be replaced by ", $dlg-> replaceText;

}

The mb::ChangeAll constant, one of possible results of execute method, is defined in the
Prima::StdDlg section module. Therefore it is recommended to include this module instead.

Description

The module provides two classes - Prima::FindDialog and Prima::ReplaceDialog;
Prima::ReplaceDialog is exactly same as Prima::FindDialog except that its default the findStyle
entry property value is set to 0. One can use a dialog-caching technique, arbitrating between the
findStyle entry value 0 and 1, and use only one instance of Prima::FindDialog.

The module does not provide the actual search algorithm; this must be implemented by the
programmer. The toolkit currently include some facilitation to the problem - the part of algorithm
for Prima::Edit class is found in the find entry in the Prima::Edit section, and the another part
- in examples/editor.pl example program. the Prima::HelpWindow section also uses the module,
and realizes its own searching algorithm.

API

Properties

All the properties select the user-assigned values, except the findStyle entry.

findText STRING

Selects the text string to be found.

Default value: ”

findStyle BOOLEAN

If 1, the dialog provides only ’find text’ interface. If 0, the dialog provides also ’replace text’
interface.

Default value: 1 for Prima::FindDialog, 0 for Prima::ReplaceDialog.

options INTEGER

Combination of fdo:: constants. For the detailed description see the find entry in the
Prima::Edit section.

fdo::MatchCase

fdo::WordsOnly

fdo::RegularExpression

fdo::BackwardSearch

fdo::ReplacePrompt

274

Default value: 0

replaceText STRING

Selects the text string that is to replace the found text.

Default value: ”

scope

One of fds:: constants. Represents the scope of the search: it can be started from the
cursor position, of from the top or of the bottom of the text.

fds::Cursor

fds::Top

fds::Bottom

Default value: fds::Cursor

275

5.3 Prima::FileDialog

File system related widgets and dialogs.

Synopsis

open a file use Prima qw(Application); use Prima::StdDlg;

my $open = Prima::OpenDialog-> new(

filter => [

[’Perl modules’ => ’*.pm’],

[’All’ => ’*’]

]

);

print $open-> fileName, " is to be opened\n" if $open-> execute;

save a file

my $save = Prima::SaveDialog-> new(

fileName => $open-> fileName,

);

print $save-> fileName, " is to be saved\n" if $save-> execute;

open several files

$open-> multiSelect(1);

print $open-> fileName, " are to be opened\n" if $open-> execute;

Description

The module contains widgets for file and drive selection, and also standard open file, save file, and
change directory dialogs.

Prima::DirectoryListBox

A directory listing list box. Shows the list of subdirectories and upper directories, hierarchy-
mapped, with the folder images and outlines.

Properties

closedGlyphs INTEGER

Number of horizontal equal-width images, contained in the closedIcon entry property.

Default value: 1

closedIcon ICON

Provides an icon representation for the directories, contained in the current directory.

indent INTEGER

A positive integer number of pixels, used for offset of the hierarchy outline.

Default value: 12

openedGlyphs INTEGER

Number of horizontal equal-width images, contained in the openedIcon entry property.

Default value: 1

276

openedIcon OBJECT

Provides an icon representation for the directories, contained in the directories above the
current directory.

path STRING

Runtime-only property. Selects a file system path.

showDotDirs BOOLEAN

Selects if the directories with the first dot character are shown the view. The treatment of
the dot-prefixed names as hidden is traditional to unix, and is of doubtful use under win32
and os2.

Default value: 1

Methods

files [FILE TYPE]

If FILE TYPE value is not specified, the list of all files in the current directory is returned.
If FILE TYPE is given, only the files of the types are returned. The FILE TYPE is a string,
one of those returned by Prima::Utils::getdir (see the getdir entry in the Prima::Utils
section.

Prima::DriveComboBox

Provides drive selection combo-box for non-unix systems.

Properties

firstDrive DRIVE LETTER

Create-only property.

Default value: ’A:’

DRIVE LETTER can be set to other value to start the drive enumeration from. Some OSes
can probe eventual diskette drives inside the drive enumeration routines, so it might be
reasonable to set DRIVE LETTER to C: string for responsiveness increase.

drive DRIVE LETTER

Selects the drive letter.

Default value: ’C:’

Prima::FileDialog

Provides a standard file dialog, allowing to navigate by the file system and select one or many
files. The class can operate in two modes - ’open’ and ’save’; these modes are set by the
Prima::OpenDialog section and the Prima::SaveDialog section. Some properties behave differ-
ently depending on the mode, which is stored in the openMode entry property.

Properties

createPrompt BOOLEAN

If 1, and a file selected is nonexistent, asks the user if the file is to be created.

Only actual when the openMode entry is 1.

Default value: 0

277

defaultExt STRING

Selects the file extension, appended to the file name typed by the user, if the extension is
not given.

Default value: ”

directory STRING

Selects the currently selected directory.

fileMustExist BOOLEAN

If 1, ensures that the file typed by the user exists before closing the dialog.

Default value: 1

fileName STRING, ...

For single-file selection, assigns the selected file name, For multiple-file selection, on get-call
returns list of the selected files; on set-call, accepts a single string, where the file names are
separated by the space character. The eventual space characters must be quoted.

filter ARRAY

Contains array of arrays of string pairs, where each pair describes a file type. The first scalar
in the pair is the description of the type; the second is a file mask.

Default value: [[’All files’ => ’*’]]

filterIndex INTEGER

Selects the index in the filter entry array of the currently selected file type.

multiSelect BOOLEAN

Selects whether the user can select several (1) or one (0) file.

See also: the fileName entry.

noReadOnly BOOLEAN

If 1, fails to open a file when it is read-only.

Default value: 0

Only actual when the openMode entry is 0.

noTestFileCreate BOOLEAN

If 0, tests if a file selected can be created.

Default value: 0

Only actual when the openMode entry is 0.

overwritePrompt BOOLEAN

If 1, asks the user if the file selected is to be overwrittten.

Default value: 1

Only actual when the openMode entry is 0.

openMode BOOLEAN

Create-only property.

Selects whether the dialog operates in ’open’ (1) mode or ’save’ (0) mode.

pathMustExist BOOLEAN

If 1, ensures that the path, types by the user, exists before closing the dialog.

Default value: 1

278

showDotFiles BOOLEAN

Selects if the directories with the first dot character are shown the files view.

Default value: 0

showHelp BOOLEAN

Create-only property. If 1, ’Help’ button is inserted in the dialog.

Default value: 1

sorted BOOLEAN

Selects whether the file list appears sorted by name (1) or not (0).

Default value : 1

system BOOLEAN

Create-only property. If set to 1, Prima::FileDialog returns instance of
Prima::sys::XXX::FileDialog system-specific file dialog, if available for the XXX plat-
form.

system knows only how to map FileDialog, OpenDialog, and SaveDialog classes onto the
system-specific file dialog classes; the inherited classes are not affected.

Methods

reread

Re-reads the currently selected directory.

Prima::OpenDialog

Descendant of the Prima::FileDialog section, tuned for open-dialog functionality.

Prima::SaveDialog

Descendant of the Prima::FileDialog section, tuned for save-dialog functionality.

Prima::ChDirDialog

Provides standard dialog with interactive directory selection.

Properties

directory STRING

Selects the directory

showDotDirs

Selects if the directories with the first dot character are shown the view.

Default value: 0

showHelp

Create-only property. If 1, ’Help’ button is inserted in the dialog.

Default value: 1

279

5.4 Prima::FontDialog

Standard font dialog

Synopsis

use Prima::FontDialog;

my $f = Prima::FontDialog-> create;

return unless $f-> execute == mb::OK;

$f = $f-> logFont;

print "$_:$f->{$_}\n" for sort keys %$f;

Description

The dialog provides selection of font by name, style, size, and encoding. The font selected is
returned by the logFont entry property.

API

Properties

fixedOnly BOOLEAN

Selects whether only the fonts of fixed pitch (1) or all fonts (0) are displayed in the
selection list.

Default value: 0

logFont FONT

Provides access to the interactive font selection as a hash reference. FONT format is fully
compatible with Prima::Drawable::font.

showHelp BOOLEAN

Create-only property.

Specifies if the help button is displayed in the dialog.

Default value: 0

Events

BeginDragFont

Called when the user starts dragging a font from the font sample widget by left mouse
button.

Default action reflects the status in the dialog title

EndDragFont $WIDGET

Called when the user releases the mouse drag over a Prima widget. Default action applies
currently selected font to $WIDGET.

280

5.5 Prima::ImageDialog

File open and save dialogs.

Description

The module provides dialogs specially adjusted for image loading and saving.

Prima::ImageOpenDialog

Provides a preview feature, allowing the user to view the image file before loading, and the selection
of a frame index for the multi-framed image files. Instead of execute call, the the load entry
method is used to invoke the dialog and returns the loaded image as a Prima::Image object. The
loaded object by default contains {extras} hash variable set, which contains extra information
returned by the loader. See the Prima::image-load section for more information.

Synopsis

my $dlg = Prima::ImageOpenDialog-> create;

my $img = $dlg-> load;

return unless $img;

print "$_:$img->{extras}->{$_}\n" for sort keys %{$img-> {extras}};

Proprties

preview BOOLEAN

Selects if the preview functionality is active. The user can switch it on and off interactively.

Default value: 1

Methods

load %PROFILE

Executes the dialog, and, if successful, loads the image file and frame selected by the
user. Returns the loaded image as a Prima::Image object. PROFILE is a hash, passed
to Prima::Image::load method. In particular, it can be used to disable the default loading
of extra information in {extras} variable, or to specify a non-default loading option. For
example, {extras}->{className} = ’Prima::Icon’ would return the loaded image as an
icon object. See the Prima::image-load section for more.

load can report progressive image loading to the caller, and/or to an instance of
Prima::ImageViewer, if desired. If either (or both) onHeaderReady and onDataReady no-
tifications are specified, these are called from the respective event handlers of the image
being loaded (see the Loading with progress indicator entry in the Prima::image-load
section for details). If profile key progressViewer is supplied, its value is treated as a
Prima::ImageViewer instance, and it is used to display image loading progress. See the
watch load progress entry in the Prima::ImageViewer section.

Events

HeaderReady IMAGE

See the HeaderReady entry in the Prima::Image section.

DataReady IMAGE, X, Y, WIDTH, HEIGHT

See the DataReady entry in the Prima::Image section.

281

Prima::ImageSaveDialog

Provides a save dialog where the user can select image format, the bit depth and other format-
specific options. The format-specific options can be set if a dialog for the file format is provided.
The standard toolkit dialogs reside under in Prima::Image namespace, in Prima/Image sub-
directory. For example, Prima::Image::gif provides the selection of transparency color, and
Prima::Image::jpeg the image quality control. If the image passed to the the image entry prop-
erty contains {extras} variable, the data are read and used as the default values. In particular,
{extras}->-{codecID} field, responsible for the file format, if present, affects the default file
format selection.

Synopsis

my $dlg = Prima::ImageSaveDialog-> create;

return unless $dlg-> save($image);

print "saved as ", $dlg-> fileName, "\n";

Properties

image IMAGE

Selects the image to be saved. This property is to be used for the standard invocation of
dialog, via execute. It is not needed when the execution and saving is invoked via the save
entry method.

Methods

save IMAGE, %PROFILE

Invokes the dialog, and, if the execution was successful, saves the IMAGE according to
the user selection and PROFILE hash. PROFILE is not used for the default options, but
is passed directly to Prima::Image::save call, possibly overriding selection of the user.
Returns 1 in case of success, 0 in case of error. If the error occurs, the user is notified before
the method returns.

282

5.6 Prima::MsgBox

Standard message and input dialog boxes

Description

The module contains two methods, message box and input box, that invoke correspondingly the
standard message and one line text input dialog boxes.

Synopsis

use Prima;

use Prima::Application;

use Prima::MsgBox;

my $text = Prima::MsgBox::input_box(’Sample input box’, ’Enter text:’, ’’);

$text = ’(none)’ unless defined $text;

Prima::MsgBox::message("You have entered: ’$text’", mb::Ok);

API

input box TITLE, LABEL, INPUT STRING, [BUTTONS = mb::OkCancel, PRO-
FILES = {}]

Invokes standard dialog box, that contains an input line, a text label, and buttons used for
ending dialog session. The dialog box uses TITLE string to display as the window title,
LABEL text to draw next to the input line, and INPUT STRING, which is the text present
in the input box. Depending on the value of BUTTONS integer parameter, which can be
a combination of the button mb::XXX constants, different combinations of push buttons can
be displayed in the dialog.

PROFILE parameter is a hash, that contains customization parameters for the buttons and
the input line. To access input line inputLine hash key is used. See the Buttons and profiles
entry for more information on BUTTONS and PROFILES.

Returns different results depending on the caller context. In array context, returns two val-
ues: the result of Prima::Dialog::execute, which is either mb::Cancel or one of mb::XXX
constants of the dialog buttons; and the text entered. The input text is not restored to its
original value if the dialog was cancelled. In scalar context returns the text entered, if the
dialog was ended with mb::OK or mb::Yes result, or undef otherwise.

message TEXT, [OPTIONS = mb::Ok | mb::Error, PROFILES = {}]

Same as message box call, with application name passed as the title string.

message box TITLE, TEXT, [OPTIONS = mb::Ok | mb::Error, PROFILES = {}]

Invokes standard dialog box, that contains a text label, a predefined icon, and buttons used
for ending dialog session. The dialog box uses TITLE string to display as the window title,
TEXT to display as a main message. Value of OPTIONS integer parameter is combined
from two different sets of mb::XXX constants. The first set is the buttons constants, - mb::OK,
mb::Yes etc. See the Buttons and profiles entry for the explanations. The second set consists
of the following message type constants:

mb::Error

mb::Warning

mb::Information

mb::Question

283

While there can be several constants of the first set, only one constant from the second set
can be selected. Depending on the message type constant, one of the predefined icons is
displayed and one of the system sounds is played; if no message type constant is selected, no
icon is displayed and no sound is emitted. In case if no sound is desired, a special constant
mb::NoSound can be used.

PROFILE parameter is a hash, that contains customization parameters for the buttons. See
the Buttons and profiles entry for the explanations.

Returns the result of Prima::Dialog::execute, which is either mb::Cancel or one of
mb::XXX constants of the specified dialog buttons.

Buttons and profiles

The message and input boxes provide several predefined buttons that correspond to the following
mb::XXX constants:

mb::OK

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

To provide more flexibility, PROFILES hash parameter can be used. In this hash, predefined
keys can be used to tell the dialog methods about certain customizations:

defButton INTEGER

Selects the default button in the dialog, i.e. the button that reacts on the return key. Its
value must be equal to the mb:: constant of the desired button. If this option is not set, the
leftmost button is selected as the default.

helpTopic TOPIC

Used to select the help TOPIC, invoked in the help viewer window if mb::Help button is
pressed by the user. If this option is not set, the Prima section is displayed.

inputLine HASH

Only for input box.

Contains a profile hash, passed to the input line as creation parameters.

buttons HASH

To modify a button, an integer key with the corresponding mb::XXX constant can be set
with the hash reference under buttons key. The hash is a profile, passed to the button as
creation parameters. For example, to change the text and behavior of a button, the following
construct can be used:

Prima::MsgBox::message(’Hello’, mb::OkCancel, {

buttons => {

mb::Ok, {

text => ’~Hello’,

onClick => sub { Prima::message(’Hello indeed!’); }

}

}

});

284

If it is not desired that the dialog must be closed when the user presses a button, its
::modalResult property (see the Prima::Buttons section) must be reset to 0.

285

5.7 Prima::PrintDialog

Standard printer setup dialog

Description

Provides a standard dialog that allows the user to select a printer and its options. The toolkit
does not provide the in-depth management of the printer options; this can only be accessed by
executing a printer-specific setup window, called by Prima::Printer::setup dialog. The class
invokes this method when the user presses ’Properties’ button. Otherwise, the class provides only
selection of a printer from the printer list.

When the dialog finished successfully, the selected printer is set as the current by writing to
Prima::Printer::printer property. This technique allows direct use of the user-selected printer
and its properties without prior knowledge of the selection process.

Synopsis

use Prima::PrintDialog;

$dlg = Prima::PrintSetupDialog-> create;

if ($dlg-> execute) {

my $p = $::application-> get_printer;

if ($p-> begin_doc) {

$p-> text_out(’Hello world’, 10, 10);

$p-> end_doc;

}

}

$dlg-> destroy;

286

5.8 Prima::StdDlg

Wrapper module to the toolkit standard dialogs

Description

Provides a unified access to the toolkit dialogs, so there is no need to use the corresponding
module explicitly.

Synopsis

use Prima::StdDlg;

Prima::FileDialog-> create-> execute;

Prima::FontDialog-> create-> execute;

open standard file open dialog

my $file = Prima::open_file;

print "You’ve selected: $file\n" if defined $file;

API

The module accesses the following dialog classes:

Prima::open file

Invokes standard file open dialog and return the selected file(s). Uses system-specific stan-
dard file open dialog, if available.

Prima::save file

Invokes standard file save dialog and return the selected file(s). Uses system-specific standard
file save dialog, if available.

Prima::OpenDialog

File open dialog.

See the Prima::OpenDialog entry in the Prima::FileDialog section

Prima::SaveDialog

File save dialog.

See the Prima::SaveDialog entry in the Prima::FileDialog section

Prima::ChDirDialog

Directory change dialog.

See the Prima::ChDirDialog entry in the Prima::FileDialog section

Prima::FontDialog

Font selection dialog.

See the Prima::FontDialog section.

Prima::FindDialog

Generic ’find text’ dialog.

See the Prima::EditDialog section.

287

Prima::ReplaceDialog

Generic ’find and replace text’ dialog.

See the Prima::EditDialog section.

Prima::PrintSetupDialog

Printer selection and setup dialog.

See the Prima::PrintDialog section.

Prima::ColorDialog

Color selection dialog.

See the Prima::ColorDialog entry in the Prima::ColorDialog section.

Prima::ImageOpenDialog

Image file load dialog.

See the Prima::ImageOpenDialog entry in the Prima::ImageDialog section.

Prima::ImageSaveDialog

Image file save dialog.

See the Prima::ImageSaveDialog entry in the Prima::ImageDialog section.

288

6 Visual Builder

6.1 VB

Visual Builder for the Prima toolkit

Description

Visual Builder is a RAD-style suite for designing forms under the Prima toolkit. It provides rich
set of perl-composed widgets, whose can be inserted into a form by simple actions. The form can
be stored in a file and loaded by either user program or a simple wrapper, utils/fmview.pl; the
form can be also stored as a valid perl program.

A form file typically has .fm extension, an can be loaded by using the Prima::VB::VBLoader
section module. The following example is the only content of fmview.pl:

use Prima qw(Application VB::VBLoader);

my $ret = Prima::VBLoad($ARGV[0]);

die "$@\n" unless $ret;

$ret-> execute;

and is usually sufficient for executing a form file.

Help

The builder provides three main windows, that are used for designing. These are called main
panel, object inspector and form window. When the builder is started, the form window is empty.

The main panel consists of the menu bar, speed buttons and the widget buttons. If the user
presses a widget button, and then clicks the mouse on the form window, the designated widget is
inserted into the form and becomes a child of the form window. If the click was made on a visible
widget in the form window, the newly inserted widget becomes a children of that widget. After
the widget is inserted, its properties are accessible via the object inspector window.

The menu bar contains the following commands:

File

New

Closes the current form and opens a new, empty form. If the old form was not saved,
the user is asked if the changes made have to be saved.

This command is an alias to a ’new file’ icon on the panel.

Open

Invokes a file open dialog, so a .fm form file can be opened. After the successful file
load, all form widgets are visible and available for editing.

This command is an alias to an ’open folder’ icon on the panel.

289

Save

Stores the form into a file. The user here can select a type of the file to be saved. If the
form is saved as .fm form file, then it can be re-loaded either in the builder or in the
user program (see the Prima::VB::VBLoader section for details). If the form is saved
as .pl program, then it can not be loaded; instead, the program can be run immediately
without the builder or any supplementary code.

Once the user assigned a name and a type for the form, it is never asked when selecting
this command.

This command is an alias to a ’save on disk’ icon on the panel.

Save as

Same as the Save entry, except that a new name or type of file are asked every time
the command is invoked.

Close

Closes the form and removes the form window. If the form window was changed, the
user is asked if the changes made have to be saved.

Edit

Copy

Copies the selected widgets into the clipboard, so they can be inserted later by using
the Paste entry command. The form window can not be copied.

Paste

Reads the information, put by the builder the Copy entry command into the clipboard,
and inserts the widgets into the form window. The child-parent relation is kept by
names of the widgets; if the widget with the name of the parent of the clipboard-read
widgets is not found, the widgets are inserted into the form window. The form window
is not affected by this command.

Delete

Deletes the selected widgets. The form window can not be deleted.

Select all

Selects all of the widgets, inserted in the form window, except the form window itself.

Duplicate

Duplicates the selected widgets. The form window is not affected by this command.

Align

This menu item contains z-ordering actions, that are performed on selected widgets.
These are:

Bring to front Send to back Step forward Step backward Restore order

Change class

Changes the class of an inserted widget. This is an advanced option, and can lead to
confusions or errors, if the default widget class and the supplied class differ too much. It is
used when the widget that has to be inserted is not present in the builder installation. Also,
it is called implicitly when a loaded form does not contain a valid widget class; in such case
Prima::Widget class is assigned.

Creation order

Opens the dialog, that manages the creation order of the widgets. It is not that important
for the widget child-parent relation, since the builder tracks these, and does not allow a child
to be created before its parent. However, the explicit order might be helpful in a case, when,
for example, tabOrder property is left to its default value, so it is assigned according to the
order of widget creation.

290

Toggle lock

Changes the lock status for selected widgets. The lock, if set, prevents a widget from being
selected by mouse, to avoid occasional positional changes. This is useful when a widget is
used as owner for many sub-widgets.

Ctrl+mouse click locks and unlocks a widget.

View

Object inspector

Brings the object inspector window, if it was hidden or closed.

Add widgets

Opens a file dialog, where the additional VB modules can be located. The modules are
used for providing custom widgets and properties for the builder. As an example, the
Prima/VB/examples/Widgety.pm module is provided with the builder and the toolkit.
Look inside this file for the implementation details.

Reset guidelines

Reset the guidelines on the form window into a center position.

Snap to guidelines

Specifies if the moving and resizing widget actions must treat the form window guide-
lines as snapping areas.

Snap to grid

Specifies if the moving and resizing widget actions must use the form window grid
granularity instead of the pixel granularity.

Run

This command hides the form and object inspector windows and ’executes’ the form,
as if it would be run by fmview.pl. The execution session ends either by closing the
form window or by calling the Break entry command.

This command is an alias to a ’run’ icon on the panel.

Break

Explicitly terminates the execution session, initiated by the Run entry command.

Help

About

Displays the information about the visual builder.

Help

Displays the information about the usage of the visual builder.

Widget property

Invokes a help viewer on the Prima::Widget section manpage and tries to open a topic,
corresponding to the current selection of the object inspector property or event list.
While this manpage covers far not all (but still many) properties and events, it is still
a little bit more convenient than nothing.

Form window

The form widget is a common parent for all widgets, created by the builder. The form window
provides the following basic navigation functionality.

291

Guidelines

The form window contains two guidelines, the horizontal and the vertical, drawn as blue
dashed lines. Dragging with the mouse can move these lines. If menu option the Snap to
guidelines entry is on, the widgets moving and sizing operations treat the guidelines as the
snapping areas.

Selection

A widget can be selected by clicking with the mouse on it. There can be more than one
selected widget at a time, or none at all. To explicitly select a widget in addition to the
already selected ones, hold the shift key while clicking on a widget. This combination also
deselects the widget. To select all widgets on the form window, call the Select all entry
command from the menu. To prevent widgets from being occasionally selected, lock them
with ”Edit/Toggle lock” command or Ctrl+mouse click.

Moving

Dragging the mouse can move the selected widgets. The widgets can be snapped to the grid
or the guidelines during the move. If one of the moving widgets is selected in the object
inspector window, the coordinate changes are reflected in the origin property.

If the Tab key is pressed during the move, the mouse pointer is changed between three states,
each reflecting the currently accessible coordinates for dragging. The default accessible
coordinates are both the horizontal and the vertical; other two are the horizontal only and
the vertical only.

Sizing

The sizeable widgets can be dynamically resized. Regardless to the amount of the selected
widgets, only one widget at a time can be resized. If the resized widget is selected in the
object inspector window, the size changes are reflected in the size property.

Context menus

The right-click (or the other system-defined pop-up menu invocation command) provides
the menu, identical to the main panel’s the Edit entry submenu.

The alternative context menus can be provided with some widgets (for example,
TabbedNotebook), and are accessible with control + right click combination.

Object inspector window

The inspector window reflects the events and properties of a widget. To explicitly select a widget,
it must be either clicked by the mouse on the form window, or selected in the widget combo-box.
Depending on whether the properties or the events are selected, the left panel of the inspector
provides the properties or events list, and the right panel - a value of the currently selected property
or event. To toggle between the properties and the events, use the button below the list.

The adjustable properties of a widget include an incomplete set of the properties, returned by
the class method profile default (the detailed explanation see in the Prima::Object section).
Among these are such basic properties as origin, size, name, color, font, visible, enabled,
owner and many others. All the widgets share some common denominator, but almost all provide
their own intrinsic properties. Each property can be selected by the right-pane hosted property
selector; in such case, the name of a property is highlighted in the list - that means, that the
property is initialized. To remove a property from the initialization list, double-click on it, so it
is grayed again. Some very basic properties as name can not be deselected. This is because the
builder keeps a name-keyed list; another consequence of this fact is that no widgets of same name
can exist simultaneously within the builder.

The events, much like the properties, are accessible for direct change. All the events provide a
small editor, so the custom code can be supplied. This code is executed when the form is run or
loaded via Prima::VB::VBLoader interface.

292

The full explanation of properties and events is not provided here. It is not even the goal of
this document, because the builder can work with the widgets irrespective of their property or
event capabilities; this information is extracted by native toolkit functionality. To read on what
each property or event means, use the documentation on the class of interest; the Prima::Widget
section is a good start because it encompasses the ground Prima::Widget functionality. The
other widgets are (hopefully) documented in their modules, for example, Prima::ScrollBar
documentation can be found in the Prima::ScrollBar section.

293

6.2 Prima::VB::VBLoader

Visual Builder file loader

Description

The module provides functionality for loading resource files, created by Visual Builder. After the
successful load, the newly created window with all children is returned.

Synopsis

The simple way to use the loader is as that:

use Prima qw(Application);

use Prima::VB::VBLoader;

Prima::VBLoad(’./your_resource.fm’,

Form1 => { centered => 1 },

)-> execute;

A more complicated but more proof code can be met in the toolkit:

use Prima qw(Application);

eval "use Prima::VB::VBLoader"; die "$@\n" if $@;

$form = Prima::VBLoad($fi,

’Form1’ => { visible => 0, centered => 1},

);

die "$@\n" unless $form;

All form widgets can be supplied with custom parameters, all together combined in a hash of
hashes and passed as the second parameter to VBLoad() function. The example above supplies
values for ::visible and ::centered to Form1 widget, which is default name of a form window
created by Visual Builder. All other widgets are accessible by their names in a similar fashion;
after the creation, the widget hierarchy can be accessed in the standard way:

$form = Prima::VBLoad($fi,

....

’StartButton’ => {

onMouseOver => sub { die "No start buttons here\n" },

}

);

...

$form-> StartButton-> hide;

In case a form is to be included not from a fm file but from other data source, the AUTO-
FORM REALIZE entry call can be used to transform perl array into set of widgets:

$form = AUTOFORM_REALIZE([Form1 => {

class => ’Prima::Window’,

parent => 1,

profile => {

name => ’Form1’,

size => [330, 421],

}], {});

Real-life examples are met across the toolkit; for instance, Prima/PS/setup.fm dialog is used
by Prima::PS::Setup.

294

API

Methods

check version HEADER

Scans HEADER, - the first line of a .fm file for version info. Returns two scalars - the first is
a boolean flag, which is set to 1 if the file can be used and loaded, 0 otherwise. The second
scalar is a version string.

GO SUB SUB [@EXTRA DATA]

Depending on value of boolean flag Prima::VB::VBLoader::builderActive performs
the following: if it is 1, the SUB text is returned as is. If it is 0, evaluates it in
sub{} context and returns the code reference. If evaluation fails, EXTRA DATA is
stored in Prima::VB::VBLoader::eventContext array and the exception is re-thrown.
Prima::VB::VBLoader::builderActive is an internal flag that helps the Visual Builder
use the module interface without actual SUB evaluation.

AUTOFORM REALIZE WIDGETS, PARAMETERS

WIDGETS is an array reference that contains evaluated data of the read content of .fm file
(its data format is preserved). PARAMETERS is a hash reference with custom parameters
passed to widgets during creation. The widgets are distinguished by the names. Visual
Builder ensures that no widgets have equal names.

AUTOFORM REALIZE creates the tree of widgets and returns the root window, which is usually
named Form1. It automatically resolves parent-child relations, so the order of WIDGETS
does not matter. Moreover, if a parent widget is passed as a parameter to a children widget,
the parameter is deferred and passed after the creation using ::set call.

During the parsing and creation process internal notifications can be invoked. These notifi-
cations (events) are stored in .fm file and usually provide class-specific loading instructions.
See the Events entry for details.

AUTOFORM CREATE FILENAME, %PARAMETERS

Reads FILENAME in .fm file format, checks its version, loads, and creates widget tree.
Upon successful load the root widget is returned. The parsing and creation is performed by
calling AUTOFORM REALIZE. If loading fails, die() is called.

Prima::VBLoad FILENAME, %PARAMETERS

A wrapper around AUTOFORM CREATE, exported in Prima namespace. FILENAME can be
specified either as a file system path name, or as a relative module name. In a way,

Prima::VBLoad(’Module::form.fm’)

and

Prima::VBLoad(

Prima::Utils::find_image(’Module’ ’form.fm’))

are identical. If the procedure finds that FILENAME is a relative module name, it calls
Prima::Utils::find image automatically. To tell explicitly that FILENAME is a file sys-
tem path name, FILENAME must be prefixed with < symbol (the syntax is influenced by
CORE::open).

%PARAMETERS is a hash with custom parameters passed to widgets during creation. The
widgets are distinguished by the names. Visual Builder ensures that no widgets have equal
names.

If the form file loaded successfully, returns the form object reference. Otherwise, undef is
returned and the error string is stored in $@ variable.

295

Events

The events, stored in .fm file are called during the loading process. The module provides no
functionality for supplying the events during the load. This interface is useful only for developers
of Visual Builder - ready classes.

The events section is located in actions section of widget entry. There can be more than one
event of each type, registered to different widgets. NAME parameter is a string with name of
the widget; INSTANCE is a hash, created during load for every widget provided to keep internal
event-specific or class-specific data there. extras section of widget entry is present there as an
only predefined key.

Begin NAME, INSTANCE

Called upon beginning of widget tree creation.

FormCreate NAME, INSTANCE, ROOT WIDGET

Called after the creation of a form, which reference is contained in ROOT WIDGET.

Create NAME, INSTANCE, WIDGET.

Called after the creation of the widget. The newly created widget is passed in WIDGET

Child NAME, INSTANCE, WIDGET, CHILD NAME

Called before child of WIDGET is created with CHILD NAME as name.

ChildCreate NAME, INSTANCE, WIDGET, CHILD WIDGET.

Called after child of WIDGET is created; the newly created widget is passed in
CHILD WIDGET.

End NAME, INSTANCE, WIDGET

Called after the creation of all widgets is finished.

File format

The idea of format of .fm file is that is should be evaluated by perl eval() call without special
manipulations, and kept as plain text. The file begins with a header, which is a #-prefixed string,
and contains a signature, version of file format, and version of the creator of the file:

VBForm version file=1 builder=0.1

The header can also contain additional headers, also prefixed with #. These can be used to
tell the loader that another perl module is needed to be loaded before the parsing; this is useful,
for example, if a constant is declared in the module.

[preload] Prima::ComboBox

The main part of a file is enclosed in sub{} statement. After evaluation, this sub returns array
of paired scalars, where each first item is a widget name and second item is hash of its parameters
and other associated data:

sub

{

return (

’Form1’ => {

class => ’Prima::Window’,

module => ’Prima::Classes’,

parent => 1,

296

code => GO_SUB(’init()’),

profile => {

width => 144,

name => ’Form1’,

origin => [490, 412],

size => [144, 100],

}},

);

}

The hash has several predefined keys:

actions HASH

Contains hash of events. The events are evaluated via GO SUB mechanism and executed
during creation of the widget tree. See the Events entry for details.

code STRING

Contains a code, executed before the form is created. This key is present only on the root
widget record.

class STRING

Contains name of a class to be instantiated.

extras HASH

Contains a class-specific parameters, used by events.

module STRING

Contains name of perl module that contains the class. The module will be use’d by the
loader.

parent BOOLEAN

A boolean flag; set to 1 for the root widget only.

profile HASH

Contains profile hash, passed as parameters to the widget during its creation. If custom
parameters were passed to AUTOFORM CREATE, these are coupled with profile (the custom
parameters take precedence) before passing to the create() call.

297

6.3 Prima::VB::CfgMaint

Maintains visual builder widget palette configuration.

Description

The module is used by the Visual Builder and cfgmaint programs, to maintain the Visual Builder
widget palette. The installed widgets are displayed in main panel of the Visual Builder, and can
be maintained by cfgmaint.

Usage

The Visual Builder widget palette configuration is contained in two files - the system-wide
Prima::VB::Config and the user ~/.prima/vbconfig. The user config file take the precedence
when loaded by the Visual Builder. The module can select either configuration by assigning
$systemWide boolean property.

The widgets are grouped in pages, which are accessible by names.
New widgets can be added to the palette by calling add module method, which accepts a perl

module file as its first parameter. The module must conform to the VB-loadable format.

Format

This section describes format of a module with VB-loadable widgets.
The module must define a package with same name as the module. In the package, class sub

must be declared, that returns an array or paired scalars, where each first item in a pair corresponds
to the widget class and the second to a hash, that contains the class loading information, and must
contain the following keys:

class STRING

Name of the VB-representation class, which represents the original widget class in the Visual
Builder. This is usually a lightweight class, which does not contain all functionality of the
original class, but is capable of visually reflecting changes to the class properties.

icon PATH

Sets an image file, where the class icon is contained. PATH provides an extended syntax for
indicating a frame index, if the image file is multiframed: the frame index is appended to
the path name with : character prefix, for example: "NewWidget::icons.gif:2".

module STRING

Sets the module name, that contains class.

page STRING

Sets the default palette page where the widget is to be put. The current implementation
of the Visual Builder provides four pages: General,Additional,Sliders,Abstract. If the
page is not present, new page is automatically created when the widget class is registered.

RTModule STRING

Sets the module name, that contains the original class.

The reader is urged to explore Prima::VB::examples::Widgety file, which contains an example
class Prima::SampleWidget, its VB-representation, and a property lineRoundStyle definition
example.

298

API

Methods

add module FILE

Reads FILE module and loads all VB-loadable widgets from it.

classes

Returns string declaration of all registered classes in format of classes registration proce-
dure (see the Format entry).

open cfg

Loads class and pages information from either a system-wide or a user configuration file. If
succeeds, the information is stored in @pages and %classes variables (the old information
is lost) and returns 1. If fails, returns 0 and string with the error explanation; @pages and
%classes content is undefined.

pages

Returns array of page names

read cfg

Reads information from both system-wide and user configuration files, and merges the in-
formation. If succeeds, returns 1. If fails, returns 0 and string with the error explanation.

reset cfg

Erases all information about pages and classes.

write cfg

Writes either the system-wide or the user configuration file. If $backup flag is set to 1, the
old file renamed with .bak extension. If succeeds, returns 1. If fails, returns 0 and string
with the error explanation.

Files

Prima::VB::Config.pm, ~/.prima/vbconfig.

299

6.4 Prima::VB::CfgMaint

Maintains visual builder widget palette configuration.

Description

The module is used by the Visual Builder and cfgmaint programs, to maintain the Visual Builder
widget palette. The installed widgets are displayed in main panel of the Visual Builder, and can
be maintained by cfgmaint.

Usage

The Visual Builder widget palette configuration is contained in two files - the system-wide
Prima::VB::Config and the user ~/.prima/vbconfig. The user config file take the precedence
when loaded by the Visual Builder. The module can select either configuration by assigning
$systemWide boolean property.

The widgets are grouped in pages, which are accessible by names.
New widgets can be added to the palette by calling add module method, which accepts a perl

module file as its first parameter. The module must conform to the VB-loadable format.

Format

This section describes format of a module with VB-loadable widgets.
The module must define a package with same name as the module. In the package, class sub

must be declared, that returns an array or paired scalars, where each first item in a pair corresponds
to the widget class and the second to a hash, that contains the class loading information, and must
contain the following keys:

class STRING

Name of the VB-representation class, which represents the original widget class in the Visual
Builder. This is usually a lightweight class, which does not contain all functionality of the
original class, but is capable of visually reflecting changes to the class properties.

icon PATH

Sets an image file, where the class icon is contained. PATH provides an extended syntax for
indicating a frame index, if the image file is multiframed: the frame index is appended to
the path name with : character prefix, for example: "NewWidget::icons.gif:2".

module STRING

Sets the module name, that contains class.

page STRING

Sets the default palette page where the widget is to be put. The current implementation
of the Visual Builder provides four pages: General,Additional,Sliders,Abstract. If the
page is not present, new page is automatically created when the widget class is registered.

RTModule STRING

Sets the module name, that contains the original class.

The reader is urged to explore Prima::VB::examples::Widgety file, which contains an example
class Prima::SampleWidget, its VB-representation, and a property lineRoundStyle definition
example.

300

API

Methods

add module FILE

Reads FILE module and loads all VB-loadable widgets from it.

classes

Returns string declaration of all registered classes in format of classes registration proce-
dure (see the Format entry).

open cfg

Loads class and pages information from either a system-wide or a user configuration file. If
succeeds, the information is stored in @pages and %classes variables (the old information
is lost) and returns 1. If fails, returns 0 and string with the error explanation; @pages and
%classes content is undefined.

pages

Returns array of page names

read cfg

Reads information from both system-wide and user configuration files, and merges the in-
formation. If succeeds, returns 1. If fails, returns 0 and string with the error explanation.

reset cfg

Erases all information about pages and classes.

write cfg

Writes either the system-wide or the user configuration file. If $backup flag is set to 1, the
old file renamed with .bak extension. If succeeds, returns 1. If fails, returns 0 and string
with the error explanation.

Files

Prima::VB::Config.pm, ~/.prima/vbconfig.

301

7 PostScript printer interface

7.1 Prima::PS::Drawable

PostScript interface to Prima::Drawable

Synopsis

use Prima;

use Prima::PS::Drawable;

my $x = Prima::PS::Drawable-> create(onSpool => sub {

open F, ">> ./test.ps";

print F $_[1];

close F;

});

$x-> begin_doc;

$x-> font-> size(30);

$x-> text_out("hello!", 100, 100);

$x-> end_doc;

Description

Realizes the Prima library interface to PostScript level 2 document language. The module is
designed to be compliant with Prima::Drawable interface. All properties’ behavior is as same as
Prima::Drawable’s, except those described below.

Inherited properties

::resolution

Can be set while object is in normal stage - cannot be changed if document is opened.
Applies to fillPattern realization and general pixel-to-point and vice versa calculations

::region

- ::region is not realized (yet?)

Specific properties

::copies

amount of copies that PS interpreter should print

::grayscale

could be 0 or 1

302

::pageSize

physical page dimension, in points

::pageMargins

non-printable page area, an array of 4 integers: left, bottom, right and top margins in points.

::reversed

if 1, a 90 degrees rotated document layout is assumed

::rotate and ::scale

along with Prima::Drawable::translate provide PS-specific transformation matrix manipu-
lations. ::rotate is number, measured in degrees, counter-clockwise. ::scale is array of two
numbers, respectively x- and y-scale. 1 is 100%, 2 is 200% etc.

::useDeviceFonts

1 by default; optimizes greatly text operations, but takes the risk that a character could be
drawn incorrectly or not drawn at all - this behavior depends on a particular PS interpreter.

::useDeviceFontsOnly

If 1, the system fonts, available from Prima::Application interfaces can not be used. It is
designed for developers and the outside-of-Prima applications that wish to use PS generation
module without graphics. If 1, ::useDeviceFonts is set to 1 automatically.

Default value is 0

Internal methods

emit

Can be called for direct PostScript code injection. Example:

$x-> emit(’0.314159 setgray’);

$x-> bar(10, 10, 20, 20);

pixel2point and point2pixel

Helpers for translation from pixel to points and vice versa.

fill & stroke

Wrappers for PS outline that is expected to be filled or stroked. Apply colors, line and fill
styles if necessary.

spool

Prima::PS::Drawable is not responsible for output of generated document, it just calls ::spool
when document is closed through ::end doc. By default just skips data. Prima::PS::Printer
handles spooling logic.

fonts

Returns Prima::Application::font plus those that defined into Prima::PS::Fonts module.

303

7.2 Prima::PS::Encodings

Manage latin-based encodings

Synopsis

use Prima::PS::Encodings;

Description

This module provides code tables for major latin-based encodings, for the glyphs that usually
provided by every PS-based printer or interpreter. Prima::PS::Drawable uses these encodings
when it decides whether the document have to be supplied with a bitmap character glyph or a
character index, thus relying on PS interpreter capabilities. Latter is obviously preferable, but
as it’s not possible to know beforehand what glyphs are supported by PS interpreter, the Latin
glyph set was selected as a ground level.

files

It’s unlikely that users will need to supply their own encodings, however this can be accom-
plished by:

use Prima::PS::Encodings;

$Prima::PS::Encodings::files{iso8859-5} = ’PS/locale/greek-iso’;

fontspecific

The only non-latin encoding currently present is ’Specific’. If any other specific-encoded
fonts are to be added, the encoding string must be added as a key to %fontspecific

load

Loads encoding file by given string. Tries to be smart to guess actual file from identifier
string returned from setlocale(NULL). If fails, loads default encoding, which defines only
glyphs from 32 to 126. Special case is ’null’ encoding, returns array of 256 .notdef’s.

unique

Returns list of Latin-based encoding string unique keys.

304

7.3 Prima::PS::Fonts

PostScript device fonts metrics

Synopsis

use Prima;

use Prima::PS::Fonts;

Description

This module primary use is to be invoked from Prima::PS::Drawable module. Assumed that some
common fonts like Times and Courier are supported by PS interpreter, and it is assumed that
typeface is preserved more-less the same, so typesetting based on font’s a-b-c metrics can be
valid. 35 font files are supplied with 11 font families. Font files with metrics located into ’fonts’
subdirectory.

query metrics($fontName)

Returns font metric hash with requested font data, uses $defaultFontName if give name
is not found. Metric hash is the same as Prima::Types::Font record, plus 3 extra fields:
’docname’ containing font name (equals always to ’name’), ’chardata’ - hash of named
glyphs, ’charheight’ - the height that ’chardata’ is rendered to. Every hash entry in ’chardata’
record contains four numbers - suggested character index and a, b and c glyph dimensions
with height equals ’charheight’.

enum fonts($fontFamily)

Returns font records for given family, or all families perpesented by one member, if no family
name given. If encoding specified, returns only the fonts with the encoding given. Compliant
to Prima::Application::fonts interface.

files & enum families

Hash with paths to font metric files. File names not necessarily should be as font names,
and it is possible to override font name contained in the file just by specifying different
font key - this case will be recognized on loading stage and loaded font structure patched
correspondingly.

Example:

$Prima::PS::Fonts::files{Standard Symbols} = $Prima::PS::Fonts::files{Symbol};

$Prima::PS::Fonts::files{’Device-specific symbols, set 1’} = ’my/devspec/data.1’;

$Prima::PS::Fonts::files{’Device-specific symbols, set 2’} = ’my/devspec/data.2’;

$Prima::PS::Fonts::enum_families{DevSpec} = ’Device-specific symbols, set 1’;

font pick($src, $dest, %options)

Merges two font records using Prima::Drawable::font match, picks the result and returns
new record. $variablePitchName and $fixedPitchName used on this stage.

Options can include the following fields:

- resolution - vertical resolution. The default value is taken from font resolution.

enum family($fontFamily)

Returns font names that are presented in given family

305

7.4 Prima::PS::Printer

PostScript interface to Prima::Printer

Synopsis

use Prima; use Prima::PS::Printer;

Description

Realizes the Prima printer interface to PostScript level 2 document language through
Prima::PS::Drawable module. Allows different user profiles to be created and managed with GUI
setup dialog. The module is designed to be compliant with Prima::Printer interface.

Also contains convenience classes (File, LPR, Pipe) for non-GUI use.

Synopsis

use Prima::PS::Printer;

my $x;

if ($preview) {

$x = Prima::PS::Pipe-> create(command => ’gv -’);

} elsif ($print_in_file) {

$x = Prima::PS::File-> create(file => ’out.ps’);

} else {

$x = Prima::PS::LPR-> create(args => ’-Pcolorprinter’);

}

$x-> begin_doc;

$x-> font-> size(300);

$x-> text_out("hello!", 100, 100);

$x-> end_doc;

Printer options

Below is the list of options supported by options method:

Color STRING

One of : Color, Monochrome

Resolution INTEGER

Dots per inch.

PageSize STRING

One of: Ainteger, Binteger, Executive, Folio, Ledger, Legal, Letter, Tabloid,

US Common #10 Envelope.

Copies INTEGER

Scaling FLOAT

1 is 100%, 1.5 is 150%, etc.

Orientation

One of : Portrait, Landscape.

306

UseDeviceFonts BOOLEAN

If 1, use limited set of device fonts in addition to exported bitmap fonts.

UseDeviceFontsOnly BOOLEAN

If 1, use limited set of device fonts instead of exported bitmap fonts. Its usage may lead to
that some document fonts will be mismatched.

MediaType STRING

An arbitrary string representing special attributes of the medium other than its size, color,
and weight. This parameter can be used to identify special media such as envelopes, letter-
heads, or preprinted forms.

MediaColor STRING

A string identifying the color of the medium.

MediaWeight FLOAT

The weight of the medium in grams per square meter. ”Basis weight” or or null ”ream
weight” in pounds can be converted to grams per square meter by multiplying by 3.76; for
example, 10-pound paper is approximately 37.6 grams per square meter.

MediaClass STRING

(Level 3) An arbitrary string representing attributes of the medium that may require special
action by the output device, such as the selection of a color rendering dictionary. Devices
should use the value of this parameter to trigger such media-related actions, reserving the
MediaType parameter (above) for generic attributes requiring no device-specific action. The
MediaClass entry in the output device dictionary defines the allowable values for this param-
eter on a given device; attempting to set it to an unsupported value will cause a configuration
error.

InsertSheet BOOLEAN

(Level 3) A flag specifying whether to insert a sheet of some special medium directly into
the output document. Media coming from a source for which this attribute is Yes are sent
directly to the output bin without passing through the device’s usual imaging mechanism
(such as the fuser assembly on a laser printer). Consequently, nothing painted on the current
page is actually imaged on the inserted medium.

LeadingEdge BOOLEAN

(Level 3) A value specifying the edge of the input medium that will enter the printing engine
or imager first and across which data will be imaged. Values reflect positions relative to a
canonical page in portrait orientation (width smaller than height). When duplex printing is
enabled, the canonical page orientation refers only to the front (recto) side of the medium.

ManualFeed BOOLEAN

Flag indicating whether the input medium is to be fed manually by a human operator (Yes)
or automatically (No). A Yes value asserts that the human operator will manually feed media
conforming to the specified attributes (MediaColor, MediaWeight, MediaType, MediaClass,
and InsertSheet). Thus, those attributes are not used to select from available media sources
in the normal way, although their values may be presented to the human operator as an
aid in selecting the correct medium. On devices that offer more than one manual feeding
mechanism, the attributes may select among them.

TraySwitch BOOLEAN

(Level 3) A flag specifying whether the output device supports automatic switching of media
sources. When the originally selected source runs out of medium, some devices with multiple

307

media sources can switch automatically, without human intervention, to an alternate source
with the same attributes (such as PageSize and MediaColor) as the original.

MediaPosition STRING

(Level 3) The position number of the media source to be used. This parameter does not
override the normal media selection process described in the text, but if specified it will be
honored - provided it can satisfy the input media request in a manner consistent with normal
media selection - even if the media source it specifies is not the best available match for the
requested attributes.

DeferredMediaSelection BOOLEAN

(Level 3) A flag determining when to perform media selection. If Yes, media will be selected
by an independent printing subsystem associated with the output device itself.

MatchAll BOOLEAN

A flag specifying whether input media request should match to all non-null values - Media-
Color, MediaWeight etc.

308

8 C interface to the toolkit

8.1 Prima::internals

Prima internal architecture

Description

This documents elucidates the internal structures of the Prima toolkit, its loading considerations,
object and class representation and C coding style.

Bootstrap

Initializing

For a perl script, Prima is no more but an average module that uses DynaLoader. As ’use Prima’
code gets executed, a bootstrap procedure boot Prima() is called. This procedure initializes all
internal structures and built-in Prima classes. It also initializes all system-dependent structures,
calling window subsystem init(). After that point Prima module is ready to use. All wrapping
code for built-in functionality that can be seen from perl is located into two modules - Prima::Const
and Prima::Classes.

Constants

Prima defines lot of constants for different purposes (e.g. colors, font styles etc). Prima does not
follow perl naming conventions here, on the reason of simplicity. It is (arguably) easier to write
cl::White rather than Prima::cl::White. As perl constants are functions to be called once (that
means that a constant’s value is not defined until it used first), Prima registers these functions
during boot Prima stage. As soon as perl code tries to get a constant’s value, an AUTOLOAD
function is called, which is binded inside Prima::Const. Constants are widely used both in C and
perl code, and are defined in apricot.h in that way so perl constant definition comes along with C
one. As an example file event constants set is described here.

apricot.h:

#define FE(const_name) CONSTANT(fe,const_name)

START_TABLE(fe,UV)

#define feRead 1

FE(Read)

#define feWrite 2

FE(Write)

#define feException 4

FE(Exception)

END_TABLE(fe,UV)

#undef FE

309

Const.pm:

package fe; *AUTOLOAD = \&Prima::Const::AUTOLOAD;

This code creates a structure of UV’s (unsigned integers) and a register fe constants() func-
tion, which should be called at boot Prima stage. This way feRead becomes C analog to fe::Read
in perl.

Classes and methods

Virtual method tables

Prima implementation of classes uses virtual method tables, or VMTs, in order to make the classes
inheritable and their methods overrideable. The VMTs are usual C structs, that contain pointers
to functions. Set of these functions represents a class. This chapter is not about OO programming,
you have to find a good book on it if you are not familiar with the OO concepts, but in short,
because Prima is written in C, not in C++, it uses its own classes and objects implementation,
so all object syntax is devised from scratch.

Built-in classes already contain all information needed for method overloading, but when a new
class is derived from existing one, new VMT is have to be created as well. The actual sub-classing is
performed inside build dynamic vmt() and build static vmt(). gimme the vmt() function creates
new VMT instance on the fly and caches the result for every new class that is derived from Prima
class.

C to Perl and Perl to C calling routines

Majority of Prima methods is written in C using XS perl routines, which represent a natural (
from a perl programmer’s view) way of C to Perl communication. perlguts manpage describes
these functions and macros.

NB - Do not mix XS calls to xs language (perlxs manpage) - the latter is a meta-language for
simplification of coding tasks and is not used in Prima implementation.

It was decided not to code every function with XS calls, but instead use special wrapper
functions (also called ”thunks”) for every function that is called from within perl. Thunks are
generated automatically by gencls tool (the gencls section manpage), and typical Prima method
consists of three functions, two of which are thunks.

First function, say Class init(char*), would initialize a class (for example). It is written fully
in C, so in order to be called from perl code a registration step must be taken for a second function,
Class init FROMPERL(), that would look like

newXS("Prima::Class::init", Class_init_FROMPERL, "Prima::Class");

Class init FROMPERL() is a first thunk, that translates the parameters passed from perl to
C and the result back from C function to perl. This step is almost fully automatized, so one never
bothers about writing XS code, the gencls utility creates the thunks code automatically.

Many C methods are called from within Prima C code using VMTs, but it is possible to
override these methods from perl code. The actions for such a situation when a function is called
from C but is an overridden method therefore must be taken. On that occasion the third function
Class init REDEFINED() is declared. Its task is a reverse from Class init FROMPERL() - it
conveys all C parameters to perl and return values from a perl function back to C. This thunk is
also generated automatically by gencls tool.

As one can notice, only basic data types can be converted between C and perl, and at some
point automated routines do not help. In such a situation data conversion code is written manually
and is included into core C files. In the class declaration files these methods are prepended with
’public’ or ’weird’ modifiers, when methods with no special data handling needs use ’method’ or
’static’ modifiers.

NB - functions that are not allowed to be seen from perl have ’c only’ modifier, and therefore
do not need thunk wrapping. These functions can nevertheless be overridden from C.

310

Built-in classes

Prima defines the following built-in classes: (in hierarchy order)

Object

Component

AbstractMenu

AccelTable

Menu

Popup

Clipboard

Drawable

DeviceBitmap

Printer

Image

Icon

File

Timer

Widget

Application

Window

These classes can be seen from perl with Prima:: prefix. Along with these, Utils class is defined.
Its only difference is that it cannot be used as a prototype for an object, and used merely as a
package that binds functions. Classes that are not intended to be an object prototype marked
with ’package’ prefix, when others are marked with ’object’ (see prima-gencls manpage).

Objects

This chapter deals only with Prima::Object descendants, pure perl objects are not of interest here,
so the ’object’ term is thereafter referenced to Prima::Object descendant object. Prima employs
blessed hashes for its objects.

Creation

All built-in object classes and their descendants can be used for creating objects with perl se-
mantics. Perl objects are created by calling bless(), but it is not enough to create Prima objects.
Every Prima::Object descendant class therefore is equipped with create() method, that allocates
object instance and calls bless() itself. Parameters that come with create() call are formed into a
hash and passed to init() method, that is also present on every object. Note the fact that although
perl-coded init() returns the hash, it not seen in C code. This is a special consideration for the
methods that have ’HV * profile’ as a last parameter in their class declaration. The corresponding
thunk copies the hash content back to perl stack, using parse hv() and push hv() functions.

Objects can be created from perl by using following code example:

$obj = Prima::SampleObject-> create(

name => "Sample",

index => 10,

);

and from C:

Handle obj;

HV * profile = newHV();

pset_c(name, "Sample");

pset_i(index, 10);

311

obj = Object_create("SampleObject", profile);

sv_free((SV*) profile);

Convenience pset XX macros assign a value of XX type to the hash key given as a first pa-
rameter, to a hash variable named profile. pset i works with integers, pset c - with strings,
etc.

Destruction

As well as create() method, every object class has destroy() method. Object can be destroyed
either from perl

$obj-> destroy

or from C

Object_destroy(obj);

An object can be automatically destroyed when its reference count reaches 0. Note that the
auto destruction would never happen if the object’s reference count is not lowered after its creation.
The code

--SvREFCNT(SvRV(PAnyObject(object)-> mate));

is required if the object is to be returned to perl. If that code is not called, the object still
could be destroyed explicitly, but its reference would still live, resulting in memory leak problem.

For user code it is sufficient to overload done() and/or cleanup() methods, or just onDestroy
notifications. It is highly recommended to avoid overloading destroy method, since it can be called
in re-entrant fashion. When overloading done(), be prepared that it may be called inside init(),
and deal with the semi-initialized object.

Data instance

All object data after their creation represent an object instance. All Prima objects are blessed
hashes, and the hash key CMATE holds a C pointer to a memory which is occupied by C
data instance, or a ”mate”. It keeps all object variables and a pointer to VMT. Every object
has its own copy of data instance, but the VMTs can be shared. In order to reach to C data
instance gimme the mate() function is used. As a first parameter it accepts a scalar (SV*), which
is expected to be a reference to a hash, and returns the C data instance if the scalar is a Prima
object.

Object life stages

It was decided to divide object life stage in several steps. Every stage is mirrored into
PObject(self)-> stage integer variable, which can be one of csXXX constants. Currently it has
six:

csConstructing

Initial stage, is set until create() is finished. Right after init() is completed, setup() method
is called.

csNormal

After create() is finished and before destroy() started. If an object is csNormal and csCon-
structing stage, Object alive() result would be non-zero.

csDestroying

destroy() started. This stage includes calling of cleanup() and done() routines.

312

csFrozen

cleanup() started.

csFinalizing

done() started

csDead

Destroy finished

Coding techniques

Accessing object data

C coding has no specific conventions, except when a code is an object method. Object syntax for
accessing object instance data is also fairly standard. For example, accessing component’s field
called ’name’ can be done in several ways:

((PComponent) self)-> name; // classic C

PComponent(self)-> name; // using PComponent() macro from apricot.h

var-> name; // using local var() macro

Object code could to be called also in several ways:

(((PComponent) self)-> self)-> get_name(self); // classic C

CComponent(self)-> get_name(self); // using CComponent() macro from apricot.h

my-> get_name(self); // using local my() macro

This calling is preferred, comparing to direct call of Component get name(), primarily because
get name() is a method and can be overridden from user code.

Calling perl code

call perl indirect() function accepts object, its method name and parameters list with parameter
format string. It has several wrappers for easier use, which are:

call_perl(Handle self, char * method, char * format, ...)

sv_call_perl(SV * object, char * method, char * format, ...)

cv_call_perl(SV * object, SV * code_reference, char * format, ...)

each character of format string represents a parameters type, and characters can be:

’i’ - integer

’s’ - char *

’n’ - float

’H’ - Handle

’S’ - SV *

’P’ - Point

’R’ - Rect

The format string can be prepended with ’<’ character, in which case SV * scalar (always
scalar, even if code returns nothing or array) value is returned. The caller is responsible for
freeing the return value.

313

Exceptions

As descriped in perlguts manpage, G EVAL flag is used in perl call sv() and perl call method() to
indicate that an eventual exception should never be propagated automatically. The caller checks
if the exception was taken place by evaluating

SvTRUE(GvSV(errgv))

statement. It is guaranteed to be false if there was no exception condition. But in some
situations, namely, when no perl call * functions are called or error value is already assigned
before calling code, there is a wrapping technique that keeps previous error message and looks
like:

dG_EVAL_ARGS; // define arguments

....

OPEN_G_EVAL; // open brackets

// call code

perl_call_method(... | G_EVAL); // G_EVAL is necessary

if (SvTRUE(GvSV(errgv)) {

CLOSE_G_EVAL; // close brackets

croak(SvPV_nolen(GvSV(errgv)));// propagate exception

// no code is executed after croak

}

CLOSE_G_EVAL; // close brackets

...

This technique provides workaround to a ”false alarm” situation, if SvTRUE(GvSV(errgv))
is true before perl call method().

Object protection

After the object destroy stage is completed, it is possible that object’s data instance is gone,
and even simple stage check might cause segmentation fault. To avoid this, bracketing functions
called protect object() and unprotect object() are used. protect object() increments refer-
ence count to the object instance, thus delaying its freeing until decrementing unprotect object()
is called.

All C code that references to an object must check for its stage after every routine that switches
to perl code, because the object might be destroyed inside the call. Typical code example would
be like:

function(Handle object) {

int stage;

protect_object(object);

// call some perl code

perl_call_method(object, "test", ...);

stage = PObject(object)-> stage;

unprotect_object(object);

if (stage == csDead) return;

// proceed with the object

}

Usual C code never checks for object stage before the call, because gimme the mate() function
returns NULL if object’s stage is csDead, and majority of Prima C code is prepended with this
call, thus rejecting invalid references on early stage. If it is desired to get the C mate for objects
that are in csDead stage, use gimme the real mate() function instead.

314

init

Object’s method init() is responsible for setting all its initial properties to the object, but all code
that is executed inside init must be aware that the object’s stage is csConstructing. init() consists
of two parts: calling of ancestor’s init() and setting properties. Examples are many in both C and
perl code, but in short it looks like:

void

Class_init(Handle self, HV * profile)

{

inherited init(self, profile);

my-> set_index(pget_i(index));

my-> set_name(pget_c(name));

}

pget XX macros call croak() if the profile key is not present into profile, but the mechanism
guarantees that all keys that are listed in profile default() are conveyed to init(). For explicit
checking of key presence pexists() macro is used, and pdelete() is used for key deletion, although
is it not recommended to use pdelete() inside init().

Object creation and returning

As described is previous sections, there are some precautions to be taken into account when an
object is created inside C code. A piece of real code from DeviceBitmap.c would serve as an
example:

static

Handle xdup(Handle self, char * className)

{

Handle h;

Point s;

PDrawable i;

// allocate a parameters hash

HV * profile = newHV();

// set all necessary arguments

pset_H(owner, var-> owner);

pset_i(width, var-> w);

pset_i(height, var-> h);

pset_i(type, var-> monochrome ? imBW : imRGB);

// create object

h = Object_create(className, profile);

// free profile, do not need it anymore

sv_free((SV *) profile);

i = (PDrawable) h;

s = i-> self-> get_size(h);

i-> self-> begin_paint(h);

i-> self-> put_image_indirect(h, self, 0, 0, 0, 0, s.x, s.y, s.x, s.y, ropCopyPut);

i-> self-> end_paint(h);

// decrement reference count

--SvREFCNT(SvRV(i-> mate));

return h;

}

315

Note that all code that would use this xdup(), have to increase and decrease object’s reference
count if some perl functions are to be executed before returning object to perl, otherwise it might
be destroyed before its time.

Handle x = xdup(self, "Prima::Image");

++SvREFCNT(SvRV(PAnyObject(x)-> mate)); // Code without these

CImage(x)-> type(x, imbpp1);

--SvREFCNT(SvRV(PAnyObject(x)-> mate)); // brackets is unsafe

return x;

Attaching objects

The newly created object returned from C would be destroyed due perl’s garbage cleaning mech-
anism right away, unless the object value would be assigned to a scalar, for example.

Thus

$c = Prima::Object-> create();

and Prima::Object-> create;
have different results. But for some classes, namely Widget ant its descendants, and also

for Timer, AbstractMenu, Printer and Clipboard the code above would have same result - the
objects would not be killed. That is because these objects call Component attach() during init-
stage, automatically increasing their reference count. Component attach() and its reverse Compo-
nent detach() account list of objects, attributed to each other. Object can be attached to multiple
objects, but cannot be attached more that once to another object.

Notifications

All Prima::Component descendants are equipped with the mechanism that allows multiple user
callbacks routines to be called on different events. This mechanism is used heavily in event-driven
programming. Component notify() is used to call user notifications, and its format string has same
format as accepted by perl call indirect(). The only difference that it always has to be prepended
with ’<s’, - this way the call success flag is set, and first parameter have to be the name of the
notification.

Component_notify(self, "<sH", "Paint", self);

Component_notify(self, "<sPii", "MouseDown", self, point, int, int);

Notifications mechanism accounts the reference list, similar to attach-detach mechanism, be-
cause all notifications can be attributed to different objects. The membership in this list does not
affect the reference counting.

Multiple property setting

Prima::Object method set() is designed to assign several properties at one time. Sometimes it is
more convenient to write

$c-> set(index => 10, name => "Sample");

than to invoke several methods one by one. set() performs this calling itself, but for performance
reasons it is possible to overload this method and code special conditions for multiple assignment.
As an example, Prima::Image type conversion code is exemplified:

void

Image_set(Handle self, HV * profile)

{

316

...

if (pexist(type))

{

int newType = pget_i(type);

if (!itype_supported(newType))

warn("RTC0100: Invalid image type requested (%08x) in Image::set_type",

newType);

else

if (!opt_InPaint)

my-> reset(self, newType, pexist(palette) ?

pget_sv(palette) : my->get_palette(self));

pdelete(palette);

pdelete(type);

}

...

inherited set (self, profile);

}

If type conversion is performed along with palette change, some efficiency is gained by supplying
both ’type’ and ’palette’ parameters at a time. Moreover, because ordering of the fields is not
determined by default (although that be done by supplying ’ ORDER ’ hash key to set() }, it
can easily be discovered that

$image-> type($a);

$image-> palette($b);

and

$image-> palette($b);

$image-> type($a);

produce different results. Therefore it might be only solution to code Class set() explicitly.
If it is desired to specify exact order how atomic properties have to be called, ORDER

anonymous array have to be added to set() parameters.

$image-> set(

owner => $xxx,

type => 24,

__ORDER__ => [qw(type owner)],

);

API reference

Variables

primaObjects, PHash

Hash with all prima objects, where keys are their data instances

application, Handle

Pointer to an application. There can be only one Application instance at a time, or none at
all.

317

Macros and functions

dG EVAL ARGS

Defines variable for $@ value storage

OPEN G EVAL, CLOSE G EVAL

Brackets for exception catching

build static vmt

Bool(void * vmt)

Caches pre-built VMT for further use

build dynamic vmt

Bool(void * vmt, char * ancestorName, int ancestorVmtSize)

Creates a subclass from vmt and caches result under ancestorName key

gimme the vmt

PVMT(const char *className);

Returns VMT pointer associated with class by name.

gimme the mate

Handle(SV * perlObject)

Returns a C pointer to an object, if perlObject is a reference to a Prima object. returns
nilHandle if object’s stage is csDead

gimme the real mate

Handle(SV * perlObject)

Returns a C pointer to an object, if perlObject is a reference to a Prima object. Same as
gimme the mate, but does not check for the object stage.

alloc1

alloc1(type)

To be used instead (type*)(malloc(sizeof(type))

allocn

allocn(type,n)

To be used instead (type*)(malloc((n)*sizeof(type))

alloc1z

Same as alloc1 but fills the allocated memory with zeros

allocnz

Same as allocn but fills the allocated memory with zeros

318

prima mallocz

Same as malloc() but fills the allocated memory with zeros

prima hash create

PHash(void)

Creates an empty hash

prima hash destroy

void(PHash self, Bool killAll);

Destroys a hash. If killAll is true, assumes that every value in the hash is a dynamic memory
pointer and calls free() on each.

prima hash fetch

void*(PHash self, const void *key, int keyLen);

Returns pointer to a value, if found, nil otherwise

prima hash delete

void*(PHash self, const void *key, int keyLen, Bool kill);

Deletes hash key and returns associated value. if kill is true, calls free() on the value and
returns nil.

prima hash store

void(PHash self, const void *key, int keyLen, void *val);

Stores new value into hash. If the key is already present, old value is overwritten.

prima hash count

int(PHash self)

Returns number of keys in the hash

prima hash first that

void * (PHash self, void *action, void *params, int *pKeyLen, void **pKey);

Enumerates all hash entries, calling action procedure on each. If the action procedure returns
true, enumeration stops and the last processed value is returned. Otherwise nil is returned.
action have to be function declared as

Bool action_callback(void * value, int keyLen, void * key, void * params);

params is a pointer to an arbitrary user data

kind of

Bool(Handle object, void *cls);

319

Returns true, if the object is an exemplar of class cls or its descendant

PERL CALL METHOD, PERL CALL PV

To be used instead of perl call method and perl call pv, described in perlguts manpage.
These functions aliased to a code with the workaround of perl bug which emerges when
G EVAL flag is combined with G SCALAR.

eval

SV *(char *string)

Simplified perl eval pv() call.

sv query method

CV * (SV * object, char *methodName, Bool cacheIt);

Returns perl pointer to a method searched by a scalar and a name If cacheIt true, caches
the hierarchy traverse result for a speedup.

query method

CV * (Handle object, char *methodName, Bool cacheIt);

Returns perl pointer to a method searched by an object and a name If cacheIt true, caches
the hierarchy traverse result for a speedup.

call perl indirect

SV * (Handle self, char *subName, const char *format, Bool cdecl,

Bool coderef, va_list params);

Core function for calling Prima methods. Is used by the following three functions, but is
never called directly. Format is described in Calling perl code section.

call perl

SV * (Handle self, char *subName, const char *format, ...);

Calls method of an object pointer by a Handle

sv call perl

SV * (SV * mate, char *subName, const char *format, ...);

Calls method of an object pointed by a SV*

cv call perl

SV * (SV * mate, Sv * coderef, const char *format, ...);

Calls arbitrary perl code with mate as first parameter. Used in notifications mechanism.

Object create

Handle(char * className, HV * profile);

320

Creates an exemplar of className class with parameters in profile. Never returns nilHandle,
throws an exception instead.

create object

void*(const char *objClass, const char *format, ...);

Convenience wrapper to Object create. Uses format specification that is described in
Calling perl code.

create instance

Handle(const char * className)

Convenience call to Object create with parameters in hash ’profile’.

Object destroy

void(Handle self);

Destroys object. One of few Prima function that can be called in re-entrant fashion.

Object alive

void(Handle self);

Returns non-zero is object is alive, 0 otherwise. In particular, current implementation returns
1 if object’s stage is csNormal and 2 if it is csConstructing. Has virtually no use in C, only
used in perl code.

protect object

void(Handle obj);

restricts object pointer from deletion after Object destroy(). Can be called several times on
an object. Increments Object. protectCount.

unprotect object

void(Handle obj);

Frees object pointer after Object. protectCount hits zero. Can be called several times on an
object.

parse hv

HV *(I32 ax, SV **sp, I32 items, SV **mark, int expected, const char *methodName);

Transfers arguments in perl stack to a newly created HV and returns it.

push hv

void (I32 ax, SV **sp, I32 items, SV **mark, int callerReturns, HV *hv);

Puts all hv contents back to perl stack.

push hv for REDEFINED

321

SV **(SV **sp, HV *hv);

Puts hv content as arguments to perl code to be called

pop hv for REDEFINED

int (SV **sp, int count, HV *hv, int shouldBe);

Reads result of executed perl code and stores them into hv.

pexist

Bool(char*key)

Return true if a key is present into hash ’profile’

pdelete

void(char*key)

Deletes a key in hash ’profile’

pget sv, pget i, pget f, pget c, pget H, pget B

TYPE(char*key)

Returns value of (SV*, int, float, char*, Handle or Bool) that is associated to a key in hash
’profile’. Calls croak() if the key is not present.

pset sv, pset i, pset f, pset c, pset H

void(char*key, TYPE value)

Assigns a value to a key in hash ’profile’ and increments reference count to a newly created
scalar.

pset b

void(char*key, void* data, int length)

Assigns binary data to a key in hash ’profile’ and increments reference count to a newly
created scalar.

pset sv noinc

void(char* key, SV * sv)

Assigns scalar value to a key in hash ’profile’ without reference count increment.

duplicate string

char*(const char *)

Returns copy of a string

list create

void (PList self, int size, int delta);

322

Creates a list instance with a static List structure.

plist create

PList(int size, int delta);

Created list instance and returns newly allocated List structure.

list destroy

void(PList self);

Destroys list data.

plist destroy

void (PList self);

Destroys list data and frees list instance.

list add

int(PList self, Handle item);

Adds new item into a list, returns its index or -1 on error.

list insert at

int (PList self, Handle item, int pos);

Inserts new item into a list at a given position, returns its position or -1 on error.

list at

Handle (PList self, int index);

Returns items that is located at given index or nilHandle if the index is out of range.

list delete

void(PList self, Handle item);

Removes the item from list.

list delete at

void(PList self, int index);

Removes the item located at given index from a list.

list delete all

void (PList self, Bool kill);

Removes all items from the list. If kill is true, calls free() on every item before.

list first that

323

int(PList self, void * action, void * params);

Enumerates all list entries, calling action procedure on each. If action returns true, enumer-
ation stops and the index is returned. Otherwise -1 is returned. action have to be a function
declared as

Bool action_callback(Handle item, void * params);

params is a pointer to an arbitrary user data

list index of

int(PList self, Handle item);

Returns index of an item, or -1 if the item is not in the list.

324

8.2 Prima::codecs

How to write a codec for Prima image subsystem

Description

How to write a codec for Prima image subsystem

Start simple

There are many graphical formats in the world, and yet more libraries, that depend on them.
Writing a codec that supports particular library is a tedious task, especially if one wants many
formats. Usually you never want to get into internal parts, the functionality comes first, and
who needs all those funky options that format provides? We want to load a file and to show it.
Everything else comes later - if ever. So, in a way to not scare you off, we start it simple.

Load

Define a callback function like:

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

}

Just that function is not enough for whole mechanism to work, but bindings will come later.
Let us imagine we work with an imaginary library libduff, that we want to load files of .duf format.
[To discern imaginary code from real, imaginary will be prepended with - like, libduff loadfile
]. So, we call libduff loadfile(), that loads black-and-white, 1-bits/pixel images, where 1 is white
and 0 is black.

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

_LIBDUFF * _l = _libduff_load_file(fi-> fileName);

if (!_l) return false;

// - create storage for our file

CImage(fi-> object)-> create_empty(fi-> object,

_l-> width, _l-> height, imBW);

// Prima wants images aligned to 4-bytes boundary,

// happily libduff has same considerations

memcpy(PImage(fi-> object)-> data, _l-> bits,

PImage(fi-> object)-> dataSize);

_libduff_close_file(_l);

return true;

}

Prima keeps an open handle of the file; so we can use it if libduff trusts handles vs names:

{

_LIBDUFF * _l = _libduff_load_file_from_handle(fi-> f);

...

// In both cases, you don’t need to close the handle -

// however you might, it is ok:

325

_libduff_close_file(_l);

fclose(fi-> f);

// You just assign it to null to indicate that you’ve closed it

fi-> f = null;

...

}

Together with load() you have to implement minimal open load() and close load().
Simplest open load() returns non-null pointer - it is enough to report ’o.k’

static void *

open_load(PImgCodec instance, PImgLoadFileInstance fi)

{

return (void*)1;

}

Its result will be available in PImgLoadFileInstance-> instance, just in case. If it was
dynamically allocated, free it in close load(). Dummy close load() is doing simply nothing:

static void

close_load(PImgCodec instance, PImgLoadFileInstance fi)

{

}

Writing to PImage-> data

As mentioned above, Prima insists on keeping its image data in 32-bit aligned scanlines. If libduff
allows reading from file by scanlines, we can use this possibility as well:

PImage i = (PImage) fi-> object;

// note - since this notation is more convenient than

// PImage(fi-> object)-> , instead i-> will be used

Byte * dest = i-> data + (_l-> height - 1) * i-> lineSize;

while (_l-> height--) {

_libduff_read_next_scanline(_l, dest);

dest -= i-> lineSize;

}

Note that image is filled in reverse - Prima images are built like classical XY-coordinate grid,
where Y ascends upwards.

Here ends the simple part. You can skip down to the Registering with image subsystem entry
part, if you want it fast.

Single-frame loading

Palette

Our libduff can be black-and-white in two ways - where 0 is black and 1 is white and vice versa.
While 0B/1W is perfectly corresponding to imbpp1 | imGrayScale and no palette operations are
needed (Image cares automatically about these), 0W/1B is although black-and-white grayscale
but should be treated like general imbpp1 type.

if (l-> _reversed_BW) {

i-> palette[0].r = i-> palette[0].g = i-> palette[0].b = 0xff;

i-> palette[1].r = i-> palette[1].g = i-> palette[1].b = 0;

}

326

NB. Image creates palette with size calculated by exponent of 2, since it can’t know beforehand
of the actual palette size. If color palette for, say, 4-bit image contains 15 of 16 possible for 4-bit
image colors, code like

i-> palSize = 15;

does the trick.

Data conversion

As mentioned before, Prima defines image scanline size to be aligned to 32 bits, and the formula
for lineSize calculation is

lineSize = ((width * bits_per_pixel + 31) / 32) * 4;

Prima defines number of converting routines between different data formats. Some of them
can be applied to scanlines, and some to whole image (due sampling algorithms). These are
defined in img conv.h, and probably ones that you’ll need would be bc format1 format2, which
work on scanlines and probably ibc repad, which combines some bc XX XX with byte repadding.

For those who are especially lucky, some libraries do not check between machine byte format
and file byte format. Prima unfortunately doesn’t provide easy method for determining this
situation, but you have to convert your data in appropriate way to keep picture worthy of its
name. Note the BYTEORDER symbol that is defined (usually) in sys/types.h

Load with no data

If a high-level code just needs image information rather than all its bits, codec can provide it in a
smart way. Old code will work, but will eat memory and time. A flag PImgLoadFileInstance->

noImageData is indicating if image data is needed. On that condition, codec needs to report only
dimensions of the image - but the type must be set anyway. Here comes full code:

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

_LIBDUFF * _l = _libduff_load_file(fi-> fileName);

HV * profile = fi-> frameProperties;

PImage i = (PImage) fi-> frameProperties;

if (!_l) return false;

CImage(fi-> object)-> create_empty(fi-> object, 1, 1,

_l-> _reversed_BW ? imbpp1 : imBW);

// copy palette, if any

if (_l-> _reversed_BW) {

i-> palette[0].r = i-> palette[0].g = i-> palette[0].b = 0xff;

i-> palette[1].r = i-> palette[1].g = i-> palette[1].b = 0;

}

if (fi-> noImageData) {

// report dimensions

pset_i(width, _l-> width);

pset_i(height, _l-> height);

return true;

}

327

// - create storage for our file

CImage(fi-> object)-> create_empty(fi-> object,

_l-> width, _l-> height,

_l-> _reversed_BW ? imbpp1 : imBW);

// Prima wants images aligned to 4-bytes boundary,

// happily libduff has same considerations

memcpy(PImage(fi-> object)-> data, _l-> bits,

PImage(fi-> object)-> dataSize);

_libduff_close_file(_l);

return true;

}

The newly introduced macro pset i is a convenience operator, assigning integer (i) as a value
to a hash key, given as a first parameter - it becomes string literal upon the expansion. Hash used
for storage is a lexical of type HV*. Code

HV * profile = fi-> frameProperties;

pset_i(width, _l-> width);

is a prettier way for

hv_store(

fi-> frameProperties,

"width", strlen("width"),

newSViv(_l-> width),

0);

hv store(), HV’s and SV’s along with other funny symbols are described in perlguts.pod in
Perl installation.

Return extra information

Image attributes are dimensions, type, palette and data. However, it is only Prima point of view
- different formats can supply number of extra information, often irrelevant but sometimes useful.
From perl code, Image has a hash reference ’extras’ on object, where comes all this stuff. Codec can
report also such data, storing it in PImgLoadFileInstance-> frameProperties. Data should be
stored in native perl format, so if you’re not familiar with perlguts, you better read it, especially
if you want return arrays and hashes. But just in simple, you can return:

1. integers: pset i(integer, l-> integer);

2. floats: pset f(float, l-> float);

3. strings: pset c(string, l-> charstar); - note - no malloc codec from you required

4. prima objects: pset H(Handle, l-> primaHandle);

5. SV’s: pset sv noinc(scalar, newSVsv(sv));

6. hashes: pset sv noinc(scalar, (SV *) newHV()); - hashes created through newHV() can be
filled just in the same manner as described here

7. arrays: pset sv noinc(scalar, (SV *) newAV()); - arrays (AV) are described in perlguts also,
but most useful function here is av push. To push 4 values, for example, follow this code:

328

AV * av = newAV();

for (i = 0;i < 4;i++) av_push(av, newSViv(i));

pset_sv_noinc(myarray, newRV_noinc((SV *) av);

is a C equivalent to

->{extras}-> {myarray} = [0,1,2,3];

High level code can specify if the extra information should be loaded. This behavior is deter-
mined by flag PImgLoadFileInstance-> loadExtras. Codec may skip this flag, the extra infor-
mation will not be returned, even if PImgLoadFileInstance-> frameProperties was changed.
However, it is advisable to check for the flag, just for an efficiency. All keys, possibly assigned to
frameProperties should be enumerated for high-level code. These strings should be represented
into char ** PImgCodecInfo-> loadOutput array.

static char * loadOutput[] = {

"hotSpotX",

"hotSpotY",

nil

};

static ImgCodecInfo codec_info = {

...

loadOutput

};

static void *

init(PImgCodecInfo * info, void * param)

{

*info = &codec_info;

...

}

The code above is taken from codec X11.c, where X11 bitmap can provide location of hot spot,
two integers, X and Y. The type of the data is not specified.

Loading to icons

If high-level code wants an Icon instead of an Image, Prima takes care for producing and-mask
automatically. However, if codec knows explicitly about transparency mask stored in a file, it
might change object in the way it fits better. Mask is stored on Icon in a -> mask field.

a) Let us imagine, that 4-bit image always carries a transparent color index, in 0-15 range. In
this case, following code will create desirable mask:

if (kind_of(fi-> object, CIcon) &&

(_l-> transparent >= 0) &&

(_l-> transparent < PIcon(fi-> object)-> palSize)) {

PRGBColor p = PIcon(fi-> object)-> palette;

p += _l-> transparent;

PIcon(fi-> object)-> maskColor = ARGB(p->r, p-> g, p-> b);

PIcon(fi-> object)-> autoMasking = amMaskColor;

}

Of course,

pset_i(transparentColorIndex, _l-> transparent);

329

would be also helpful.
b) if explicit bit mask is given, code will be like:

if (kind_of(fi-> object, CIcon) &&

(_l-> maskData >= 0)) {

memcpy(PIcon(fi-> object)-> mask, _l-> maskData, _l-> maskSize);

PIcon(fi-> object)-> autoMasking = amNone;

}

Note that mask is also subject to LSB/MSB and 32-bit alignment issues. Treat it as a regular
imbpp1 data format.

c) A format supports transparency information, but image does not contain any. In this case
no action is required on the codec’s part; the high-level code specifies if the transparency mask is
created (iconUnmask field).

open load() and close load()

open load() and close load() are used as brackets for load requests, and although they come to
full power in multiframe load requests, it is very probable that correctly written codec should use
them. Codec that assigns false to PImgCodecInfo-> canLoadMultiple claims that it cannot
load those images that have index different from zero. It may report total amount of frames,
but still be incapable of loading them. There is also a load sequence, called null-load, when no
load() calls are made, just open load() and close load(). These requests are made in case codec
can provide some file information without loading frames at all. It can be any information, of
whatever kind. It have to be stored into the hash PImgLoadFileInstance-> fileProperties,
to be filled once on open load(). The only exception is PImgLoadFileInstance-> frameCount,
which can be filled on open load(). Actually, frameCount could be filled on any load stage, except
close load(), to make sense in frame positioning. Even single frame codec is advised to fill this
field, at least to tell whether file is empty (frameCount == 0) or not (frameCount == 1). More
about frameCount comes into chapters dedicated to multiframe requests. For strictly single-frame
codecs it is therefore advised to care for open load() and close load().

Load input

So far codec is expected to respond for noImageData hint only, and it is possible to allow a high-
level code to alter codec load behavior, passing specific parameters. PImgLoadFileInstance->

profile is a hash, that contains these parameters. The data that should be applied to all frames
and/or image file are set there when open load() is called. These data, plus frame-specific keys
passed to every load() call. However, Prima passes only those hash keys, which are returned
by load defaults() function. This functions returns newly created (by calling newHV()) hash,
with accepted keys and their default (and always valid) value pairs. Example below defines
speed vs memory integer value, that should be 0, 1 or 2.

static HV *

load_defaults(PImgCodec c)

{

HV * profile = newHV();

pset_i(speed_vs_memory, 1);

return profile;

}

...

static Bool

load(PImgCodec instance, PImgLoadFileInstance fi)

{

...

330

HV * profile = fi-> profile;

if (pexist(speed_vs_memory)) {

int speed_vs_memory = pget_i(speed_vs_memory);

if (speed_vs_memory < 0 || speed_vs_memory > 2) {

strcpy(fi-> errbuf, "speed_vs_memory should be 0, 1 or 2");

return false;

}

_libduff_set_load_optimization(speed_vs_memory);

}

}

The latter code chunk can be applied to open load() as well.

Returning an error

Image subsystem defines no severity gradation for codec errors. If error occurs during load, codec
returns false value, which is null on open load() and false on load. It is advisable to explain
the error, otherwise the user gets just ”Loading error” string. To do so, error message is to be
copied to PImgLoadFileInstance-> errbuf, which is char[256]. On an extreme severe error
codec may call croak(), which jumps to the closest G EVAL block. If there is no G EVAL blocks
then program aborts. This condition could also happen if codec calls some Prima code that issues
croak(). This condition is untrappable, - at least without calling perl functions. Understanding
that that behavior is not acceptable, it is still under design.

Multiple-frame load

In order to indicate that a codec is ready to read multiframe images, it must set PImgCodecInfo->
canLoadMultiple flag to true. This only means, that codec should respond to the
PImgLoadFileInstance-> frame field, which is integer that can be in range from 0 to
PImgLoadFileInstance-> frameCount - 1. It is advised that codec should change the frame-
Count from its original value -1 to actual one, to help Prima filter range requests before they
go down to the codec. The only real problem that may happen to the codec which it strongly
unwilling to initialize frameCount, is as follows. If a loadAll request was made (corresponding
boolean PImgLoadFileInstance-> loadAll flag is set for codec’s information) and frameCount
is not initialized, then Prima starts loading all frames, incrementing frame index until it receives
an error. Assuming the first error it gets is an EOF, it reports no error, so there’s no way for a
high-level code to tell whether there was an loading error or an end-of-file condition. Codec may
initialize frameCount at any time during open load() or load(), even together with false return
value.

Saving

Approach for handling saving requests is very similar to a load ones. For the same reason and
with same restrictions functions save defaults() open save(), save() and close save() are defined.
Below shown a typical saving code and highlighted differences from load. As an example we’ll
take existing codec X11.c, which defines extra hot spot coordinates, x and y.

static HV *

save_defaults(PImgCodec c)

{

HV * profile = newHV();

pset_i(hotSpotX, 0);

pset_i(hotSpotY, 0);

return profile;

}

331

static void *

open_save(PImgCodec instance, PImgSaveFileInstance fi)

{

return (void*)1;

}

static Bool

save(PImgCodec instance, PImgSaveFileInstance fi)

{

PImage i = (PImage) fi-> object;

Byte * l;

...

fprintf(fi-> f, "#define %s_width %d\n", name, i-> w);

fprintf(fi-> f, "#define %s_height %d\n", name, i-> h);

if (pexist(hotSpotX))

fprintf(fi-> f, "#define %s_x_hot %d\n", name, (int)pget_i(hotSpotX));

if (pexist(hotSpotY))

fprintf(fi-> f, "#define %s_y_hot %d\n", name, (int)pget_i(hotSpotY));

fprintf(fi-> f, "static char %s_bits[] = {\n ", name);

...

// printing of data bytes is omitted

}

static void

close_save(PImgCodec instance, PImgSaveFileInstance fi)

{

}

Save request takes into account defined supported types, that are defined in PImgCodecInfo->

saveTypes. Prima converts image to be saved into one of these formats, before actual save() call
takes place. Another boolean flag, PImgSaveFileInstance-> append is summoned to govern
appending to or rewriting a file, but this functionality is under design. Its current value is a hint,
if true, for a codec not to rewrite but rather append the frames to an existing file. Due to increased
complexity of the code, that should respond to the append hint, this behavior is not required.

Codec may set two of PImgCodecInfo flags, canSave and canSaveMultiple. Save requests
will never be called if canSave is false, and append requests along with multiframe save requests
would be never invoked for a codec with canSaveMultiple set to false. Scenario for a multiframe
save request is the same as for a load one. All the issues concerning palette, data converting
and saving extra information are actual, however there’s no corresponding flag like loadExtras
- codec is expected to save all information what it can extract from PImgSaveFileInstance->

objectExtras hash.

Registering with image subsystem

Finally, the code have to be registered. It is not as illustrative but this part better not to be
oversimplified. A codec’s callback functions are set into ImgCodecVMT structure. Those function
slots that are unused should not be defined as dummies - those are already defined and gathered
under struct CNullImgCodecVMT. That’s why all functions in the illustration code were defined as
static. A codec have to provide some information that Prima uses to decide what codec should load
this particular file. If no explicit directions given, Prima asks those codecs whose file extensions
match to file’s. init() should return pointer to the filled struct, that describes codec’s capabilities:

// extensions to file - might be several, of course, thanks to dos...

static char * myext[] = { "duf", "duff", nil };

332

// we can work only with 1-bit/pixel

static int mybpp[] = {

imbpp1 | imGrayScale, // 1st item is a default type

imbpp1,

0 }; // Zero means end-of-list. No type has zero value.

// main structure

static ImgCodecInfo codec_info = {

"DUFF", // codec name

"Numb & Number, Inc.", // vendor

_LIBDUFF_VERS_MAJ, _LIBDUFF_VERS_MIN, // version

myext, // extension

"DUmb Format", // file type

"DUFF", // file short type

nil, // features

"", // module

true, // canLoad

false, // canLoadMultiple

false, // canSave

false, // canSaveMultiple

mybpp, // save types

nil, // load output

};

static void *

init(PImgCodecInfo * info, void * param)

{

*info = &codec_info;

return (void*)1; // just non-null, to indicate success

}

The result of init() is stored into PImgCodec-> instance, and info into PImgCodec-> info.
If dynamic memory was allocated for these structs, it can be freed on done() invocation. Finally,
the function that is invoked from Prima, is the only that required to be exported, is responsible
for registering a codec:

void

apc_img_codec_duff(void)

{

struct ImgCodecVMT vmt;

memcpy(&vmt, &CNullImgCodecVMT, sizeof(CNullImgCodecVMT));

vmt. init = init;

vmt. open_load = open_load;

vmt. load = load;

vmt. close_load = close_load;

apc_img_register(&vmt, nil);

}

This procedure can register as many codecs as it wants to, but currently Prima is designed so
that one codec XX.c file should be connected to one library only.

The name of the procedure is apc img codec plus library name, that is required for a compi-
lation with Prima. File with the codec should be called codec duff.c (is our case) and put into
img directory in Prima source tree. Following these rules, Prima will be assembled with libduff.a
(or duff.lib, or whatever, the actual library name is system dependent) - if the library is present.

333

8.3 gencls

Class interface compiler for Prima core modules

Synopsis

gencls --h --inc --tml -O -I<name> --depend --sayparent filename.cls

Description

Creates headers with C macros and structures for Prima core module object definitions.

Arguments

gencls accepts the following arguments:

–h

Generates .h file (with declarations to be included in one or more files)

–inc

Generates .inc file (with declarations to be included in only file)

-O

Turns optimizing algorithm for .inc files on. Algorithm is based on an assumption, that some
functions are declared identically, therefore the code piece that handles the parameter and
result conversion can be shared. With -O flag on, a thunk body is replaced to a call to a
function, which name is made up from all method parameters plus result. Actual function
is not written in .inc file, but in .tml file. All duplicate declarations from a set of .tml files
can be removed and the reminder written to one file by the tmlink entry utility.

–tml

Generates .tml file. Turns -O automatically on.

-Idirname

Adds a directory to a search path, where the utility searches for .cls files. Can be specified
several times.

–depend

Prints out dependencies for a given file.

–sayparent

Prints out the immediate parent of a class inside given file.

Syntax

In short, the syntax of a .cls file can be described by the following scheme:

[zero or more type declarations]

[zero or one class declaration]

Gencls produces .h, .inc or .tml files, with a base name of the .cls file, if no object or package
name given, or with a name of the object or the package otherwise.

334

Basic scalar data types

Gencls has several built-in scalar data types, that it knows how to deal with. To ’deal’ means
that it can generate a code that transfers data of these types between C and perl, using XS (see
perlguts) library interface.

The types are:

int

Bool

Handle

double

SV*

HV*

char *

string (C declaration is char[256])

There are also some derived built-in types, which are

long

short

char

Color

U8

that are mapped to int. The data undergo no conversion to int in transfer process, but it is
stored instead to perl scalar using newSViv() function, which, in turn, may lose bits or a sign.

Derived data types

The syntax for a new data types definition is as follows:

<scope> <prefix> <id> <definition>

A scope can be one of two pragmas, global or local. They hint the usage of a new data
type, whether the type will be used only for one or more objects. Usage of local is somewhat
resembles C pragma static. Currently the only difference is that a function using a complex local
type in the parameter list or as the result is not a subject for -O optimization.

Scalar types

New scalar types may only be aliased to the existing ones, primarily for C coding convenience. A
scalar type can be defined in two ways:

Direct aliasing

Syntax:

<scope> $id => <basic_scalar_type>;

Example:

global $Handle => int;

The new type id will not be visible in C files, but the type will be substituted over all .cls
files that include this definition.

335

C macro

Syntax:

<scope> id1 id2

Example:

global API_HANDLE UV

Such code creates a C macro definition in .h header file in form

#define id1 id2

C macros with parameters are not allowed. id1 and id2 are not required to be present in
.cls name space, and no substitution during .cls file processing is made. This pragma usage
is very limited.

Complex types

Complex data types can be arrays, structs and hashes. They can be a combination or a vector of
scalar (but not complex) data types.

Gencls allows several combinations of complex data types that C language does not recognize.
These will be described below.

Complex data types do not get imported into perl code. A perl programmer must conform to
the data type used when passing parameters to a function.

Arrays

Syntax:

<scope> @id <basic_scalar_type>[dimension];

Example:

global @FillPattern U8[8];

Example of functions using arrays:

Array * func(Array a1, Array * a2);

Perl code:

@ret = func(@array1, @array2);

Note that array references are not used, and the number of items in all array parameters
must be exactly as the dimensions of the arrays.

Note: the following declaration will not compile with C compiler, as C cannot return arrays.
However it is not treated as an error by gencls:

Array func();

Structs

Syntax:

336

<scope> @id {

<basic_scalar_type> <id>;

...

<basic_scalar_type> <id>;

};

Example:

global @Struc {

int number;

string id;

}

Example of functions using structs:

Struc * func1(Struc a1, Struc * a2);

Struc func2(Struc a1, Struc * a2);

Perl code:

@ret = func1(@struc1, @struc2);

@ret = func2(@struc1, @struc2);

Note that array references are not used, and both number and order of items in all array
parameters must be set exactly as dimensions and order of the structs. Struct field names
are not used in perl code as well.

Hashes

Syntax:

<scope> %id {

<basic_scalar_type> <id>;

...

<basic_scalar_type> <id>;

};

Example:

global %Hash {

int number;

string id;

}

Example of functions using hashes:

Hash * func1(Hash a1, Hash * a2);

Hash func2(Hash a1, Hash * a2);

Perl code:

%ret = %{func1(\%hash1, \%hash2)};

%ret = %{func2(\%hash1, \%hash2)};

337

Note that only hash references are used and returned. When a hash is passed from perl
code it might have some or all fields unset. The C structure is filled and passed to a C
function, and the fields that were unset are assigned to a corresponding C TYPE UNDEF
value, where TYPE is one of NUMERIC, STRING and POINTER literals.

Back conversion does not count on these values and always returns all hash keys with a
corresponding pair.

Namespace section

Syntax:

<namespace> <ID> {

<declaration>

...

<declaration>

}

A .cls file can have zero or one namespace sections, filled with function descriptions. Functions
described here will be exported to the given ID during initialization code. A namespace can be
either object or package.

The package namespace syntax allows only declaration of functions inside a package block.

package <Package ID> {

<function description>

...

}

The object namespace syntax includes variables and properties as well as functions (called
methods in the object syntax). The general object namespace syntax is

object <Class ID> [(Parent class ID)] {

<variables>

<methods>

<properties>

}

Within an object namespace the inheritance syntax can be used:

object <Class ID> (<Parent class ID>) { ... }

or a bare root object description (with no ancestor)

object <Class ID> { ... }

for the object class declaration.

Functions

Syntax:

[<prefix>] <type> <function_name> (<parameter list>) [=> <alias>];

Examples:

int package_func1(int a, int b = 1) => c_func_2;

Point package_func2(Struc * x, ...);

method void object_func3(HV * profile);

338

A prefix is used with object functions (methods) only. More on the prefix in the Methods
entry section.

A function can return nothing (void), a scalar (int, string, etc) or a complex (array, hash)
type. It can as well accept scalar and complex parameters, with type conversion that corresponds
to the rules described above in the Basic scalar data types entry section.

If a function has parameters and/or result of a type that cannot be converted automatically
between C and perl, it gets declared but not exposed to perl namespace. The corresponding warn-
ing is issued. It is not possible using gencls syntax to declare a function with custom parameters
or result data. For such a purpose the explicit C declaration of code along with newXS call must
be made.

Example: ellipsis (...) cannot be converted by gencls, however it is a legal C construction.

Point package_func2(Struc * x, ...);

The function syntax has several convenience additions:

Default parameter values

Example:

void func(int a = 15);

A function declared in such way can be called both with 0 or 1 parameters. If it is called
with 0 parameters, an integer value of 15 will be automatically used. The syntax allows
default parameters for types int, pointer and string and their scalar aliases.

Default parameters can be as many as possible, but they have to be in the end of the function
parameter list. Declaration func(int a = 1, int b) is incorrect.

Aliasing

In the generated C code, a C function has to be called after the parameters have been
parsed. Gencls expects a conformant function to be present in C code, with fixed name and
parameter list. However, if the task of such function is a wrapper to an identical function
published under another name, aliasing can be preformed to save both code and speed.

Example:

package Package {

void func(int x) => internal;

}

A function declared in that way will not call Package func() C function, but internal()
function instead. The only request is that internal() function must have identical parameter
and result declaration to a func().

Inline hash

A handy way to call a function with a hash as a parameter from perl was devised. If a
function is declared with the last parameter or type HV*, then parameter translation from
perl to C is performed as if all the parameters passed were a hash. This hash is passed to
a C function and it’s content returned then back to perl as a hash again. The hash content
can be modified inside the C function.

This declaration is used heavily in constructors, which perl code is typical

339

sub init

{

my %ret = shift-> SUPER::init(@_);

...

return %ret;

}

and C code is usually

void Obj_init (HV * profile) {

inherited init(profile);

... [modify profile content] ...

}

Methods

Methods are functions called in a context of an object. Virtually all methods need to have an
access to an object they are dealing with. Prima objects are visible in C as Handle data type.
Such Handle is actually a pointer to an object instance, which in turn contains a pointer to the
object virtual methods table (VMT). To facilitate an OO-like syntax, this Handle parameter is
almost never mentioned in all methods of an object description in a cls file, although being implicit
counted, so every cls method declaration

method void a(int x)

for an object class Object is reflected in C as

void Object_a(Handle self, int x)

function declaration. Contrary to package functions, that gencls is unable to publish if it is
unable to deal with the unsupported on unconvertible parameters, there is a way to issue such
a declaration with a method. The primary use for that is the method name gets reserved in the
object’s VMT.

Methods are accessible in C code by the direct name dereferencing of a Handle self as a
corresponding structure:

(((PSampleObject) self)-> self)-> sample_method(self, ...);

A method can have one of six prefixes that govern C code generation:

method

This is the first and the most basic method type. It’s prefix name, method is therefore was
chosen as the most descriptive name. Methods are expected to be coded in C, the object
handle is implicit and is not included into a .cls description.

method void a()

results in

void Object_a(Handle self)

C declaration. A published method automatically converts its parameters and a result
between C and perl.

340

public

When the methods that have parameters and/or result that cannot be automatically con-
verted between C and perl need to be declared, or the function declaration does not fit into
C syntax, a public prefix is used. The methods declared with public is expected to com-
municate with perl by means of XS (see perlxs) interface. It is also expected that a public

method creates both REDEFINED and FROMPERL functions (see the Prima::internals
section for details). Examples are many throughout Prima source, and will not be shown
here. public methods usually have void result and no parameters, but that does not matter
much, since gencls produces no conversion for such methods.

import

For the methods that are unreasonable to code in C but in perl instead, gencls can be told
to produce the corresponding wrappers using import prefix. This kind of a method can
be seen as method inside-out. import function does not need a C counterpart, except the
auto-generated code.

static

If a method has to be able to work both with and without an object instance, it needs to
be prepended with static prefix. static methods are all alike method ones, except that
Handle self first parameter is not implicitly declared. If a static method is called without
an object (but with a class), like

Class::Object-> static_method();

its first parameter is not a object but a ”Class::Object” string. If a method never deals with
an object, it is enough to use its declaration as

static a(char * className = "");

but is if does, a

static a(SV * class_or_object = nil);

declaration is needed. In latter case C code itself has to determine what exactly has been
passed, if ever. Note the default parameter here: a static method is usually legible to call
as

Class::Object::static_method();

where no parameters are passed to it. Without the default parameter such a call generates
an ’insufficient parameters passed’ runtime error.

weird

We couldn’t find a better name for it. weird prefix denotes a method that combined proper-
ties both from static and public. In other words, gencls generates no conversion code
and expects no Handle self as a first parameter for such a method. As an example
Prima::Image::load can be depicted, which can be called using a wide spectrum of calling
semantics (see the Prima::image-load section for details).

c only

As its name states, c only is a method that is present on a VMT but is not accessible from
perl. It can be overloaded from C only. Moreover, it is allowed to register a perl function
with a name of a c only method, and still these entities will be wholly independent from
each other - the overloading will not take place.

NB: methods that have result and/or parameters data types that can not be converted
automatically, change their prefix to c only. Probably this is the wrong behavior, and such
condition have to signal an error.

341

Properties

Prima toolkit introduces an entity named property, that is expected to replace method pairs whose
function is to acquire and assign some internal object variable, for example, an object name, color
etc. Instead of having pair of methods like Object::set color and Object::get color, a property
Object::color is devised. A property is a method with the special considerations, in particular,
when it is called without parameters, a ’get’ mode is implied. In contrary, if it is called with one
parameter, a ’set’ mode is triggered. Note that on both ’set’ and ’get’ invocations Handle self

first implicit parameter is always present.
Properties can operate with different, but fixed amount of parameters, and perform a ’set’ and

’get’ functions only for one. By default the only parameter is the implicit Handle self:

property char * name

has C counterpart

char * Object_name(Handle self, Bool set, char * name)

Depending on a mode, Bool set is either true or false. In ’set’ mode a C code result is
discarded, in ’get’ mode the parameter value is undefined.

The syntax for multi-parameter property is

property long pixel(int x, int y);

and C code

long Object_pixel(Handle self, Bool set, int x, int y, long pixel)

Note that in the multi-parameter case the parameters declared after property name are always
initialized, in both ’set’ and ’get’ modes.

Instance variables

Every object is characterized by its unique internal state. Gencls syntax allows a variable decla-
ration, for variables that are allocated for every object instance. Although data type validation is
not performed for variables, and their declarations just get copied ’as is’, complex C declarations
involving array, struct and function pointers are not recognized. As a workaround, pointers to
typedef’d entities are used. Example:

object SampleObject {

int x;

List list;

struct { int x } s; # illegal declaration

}

Variables are accessible in C code by direct name dereferencing of a Handle self as a corre-
sponding structure:

((PSampleObject) self)-> x;

342

9 Miscellaneous

9.1 Prima::faq

Frequently asked questions about Prima

Description

The FAQ covers various topics around Prima, such as distribution, compilation, installation, and
programming.

COMMON

What is Prima?

Prima is a general purpose extensible graphical user interface toolkit with a rich set of standard
widgets and an emphasis on 2D image processing tasks. A Perl program using PRIMA looks and
behaves identically on X, Win32 and OS/2 PM.

Yeah, right. So what is Prima again?

Ok. A Yet Another Perl GUI.

Why bother with the Yet Another thing, while there is Perl-Tk and plenty of others?

Prima was started on OS/2, where Tk didn’t really run. We have had two options - either port
Tk, or write something on our own, probably better than the existing tools. We believe that we’ve
succeeded.

Why Perl?

Why not? Perl is great. The high-level GUI logic fits badly into C, C++, or the like, so a scripting
language is probably the way to go here.

But I want to use Prima in another language.

Unless your language has runtime binding with perl, you cannot.

Who wrote Prima?

Dmitry Karasik implemented the majority of the toolkit, after the original idea by Anton Berezin.
The latter and set of contributors helped the development of the toolkit since then.

343

What is the copyright?

The copyright is a modified BSD license, where only two first paragraphs remain out of the original
four. The text of copyright is present is almost all files of the toolkit.

I’d like to contribute.

You can do this is several ways. The project would probably best benefit from the advocacy,
because not many people use it. Of course, you can send in new widgets, patches, suggestions,
or even donations. Also, documentation is the thing that needs a particular attention, since my
native language is not English, so if there are volunteers for polishing of the Prima docs, you are
very welcome.

INSTALLATION

Where can I download Prima?

the http:www.prima.eu.org entry contains links to source and binary download resources, instruc-
tions on how to subscribe to the Prima mailing list, documentation, and some other useful info.

What is better, source or binary?

Depends where your are and what are your goals. On unix, the best is to use the source. On
win32 and os2 the binaries probably are preferred. If you happen to use cygwin you probably still
better off using the source.

How to install binary distribution?

First, check if you’ve downloaded Prima binary for the correct version of Perl. For win32 ActiveS-
tate builds, difference in the minor digits of the Perl version shouldn’t be a problem, for example,
binary distribution for Perl build #805 should work with Perl build #808, etc etc.

To install, unpack the archive and type ’perl ms install.pl’. The files will be copied into the
perl tree.

How to compile Prima from source?

Type the following:

perl Makefile.PL

make

make install

If the ’perl Makefile.PL’ fails complaining to strange errors, you can check makefile.log to see
if anything is wrong. A typical situation here is that Makefile.PL may report that is cannot find
Perl library, for example, where there actually it invokes the compiler in a wrong way.

Note, that in order to get Prima working from sources, your system must contain graphic
libraries, such as libungif or ligjpeg, for Prima to load graphic files.

What’s about the graphic libraries?

To load and save images, Prima employs graphic libraries. Such as, to load GIF files, libungif
library is used, etc. Makefile.PL finds available libraries and links Prima against these. It is
possible to compile Prima without any, but this is not really useful. If Makefile.PL wouldn’t find
any of the supported graphic libraries, it would abort unless WANTNOCODECS=1 parameter
was supplied to it.

On every supported platform Prima can make use of the following graphic libraries:

344

libX11 - XBM bitmaps

libXpm - Xpm pixmaps

libjpeg - JPEG images

libungif - GIF images

libpng - PNG images

libtiff - tiff images

Alternatively, on win32 and os2 there is a binary PRIGPARH library distributed together with
the Prima binary distributions, which supports its own set of graphic files. The PRIGPARH is a
modified GBM graphic library, which (GBM) is no longer supported, but nevertheless it is useful
for Prima. The use of PRIGPARH is preferred on win32 and os2, and Makefile.PL would favor it
before the other graphic libraries. To compile and run Prima with PRIGPARH, library (.lib or
.a) and runtime (.dll) files must be present in the LIBPATH and PATH, correspondingly.

img/codec XXX.c compile error

img/codec XXX.c files are C sources for support of the graphic libraries. In case a particular codec
does not compile, the ultimate fix is to remove the file and re-run Makefile.PL . This way, the
problem can be avoided easily, although at cost of a lacking support for a graphic format.

How’d I check what libraries are compiled in?

perl -MPrima -e ’print map { $_->{name}.qq(\n) } @{Prima::Image->codecs};’

I have a graphic library installed, but Makefile.PL doesn’t find it

The library is probably located in a weird directory so Makefile.PL must be told to use it by adding
LIBPATH+=/some/weird/lib, and possibly INCPATH+=/some/weird/include in the command
line. Check makefile.log created by Makefile.PL for the actual errors reported when it tries to use
the library.

Compile error

There are various reasons why a compilation may fail. The best would be to copy the output
together with outputs of env and perl -V and send these into the Prima mailing list.

Prima doesn’t run

Again, there are reasons for Prima to fail during the start.
First, check whether all main files are installed correctly. Prima.pm must be in your perl direc-

tory, and Prima library file (Prima.a or Prima.so for unix, Prima.dll for win32, and PrimaDI.dll
for os2) is copied in the correct location in the perl tree.

Second, try to run ’perl -MPrima -e 1’ . If Prima.pm is not found, the error message would
something like

Can’t locate Prima.pm in @INC

If Prima library or one of the libraries it depends on cannot be found, perl Dynaloader would
complain. On win32 and os2 this usually happen when prigraph.dll (and/or priz.dll on os2) are
not found. If this is the case, try to copy these files into your PATH, for example in C:/WINNT .

Prima error: Can’t open display

This error happens when you’ve compiled Prima for X11, and no connection to X11 display can be
established. Check your DISPLAY environment variable, or use –display parameter when running
Prima. If you do not want Prima to connect to the display, for example, to use it inside of a CGI
script, either use –no-x11 parameter or include use Prima::noX11 statement in your program.

345

X11: my fonts are bad!

Check whether you’ve Xft and fontconfig installed. Prima benefits greatly from having been
compiled with Xft/fontconfig. Read more in the Prima::X11 section .

Where are the docs installed?

Prima documentation comes in .pm and .pod files. These, when installed, are copied under perl
tree, and under man tree in unix. So, ’perldoc Prima’ should be sufficient to invoke the main page
of the Prima documentation. Other pages can be invoked as ’perldoc Prima::Buttons’, say, or, for
the graphical pod reader, ’podview Prima::Buttons’. podview is the Prima doc viewer, which is
also capable of displaying any POD page.

There is also a pdf file on the Prima web site www.prima.eu.org, which contains the same
set of documentation but composed as a single book. Its sources are in utils/makedoc directory,
somewhat rudimentary and require an installation of latex and dvips to produce one of tex, dvi,
ps, or pdf targets.

I’ve found a bug!

Send the bug report into the mailing list.

PROGRAMMING

How can I use .fm files of the Visual Builder inside my program?

podview the Prima::VB::VBLoader section

I want to use Prima inside CGI for loading and converting images only, without X11
display.

use Prima::noX11; # this prevents Prima from connecting to X11 display

use Prima;

my $i = Prima::Image-> load(...)

How would I change several properties with a single call?

$widget-> set(

property1 => $value1,

property2 => $value2,

...

);

I want Prima::Edit to have feature XXX

If the feature is not governed by none of the Prima::Edit properties, you’ve to overload
::on paint. It is not that hard as you might think.

If the feature is generic enough, you can send a patch in the list.

Tk (Wx, Qt, whatever) has a feature Prima doesn’t.

Well, I’d probably love to see the feature in Prima as well, but I don’t have a time to write it
myself. Send in a patch, and I promise I’ll check it out.

346

I wrote a program and it looks ugly with another font size

This would most certainly happen when you rely on your own screen properties. There are several
ways to avoid this problem.

First, if one programs a window where there are many widgets independent of each other size,
one actually can supply coordinates for these widgets as they are positioned on a screen. Don’t
forget to set designScale property of the parent window, which contains dimensions of the font
used to design the window. One can get these by executing

perl -MPrima -MPrima::Application -le ’$_=$::application->font; print $_->width, q(), $_->height’;

This way, the window and the widgets would get resized automatically under another font.
Second, in case the widget layout is not that independent, one can position the widgets rela-

tively to each other by explicitly calculating widget extension. For example, an InputLine would
have height relative to the font, and to have a widget placed exactly say 2 pixels above the input
line, code something like

my $input = $owner-> insert(InputLine, ...);

my $widget = $owner-> insert(Widget, bottom => $input-> top + 2);

Of course one can change the font as well, but it is a bad idea since users would get annoyed
by this.

Third, one can use geometry managers, similar to the ones in Tk. See the Prima::Widget::pack
section and the Prima::Widget::place section.

Finally, check the widget layouts with the Prima::Stress section written specifically for this
purpose:

perl -MPrima::Stress myprogram

How would I write a widget class myself?

There are lots and lots of examples of this. Find a widget class similar to what you are about to
write, and follow the idea. There are, though, some non-evident moments worth to enumerate.

• Test your widget class with different default settings, such as colors, fonts, parent sizes,
widget properties such as buffered and visible.

• Try to avoid special properties for create, where for example a particular property must
always be supplied, or never supplied, or a particular combination of properties is expected.
See if the DWIM principle can be applied instead.

• Do not be afraid to define and re-define notification types. These have large number of
options, to be programmed once and then used as a DWIM helper. Consider for which
notifications user callback routines (onXxxx) would be best to be called first, or last,
whether a notification should be of multiple or single callback type.

If there is a functionality better off performed by the user-level code, consider creating an
individual notification for this purpose.

• Repaint only the changed areas, not the whole widget.

If your widget has scrollable areas, use scroll method.

Inside on paint check whether the whole or only a part of the widget is about to be repainted.
Simple optimizations here increase the speed.

Avoid using pre-cooked data in on paint, such as when for example only a particular part of
a widget was invalidated, and this fact is stored in an internal variable. This is because when
the actual on paint call is executed, the invalid area may be larger than was invalidated by

347

the class actions. If you must though, compare values of clipRect property to see whether
the invalid area is indeed the same as it is expected.

Remember, that inside on paint all coordinates are inclusive-inclusive, and outside inclusive-
exclusive.

Note, that buffered property does not guarantee that the widget output would be actually
buffered.

• Write some documentation and example of use.

How would I add my widget class to the VB palette?

Check Prima/VB/examples/Widgety.pm . This file, if loaded through ’Add widget’ command
in VB, adds example widget class and example VB property into the VB palette and Object
Inspector.

How would I use unicode/UTF8 in Prima?

Basically,

$::application-> wantUnicodeInput(1)

is enough to tell Prima to provide input in Unicode/UTF8. Note, that if the data received in
that fashion are to be put through file I/O, the ’utf8’ IO layer must be selected (see the open
entry).

Prima can input and output UTF8 text if the underlying system capabilities support that
(check Prima::Application::get system value, sv::CanUTF8 Input and sv::CanUTF8 Output).
Displaying UTF8 text is transparent, because Perl scalars can be unambiguously told whether
the text they contain is in UTF8 or not. The text that comes from the user input - keyboard
and clipboard - can be treated and reported to Prima either as UTF8 or plain text, depending on
Prima::Application::wantUnicodeInput property.

The keyboard input is easy, because a character key event comes with the character code, not
the character itself, and conversion between these is done via standard perl’s chr and ord. The
clipboard input is more complicated, because the clipboard may contain both UTF8 and plain
text data at once, and it must be decided by the programmer explicitly which one is desired. See
more in the Unicode entry in the Prima::Clipboard section.

Is there a way to display POD text that comes with my program / package ?

$::application-> open_help($0);

$::application-> open_help(’My::Package/Bugs’);

How to implement parallel processing?

Prima doesn’t work if called from more than one thread, since Perl scalars cannot be shared
between threads automatically, but only if explicitly told, bu using the thread::shared entry. Prima
does work in multithread environments though, but only given it runs within a dedicated thread.
It is important not to call Prima methods from any other thread, because scalars that may be
created inside these calls will be unavailable to the Prima core, which would result in strange
errors.

It is possible to run things in parallel by calling the event processing by hands: instead of
entering the main loop with

run Prima;

one can write

348

while (1) {

... do some calculations ..

$::application->yield;

}

That’ll give Prima a chance to handle accumulated events, but that technique is only viable if
calculations can be quantized into relatively short time frames.

The generic solution would be harder to implement and debug, but it scales well. The idea
is to fork a process, and communicate with it via its stdin and/or stdout (see perlipc how to
do that), and use the Prima::File section to asyncronously read data passed through a pipe or a
socket.

Note: Win32 runtime library does not support asynchronous pipes, only asyncronous sockets.
Cygwin does support both asyncronous pipes and sockets.

How do I post an asynchronous message?

Prima::Component::post message method posts a message through the system event dispatcher
and returns immediately; when the message is arrived, onPostMessage notification is triggered:

use Prima qw(Application);

my $w = Prima::MainWindow-> create(onPostMessage => sub { shift; print "@_\n" });

$w-> post_message(1,2);

print "3 4 ";

run Prima;

output: 3 4 1 2

This technique is fine when all calls to the post message on the object are controlled. To
multiplex callbacks one can use one of the two scalars passed to post message as callback iden-
tification. This is done by the post entry in the Prima::Utils section, that internally intercepts
$::application’s PostMessage and provides the procedural interface to the same function:

use Prima qw(Application);

use Prima::Utils qw(post);

post(sub { print "@_\n" }, ’a’);

print "b";

run Prima;

output: ba

Now to address widgets inside TabbedNotebook / TabbedScrollNotebook ?

The tabbed notebooks work as parent widgets for Prima::Notebook, that doesn’t have any in-
terface elements on its own, and provides only page flipping function. The sub-widgets, therefore,
are to be addressed as $TabbedNotebook-> Notebook-> MyButton.

349

9.2 Prima::Const

Predefined constants

Description

Prima::Const and the Prima::Classes section is a minimal set of perl modules needed for the
toolkit. Since the module provides bindings for the core constants, it is required to be included in
every Prima-related module and program.

The constants are assembled under the top-level package names, with no Prima:: prefix. This
violates the perl guidelines about package naming, however, it was considered way too inconvenient
to prefix every constant with Prima:: string.

This document provides description of all core-coded constants. The constants are also de-
scribed in the articles together with the corresponding methods and properties. For example, nt
constants are also described in the Flow entry in the Prima::Object section article.

API

am:: - Prima::Icon auto masking

See also the autoMasking entry in the Prima::Image section

am::None - no mask update performed

am::MaskColor - mask update based on Prima::Icon::maskColor property

am::Auto - mask update based on corner pixel values

apc:: - OS type

See the get system info entry in the Prima::Application section

apc::Os2

apc::Win32

apc::Unix

bi:: - border icons

See the borderIcons entry in the Prima::Window section

bi::SystemMenu - system menu button and/or close button

(usually with icon) is shown

bi::Minimize - minimize button

bi::Maximize - maximize (and eventual restore)

bi::TitleBar - window title

bi::All - all of the above

bs:: - border styles

See the borderStyle entry in the Prima::Window section

bs::None - no border

bs::Single - thin border

bs::Dialog - thick border

bs::Sizeable - thick border with interactive resize capabilities

350

ci:: - color indices

See the colorIndex entry in the Prima::Widget section

ci::NormalText or ci::Fore

ci::Normal or ci::Back

ci::HiliteText

ci::Hilite

ci::DisabledText

ci::Disabled

ci::Light3DColor

ci::Dark3DColor

ci::MaxId

cl:: - colors

See the colorIndex entry in the Prima::Widget section

Direct color constants

cl::Black

cl::Blue

cl::Green

cl::Cyan

cl::Red

cl::Magenta

cl::Brown

cl::LightGray

cl::DarkGray

cl::LightBlue

cl::LightGreen

cl::LightCyan

cl::LightRed

cl::LightMagenta

cl::Yellow

cl::White

cl::Gray

Indirect color constants

cl::NormalText, cl::Fore

cl::Normal, cl::Back

cl::HiliteText

cl::Hilite

cl::DisabledText

cl::Disabled

cl::Light3DColor

cl::Dark3DColor

cl::MaxSysColor

Special constants

See the Colors entry in the Prima::gp problems section

cl::Set - logical all-1 color

cl::Clear - logical all-0 color

351

cl::Invalid - invalid color value

cl::SysFlag - indirect color constant bit set

cl::SysMask - indirect color constant bit clear mask

cm:: - commands

Keyboard and mouse commands

See the key down entry in the Prima::Widget section, the mouse down entry in the
Prima::Widget section

cm::KeyDown

cm::KeyUp

cm::MouseDown

cm::MouseUp

cm::MouseClick

cm::MouseWheel

cm::MouseMove

cm::MouseEnter

cm::MouseLeave

Internal commands (used in core only or not used at all)

cm::Close

cm::Create

cm::Destroy

cm::Hide

cm::Show

cm::ReceiveFocus

cm::ReleaseFocus

cm::Paint

cm::Repaint

cm::Size

cm::Move

cm::ColorChanged

cm::ZOrderChanged

cm::Enable

cm::Disable

cm::Activate

cm::Deactivate

cm::FontChanged

cm::WindowState

cm::Timer

cm::Click

cm::CalcBounds

cm::Post

cm::Popup

cm::Execute

cm::Setup

cm::Hint

cm::DragDrop

cm::DragOver

cm::EndDrag

cm::Menu

cm::EndModal

352

cm::MenuCmd

cm::TranslateAccel

cm::DelegateKey

cr:: - pointer cursor resources

See the pointerType entry in the Prima::Widget section

cr::Default same pointer type as owner’s

cr::Arrow arrow pointer

cr::Text text entry cursor-like pointer

cr::Wait hourglass

cr::Size general size action pointer

cr::Move general move action pointer

cr::SizeWest, cr::SizeW right-move action pointer

cr::SizeEast, cr::SizeE left-move action pointer

cr::SizeWE general horizontal-move action pointer

cr::SizeNorth, cr::SizeN up-move action pointer

cr::SizeSouth, cr::SizeS down-move action pointer

cr::SizeNS general vertical-move action pointer

cr::SizeNW up-right move action pointer

cr::SizeSE down-left move action pointer

cr::SizeNE up-left move action pointer

cr::SizeSW down-right move action pointer

cr::Invalid invalid action pointer

cr::User user-defined icon

dt:: - drive types

See the query drive type entry in the Prima::Utils section

dt::None

dt::Unknown

dt::Floppy

dt::HDD

dt::Network

dt::CDROM

dt::Memory

dt:: - Prima::Drawable::draw text constants

dt::Left - text is aligned to the left boundary

dt::Right - text is aligned to the right boundary

dt::Center - text is aligned horizontally in center

dt::Top - text is aligned to the upper boundary

dt::Bottom - text is aligned to the lower boundary

dt::VCenter - text is aligned vertically in center

dt::DrawMnemonic - tilde-escapement and underlining is used

dt::DrawSingleChar - sets tw::BreakSingle option to

Prima::Drawable::text_wrap call

dt::NewLineBreak - sets tw::NewLineBreak option to

Prima::Drawable::text_wrap call

dt::SpaceBreak - sets tw::SpaceBreak option to

Prima::Drawable::text_wrap call

dt::WordBreak - sets tw::WordBreak option to

353

Prima::Drawable::text_wrap call

dt::ExpandTabs - performs tab character (\t) expansion

dt::DrawPartial - draws the last line, if it is visible partially

dt::UseExternalLeading- text lines positioned vertically with respect to

the font external leading

dt::UseClip - assign ::clipRect property to the boundary rectangle

dt::QueryLinesDrawn - calculates and returns number of lines drawn

(contrary to dt::QueryHeight)

dt::QueryHeight - if set, calculates and returns vertical extension

of the lines drawn

dt::NoWordWrap - performs no word wrapping by the width of the boundaries

dt::WordWrap - performs word wrapping by the width of the boundaries

dt::Default - dt::NewLineBreak|dt::WordBreak|dt::ExpandTabs|

dt::UseExternalLeading

fdo:: - find / replace dialog options

See the Prima::EditDialog section

fdo::MatchCase

fdo::WordsOnly

fdo::RegularExpression

fdo::BackwardSearch

fdo::ReplacePrompt

fds:: - find / replace dialog scope type

See the Prima::EditDialog section

fds::Cursor

fds::Top

fds::Bottom

fe:: - file events constants

See the Prima::File section

fe::Read

fe::Write

fe::Exception

fp:: - standard fill pattern indices

See the fillPattern entry in the Prima::Drawable section

fp::Empty

fp::Solid

fp::Line

fp::LtSlash

fp::Slash

fp::BkSlash

fp::LtBkSlash

fp::Hatch

fp::XHatch

fp::Interleave

fp::WideDot

354

fp::CloseDot

fp::SimpleDots

fp::Borland

fp::Parquet

fp:: - font pitches

See the pitch entry in the Prima::Drawable section

fp::Default

fp::Fixed

fp::Variable

fr:: - fetch resource constants

See the fetch resource entry in the Prima::Widget section

fr::Color

fr::Font

fs::String

fs:: - font styles

See the style entry in the Prima::Drawable section

fs::Normal

fs::Bold

fs::Thin

fs::Italic

fs::Underlined

fs::StruckOut

fs::Outline

fw:: - font weights

See the weight entry in the Prima::Drawable section

fw::UltraLight

fw::ExtraLight

fw::Light

fw::SemiLight

fw::Medium

fw::SemiBold

fw::Bold

fw::ExtraBold

fw::UltraBold

gm:: - grow modes

See the growMode entry in the Prima::Widget section

Basic constants

gm::GrowLoX widget’s left side is kept in constant

distance from owner’s right side

gm::GrowLoY widget’s bottom side is kept in constant

355

distance from owner’s top side

gm::GrowHiX widget’s right side is kept in constant

distance from owner’s right side

gm::GrowHiY widget’s top side is kept in constant

distance from owner’s top side

gm::XCenter widget is kept in center on its owner’s

horizontal axis

gm::YCenter widget is kept in center on its owner’s

vertical axis

gm::DontCare widgets origin is maintained constant relative

to the screen

Derived or aliased constants

gm::GrowAll gm::GrowLoX|gm::GrowLoY|gm::GrowHiX|gm::GrowHiY

gm::Center gm::XCenter|gm::YCenter

gm::Client gm::GrowHiX|gm::GrowHiY

gm::Right gm::GrowLoX|gm::GrowHiY

gm::Left gm::GrowHiY

gm::Floor gm::GrowHiX

gui:: - GUI types

See the get system info entry in the Prima::Application section

gui::Default

gui::PM

gui::Windows

gui::XLib

gui::GTK2

le:: - line end styles

See the lineEnd entry in the Prima::Drawable section

le::Flat

le::Square

le::Round

lj:: - line join styles

See the lineJoin entry in the Prima::Drawable section

lj::Round

lj::Bevel

lj::Miter

lp:: - predefined line pattern styles

See the linePattern entry in the Prima::Drawable section

lp::Null # "" /* */

lp::Solid # "\1" /* ___________ */

lp::Dash # "\x9\3" /* __ __ __ __ */

lp::LongDash # "\x16\6" /* _____ _____ */

lp::ShortDash # "\3\3" /* _ _ _ _ _ _ */

356

lp::Dot # "\1\3" /* */

lp::DotDot # "\1\1" /* */

lp::DashDot # "\x9\6\1\3" /* _._._._._._ */

lp::DashDotDot # "\x9\3\1\3\1\3" /* _.._.._.._.. */

im:: - image types

See the type entry in the Prima::Image section.

Bit depth constants

im::bpp1

im::bpp4

im::bpp8

im::bpp16

im::bpp24

im::bpp32

im::bpp64

im::bpp128

Pixel format constants

im::Color

im::GrayScale

im::RealNumber

im::ComplexNumber

im::TrigComplexNumber

Mnemonic image types

im::Mono - im::bpp1

im::BW - im::bpp1 | im::GrayScale

im::16 - im::bpp4

im::Nibble - im::bpp4

im::256 - im::bpp8

im::RGB - im::bpp24

im::Triple - im::bpp24

im::Byte - gray 8-bit unsigned integer

im::Short - gray 16-bit unsigned integer

im::Long - gray 32-bit unsigned integer

im::Float - float

im::Double - double

im::Complex - dual float

im::DComplex - dual double

im::TrigComplex - dual float

im::TrigDComplex - dual double

Extra formats

im::fmtBGR

im::fmtRGBI

im::fmtIRGB

im::fmtBGRI

im::fmtIBGR

357

Masks

im::BPP - bit depth constants

im::Category - category constants

im::FMT - extra format constants

ict:: - image conversion types

See the conversion entry in the Prima::Image section.

ict::None - no dithering

ict::Ordered - 8x8 ordered halftone dithering

ict::ErrorDiffusion - error diffusion dithering with static palette

ict::Optimized - error diffusion dithering with optimized palette

is:: - image statistics indices

See the stats entry in the Prima::Image section.

is::RangeLo - minimum pixel value

is::RangeHi - maximum pixel value

is::Mean - mean value

is::Variance - variance

is::StdDev - standard deviation

is::Sum - sum of pixel values

is::Sum2 - sum of squares of pixel values

kb:: - keyboard virtual codes

See also the KeyDown entry in the Prima::Widget section.

Modificator keys

kb::ShiftL kb::ShiftR kb::CtrlL kb::CtrlR

kb::AltL kb::AltR kb::MetaL kb::MetaR

kb::SuperL kb::SuperR kb::HyperL kb::HyperR

kb::CapsLock kb::NumLock kb::ScrollLock kb::ShiftLock

Keys with character code defined

kb::Backspace kb::Tab kb::Linefeed kb::Enter

kb::Return kb::Escape kb::Esc kb::Space

Function keys

kb::F1 .. kb::F30

kb::L1 .. kb::L10

kb::R1 .. kb::R10

Other

kb::Clear kb::Pause kb::SysRq kb::SysReq

kb::Delete kb::Home kb::Left kb::Up

kb::Right kb::Down kb::PgUp kb::Prior

kb::PageUp kb::PgDn kb::Next kb::PageDown

kb::End kb::Begin kb::Select kb::Print

kb::PrintScr kb::Execute kb::Insert kb::Undo

kb::Redo kb::Menu kb::Find kb::Cancel

kb::Help kb::Break kb::BackTab

358

Masking constants

kb::CharMask - character codes

kb::CodeMask - virtual key codes (all other kb:: values)

kb::ModMask - km:: values

km:: - keyboard modifiers

See also the KeyDown entry in the Prima::Widget section.

km::Shift

km::Ctrl

km::Alt

km::KeyPad

km::DeadKey

mt:: - modality types

See the get modal entry in the Prima::Window section, the get modal window entry in the
Prima::Window section

mt::None

mt::Shared

mt::Exclusive

nt:: - notification types

Used in Prima::Component::notification types to describe event flow.
See also the Flow entry in the Prima::Object section.

Starting point constants

nt::PrivateFirst

nt::CustomFirst

Direction constants

nt::FluxReverse

nt::FluxNormal

Complexity constants

nt::Single

nt::Multiple

nt::Event

Composite constants

nt::Default (PrivateFirst | Multiple | FluxReverse)

nt::Property (PrivateFirst | Single | FluxNormal)

nt::Request (PrivateFirst | Event | FluxNormal)

nt::Notification (CustomFirst | Multiple | FluxReverse)

nt::Action (CustomFirst | Single | FluxReverse)

nt::Command (CustomFirst | Event | FluxReverse)

359

mb:: - mouse buttons

See also the MouseDown entry in the Prima::Widget section.

mb::b1 or mb::Left

mb::b2 or mb::Middle

mb::b3 or mb::Right

mb::b4

mb::b5

mb::b6

mb::b7

mb::b8

mb:: - message box constants

Message box and modal result button commands

See also the modalResult entry in the Prima::Window section, the modalResult entry
in the Prima::Button section.

mb::OK, mb::Ok

mb::Cancel

mb::Yes

mb::No

mb::Abort

mb::Retry

mb::Ignore

mb::Help

Message box composite (multi-button) constants

mb::OKCancel, mb::OkCancel

mb::YesNo

mb::YesNoCancel

Message box icon and bell constants

mb::Error

mb::Warning

mb::Information

mb::Question

rop:: - raster operation codes

See the Raster operations entry in the Prima::Drawable section

rop::Blackness # = 0

rop::NotOr # = !(src | dest)

rop::NotSrcAnd # &= !src

rop::NotPut # = !src

rop::NotDestAnd # = !dest & src

rop::Invert # = !dest

rop::XorPut # ^= src

rop::NotAnd # = !(src & dest)

rop::AndPut # &= src

rop::NotXor # = !(src ^ dest)

360

rop::NotSrcXor # alias for rop::NotXor

rop::NotDestXor # alias for rop::NotXor

rop::NoOper # = dest

rop::NotSrcOr # |= !src

rop::CopyPut # = src

rop::NotDestOr # = !dest | src

rop::OrPut # |= src

rop::Whiteness # = 1

sbmp:: - system bitmaps indices

See also the Prima::StdBitmap section.

sbmp::Logo

sbmp::CheckBoxChecked

sbmp::CheckBoxCheckedPressed

sbmp::CheckBoxUnchecked

sbmp::CheckBoxUncheckedPressed

sbmp::RadioChecked

sbmp::RadioCheckedPressed

sbmp::RadioUnchecked

sbmp::RadioUncheckedPressed

sbmp::Warning

sbmp::Information

sbmp::Question

sbmp::OutlineCollaps

sbmp::OutlineExpand

sbmp::Error

sbmp::SysMenu

sbmp::SysMenuPressed

sbmp::Max

sbmp::MaxPressed

sbmp::Min

sbmp::MinPressed

sbmp::Restore

sbmp::RestorePressed

sbmp::Close

sbmp::ClosePressed

sbmp::Hide

sbmp::HidePressed

sbmp::DriveUnknown

sbmp::DriveFloppy

sbmp::DriveHDD

sbmp::DriveNetwork

sbmp::DriveCDROM

sbmp::DriveMemory

sbmp::GlyphOK

sbmp::GlyphCancel

sbmp::SFolderOpened

sbmp::SFolderClosed

sbmp::Last

sv:: - system value indices

See also the get system value entry in the Prima::Application section

361

sv::YMenu - height of menu bar in top-level windows

sv::YTitleBar - height of title bar in top-level windows

sv::XIcon - width and height of main icon dimensions,

sv::YIcon acceptable by the system

sv::XSmallIcon - width and height of alternate icon dimensions,

sv::YSmallIcon acceptable by the system

sv::XPointer - width and height of mouse pointer icon

sv::YPointer acceptable by the system

sv::XScrollbar - width of the default vertical scrollbar

sv::YScrollbar - height of the default horizontal scrollbar

sv::XCursor - width of the system cursor

sv::AutoScrollFirst - the initial and the repetitive

sv::AutoScrollNext scroll timeouts

sv::InsertMode - the system insert mode

sv::XbsNone - widths and heights of the top-level window

sv::YbsNone decorations, correspondingly, with borderStyle

sv::XbsSizeable bs::None, bs::Sizeable, bs::Single, and

sv::YbsSizeable bs::Dialog.

sv::XbsSingle

sv::YbsSingle

sv::XbsDialog

sv::YbsDialog

sv::MousePresent - 1 if the mouse is present, 0 otherwise

sv::MouseButtons - number of the mouse buttons

sv::WheelPresent - 1 if the mouse wheel is present, 0 otherwise

sv::SubmenuDelay - timeout (in ms) before a sub-menu shows on

an implicit selection

sv::FullDrag - 1 if the top-level windows are dragged dynamically,

0 - with marquee mode

sv::DblClickDelay - mouse double-click timeout in milliseconds

sv::ShapeExtension - 1 if Prima::Widget::shape functionality is supported,

0 otherwise

sv::ColorPointer - 1 if system accepts color pointer icons.

sv::CanUTF8_Input - 1 if system can generate key codes in unicode

sv::CanUTF8_Output - 1 if system can output utf8 text

ta:: - alignment constants

Used in: the Prima::InputLine section, the Prima::ImageViewer section, the Prima::Label section,
the Prima::Terminals section.

ta::Left

ta::Right

ta::Center

ta::Top

ta::Bottom

ta::Middle

tw:: - text wrapping constants

See the text wrap entry in the Prima::Drawable section

tw::CalcMnemonic - calculates tilde underline position

tw::CollapseTilde - removes escaping tilde from text

362

tw::CalcTabs - wraps text with respect to tab expansion

tw::ExpandTabs - expands tab characters

tw::BreakSingle - determines if text is broken to single

characters when text cannot be fit

tw::NewLineBreak - breaks line on newline characters

tw::SpaceBreak - breaks line on space or tab characters

tw::ReturnChunks - returns wrapped text chunks

tw::ReturnLines - returns positions and lengths of wrapped

text chunks

tw::WordBreak - defines if text break by width goes by the

characters or by the words

tw::ReturnFirstLineLength - returns length of the first wrapped line

tw::Default - tw::NewLineBreak | tw::CalcTabs | tw::ExpandTabs |

tw::ReturnLines | tw::WordBreak

wc:: - widget classes

See the widgetClass entry in the Prima::Widget section

wc::Undef

wc::Button

wc::CheckBox

wc::Combo

wc::Dialog

wc::Edit

wc::InputLine

wc::Label

wc::ListBox

wc::Menu

wc::Popup

wc::Radio

wc::ScrollBar

wc::Slider

wc::Widget, wc::Custom

wc::Window

wc::Application

ws:: - window states

See the windowState entry in the Prima::Window section

ws::Normal

ws::Minimized

ws::Maximized

363

9.3 Prima::EventHook

Event filtering

Synopsis

use Prima::EventHook;

sub hook

{

my ($my_param, $object, $event, @params) = @_;

...

print "Object $object received event $event\n";

...

return 1;

}

Prima::EventHook::install(\&hook,

param => $my_param,

object => $my_window,

event => [qw(Size Move Destroy)],

children => 1

);

Prima::EventHook::deinstall(\&hook);

Description

Prima dispatches events by calling notifications registered on one or more objects interested in
the events. Also, one event hook can be installed that would receive all events occurred on all
objects. Prima::EventHook provides multiplex access to the core event hook and introduces set
of dispatching rules so the user hook subs receive only a defined subset of events.

The filtering criteria are event names and object hierarchy.

API

install SUB, %RULES

Installs SUB into hook list using hash of RULES.
The SUB is called with variable list of parameters, formed so first passed parameters from

’param’ key (see below), then event source object, then event name, and finally parameters to
the event. SUB must return an integer, either 0 or 1, to block or pass the event, respectively. If
1 is returned, other hook subs are called; if 0 is returned, the event is efficiently blocked and no
hooks are further called.

Rules can contain the following keys:

event

Event is either a string, an array of strings, or undef value. In the latter case it is equal
to ’*’ string, which selects all events to be passed in the SUB. A string is either name of
an event, or one of pre-defined event groups, declared in %groups package hash. The group
names are:

ability

focus

geometry

364

keyboard

menu

mouse

objects

visibility

These contain respective events. See source for detailed description.

In case ’event’ key is an array of strings, each of the strings is also name of either an event
or a group. In this case, if ’*’ string or event duplicate names are present in the list, SUB
is called several times which is obviously inefficient.

object

A Prima object, or an array of Prima objects, or undef; the latter case matches all objects.
If an object is defined, the SUB is called if event source is same as the object.

children

If 1, SUB is called using same rules as described in ’object’, but also if the event source is
a child of the object. Thus, selecting undef as a filter object and setting ’children’ to 0 is
almost the same as selecting $::application, which is the root of Prima object hierarchy,
as filter object with ’children’ set to 1.

Setting together object to undef and children to 1 is inefficient.

param

A scalar or array of scalars passed as first parameters to SUB whenever it is called.

deinstall SUB

Removes the hook sub for the hook list.

NOTES

Prima::EventHook by default automatically starts and stops Prima event hook mechanism when
appropriate. If it is not desired, for example for your own event hook management, set $auto hook

to 0.

365

9.4 Prima::IniFile

Support of Windows-like initialization files

Description

The module contains a class, that provides mapping of text initialization file to a two-level hash
structure. The first level is called sections, which groups the second level hashes, called items.
Sections must have unique keys. The items hashes values are arrays of text strings. The methods,
operated on these arrays are the get values entry, the set values entry, the add values entry and
the replace values entry.

Synopsis

use Prima::IniFile;

my $ini = create Prima::IniFile;

my $ini = create Prima::IniFile FILENAME;

my $ini = create Prima::IniFile FILENAME,

default => HASHREF_OR_ARRAYREF;

my $ini = create Prima::IniFile file => FILENAME,

default => HASHREF_OR_ARRAYREF;

my @sections = $ini->sections;

my @items = $ini->items(SECTION);

my @items = $ini->items(SECTION, 1);

my @items = $ini->items(SECTION, all => 1);

my $value = $ini-> get_values(SECTION, ITEM);

my @vals = $ini-> get_values(SECTION, ITEM);

my $nvals = $ini-> nvalues(SECTION, ITEM);

$ini-> set_values(SECTION, ITEM, LIST);

$ini-> add_values(SECTION, ITEM, LIST);

$ini-> replace_values(SECTION, ITEM, LIST);

$ini-> write;

$ini-> clean;

$ini-> read(FILENAME);

$ini-> read(FILENAME, default => HASHREF_OR_ARRAYREF);

my $sec = $ini->section(SECTION);

$sec->{ITEM} = VALUE;

my $val = $sec->{ITEM};

delete $sec->{ITEM};

my %everything = %$sec;

%$sec = ();

for (keys %$sec) { ... }

while (my ($k,$v) = each %$sec) { ... }

Methods

add values SECTION, ITEM, @LIST

Adds LIST of string values to the ITEM in SECTION.

366

clean

Cleans all internal data in the object, including the name of the file.

create PROFILE

Creates an instance of the class. The PROFILE is treated partly as an array, partly as a
hash. If PROFILE consists of a single item, the item is treated as a filename. Otherwise,
PROFILE is treated as a hash, where the following keys are allowed:

file FILENAME

Selects name of file.

default %VALUES

Selects the initial values for the file, where VALUES is a two-level hash of sections and
items. It is passed to the read entry, where it is merged with the file data.

get values SECTION, ITEM

Returns array of values for ITEM in SECTION. If called in scalar context, and there is more
than one value, the first value in list is returned.

items SECTION [HINTS]

Returns items in SECTION. HINTS parameters is used to tell if a multiple-valued item
must be returned as several items of the same name; HINTS can be supplied in the following
forms:

items($section, 1) items($section, all => 1);

new PROFILE

Same as the create entry.

nvalues SECTION, ITEM

Returns number of values in ITEM in SECTION.

read FILENAME, %PROFILE

Flushes the old content and opens new file. FILENAME is a text string, PROFILE is a
two-level hash of default values for the new file. PROFILE is merged with the data from
file, and the latter keep the precedence. Does not return any success values but, warns if
any error is occurred.

replace values SECTION, ITEM, @VALUES

Removes all values form ITEM in SECTION and assigns it to the new list of VALUES.

section SECTION

Returns a tied hash for SECTION. All its read and write operations are reflected in the
caller object, which allows the following syntax:

my $section = $inifile-> section(’Sample section’);

$section-> {Item1} = ’Value1’;

which is identical to

$inifile-> set_items(’Sample section’, ’Item1’, ’Value1’);

sections

Returns array of section names.

367

set values SECTION, ITEM, @VALUES

Assigns VALUES to ITEM in SECTION. If number of new values are equal or greater than
the number of the old, the method is same as the replace values entry. Otherwise, the values
with indices higher than the number of new values are not touched.

write

Rewrites the file with the object content. The object keeps an internal modification flag
under name {changed}; in case it is undef, no actual write is performed.

368

9.5 Prima::IntUtils

Internal functions

Description

The module provides packages, containing common functionality for some standard classes. The
packages are designed as a code containers, not as widget classes, and are to be used as secondary
ascendants in the widget inheritance declaration.

Prima::MouseScroller

Implements routines for emulation of auto repeating mouse events. A code inside MouseMove

callback can be implemented by the following scheme:

if (mouse_pointer_inside_the_scrollable_area) {

$self-> scroll_timer_stop;

} else {

$self-> scroll_timer_start unless $self-> scroll_timer_active;

return unless $self-> scroll_timer_semaphore;

$self-> scroll_timer_semaphore(0);

}

The class uses a semaphore {mouseTransaction}, which should be set to non-zero if a widget
is in mouse capture state, and set to zero or undef otherwise.

The class starts an internal timer, which sets a semaphore and calls MouseMove

notification when triggered. The timer is assigned the timeouts, returned by
Prima::Application::get scroll rate (see the get scroll rate entry in the
Prima::Application section).

Methods

scroll timer active

Returns a boolean value indicating if the internal timer is started.

scroll timer semaphore [VALUE]

A semaphore, set to 1 when the internal timer was triggered. It is advisable to check
the semaphore state to discern a timer-generated event from the real mouse movement. If
VALUE is specified, it is assigned to the semaphore.

scroll timer start

Starts the internal timer.

scroll timer stop

Stops the internal timer.

Prima::IntIndents

Provides the common functionality for the widgets that delegate part of their surface to the border
elements. A list box can be of an example, where its scroll bars and 3-d borders are such elements.

369

Properties

indents ARRAY

Contains four integers, specifying the breadth of decoration elements for each side. The first
integer is width of the left element, the second - height of the lower element, the third -
width of the right element, the fourth - height of the upper element.

The property can accept and return the array either as a four scalars, or as an anonymous
array of four scalars.

Methods

get active area [TYPE = 0, WIDTH, HEIGHT]

Calculates and returns the extension of the area without the border elements, or the active
area. The extension are related to the current size of a widget, however, can be overridden
by specifying WIDTH and HEIGHT. TYPE is an integer, indicating the type of calculation:

TYPE = 0

Returns four integers, defining the area in the inclusive-exclusive coordinates.

TYPE = 1

Returns four integers, defining the area in the inclusive-inclusive coordinates.

TYPE = 2

Returns two integers, the size of the area.

Prima::GroupScroller

The class is used for widgets that contain optional scroll bars, and provides means for their
maintenance. The class is the descendant of the Prima::IntIndents section, and adjusts the the
indents entry property when scrollbars are shown or hidden, or the borderWidth entry is changed.

The class does not provide range selection for the scrollbars; the descentant classes must
implement that.

The descendant classes must follow the guidelines:

• A class must provide borderWidth, hScroll, and vScroll property keys in profile default()
. A class may provide autoHScroll and autoVScroll property keys in profile default() .

• A class’ init() method must set {borderWidth}, {hScroll}, and {vScroll} variables to 0
before the initialization, call setup indents method, and then assign the properties from
the object profile.

If a class provides autoHScroll and autoVScroll properties, these must be set to 0 before
the initialization.

• If a class needs to overload one of borderWidth, hScroll, vScroll, autoHScroll, and
autoVScroll properties, it is mandatory to call the inherited properties.

• A class must implement the scroll bar notification callbacks: HScroll Change and
VScroll Change.

• A class must not use the reserved variable names, which are:

{borderWidth} - internal borderWidth storage

{hScroll} - internal hScroll value storage

{vScroll} - internal vScroll value storage

{hScrollBar} - pointer to the horizontal scroll bar

{vScrollBar} - pointer to the vertical scroll bar

370

{bone} - rectangular widget between the scrollbars

{autoHScroll} - internal autoHScroll value storage

{autoVScroll} - internal autoVScroll value storage

The reserved method names:

set_h_scroll

set_v_scroll

insert_bone

setup_indents

reset_indents

borderWidth

autoHScroll

autoVScroll

hScroll

vScroll

The reserved widget names:

HScroll

VScroll

Bone

Properties

autoHScroll BOOLEAN

Selects if the horizontal scrollbar is to be shown and hidden dynamically, depending on the
widget layout.

autoVScroll BOOLEAN

Selects if the vertical scrollbar is to be shown and hidden dynamically, depending on the
widget layout.

borderWidth INTEGER

Width of 3d-shade border around the widget.

Recommended default value: 2

hScroll BOOLEAN

Selects if the horizontal scrollbar is visible. If it is, {hScrollBar} points to it.

vScroll BOOLEAN

Selects if the vertical scrollbar is visible. If it is, {vScrollBar} points to it.

Properties

setup indents

The method is never called directly; it should be called whenever widget layout is changed
so that indents are affected. The method is a request to recalculate indents, depending on
the widget layout.

The method is not reentrant; to receive this callback and update the widget layout, that in
turn can result in more setup indents calls, overload reset indents .

reset indents

Called after setup indents is called and internal widget layout is updated, to give a chance
to follow-up the layout changes.

371

9.6 Prima::StdBitmap

Shared access to the standard toolkit bitmaps

Description

The toolkit contains sysimage.gif image library, which consists of a predefined set of images, used
in several toolkit modules. To provide a unified access to the images this module can be used.
The images are assigned a sbmp:: constant, which is used as an index on a load request. If loaded
successfully, images are cached and the successive requests return the cached values.

The images can be loaded as Prima::Image and Prima::Icon instances. To discriminate, two
methods are used, correspondingly image and icon.

Synopsis

use Prima::StdBitmap;

my $logo = Prima::StdBitmap::icon(sbmp::Logo);

API

Methods

icon INDEX

Loads INDEXth image frame and returns Prima::Icon instance.

image INDEX

Loads INDEXth image frame and returns Prima::Image instance.

load std bmp INDEX, AS ICON, USE CACHED VALUE, IMAGE FILE

Loads INDEXth image frame from IMAGE FILE and returns it as either a Prima::Image

or as a Prima::Icon instance, depending on value of boolean AS ICON flag. If
USE CACHED VALUE boolean flag is set, the cached images loaded previously can be
used. If this flag is unset, the cached value is never used, and the created image is not stored
in the cache. Since the module’s intended use is to provide shared and read-only access to
the image library, USE CACHED VALUE set to 0 can be used to return non-shared images.

Constants

An index value passed to the methods must be one of sbmp:: constants:

sbmp::Logo

sbmp::CheckBoxChecked

sbmp::CheckBoxCheckedPressed

sbmp::CheckBoxUnchecked

sbmp::CheckBoxUncheckedPressed

sbmp::RadioChecked

sbmp::RadioCheckedPressed

sbmp::RadioUnchecked

sbmp::RadioUncheckedPressed

sbmp::Warning

sbmp::Information

sbmp::Question

sbmp::OutlineCollaps

sbmp::OutlineExpand

372

sbmp::Error

sbmp::SysMenu

sbmp::SysMenuPressed

sbmp::Max

sbmp::MaxPressed

sbmp::Min

sbmp::MinPressed

sbmp::Restore

sbmp::RestorePressed

sbmp::Close

sbmp::ClosePressed

sbmp::Hide

sbmp::HidePressed

sbmp::DriveUnknown

sbmp::DriveFloppy

sbmp::DriveHDD

sbmp::DriveNetwork

sbmp::DriveCDROM

sbmp::DriveMemory

sbmp::GlyphOK

sbmp::GlyphCancel

sbmp::SFolderOpened

sbmp::SFolderClosed

sbmp::Last

Scalars

$sysimage scalar is initialized to the file name to be used as a source of standard image frames
by default. It is possible to alter this scalar at run-time, which causes all subsequent image frame
request to be redirected to the new file.

373

9.7 Prima::Stress

Stress test module

Description

The module is intended for use in test purposes, to check the functionality of a program or a
module under particular conditions that might be overlooked during the design. Currently, the
only stress factor implemented is change of the default font size, which is set to different value
every time the module is invoked.

To use the module functionality it is enough to include a typical

use Prima::Stress;

code, or, if the program is invoked by calling perl, by using

perl -MPrima::Stress program

syntax. The module does not provide any methods.

374

9.8 Prima::Tie

Tie widget properties to scalars or arrays.

Description

Prima::Tie contains two abstract classes, Prima::Tie::Array and Prima::Tie::Scalar, which
tie an array or a scalar to a widget’s arbitrary array or scalar property. Also, it contains classes
Prima::Tie::items, Prima::Tie::text, and Prima::Tie::value, which tie a variable to a wid-
get’s items, text, and value property respectively.

Synopsis

use Prima::Tie;

tie @items, ’Prima::Tie::items’, $widget;

tie @some_property, ’Prima::Tie::Array’, $widget, ’some_property’;

tie $text, ’Prima::Tie::text’, $widget;

tie $some_property, ’Prima::Tie::Scalar’, $widget, ’some_property’;

Usage

These classes provide immediate access to a widget’s array and scalar property, in particular to
popular properties as items and text. It is considerably simpler to say

splice(@items,3,1,’new item’);

than to say

my @i = @{$widget->items};

splice(@i,3,1,’new item’);

$widget->items(\@i);

You can work directly with the text or items rather than at a remove. Furthermore, if the only
reason you keep an object around after creation is to access its text or items, you no no longer
need to do so:

tie @some_array, ’Prima::Tie::items’, Prima::ListBox->create(@args);

As opposed to:

my $widget = Prima::ListBox->create(@args);

tie @some_array, ’Prima::Tie::items’, $widget;

Prima::Tie::items requires ::items property to be available on the widget. Also, it takes
advantage of additional get items, add items, and the like if available.

Prima::Tie::items

The class is applicable to Prima::ListViewer, Prima::ListBox, Prima::Header, and
their descendants, and in limited fashion to Prima::OutlineViewer and its descendants
Prima::StringOutline and Prima::Outline.

375

Prima::Tie::text

The class is applicable to any widget.

Prima::Tie::value

The class is applicable to Prima::GroupBox, Prima::ColorDialog, Prima::SpinEdit,
Prima::Gauge, Prima::Slider, Prima::CircularSlider, and Prima::ScrollBar.

376

9.9 Prima::Utils

Miscellanneous routines

Description

The module contains several helper routines, implemented in both C and perl. Whereas the C-
coded parts are accessible only if ’use Prima;’ statement was issued prior to the ’use Prima::Utils’
invocation, the perl-coded are always available. This makes the module valuable when used
without the rest of toolkit code.

API

alarm $TIMEOUT, $SUB, @PARAMS

Calls SUB with PARAMS after TIMEOUT milliseconds.

beep [FLAGS = mb::Error]

Invokes the system-depended sound and/or visual bell, corresponding to one of following
constants:

mb::Error

mb::Warning

mb::Information

mb::Question

get gui

Returns one of gui::XXX constants, reflecting the graphic user interface used in the system:

gui::Default

gui::PM

gui::Windows

gui::XLib

gui::GTK2

get os

Returns one of apc::XXX constants, reflecting the platfrom. Currently, the list of the sup-
ported platforms is:

apc::Os2

apc::Win32

apc::Unix

ceil DOUBLE

Obsolete function.

Returns stdlib’s ceil() of DOUBLE

find image PATH

Converts PATH from perl module notation into a file path, and searches for the file in @INC

paths set. If a file is found, its full filename is returned; otherwise undef is returned.

floor DOUBLE

Obsolete function.

Returns stdlib’s floor() of DOUBLE

377

getdir PATH

Reads content of PATH directory and returns array of string pairs, where the first item is a
file name, and the second is a file type.

The file type is a string, one of the following:

"fifo" - named pipe

"chr" - character special file

"dir" - directory

"blk" - block special file

"reg" - regular file

"lnk" - symbolic link

"sock" - socket

"wht" - whiteout

This function was implemented for faster directory reading, to avoid successive call of stat
for every file.

path [FILE]

If called with no parameters, returns path to a directory, usually ~/.prima, that can be used
to contain the user settings of a toolkit module or a program. If FILE is specified, appends
it to the path and returns the full file name. In the latter case the path is automatically
created by File::Path::mkpath unless it already exists.

post $SUB, @PARAMS

Postpones a call to SUB with PARAMS until the next event loop tick.

query drives map [FIRST DRIVE = ”A:”]

Returns anonymous array to drive letters, used by the system. FIRST DRIVE can be set
to other value to start enumeration from. Some OSes can probe eventual diskette drives
inside the drive enumeration routines, so there is a chance to increase responsiveness of the
function it might be reasonable to set FIRST DRIVE to C: string.

If the system supports no drive letters, empty array reference is returned (unix).

query drive type DRIVE

Returns one of dt::XXX constants, describing the type of drive, where DRIVE is a 1-character
string. If there is no such drive, or the system supports no drive letters (unix), dt::None
is returned.

dt::None

dt::Unknown

dt::Floppy

dt::HDD

dt::Network

dt::CDROM

dt::Memory

sound [FREQUENCY = 2000, DURATION = 100]

Issues a tone of FREQUENCY in Hz with DURATION in milliseconds.

username

Returns the login name of the user. Sometimes is preferred to the perl-provided getlogin

(see getlogin in perlfunc) .

378

xcolor COLOR

Accepts COLOR string on one of the three formats:

#rgb

#rrggbb

#rrrgggbbb

and returns 24-bit RGB integer value.

379

9.10 Prima::Widgets

Miscellaneous widget classes

Description

The module was designed to serve as a collection of small widget classes that do not group well
with the other, more purposeful classes. The current implementation contains the only class,
Prima::Panel.

Prima::Panel

Provides a simple panel widget, capable of displaying a single line of centered text on a custom
background. Probably this functionality is better to be merged into Prima::Label’s.

Properties

borderWidth INTEGER

Width of 3d-shade border around the widget.

Default value: 1

image OBJECT

Selects image to be drawn as a tiled background. If undef, the background is drawn with
the background color.

imageFile PATH

Set the image FILE to be loaded and displayed. Is rarely used since does not return a loading
success flag.

raise BOOLEAN

Style of 3d-shade border around the widget. If 1, the widget is ’risen’; if 0 it is ’sunken’.

Default value: 1

zoom INTEGER

Selects zoom level for image display. The acceptable value range is between 1 and 10.

Default value: 1

380

9.11 Prima::gp-problems

Problems, questionable or intricate topics in 2-D Graphics

Introduction

One of the most important goals of the Prima project is portability between different operating
systems. Independently to efforts in keeping Prima internal code that it behaves more or less iden-
tically on different platforms, it is always possible to write non-portable and platform-dependent
code. Here are some guidelines and suggestions for 2-D graphics programming.

Minimal display capabilities

A compliant display is expected to have minimal set of capabilities, that programmer can rely
upon. Following items are guaranteedly supported by Prima:

Minimal capabilities

Distinct black and white colors

Line widths 0 and 1

One monospaced font

Solid fill

rop::Copy and rop::NoOper

Plotting primitives

SetPixel,GetPixel

Line,PolyLine,PolyLines

Ellipse,Arc,Chord,Sector

Rectangle

FillPoly

FillEllipse,FillChord,FillSector

TextOut

PutImage,GetImage

Information services

GetTextWidth,GetFontMetrics,GetCharacterABCWidths

GetImageBitsLayout

Properties

color

backColor

rop

backRop

lineWidth

lineJoin

lineStyle

fillPattern

fillPolyWinding

381

textOpaque

clipRect

All these properties must be present, however it is not required for them to be changeable.
Even if an underlying platform-specific code can only support one mode for a property, it have
to follow all obligations for the mode. For example, if platform supports full functionality
for black color but limited functionality for the other colors, the wrapping code should not
allow color property to be writable then.

Inevident issues

Colors

Black and white colors on paletted displays

Due the fact that paletted displays employ indexed color representation, ’black’ and ’white’
indices are not always 0 and 2ˆn-1, so result of raster image operations may look garbled
(X). Win32 and OS/2 protect themselves from this condition by forcing white to be the last
color in the system palette.

Example: if white color on 8-bit display occupies palette index 15 then desired masking
effect wouldn’t work for xoring transparent areas with cl::White.

Workaround: Use two special color constants cl::Clear and cl::Set, that represent all zeros
and all ones values for bit-sensitive raster operations.

Black might be not 0, and white not 0xffffff

This inevident issue happens mostly on 15- and 16-bits pixel displays. Internal color repre-
sentation for the white color on a 15-color display (assuming R,G and B are 5-bits fields)
is

11111000 11111000 11111000

--R----- --G----- --B-----

that equals to 0xf8f8f8. (All)

Advise: do not check for ’blackness’ and ’whiteness’ merely by comparing a pixel value.

Pixel value coding

Status: internal

It is not checked how does Prima behave when a pixel value and a platform integer use
different bit and/or byte priority (X).

Filled shapes

Dithering

If a non-solid pattern is selected and a background and/or a foreground color cannot be
drawn as a solid, the correct rendering requires correspondingly 3 or 4 colors. Some rendering
engines (Win9X) fail to produce correct results.

Overfill effect

In complex shapes (FillPoly, for example) the platform renderer can fill certain areas two
or more times. Whereas the effect is not noticeable with rop::CopyPut, the other raster
operations (like rop::Xor) produce incorrect picture. (OS/2)

NB - has nothing in common with the fill winding rule.

Workaround: Do not use raster operations with complex filled shapes

382

Pattern offset

For a widget that contains a pattern-filled shape, its picture will be always garbled after
scrolling, because it is impossible to provide an algorithm for a correct rendering without a
prior knowledge of the widget nature. (All)

Workaround: Do not use patterned backgrounds. Since the same effect is visible on dithered
backgrounds, routine check for pure color might be applied.

Lines

Line caps over patterned styles

It is not clear, whether gaps between dashes should be a multiple to a line width or not. For
example, lp::DotDot looks almost as a solid line when lineWidth is over 10 if the first (non-
multiple) tactic is chosen. From the other hand it is hardly possible to predict the plotting
strategy from a high-level code. The problem is related more to Prima design rather than
to a platform-specific code. (All)

Workaround: use predefined patterns (lp::XXX)

Line joins

Joint areas may be drawn two (or more) times - the problem emerges if logical ROP
(rop::Xor) is chosen.(OS/2)

Dithering

Dithering might be not used for line plotting. (Win9X)

Fonts

Font metric inconsistency

A font is loaded by request with one size, but claims another afterwards.(OS/2, X).

Impact: system-dependent font description may not match to Prima’s.

Advise: do not try to deduce Prima font metrics from system-dependent ones and vice versa.

Transparent plotting

No internal function for drawing transparent bitmaps (like fonts). Therefore, if a font emu-
lation is desired, special ROPs cannot be reproduced. (OS/2, Win9X, WinNT)

Impact: font emulation is laborsome, primarily because the glyphs have to be plotted by
consequential anding and xoring a bitmap. Full spectrum of the raster operations cannot be
achieved with this approach.

Kerning

Prima do not use text kernings, nor encourages underlying platform-specific code to use it -
primarily because of its complexity. From the other hand, sometimes glyph position cannot
be determined correctly if no information for the text kerning is provided. (Win9X)

Fractional text position

If the font glyphs have fractional widths, it might be observed that letters may change their
position in a string.

Example: A set of glyphs has width of 8.6 pixels for each symbol. If the string ”abcd” is
drawn at position 0, then black part of ”d” starts at 25th pixel, but if ”cd” is drawn at 17th,
as it supposed to be if the integer arithmetics is used, it starts at 24th pixel. (OS/2)

Solution: Do not rely to Drawable::get text width information, because it always returns
integer value, but to Drawable::get font abc, which returns real values.

383

Text background

If a text is drawn with non-CopyPut raster operation, text background is not expected to
be mixed with symbols - however this is hardly reachable, so results differs for different
platforms.

Text background may be only drawn with pure (non-dithered) color (Win9X,WinNT) -
but this is (arguably) a more correct behavior.

Advise: Do not use ::rop2 and text background for special effects

Internal platform features

Font change notification is not provided. (X, OS/2)

Raster fonts cannot be synthesized (OS/2, partly X)

Raster operations (ROPs)

Background raster operations are not supported (X,Win9X,WinNT) and foreground ROPs have
limited number of modes (OS/2,X). Not all ROPs can be emulated for certain primitives, like
fonts, complex shapes, and patterned shapes.

It is yet unclear which primitives have to support ROPs, - like FloodFill and SetPixel. Behavior
of the current implementation is that they do not.

Arcs

Platforms tend to produce different results for angles outside 0 and 2pi. Although Prima assures
that correct plotting would be performed for any angle, minor inconsistencies may be noticed. If
emulating, note that 2 and 4-pi arcs are not the same - for example, they look differently with
rop::Xor.

Palettes

Static palettes

Some displays are unable to change their hardware palette, so detecting 8- or 4- bits display
doesn’t automatically mean that palette is writable.(X)

Widget::palette

Widget::palette property is used for explicit declaration of extra color needs for a widget.
The request might be satisfacted in different ways, or might not at all. It is advisable not
to rely onto platform behavior for the palette operations.

Dynamic palette change

It is possible (usually on 8-bits displays) for a display to change asynchronously its hardware
palette in order to process different color requests. All platforms behave differently.

Win9X/WinNT - only one top-level window at a time and its direct children (not
::clipOwner(0)) can benefit from using Widget::palette. System palette is switched every
time as different windows moved to the front.

OS/2 - not implemented, but in principle the same as under win32.

X - Any application can easily ruin system color table. Since this behavior is such by design,
no workaround can be applied here.

384

Bitmaps

Invalid scaling

Scaling is invalid (Win9X) or not supported (X). Common mistake is to not take into an
account the fractional pixels that appear when the scaling factor is more than 1. This
mistake can be observed in Win9X.

Workaround: none

Large scale factors

Request for drawing a bitmap might fail if large scaling factor is selected.
(OS/2,Win9X,WinNT). This effect is obviously due that fact that these platforms scale
the bitmap into a memory before the plotting takes place.

Platform-specific peculiarities

OS/2

Some ROPs are ambiguous - SRCTRANSPARENT, for example. Some times they work, some
times they don’t. The particular behavior depends on a video driver.

Circles cannot be drawn using an even diameter.
Fast GDI operations on HWND DESKTOP may be delayed, thus GetPixel may return invalid

pixel values.

Windows 9X

Amount of GDI objects can not exceed some unknown threshold - experiments show that 128
objects is safe enough.

No transformations.
Color cursor creation routine is broken.
Filled shapes are broken.

X

No transformations
No bitmap scaling
No font rotation
No GetPixel, FloodFill (along with some other primitives)
White is not 2ˆn-1 on n-bit paletted displays (tested on XFree86).
Filled shapes are broken.
Color bitmaps cannot be drawn onto mono bitmaps.

Implementation notes

OS/2

Palettes are not implemented

Win32

Plotting speed of DeviceBitmaps is somewhat less on 8-bit displays than Images and Icons. It
is because DeviceBitmaps are bound to their original palette, so putting a DeviceBitmap onto
different palette drawable employs inefficient algorithms in order to provide correct results.

385

X

Image that was first drawn on a paletted Drawable always seen in 8 colors if drawn afterwards on
a Drawable with the different palette. That is because the image has special cache in display pixel
format, but cache refresh on every PutImage call is absolutely inappropriate (although technically
possible). It is planned to fix the problem by checking the palette difference for every PutImage
invocation. NB - the effect is seen on dynamic color displays only.

386

9.12 Prima::X11

Usage guide for X11 environment

Description

This document describes subtle topics one must be aware when programming or using Prima
programs under X11.

The document covers various aspects of the toolkit and their implementation details with
guidelines of the expected use. Also, standard X11 user-level and programming techniques are
visited.

Basic command-line switches

--help

Prints the command-line arguments available and exits.

--display

Sets X display address in Xlib notation. If not set, standard Xlib (XOpenDisplay(null))
behavior applies.

Example:

--display=:0.1

--visual

Sets X visual, to be used by default. Example:

--visual=0x23

--sync

Turn off X synchronization

--bg, --fg

Set default background and foreground colors. Example:

--bg=BlanchedAlmond

--font

Sets default font. Example:

--font=’adobe-helvetica-medium-r-*-*--*-120-*-*-*-*-*-*’

--no-x11

Runs Prima without X11 display initialized. This switch can be used for programs that use
only OS-independent parts of Prima, such as image subsystem or PostScript generator, in
environments where X is not present, for example, a CGI script. Obviously, any attempt
to create instance of Prima::Application or otherwise access X-depended code under such
conditions causes the program to abort.

There are alternatives to use the command switch. First, there is module Prima::noX11 for
the same purpose but more convenient to use as

387

perl -MPrima::noX11

construct. Second, there is a technique to continue execution even if connection to a X server
failed:

use Prima::noX11;

use Prima;

my $error = Prima::XOpenDisplay();

if (defined $error) {

print "not connected to display: $error\n";

} else {

print "connected to display\n";

}

The the Prima::noX11 section module exports a single function XOpenDisplay into Prima

namespace, to connect to the X display explicitly. The display to be connected to is
$ENV{DISPLAY}, unless started otherwise on command line (with –display option) or with
parameter to the XOpenDisplay function.

This technique may be useful to programs that use Prima imaging functionality and may or
may not use windowing capabilites.

X resources database

X11 provides XRDB, the X resource database, a keyed list of arbitrary string values stored on the
X server. Each key is a combination of names and classes of widgets, each in string form. The key
is constructed so the leftmost substring (name or class) corresponds to the top-level item in the
hierarchy, usually the application name or class. Although the XRDB can be changed via native
X API, it is rarely done by applications. Instead, the user creates a file, usually named .Xdefaults,
which contains the database in the string form.

The format of .Xdefaults directly reflects XRDB capabilities, one of the most important of
which is globbing, manifested via * (star) character. Using globbing, the user can set up a
property value that corresponds to multiple targets:

*.ListBox.backColor: yellow

The string above means that all widgets of ListBox class must have yellow background.
The application itself is responsible for parsing the strings and querying the XRDB. Also,

both class names and widget names, as well as database values are fully defined in terms of the
application. There are some guidelines though, for example, colors and fonts best described in
terms, native to the X server. Also, classes and names are distinguished by the case: classes
must begin with the upper register letter. Also, not every character can be stored in the XRDB
database (space, for example, cannot) , and therefore XRDB API automatically converts these
to (underscore) characters.

Prima defines its all set of resources, divided in two parts: general toolkit settings and per-
widget settings. The general settings functionality is partially overloaded by command-line argu-
ments. Per-widget settings are fonts and colors, definable for each Prima widget.

All of the general settings are applicable to the top-level item of widget hierarchy, named after
the application, and Prima class. Some of these, though, are needed to be initialized before the
application instance itself is created, so these can be accessed via Prima class only, for example,
Prima.Visual. Some, on the contrary, may occasionally overlap with per-widget syntax. In
particular, one must vary not to mix

Prima.font: some-font

388

with

Prima*font: some-font

The former syntax is a general setting, and sets the default Prima font. The latter is a per-
widget assignment, and explicitly sets font to all Prima widgets, effectively ruining the toolkit
font inheritance scheme. The same is valid for an even more oppressive

*font: some-font

record.
The allowed per-widget settings are colors and font settings only (see corresponding sections

). It is an arguably useful feature to map all widget properties onto XRDB, but Prima does not
implement this, primarily because no one asked for it, and also because this creates unnecessary
latency when enumeration of all properties for each widget takes place.

All global settings have identical class and name, varied in the case of the first letter. For
example, to set Submenudelay value, one can do it either by

Prima.Submenudelay: 10

or

Prima.submenudelay: 10

syntax. Despite that these calls are different, in a way that one reaches for the whole class and
another for the name, for the majority of these properties it does not matter. To avoid confusion,
for all properties their names and class are given as PropetyClass.propertyname index.

Fonts

Default fonts

Prima::Application defines set of get default XXX font functions, where each returns some user-
selected font, to be displayed correspondingly in menu, message, window captions, all other wid-
gets, and finally a default font. While in other OS’es these are indeed standard configurable
user options, raw X11 doesn’t define any. Nevertheless, as the high-level code relies on these,
corresponding resources are defined. These are:

• font - Application::get default font

• caption font - Application::get caption font. Used in Prima::MDI.

• menu font - Widget::get default menu font. Default font for pull-down and pop-up menus.

• msg font - Application::get message font. Used in Prima::MsgBox.

• widget font - Widget::get default font.

All of the global font properties can only be set via Prima class, no application name is
recognized. Also, these properties are identical to --font, --menu-font, --caption-font,
--msg-font, and --widget-font command-line arguments. The per-widget properties are font

and popupFont, of class Font, settable via XRDB only:

Prima*Dialog.font: my-fancy-dialog-font

Prima.FontDialog.font: some-conservative-font

By default, Prima font is 12.Helvetica .

389

X core fonts

The values of the font entries are standard XLFD strings, the default
--*-*-*-*-*-*-*-*-*-*-*-*-* pattern, where each star character can be replaced by a
particular font property, as name, size, charset, and so on. To interactively select an appropriate
font, use standard xfontsel program from X11 distribution.

Note, that encoding part of the font is recommended to left unspecified, otherwise it may clash
with LANG environment variable, which is used by Prima font subsystem to determine which font
to select when no encoding is given. This advice, though, is correct only when both LANG and
encoding part of a desired font match. In order to force a particular font encoding, the property
Prima.font must contain one.

Alternatively, and/or to reduce X font traffic, one may set
IgnoreEncodings.ignoreEncodings property, which is a semicolon- separated list of en-
codings Prima must not account. This feature has limited usability when for example fonts in
Asian encodings result in large font requests. Another drastic measure to decrease font traffic is a
boolean property Noscaledfonts.noscaledfonts, which, if set to 1, restricts the choice of fonts
to the non-scalable fonts only.

Xft fonts

Recently, Prima was made to compile with Xft library, which contrary to core X font API, can
make use of client-side fonts. Plus, Xft offers appealing features as font antialiasing, unicode, and
arguably a better font syntax. The Xft font syntax is inherited from fontconfig library and to
be consulted from man fonts-conf, but currently (November 2003) basic font descriptions can
be composed as follows:

Palatino-12

A font with name Palatino and size 12.

Arial-10:BI

A font with name Arial, size 10, bold, italic. The fontconfig syntax allows more than that,
for example, arbitrary matrix transformations, but Prima can make use only of font name, size,
and style flags.

--no-xft

--no-xft command-line argument, and boolean UseXFT.usexft XRDB property can be
used to disable use of the Xft library.

--no-core-fonts

Disables all X11 core fonts, except fixed fonts. The fixed font is selected for the same
reasons that X server is designed to provide at least one font, which usually is fixed.

It is valid to combine --no-core-fonts and --no-xft. Moreover, adding --noscaled to
these gives Prima programs a ’classic’ X look.

--font-priority

Can be set to either xft or core, to select a font provider mechanism to match unknown or
incompletely specified fonts against.

Default value: xft (if compiled in), core otherwise.

--no-aa

If set, turns off Xft antialiasing.

390

Colors

XRDB conventions

X traditionally contains a color names database, usually a text file named rgb.txt. Check your X
manual where exactly this file resides and what is its format. The idea behind it is that users can
benefit from portable literal color names, with color values transparently adjustable to displays
capabilities. Thus, it is customary to write

color: green

for many applications, and these in turn call XParseColor to convert strings into RGB values.
Prima is no exception to the scheme. Each widget can be assigned eight color properties that

belongs to two classes by means of standard XRDB techniques:

class Foreground

Widget properties: color, hiliteBackColor, disabledColor, dark3DColor

class Background

Widget properties: backColor, hiliteColor, disabledBackColor, light3DColor

Additionally, set of command-line arguments allows overriding default values for these:

• --fg - color

• --bg - backColor

• --hilite-fg - hiliteColor

• --hilite-bg - hiliteBackColor

• --disabled-fg - disabledColor

• --disabled-bg - disabledBackColor

• --light - light3DColor

• --dark - dark3DColor

Visuals

X protocol works with explicitly defined pixel values only. A pixel value, maximum 32-bit value,
represents a color in a display. There are two different color coding schemes - direct color and
indexed color. The direct color-coded pixel value can unambiguously be converted into a RGB-
value, without any external information. The indexed-color scheme represents pixel value as an
index in a palette, which resided on X server. Depending on the color cell value of the palette,
RGB color representation can be computed. A X display can contain more than one palette,
and allow (or disallow) modification of palette color cells depending on a visual, the palette is
attributed to.

A visual is a X server resource, containing representation of color coding scheme, color bit
depth, and modificability of the palette. X server can (and usually does) provide more than one
visual, as well as different bit depths. There are six classes of visuals in X paradigm. In each, Prima
behaves differently, also depending on display bit depth available. In particular, color dithering can
be used on displays with less than 12-bit color depth. On displays with modifiable color palette,
Prima can install its own values in palettes, which may result in an effect known as display flashing.
To switch to a non-default visual, use Prima.Visual XRDB property or --visual command-line
argument. List of visuals can be produced interactively by standard xdpyinfo command from X
distribution, where each class of visual corresponds to one of six visual classes:

391

StaticGray

All color cells are read-only, and contain monochrome values only. A typical example is a
two-color, black-and-white monochrome display. This visual is extremely rarely met.

GrayScale

Contains modifiable color palette, and capable of displaying monochrome values only. The-
oretically, any paletted display on a monochrome monitor can be treated as a GrayScale
visual. For both GrayScale and StaticGray visuals Prima resorts to dithering if it cannot
get at least 32 evenly spaced gray values from black to white.

StaticColor

All color cells are read-only. A typical example is a PC display in a 16-color EGA mode.
This visual is rarely met.

PseudoColor

All color cells are modifiable. Typically, 8-bit displays define this class for a default vi-
sual. For both StaticColor and PseudoColor visuals dithering is always used, although for
PseudoColor Prima resorts to that only if X server cannot allocate another color.

On PseudoColor and GrayScale Prima allocates a small set of colors, not used in palette
modifications. When a bitmap is to be exported via clipboard, or displayed in menu, or sent
to a window manager as an icon to be displayed, it is downgraded to using these colors only,
which are though guaranteedly to stay permanent through life of the application.

TrueColor

Each pixel value is explicitly coded as RGB. Typical example are 16, 24, or 32-bit display
modes. This visual class is the best in terms of visual quality.

DirectColor

Same as TrueColor, but additionally each pixel value can be reprogrammed. Not all hardware
support this visual, and usually by default it is not set. Prima supports this mode in
exactly same way as TrueColor without additional features. During testing, it appeared
that non-default DirectColor visuals require explicit assignment of each pixel used, which
is inappropriate for color-rich images, and therefore Prima refuses to work on a non-default
DirectColor visual.

Images

As described in the previous section, X does not standardize pixel memory format for TrueColor
and DirectColor visuals, so there is a chance that Prima wouldn’t work on some bizarre hardware.
Currently, Prima knows how to compose pixels of 15, 16, 24, and 32 bit depth, of contiguous (
not interspersed) red-green-blue memory layout. Any other pixel memory layout causes Prima
to fail.

Prima supports shared memory image X extension, which speeds up image display for X servers
and clients running on same machine. The price for this is that if Prima program aborts, the shared
memory will never be returned to the OS. To remove the leftover segments, use your OS facilities,
for example, ipcrm on *BSD.

The clipboard exchange of images is incompletely implemented, since Prima does not accom-
pany (and neither reads) COLORMAP, FOREGROUND, and BACKGROUND clipboard data,
which contains pixel RGB values for a paletted image. As a palliative, the clipboard-bound images
are downgraded to a safe set of colors, locked immutable either by X server or Prima core.

On images in the clipboard: contrary to the text in the clipboard, which can be used several
times, images seemingly cannot. The Bitmap or Pixmap descriptor, stored in the clipboard, is
rendered invalid after it has been read once.

392

Window managers

The original design of X protocol did not include the notion of a window manager, and latter is
was implemented as an ad-hoc patch, which results in race conditions when configuring widgets.
The extreme situation may well happen when even a non-top level widget may be influenced by
a window manager, when for example a top-level widget was reparented into another widget, but
the window manager is not aware or this yet.

The consequences of this, as well as programming guidances are described in Prima::Window.
Here, we describe other aspects of interactions with WMs, as WM protocols, hints, and properties.

Prima was tested with alternating success under the following window managers: mwm, kwin,
wmaker, fvwm, fvwm2, enlightment, sawfish, blackbox, 9wm, olvm, twm, and in no-WM environ-
ment.

Protocols

Prima makes use of WM DELETE WINDOW and WM TAKE FOCUS protocols. While WM DELETE WINDOW

use is straightforward and needs no further attention, WM TAKE FOCUS can be tricky, since X defines
several of input modes for a widget, which behave differently for each WM. In particular, ’focus
follows pointer’ gives pains under twm and mwm, where navigation of drop-down combo boxes is
greatly hindered by window manager. The drop-down list is programmed so it is dismissed as soon
its focus is gone; these window managers withdraw focus even if the pointer is over the focused
widget’s border.

Hints

Size, position, icons, and other standard X hints are passed to WM in a standard way, and,
as inter-client communication manual (ICCCM) allows, repeatedly misinterpreted by window
managers. Many (wmaker, for example) apply the coordinates given from the program not to
the top-level widget itself, but to its decoration. mwm defines list of accepted icon sizes so these
can be absurdly high, which adds confusion to a client who can create icon of any size, but unable
to determine the best one.

Non-standard properties

Prima tries to use WM-specific hints, known for two window managers: mwm and kwin. For mwm
(Motif window manager) Prima sets hints of decoration border width and icons only. For kwin
(and probably to others, who wish to conform to specifications of http://www.freedesktop.org/)
Prima uses NET WM STATE property, in particular its maximization and task-bar visibility hints.

Use of these explicitly contradicts ICCCM, and definitely may lead to bugs in future (at least
with NET WM STATE, since Motif interface can hardly expected to be changed). To disable the use
of non-standard WM properties, --icccm command-line argument can be set.

Unicode

X does not support unicode, and number of patches were applied to X servers and clients to make
the situation change. Currently (2003) standard unicode practices are not emerged yet, so Prima
copes up with what (in author’s opinion) is most promising: Xft and iconv libraries.

Fonts

X11 supports 8-bit and 16-bit text string display, and neither can be used effectively to display
unicode strings. A XCreateFontSet technique, which combines several fonts under one descriptor,
or a similarly implemented technique is the only way to provide correct unicode display.

Also, core font transfer protocol suffers from ineffective memory representation, which creates
latency when fonts with large span of glyphs is loaded. Such fonts, in still uncommon though

393

standard iso10646 encoding, are the only media to display multi-encoding text without falling
back to hacks similar to XCreateFontSet.

These, and some other problems are efficiently solved by Xft library, a superset of X core font
functionality. Xft features Level 1 (November 2003) unicode display and supports 32-bit text
strings as well as UTF8-coded strings. Xft does not operate with charset encodings, and these are
implemented in Prima using iconv charset convertor library.

Input

Prima does not support extended input methods (XIM etc), primarily because the authors are
not acquainted with CIJK problem domain. Volunteers are welcome.

Clipboard

Prima supports UTF8 text in clipboard via UTF8 STRING transparently, although not by default.

Prima::Application-> wantUnicodeInput(1)

is the easiest (see the Prima::Application section) way to initiate UTF8 clipboard text ex-
change.

Due to the fact that any application can take ownership over the clipboard at any time,
open/close brackets are not strictly respected in X11 implementation. Practically, this means
that when modern X11 clipboard daemons (KDE klipper, for example) interfere with Prima
clipboard, the results may not be consistent from the programmer’s view, for example, clipboard
contains data after clear call, and the like. It must be noted though that this behavior is expected
by the users.

Other XRDB resources

Timeouts

Raw X11 provides no such GUI helpers as double-click event, cursor, or menu. Neither does it
provide the related time how often, for example, a cursor would blink. Therefore Prima emulates
these, but allows the user to reprogram the corresponding timeouts. Prima recognizes the following
properties, accessible either via application name or Prima class key. All timeouts are integer
values, representing number of milliseconds for the corresponding timeout property.

Blinkinvisibletime.blinkinvisibletime: MSEC

Cursor stays invisible MSEC milliseconds.

Default value: 500

Blinkvisibletime.blinkvisibletime: MSEC

Cursor stays visible MSEC milliseconds.

Default value: 500

Clicktimeframe.clicktimeframe MSEC

If ’mouse down’ and ’mouse up’ events are follow in MSEC, ’mouse click’ event is synthesized.

Default value: 200

Doubleclicktimeframe.doubleclicktimeframe MSEC

If ’mouse click’ and ’mouse down’ events are follow in MSEC, ’mouse double click’ event is
synthesized.

Default value: 200

394

Submenudelay.submenudelay MSEC

When the used clicks on a menu item, which points to a lower-level menu window, the latter
is displayed after MSEC milliseconds.

Default value: 200

Scrollfirst.scrollfirst MSEC

When an auto-repetitive action, similar to keystroke events resulting from a long key press
on the keyboard, is to be simulated, two timeout values are used - ’first’ and ’next’ delay.
These actions are not simulated within Prima core, and the corresponding timeouts are
merely advisable to the programmer. Prima widgets use it for automatic scrolling, either by
a scrollbar or by any other means. Also, Prima::Button in autoRepeat mode uses these
timeouts for emulation of a key press.

Scrollfirst is a ’first’ timeout.

Default value: 200

Scrollnext.scrollnext MSEC

A timeout used for same reasons as Scrollfirst, but after it is expired.

Default value: 50

Miscellaneous

Visual.visual: VISUAL ID

Selects display visual by VISUAL ID, which is usually has a form of 0x??. Various visuals
provide different color depth and access scheme. Some X stations have badly chosen default
visuals (for example, default IRIX workstation setup has 8-bit default visual selected), so
this property can be used to fix things. List of visuals, supported by a X display can be
produced interactively by standard xdpyinfo command from X distribution.

Identical to --visual command-line argument.

See the Color entry for more information.

Wheeldown.wheeldown BUTTON

BUTTON is a number of X mouse button event, treated as ’mouse wheel down’ event.

Default value: 5 (default values for wheeldown and wheelup are current de-facto most
popular settings).

Wheelup.wheelup BUTTON

BUTTON is a number of X mouse button event, treated as ’mouse wheel up’ event.

Default value: 4

Debugging

The famous ’use the source’ call is highly actual with Prima. However, some debug information
comes compiled in, and can be activated by --debug command-line key. Combination of letters
to the key activates debug printouts of different subsystems:

• C - clipboard

• E - events subsystem

• F - fonts

• M - miscellaneous debug info

395

• P - palettes and colors

• X - XRDB

• A - all of the above

Example:

--debug=xf

Also, the built-in X API XSynchronize call, which enables X protocol synchronization (at
expense of operation slowdown though) is activated with --sync command-line argument, and
can be used to ease the debugging.

396

